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IMPORTANT NOTATION

Notation Meaning Defined in

P𝑋 power set, indexed power set (2C),(10C)
PM power structure (10L)
ℎP power homomorphism (10M)
|M| universe of structure (10D)
M𝜅 carrier of sort 𝜅 (10D)
fM interpretation of operation symbol in structure (10D)
p𝜉q the name for 𝜉 (11C)

[𝑋], [𝑓 ] termal structure and renaming morphism (11E)
J𝑋K, J𝑓K termoidal algebra and renaming morphism (14I)
𝜏M value of termal expression in structure (11J)
𝜏 [𝑣]M value of termal expression with assignment (11M)
𝜏PM values of termoidal expression in structure (14P)

𝜏J𝑣KPM values of termoidal expression with assignment (14P)
𝜏 J𝑋K (14P)
𝜏J𝑠KJ𝑋K application of termoidal substitution (14P)
𝜕M algebraic fragment of structure (12C3)
𝜕ℎ algebraic fragment of homomorphism (12C4)∫︀
M

catamorphism 𝜕M → M (12L)
𝑋∘, 𝑓 ∘ (12R)

Jnam𝑋K[𝑋] homomorphism converting termoids to terms (16A)
[Nam𝑋 ]J𝑋K homomorphism converting terms to termoids (16A)

𝜆 literal or literaloid contrary to 𝜆 (20A2)

valM : [|M|] → M

valM 𝜏 = 𝜏M

nam𝑋 : 𝑋 → |[𝑋]|

nam𝑋 𝜉 = p𝜉q

Nam𝑋 : 𝑋∘ → |J𝑋K|

Nam𝑋 𝜉 = p𝜉q

ValM : J|M|K → PM

ValM 𝜏 = 𝜏PM

ValtM : J|M|K → M

ValtM 𝜏 = 𝜏M

Vals𝑋 : J|J𝑋K|K → J𝑋K

Vals𝑋 𝜏 = 𝜏 J𝑋K
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§1. INTRODUCTION

The resolution refutation is both sound and complete. If a set of clauses
is satisfiable, no contradiction is derivable. And, if a set of clauses is not
satisfiable, it is possible to derive a contradiction by resolution.

In some cases the resolution algorithm saturates after generating only
finitely many clauses. In other words, we reach a set of clauses such that
there is no contradiction and no new clauses can be generated by resolution.
In such situations we may wish to use somehow the information contained
in the generated finite set of clauses in order to build a finite model of the
initial set of clauses.

It turns out, this is indeed possible if we modify the resolution to use
the so called termoids instead of terms. If the resolution with termoids
saturates after generating finitely many clauses, then a finite model exists.
Moreover, the information contained in the generated set of clauses can be
used in order to build such finite model algorithmically.

No formal algorithms will be specified in this work. Nevertheless, all
proofs about the existence of finite structures will be constructive and it
should not be difficult to extract practical algorithms from the proofs.

We can use the resolution with termoids in order to obtain some purely
theoretical results. For example, we can prove that the class VED [11, p. 47]
has the finite model property, that is, any satisfiable finite set of clauses
belonging to VED has a finite model. A clause belongs to the class VED if
it is a Horn clause and for any variable x all occurrences of x in the clause
are at equal depth.

Another interesting result is that the deductive machinery of Prolog also
has the finite model property. Let Γ be a finite set of Horn clauses. Suppose
we ask Prolog if 𝜙 follows from Γ and after some finite computation Prolog
answers with “no”. In this case there exists a finite model of Γ in which 𝜙 is
not valid.
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§2. CONVENTIONS

A) For the null tuple, for the singletons , pairs , triplets and in general for
any 𝑛-tuple we are going to use the notation ⟨⟩, ⟨𝛼⟩, ⟨𝛼′, 𝛼′′⟩, ⟨𝛼′, 𝛼′′, 𝛼′′′⟩,
⟨𝛼1, . . . , 𝛼𝑛⟩, etc. For a set 𝑋 and a nonnegative integer 𝑛 we define 𝑋𝑛 to
be the set of all 𝑛-tuples of elements of 𝑋.

B)An 𝑛-ary function 𝑓 on 𝐴 is a function whose domain contains only
𝑛-tuples; we also say that 𝑛 is the arity of 𝑓 . A function is nullary , unary ,
binary or ternary if its arity is 0, 1, 2, 3, respectively. The image of 𝛼 under
function 𝑓 will be denoted by 𝑓𝛼.

Given a function 𝑓 : 𝑋 → 𝑌 , 𝑋 is called domain of 𝑓 , 𝑌 is called
codomain of 𝑓 and the set {𝑓𝑥 : 𝑥 ∈ 𝑋} is called image of 𝑓 . We write
Dom 𝑓 for the domain of 𝑓 and Cod 𝑓 for the codomain.

The identity function (or homomorphism) of a set (or a structure) 𝐴
will be denoted by id𝐴. Sometimes the lower index 𝐴 will be omitted.

There is unique function from ∅ to any set. There is no function from
𝑋 to ∅ unless 𝑋 = ∅.

For the composition of functions the following notation will be used:
(𝑓 ∘ 𝑔)𝜉 = 𝑓(𝑔𝜉).

C) The power set of 𝑋 will be denoted by P𝑋. For arbitrary function
𝑓 : 𝑋 → 𝑌 , a function 𝑓P : P𝑋 → P𝑌 can be defined as follows:

𝑓P (𝐴) = {𝑓(𝛼) : 𝛼 ∈ 𝐴}

Notice that P is an endofunctor in the category Set of all sets; particularly,
(𝑓 ∘ 𝑔)P = 𝑓P ∘ 𝑔P .

D)Given a function 𝑓 : 𝑋 → 𝑌 , if 𝑋 ′ ⊆ 𝑋, then the restriction of 𝑓
to 𝑋 ′ will be denoted by 𝑓 �𝑋 ′.

E) 0 is a natural number.

F) For any finite set of numbers 𝐴, max𝐴 is its greatest element.

G)The following system of references is used: Proposition (L) of §20
is referenced as “Proposition (20L)” or simply as “(20L)”. Item (3) of the
same proposition is referenced as “(20L3)”. Proposition (L) from the current
section is referenced as “Proposition (L)” or simply as “(L)”. Item (3) of this
proposition is referenced as “(L3)”.

Theorems, lemmas, definitions, etc. are referenced analogously.

H)No knowledge of category theory is assumed in this work. Occa-
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sionally I am going to state in remarks that something is a category, or a
functor, or a natural transformation, etc. but the reader is free to ignore
such remarks. In fact, often I am going to leave such remarks without a
formal proof.

Capital latin letters are used for objects of categories. Regular letters
(i.e. 𝐴,𝐵,𝑋) for sets and letters in boldface (i.e. A,M,K) for structures.

Small greek letters are used for elements of objects of categories. Usually
𝛼, 𝛼1, 𝛼

′ are elements of 𝐴, 𝜇, 𝜇1, 𝜇
′ are elements of 𝑀 , etc.

Small latin letters (i.e. 𝑓, 𝑔, ℎ) are used for arrows of categories (usually
functions and homomorphisms).

Non-letter symbols are used for functors — [𝑋], [𝑓 ],P𝐴, 𝑓P , 𝜕M, 𝜕ℎ.
Words of straight latin letters are used for natural transformations —

Nam𝑋 , valM,Vals𝑋 .
Capitalised words of gothic letters are used for categories — Set,Str.
Typewriter letters are used for formal symbols — f, c, p, x.
The letters 𝑖, 𝑗, 𝑘, 𝑙,𝑚, 𝑛 are reserved for natural numbers.
When it is not convenient to consider a set an object of category, capital

greek letters (i.e. Γ,∆,Θ) are used.
Small gothic letters (i.e. a, b, c, e, f, g) are used if none of the above rules

prescribes what has to be used.
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Informal Sections

§3. HISTORICAL REMARKS

The Entscheidungsproblem

The Entscheidungsproblem, or the classical decision problem of David
Hilbert was one of the founding problems of Mathematical logic. One way
to state this problem is:

Given a first-order formula 𝜙, decide if it is satisfiable.
Or, equivalently, decide if ¬𝜙 is valid/provable.

It is intriguing to read how highly this problem was esteemed by the logi-
cians during the first half of the 20th century. For example:1

• According to Hilbert and Ackermann: “The Entscheidungsproblem
must be considered the main problem of mathematical logic.” [16]

• According to Bernays and Schönfinkel: “The central problem of math-
ematical logic, which is also most closely related to the questions of
axiomatics, is the Entscheidungsproblem.” [3]

• According to Herbrand: “We could consider the fundamental problem
of mathematics to be the following: Problem A: What is the nec-
essary and sufficient condition for a theorem to be true in a given
theory having only a finite number of hypotheses? [. . . ] The solu-
tion of this problem would yield a general method in mathematics
and would enable mathematical logic to play with respect to classical
mathematics the role that analytic geometry plays with respect to
ordinary geometry.” [14]

1The citations are from [6].
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Informal Sections

At the time Gödel proved his famous incompleteness theorems, the area
of Entscheidungsproblem had already acquired rich theory. There were
several results showing that certain subclasses of the full predicate logic
were decidable. For other classes it was possible to prove a negative result
of the following form: if we were able to decide whether a formula belonging
to a particular subclass is satisfiable, then we would be able to decide this
for any formula.

For a long time one characteristic feature of this area was the great
variety of methods. Usually, each new result about decidability or undecid-
ability was obtained by entirely new and original method. This, however,
was about to change in 1964 when Maslov used for first time a deductive
system (the so called “inverse method”2) in order to obtain a new result
about the decidability of the so called Maslov class3 [22].

Suppose we are given some sound and complete deductive system d
about the predicate logic. Due to the undecidability of the whole predicate
logic, d has the following two properties:

• If 𝜙 is valid, then sooner or later d is going to prove 𝜙.
• There exists a formula 𝜙 which is not valid but d is unable to tell this

(i.e. d searches for a proof of 𝜙 ad infinitum).
Suppose, however, that d is crafted in such a way, that when 𝜙 belongs to
a certain class Γ, then d is unable to search for a proof infinitely. If this is
so, then for any 𝜙 ∈ Γ one of the following must happen:

• d proves 𝜙 after finitely many steps.
• After “finitely many steps” d is unable to continue the search for a

proof of 𝜙. Due to the completeness of d, we can conclude that 𝜙 is
not valid/provable.

In 1976 it became apparent that this method is rather general. In a rel-
atively short article Joyner [18] was able to define three resolution decision
procedures which could decide several important classes of predicate for-
mulae: the monadic class,4 the class of Herbrand5, of Bernays-Schönfinkel6,
of Ackermann,7 of Gödel,8 of Maslov and an extended version of the Skolem

2The method of resolution can be considered to be a method of implementation of a
special case of the Maslov’s inverse method. See [19].

3The Maslov class contains all prenex formulae of the form
∃x1 . . . ∃x𝑛∀y1 . . . ∀y𝑚∃z1 . . . ∃z𝑘𝜙, where 𝜙 is a Krom formula.

4Formulae without functional symbols where all predicate symbols have arity one.
5Prenex formulae whose matrix is a conjunction of literals.
6Prenex formulae ∃x1 . . . ∃x𝑛∀y1 . . . ∀y𝑚𝜙 without functional symbols.
7Prenex formulae ∃x1 . . . ∃x𝑛∀y∃z1 . . . ∃z𝑘𝜙 without functional symbols.
8Prenex formulae ∃x1 . . . ∃x𝑛∀y1∀y2∃z1 . . . ∃z𝑘𝜙 without functional symbols.

10



§3. Historical Remarks

class. Although none of these results was new, before Joyner there existed
no method that could be used to prove the decidability of so many different
classes.

For any formula belonging to one of the mentioned classes, the resolu-
tive decision procedures of Joyner will either produce the empty clause (in
which case the formula is not satisfiable), or reach saturation when no new
resolvents can be produced (in which case the formula is satisfiable).

Satisfiability in Finite Structures

It seems the first time the mathematicians became interested in satisfia-
bility in finite structures was when they wanted to use this as a tool to prove
the decidability of a class. In 1933 Gödel proved that the so called Gödel
class (all prenex formulae ∃x1 . . . ∃x𝑛∀y1∀y2∃z1 . . . ∃z𝑘𝜙 without functional
symbols) had the finite model property. From this result Gödel concluded
that this class was decidable.

Definition. A class of formulae has the finite model property , or, alter-
natively, is finite controllable, if any satisfiable formula of this class has a
finite model.

All finite models in a finite language are enumerable (up to isomor-
phism). Besides that, the question whether a formula is true in a finite
model is decidable. Therefore, the problem of the satisfiability of a formula
in a finite structure is semidecidable.

Now, suppose that a class of closed predicate formulae has the finite
model property. For any formula of this class we can run simultaneously
the following two processes:

First, we try to find a finite structure where the formula is true.
Second, we try to prove the negation of the formula by means of some

sound and complete deductive system.
If the formula is satisfiable, then it has a finite model, so the first process

is going to stop. Otherwise, that is when the formula has no model, the
negation of the formula will be valid/provable, so the second process is going
to stop. In result, we obtain a decision procedure for the formulae of this
class. Consequently, the following theorem is true:

Theorem. If a class of predicate formulae has the finite model property,
then it is a decidable class.

Since the whole predicate logic is undecidable, the opposite is not true.
As a matter of fact, it is not difficult to find predicate formulae which are

11



Informal Sections

satisfiable only in infinite models.

Example. Consider the following formula:9

∀x∃y∀z(¬p(x, x) ∧ p(x, y) ∧ (p(z, x)→ p(z, y))) (1)

After skolemisation we obtain the following three formulae:

∀x¬p(x, x) (2)
∀xp(x, f(x)) (3)

∀x∀z(p(z, x)→ p(z, f(x))) (4)

Let the structure M be such that its universe is the set of the natural
numbers and the symbol f is interpreted as the succession function and p is
interpreted as “less-than”. It is not difficult to see that M is a model of (1),
(2), (3) and (4). On the other hand, from (3) and (4) it follows that in any
model of these formulae the following formula also is true:

∀xp(x, f(f(x))) (5)

From (5) and (4) it follows that

∀xp(x, f(f(f(x)))) (6)

also is true and so on. All these formulae together with (2) show that (2),
(3) and (4) have no finite model. Consequently, (1) also has no finite model.

Automated Finite Model Building

One way to prove that a class has the finite model property is to find an
effective procedure which is able to compute a finite model of any satisfiable
formula of the class. Since this is a major topic of this thesis, here I shall
outline shortly the existing methods for automated finite model building.
Generally speaking, all existing methods fall in one of the following three
groups.

The first group of methods are conceptually the simplest. First we look
for a model whose universe has only one element, then for a model with
two elements, then with three and so on until a finite model is found. Due
to the obvious combinatorial explosion these methods are unsuitable for
finding even modestly large models. On other hand, when these methods
find a model, it usually is the smallest.

9This example is from [6, p. 33]

12



§3. Historical Remarks

Owing to some non-trivial techniques, the methods of this group are
very fast when the goal is to find a small model. There are some algebraic
problems about the existence of certain finite algebraic structures which
were solved for first time by finite model builders of this type [23, 30]. The
main examples of such systems are MACE by McCune [24] and Falcon by
J. Zhang and H. Zhang [31].

The second group of methods use some variant of tableaux. Tableaux
methods are close to the intuition. They can be used to prove the unsat-
isfiability of a formula but also to find models (sometimes partial models)
when the formula is satisfiable. George Boolos [4] was the first one who in
1984 was able to find a tableaux method which is theoretically complete
with respect to the finite satisfiability of the predicate formulae.

The usefulness of the tableaux methods is undeniable in the area of
the non-classical logics. On the other hand, with respect to the first-order
predicate logic, the usefulness of the conventional tableaux methods is much
less apparent.10

Two tableaux based methods have been especially influential and served
as a basis for several later improvements. These are SATCHMO by Manthey
and Bry [21] and the hypertableaux of Baumgartner [2].

A new and interesting tableaux based method has been proposed by
Brown and Smolka [5]. This method came as a result of a very prolonged
struggle to create a complete tableaux method for the higher-order logic
with sorts11. Despite that the tableaux of Brown and Smolka is designed
for for an extension of the first-order logic, the authors were able to use it
in order to prove the finite model property for some classes of first-order
formulae, for example the class of Bernays-Schönfinkel with equality.

The third group of methods are the so called “transformation methods”.
The idea is to use some conventional method (for example resolution) in
order to build a Herbrand model. Subsequently, Herbrand model is trans-
formed into a finite model by means of some factorisations.

The first method of this group has been proposed by Tammet in 1991,
see [27] or [28, ch. 6]. This method applies to a class of formulae which is an
extension of both the monadic class and the class of Ackermann. Let Γ be
a satisfiable set of formulae of this class. Then the algorithm of Tammet
works in the following way:

1. ∆ := ∅.
10One explanation why this is so can be found in [1].
11Or, equivalently, of a complete cut-free sequent calculus for this logic.

13



Informal Sections

2. Find a termal identity 𝜏 = 𝜎, such that 𝜏 = 𝜎 does not follow from ∆
and Γ ∪ ∆ ∪ {𝜏 = 𝜎} is satisfiable.

3. In case this was impossible — return back with backtracking.
4. ∆ := ∆ ∪ {𝜏 = 𝜎}.
5. If ∆ implies that all ground terms have finitely many different values,

then stop. A factorisation of Herbrand universe based on ∆ gives a
finite model.

6. Otherwise go to 2.
Later Tammet found a way to remove the need for backtracking, see
[11, ch. 7] or [28, ch. 5]. His new method is both more efficient and easier
to implement.

Another method for finite model building is based on an idea by
Fermüller and Leitsch (1996) [10], see also [8, ch. 3]. I will describe this
method more thoroughly in §5.

§4. RESOLUTION

The Basic Method

There exist different definitions of what constitutes a clause. I am going
to use the following one:

Definition. (1)Literal is an atomic formula or a negation of an atomic
formula. Positive literal is an atomic formula and negative literal is a nega-
tion of an atomic formula.

(2)Clause is a formula which is either a literal, or a disjunction of two
or more literals, or equal to ⊥.

If 𝛿 is a clause and 𝑠 is a substitution, I am going to denote the result
of the application of 𝑠 to 𝛿 by 𝛿[𝑠][𝑋]. The reasons behind this “strange”
notation are going to become apparent later.

When the literal 𝜆 occurs in the clause 𝛿, I am going to denote this
by 𝜆 ∈ 𝛿.

For any set of literals Γ, the clause which is obtained from a clause 𝛿 by
removing all literals belonging to Γ will be denoted by 𝛿 ∖ Γ. If all literals
of 𝛿 belong to Γ, then 𝛿 ∖ Γ = ⊥. When 𝜆 is a literal, I am going to write
𝛿 ∖ 𝜆 instead of 𝛿 ∖ {𝜆}.

If 𝜙 is an atomic formula, then 𝜙 = ¬𝜙 and ¬𝜙 = 𝜙. For any literal 𝜆,
𝜆 = 𝜆.

14



§4. Resolution

Two clauses 𝛿 and 𝜀 are variants , if 𝛿 can be obtained from 𝜀 by means
of bijective renaming of the variables in 𝜀. Two clauses have disjoint de-
pendency if no variable occurs in both of them. Disjoint variants of clauses
𝛿 and 𝜀 are variants 𝛿′ and 𝜀′ of 𝛿 and 𝜀, such that 𝛿′ and 𝜀′ have disjoint
dependency.

Definition. (1)A factor of a clause 𝛿 is a clause 𝛿[𝑠][𝑋], such that 𝑠 is
most general unifier of a non-empty set of literals of 𝛿.

(2)Given clauses 𝛿 and 𝜀 and literals 𝜆 ∈ 𝛿 and 𝜇 ∈ 𝜀, if 𝑠 is the most
general unifier of 𝜆 and 𝜇, the clause ((𝛿 ∖ 𝜆)∨ (𝜀 ∖ 𝜇))[𝑠][𝑋] is called binary
resolvent of 𝛿 and 𝜀.

(3)The literal 𝜇 is called resolved literal .
(4)Resolvent of 𝛿 and 𝜀 is a binary resolvent of disjoint variants of factors

of 𝛿 and 𝜀.

The basic idea of the method of resolution is the following. We start
with an arbitrary set Γ of clauses and then we add to Γ all resolvents of
elements of Γ. We continue by adding to Γ all resolvents of the elements
of the new, enlarged set. If we reach ⊥ after finitely many steps, then the
initial set Γ is not satisfiable (soundness of the resolution). Otherwise, that
is if we never reach ⊥, then the set Γ is satisfiable (completeness of the
resolution).

This procedure is executable by a formal algorithm. Therefore, the
resolution gives us an algorithm which semidecides the unsatisfiability of
any finite set of clauses.12 If the set is inconsistent, the algorithm is going
to find this by producing ⊥ after finitely many steps. But when the set
is not inconsistent, i.e. it is satisfiable, the process of producing more and
more resolvents usually continues ad infinitum.

Are there some theoretical estimations of how many steps are required of
this method in order to prove the unsatisfiability of a set? Unfortunately,
no. The number of the steps required by the resolution is not bounded
by any polynomial, or exponent, or superexponent. In fact, it is not very
difficult to see that the number of the steps required by an algorithm solving
a semidecidable problem which is not decidable can not be bound by any
total computable function. Therefore, the computational complexity of the
resolution can not be measured by any of the numerical functions people
normally work with.

The basic method of resolution is not suitable to decide the satisfiability
of a set of clauses. Usually, when the initial set is satisfiable the method

12It is possible to adapt the method of resolution in order to semidecide the unsatis-
fiability of any recursively enumerable set of clauses.
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continues ad infinitum generating more and more clauses. There are sev-
eral resolution refinements aiming to restrict somehow the number of the
produced resolvents in order to make the whole procedure more efficient.
Surely, such refinements make the method of resolution significantly more
efficient when used to prove unsatisfiability, but it turns out there is an-
other benefit — some useful classes of formulae become decidable by such
refinements.

Subsumption

The so called “subsumption” is useful resolution refinement. Suppose we
have produced clauses p ∨ q and p ∨ q ∨ r. The first clause is both shorter
than the second clause and more informative than it (the second clause
follows from it). So it makes sense to prefer the first clause to the second
while producing resolvents. In fact we can remove the second clause from
the set of the clauses without loss of the completeness.

Definition. A clause 𝛿 subsumes a clause 𝜀 if there exists a substitu-
tion 𝑠, such that all literals of 𝛿[𝑠][𝑋] are literals of 𝜀 too.

Example. Assuming x is a variable and c is a constant symbol, the
clause p(c) ∨ q(x) is subsumed by the clause p(x).

The same literals occur in the clauses p ∨ q and q ∨ q ∨ p. Therefore,
each of them is subsumed by the other.

Suppose two clauses 𝛿′ and 𝛿′′ contain the same sets of literals. Then
𝛿′ subsumes 𝛿′′ and 𝛿′′ subsumes 𝛿′. Therefore, if we use resolution with
subsumption, we can remove one of these clauses without loss of complete-
ness. Consequently, we can work with clauses as if they are sets of literals
rather than formulae of special kind. For instance, usually there is no need
to think that the clauses p ∨ q and q ∨ q ∨ p are two different clauses.

Condensation

In some cases, an instance of a clause can be stronger than the original
clause. For example consider the clause p(x) ∨ p(a). If we apply to it the
substitution

𝑠𝜉 =

{︃
a if 𝜉 = x

𝜉 if 𝜉 ̸= x

the result will be the clause p(a) ∨ p(a) which can be simplified by sub-
sumption to p(a). All literals of the new clause p(a) belong to the initial
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clause p(x) ∨ p(a) while the opposite is not true — the literal p(x) does
not belong to the new clause. Therefore, it will be beneficial to replace the
clause p(x) ∨ p(a) with p(a).

Definition. (1)A clause 𝛿 is condensed if no literal occurs more than
once in 𝛿 and there exists no instance 𝛿[𝑠][𝑋] of 𝛿, such that all literals of
𝛿[𝑠][𝑋] are literals of 𝛿 and not all literals of 𝛿 are literals of 𝛿[𝑠][𝑋].

(2)A clause 𝛿 is called condensation of a clause 𝜀 if 𝛿 is condensed, all
literals of 𝛿 are literals of 𝜀 and the set of the literals of 𝛿 is equal to the set
of the literals of 𝜀[𝑠][𝑋] for some substitution 𝑠.

Each clause has unique condensation up to renaming of the variables
and permutation of the literals. [18, p. 406]

Positive Resolution with Restricted Factoring

In order to produce a resolvent of two clauses, we first generate factors
of these clauses and then we produce a binary resolvent. In order to restrict
the number of the generated resolvents, it will be beneficial if we are able to
restrict somehow the ways we generate factors. One method which preserves
the completeness is the following: instead of arbitrary unifications when
producing the factors, we permit only unifications of positive literals merged
into the positive resolved literal.

Example. Consider the clauses p(x) ∨ p(c) ∨ q(y) ∨ q(z) and
¬p(x) ∨ ¬p(c). The restricted factoring means we are permitted to unify
the literals p(x) and p(c) in order to produce a resolvent. We are not per-
mitted to unify q(y) with q(z), since these literals are not resolved. It is
possible to resolve the literals ¬p(x) and ¬p(c) if we unify them, but since
they are not positive, we are not permitted to do so, either.

Another refinement of the basic resolution method is to require one of
the clauses to be positive (i.e. without negative literals). The following def-
inition formalises the simultaneous use of this refinement with the restricted
factoring:

Definition. (1)A clause is positive if it contains no negative literals.
(2)Given a clause 𝛿 and a positive clause 𝜀, a literal 𝜆 ∈ 𝛿 and a non-

empty set Γ of literals of 𝜀, if 𝑠 is the most general unifier of {𝜆} ∪ Γ, then
the clause ((𝛿 ∖ 𝜆) ∨ (𝜀 ∖ Γ))[𝑠][𝑋] is called positive resolvent (with restricted
factoring) of 𝛿 and 𝜀.

(3)The elements of Γ are called resolved literals .
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Positive Hyperresolution

Consider the following clauses:

¬p ∨ ¬q ∨ r1 (1)
p ∨ r2 (2)
q ∨ r3 (3)

There are two different ways to produce positive resolvents.
On one hand, we can start with (1) and (2) and produce a positive

resolvent ¬q ∨ r1 ∨ r2. Then from this clause and (3) we can produce the
positive resolvent r1 ∨ r2 ∨ r3.

On the other hand, we can start with (1) and (3) and produce a positive
resolvent ¬p ∨ r1 ∨ r3. Then from this clause and (2) we can produce the
positive resolvent r1 ∨ r3 ∨ r2.

Notice that the clauses r1 ∨ r2 ∨ r3 and r1 ∨ r3 ∨ r2 contain equal sets
of literals. Such clauses can be considered essentially one clause. There is
no point to produce such clauses in two different ways. In order to avoid
this duplication, the notion “hyperresolution” is introduced. The idea is
to produce the hyperresolvent r1 ∨ r2 ∨ r3 in just one step rather than by
means two successive positive resolvents.

Definition. (1)A clash sequence is a sequence of clauses ⟨𝜀, 𝛿1, . . . , 𝛿𝑛⟩,
such that 𝑛 ≥ 1, 𝜀 is not positive and 𝛿1, . . . , 𝛿𝑛 are positive clauses. The
clause 𝜀 is called nucleus and 𝛿1, . . . , 𝛿𝑛 are electrons .

(2) Let ⟨𝜀, 𝛿1, . . . , 𝛿𝑛⟩ be a clash sequence. Let the clauses 𝛿0, 𝛿1, . . . , 𝛿𝑛
be such that 𝛿0 = 𝛿, and 𝛿𝑖+1 is condensation of a positive resolvent of
variants of 𝛿𝑖 and 𝜀𝑖+1 having disjoint dependency. If 𝛿𝑛 is positive, then it
is called positive hyperresolvent defined by the clash sequence ⟨𝜀, 𝛿1, . . . , 𝛿𝑛⟩.

It can be shown that if 𝛿 is a positive hyperresolvent defined by some
clash sequence, then all clash sequences obtained by permutations of the
electrons produce positive hyperresolvents having the same sets of literals
as 𝛿.

Returning to the previous example, notice that r1 ∨ r2 ∨ r3
is a positive hyperresolvent defined by the clash sequence
⟨¬p ∨ ¬q ∨ r1, p ∨ r2, q ∨ r3⟩ and r1 ∨ r3 ∨ r2 is a positive hyperresol-
vent defined by the clash sequence ⟨¬p ∨ ¬q ∨ r1, q ∨ r3, p ∨ r2⟩. Since
the clash sequence ⟨¬p ∨ ¬q ∨ r1, q ∨ r3, p ∨ r2⟩ can be obtained from
⟨¬p ∨ ¬q ∨ r1, p ∨ r2, q ∨ r3⟩ by permutation of the electrons, we can chose
arbitrarily one of these sequences and disregard the other one.13

13One alternative is to permit all permutations of the electrons but to require the
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The positive hyperresolution can be combined with subsumption. We
start with an arbitrary set Γ of clauses. Then we add to Γ all positive
hyperresolvents defined by clash sequences whose elements are elements
of Γ. If we reach ⊥ after finitely many steps, then the initial set Γ is not
satisfiable (soundness of the positive hyperresolution). Otherwise, that is if
we never reach ⊥, then the set Γ is satisfiable (completeness of the positive
hyperresolution).

Definition. A reducing function g is a function mapping each finite set
Γ of clauses to a subset g(Γ) ⊆ Γ, such that any element of Γ is subsumed
by some element of g(Γ) and no element of g(Γ) is subsumed by different
element of g(Γ).

The following definition formalises the simultaneous use of the positive
hyperresolution with a reducing function:

Definition. (1) Let g be some reducing function. For any set Γ of
clauses, if Γ′ is the set of all positive hyperresolvents defined by clash se-
quences whose elements are elements of Γ, then let res(g; Γ) be the set
g(Γ ∪ Γ′).

(2) For any natural number 𝑛, res𝑛(g; Γ) is the iterative application of the
operator res. Namely, res0(g; Γ) = Γ and res𝑛+1(g; Γ) = res(g; res𝑛(g; Γ)).

(3) res*(g; Γ) is the union of all res𝑛(g; Γ) for all 𝑛.

The following theorem states that the positive hyperresolution with sub-
sumption is both sound and complete:

Theorem. Given a reducing function g, a set Γ of clauses is satisfiable
if and only if ⊥ /∈ res*(g; Γ).

Notice that the reasoning with subsumption is non-monotonic. Usually,
res𝑛(g; Γ) will not be a subset of res𝑛+1(g; Γ).

Orderings and Splitting

The ordering refinements are one especially effective additional restric-
tion still preserving the completeness of the resolution.14 The ordering
is a partial ordering of the set of the literals satisfying some additional
properties. The completeness of the positive hyperresolution will be pre-

negative literals of the nucleus to be resolved in an specific order.
14The orderings were already present in the first publication of Maslov [22] about his

“inverse method” in 1964. Independently from Maslov, in 1969 Kowalski and Hayes [20]
introduced the orderings for the method of resolution in somewhat more limited form.
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served if we impose the following additional restriction: whenever 𝜆 is re-
solved literal from electron 𝜀 we require that no other literal of 𝜀 strongly
precedes 𝜆 with respect to the ordering. An extensive treatment on order-
ings is given in [11, ch. 4] and [28, ch. 3].

The final resolution refinement I am going to mention is the so called
splitting . [29] Let the clause 𝛿∨𝜀 be such that no variable occurs simultane-
ously in 𝛿 and 𝜀. Because of the disjoint variables of 𝛿 and 𝜀, the universal
quantification of the clause 𝛿 ∨ 𝜀 is true in a structure M if and only if the
disjunction of the universal quantifications of 𝛿 and of 𝜀 is true in M. There-
fore a set of clauses Γ ∪ {𝛿 ∨ 𝜀} is inconsistent if and only if both Γ ∪ {𝛿}
and Γ ∪ {𝜀} are inconsistent. Or, equivalently, a set of clauses Γ ∪ {𝛿 ∨ 𝜀}
is satisfiable if and only if at least one of the sets Γ ∪ {𝛿} and Γ ∪ {𝜀} is
satisfiable.

Now, suppose that we have produced such a clause 𝛿 ∨ 𝜀 by resolution.
Then we are permitted to replace the clause 𝛿 ∨ 𝜀 first by 𝛿 and then by 𝜀.
If the set with 𝛿 is satisfiable, the initial set is satisfiable too. If the set
with 𝜀 is satisfiable, the initial set is satisfiable too. And, if we reach ⊥ in
both cases, then the initial set of clauses is inconsistent.

§5. MODEL BUILDING BY RESOLUTION

As it has been shown by Joyner [18], for several classes of predicate
formulae the satisfiability problem can be decided by means of refinements
of the method of resolution. The classes VED, PVD and OCC1N are in-
teresting because they do not require specially crafted refinement but can
be decided by a rather general method — the positive hyperresolution. In
particular, no orderings are necessary in order to decide these classes.

The Class VED

Definition. (1)A clause is a Horn clause, if it contains at most one
positive literal.

(2)A clause 𝛿 belongs to the class VED if it is a Horn clause and for
any variable x in 𝛿, all occurrences of x in 𝛿 are at equal depth.

The positive hyperresolution decides this class. Namely, the following is
true:

Theorem. Let g be a reducing function. Let Γ be a finite set of clauses
which is a subset of VED. Then:
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(1)All elements of res*(g; Γ) belong to VED.
(2) If Γ is inconsistent, then ⊥ ∈ res*(g; Γ).
(3) If Γ is satisfiable, then there exists a natural number 𝑛, such that

res𝑛(g; Γ) = res𝑖(g; Γ) for any 𝑖 ≥ 𝑛.15

Proof. See [8, ch. 1.2]. �

Let Γ be a satisfiable finite set of VED clauses. Since all elements of VED
are Horn clauses, all positive clauses belonging to the finite set res*(g; Γ)
are atomic formulae. It can be shown that these atomic formulae yield the
following finite representation of a Herbrand model of Γ.16

Theorem. Let Γ be a satisfiable finite set of VED clauses. Then the
set res*(g; Γ) is finite and all positive clauses belonging to it are atomic
formulae. Let M be Herbrand structure with the following interpretation of
the predicate symbols: p(𝜏1, . . . , 𝜏𝑛) is true if and only if p(𝜏1, . . . , 𝜏𝑛) is a
ground instance of an element of res*(g; Γ). Then M is a model of Γ.17

Proof. See Theorem 1.1 in [8, ch. 1.1]. �

The Classes PVD and OCC1N

Definition. (1)A clause 𝛿 belongs to the class PVD if for any occur-
rence of a varianbe in a positive literal of 𝛿 there exists an occurrence of
the same variable in a negative literal of 𝛿 at greater or equal depth.

(2)A clause 𝛿 belongs to the class OCC1N if no variable occurs more
than once in a positive literal and any occurrence of a varianbe in a positive
literal of 𝛿 is at smaller or equal depth than any occurrence of the same
variable in the negative literals of 𝛿.

The positive hyperresolution decides both classes. Namely, the following
is true:

Theorem. Let g be a reducing function. Let Γ be a finite set of clauses
which is a subset of PVD or OCC1N. Then:

(1)All elements of res*(g; Γ) belong to PVD or resp. to OCC1N.
(2) If Γ is inconsistent, then ⊥ ∈ res*(g; Γ).

15In fact, with suitable reducing function, even when Γ is inconsistent, there exists
a natural number 𝑛, such that for any 𝑖 ≥ 𝑛, res𝑖(g; Γ) = {⊥}. This is so because
⊥ subsumes any clause.

16I suppose the finite atomic representations have been introduced first in [7] but
I don’t have access to this work.

17In fact, M is the so called “minimal Herbrand model”.
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(3) If Γ is satisfiable, then there exists a natural number 𝑛, such that
res𝑛(g; Γ) = res𝑖(g; Γ) for any 𝑖 ≥ 𝑛.

Proof. See [11, ch. 3.2].18
�

Finite Satisfiability and Resolution

Since the positive hyperresolution is sound in any structure, if a set Γ
of clauses is universally valid in a finite structure M, all hyperresolvents
obtained from Γ will be universally valid in M, hence it will not be possible
to derive ⊥ from Γ. This means that the positive hyperresolution is sound
with respect to the finite unsatisfiability.

Is the positive hyperresolution complete with respect to the finite un-
satisfiability?

Suppose that the satisfiable finite set Γ is such that the positive hyper-
resolution stops after finitely many steps.19 Can we conclude from this that
Γ has a finite model?

Unfortunately, the answer is negative. The following example by
Baaz (1996), cited in [8, proposition 1.1 in ch. 1.2], shows that the positive
hyperresolution is not complete with respect to the finite unsatisfiability.

Example. Consider the set of the following three clauses:

p(x, x) (1)
¬p(f(x), f(y)) ∨ p(x, y) (2)

¬p(c, f(x)) (3)

The positive hyperresolution trivially terminates on Γ. There is only one
possible positive hyperresolvent. From the clash sequence ⟨(2), (1)⟩ we can
produce p(x, x) which is equal to (1).

Nevertheless, Γ has no finite models. Let us see why this is so. Let
pM, fM and cM be the respective interpretations in M of the symbols p, f
and c. Let |M| be the universe of M. Suppose M is a model of these clauses.
Clause (3) implies that pM⟨cM, fM(𝜇)⟩ is false for any 𝜇 ∈ |M|. From this
and (2) we obtain that pM⟨fM(cM), fM(fM(𝜇))⟩ is false for any 𝜇 ∈ |M|.
From this and (2) we obtain that pM⟨fM(fM(cM)), fM(fM(fM(𝜇)))⟩ is false
for any 𝜇 ∈ |M|. And so on. If we compare these results with (1), we will
be able to conclude that all elements of the sequence

cM, fM(cM), fM(fM(cM)), fM(fM(fM(cM))), . . .
18The positive hyperresolution decides the class PVD even without condensation or

restricted factoring. Both are required in order to decide OCC1N.
19This means ⊥ /∈ res*(g; Γ) and for some 𝑛, res𝑛(g; Γ) = res𝑖(g; Γ) for any 𝑖 ≥ 𝑛.
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are different elements of |M|.

Finite Models by Linear Atomic Representations of Herbrand
Models

Notice that the definition of PVD implies that all positive clauses be-
longing to PVD are ground. On the other hand, the definition of OCC1N
implies that no variable may occur more than once in any positive clause
belonging to OCC1N.

Definition. A clause is linear if no variable occurs more than once in
it. In particular, all ground clauses are linear.

All positive clauses belonging to PVD or OCC1N are linear.

Recall that the rule of splitting allows us to decompose a clause if it
contains two parts without common variables. No two literals in a lin-
ear clause may contain a common variable, so we can apply splitting to
all such clauses, “decomposing” the positive hyperresolvents to atomic for-
mulae. Since all positive hyperresolvents of clauses belonging to PVD or
OCC1N are linear, we can decompose all of them to atomic formulae and, in
result, from these atomic formulae we will obtain an atomic representation
of a Herbrand model.

Theorem. Let Γ be a satisfiable finite set of PVD or OCC1N clauses.
Then, if we use the positive hyperresolution together with splitting, we will
obtain a set ∆ of clauses, such that ⊥ /∈ ∆, all clauses in Γ are subsumed by
clauses in ∆, all positive clauses in ∆ are atomic formulae and all positive
hyperresolvents based on clash sequence whose elements belong to ∆ also
belong to ∆.

Let M be Herbrand structure with the following interpretation of the
predicate symbols: pM⟨𝜏1, . . . , 𝜏𝑛⟩ is true if and only if p(𝜏1, . . . , 𝜏𝑛) is a
ground instance of an element of ∆. Then M will be a model of Γ.

In the atomic representations of Herbrand models of VED clauses any
atomic formulae are possible. However, in the atomic representations of
Herbrand models of clauses belonging to PVD or OCC1N, all atomic for-
mulae defining the model are linear. Because of this it becomes possible to
transform such Herbrand model to a finite model.

Proposition. Let Γ be a finite set of linear atomic formulae. Then
there exists a computable from Γ finite set ∆ of atomic formulae, such that
a ground atomic formula is an instance of a formula of Γ if and only if it
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is not an instance of a formula of ∆.

Proof. See [8, ch. 1.4]. �

Suppose that Γ is a linear finite atomic representation of a Herbrand
structure. From this proposition we can obtain a finite set ∆ representing
all cases when the atomic formulae are not true in this Herbrand structure.
Let M be a finite structure, such that all elements of its universe are values
of ground terms and for no formulae p(𝜏1, . . . , 𝜏𝑛) ∈ Γ and p(𝜎1, . . . , 𝜎𝑛) ∈ ∆
there exist assignment functions 𝑣1 and 𝑣2, such that the 𝑛-tuple consisting
of the values of the terms 𝜏1, . . . , 𝜏𝑛 in M with assignment 𝑣1 is equal to
the respective 𝑛-tuple for the terms 𝜎1, . . . , 𝜎𝑛 with assignment 𝑣2. The
existence of such structure follows from (29C).20

Now, interpret the predicate symbols in M in the following way:
For any 𝜇 belonging to the universe of M, let 𝑡(𝜇) be a ground

term, whose value in M is 𝜇. Let pM⟨𝜇1, . . . , 𝜇𝑛⟩ be true if and only if
p(𝑡(𝜇1), . . . , 𝑡(𝜇𝑛)) is a ground instance of an element of Γ.

One can see that the function mapping each ground term to its value
in M is a surjective homomorphism from Herbrand model represented by Γ
to M. Consequently, a clause is universally valid in the finite structure M
if and only if it is universally valid in Herbrand structure represented by Γ.

§6. TOWARDS RESOLUTION WITH TERMOIDS

Resolution in Algebras

Definition. (1)The universe of a structure M will be denoted by |M|.
(2)Assignment function in M is a function mapping each variable to an

element of |M|.
(3)We will need special constant symbols representing the elements of

the universe of a structure. For any 𝜇 ∈ |M| the symbol representing 𝜇 will
be denoted by p𝜇q. Such symbols will be called names .

(4) If 𝜏 is a term or a clause and 𝑣 is an assignment function in M, the
result of the replacement of each variable x in 𝜏 by p𝑣xq will be denoted
by 𝜏 [𝑣]. By 𝜏 [𝑣]M we will denote the value of 𝜏 in the structure M with
assignment 𝑣.

(5)A clause 𝛿 is universally valid in a structure M if 𝛿[𝑣]M is true for
any assignment 𝑣 in M. Obviously, this is so if and only if all ground clauses

20Since the elements of Γ are linear, we do not really have to use a strong proposition
like (29C). In [8, ch. 1.4] the existence of a finite structure with this property is shown
directly.
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having the form 𝛿[𝑣] are true in M.

It is not difficult to see that if two clauses 𝛿 and 𝜀 are universally valid
in a structure M, then all their resolvents will be universally valid in M.
Likewise, if the clauses 𝛿, 𝜀1, . . . , 𝜀𝑛 are universally valid in M, then all
positive hyperresolvents defined by the clash sequence ⟨𝛿, 𝜀1, . . . , 𝜀𝑛⟩ are
universally valid in M. This means that the method of resolution and its
modifications are sound not only with respect to the satisfiability, but also
with respect to the universal validity in a structure.

Definition. (1) Informally, algebra is a structure without interpretation
of the predicate symbols.

(2)The algebra corresponding to a structure M is called called algebraic
fragment of M. The algebraic fragment of M will be denoted by 𝜕M.

(3)A clause 𝛿 is universally satisfiable in an algebra A if there exists a
structure M, such that A = 𝜕M and 𝛿 is universally valid in M. A set Γ of
clauses is universally satisfiable in an algebra A if there exists a structure M,
such that A = 𝜕M and all elements of Γ are universally valid in M.

Suppose a set Γ of clauses is universally satisfiable in an algebra A.
Then there exists a structure M, such that A = 𝜕M and all clauses of Γ
are universally valid in M. Since all clauses derivable by resolution or
hyperresolution from the clauses of Γ have to be universally valid in M,
the clause ⊥ can not be derivable from Γ. Consequently the method of
resolution and its modifications are sound with respect to the satisfiability
in an algebra.

The following proposition summarises what we have found so far about
the soundness of the resolution:

Proposition. If a set of clauses is satisfiable, or universally valid in a
structure, or satisfiable in an algebra, then ⊥ is not derivable by resolution
or hyperresolution from it.

Is the method of resolution complete with respect to the unsatisfiability
in algebra? Unfortunately, the answer is “no” and it is easy to see why.

Example. Consider the set Γ = {p(a),¬p(b)} where a and b are differ-
ent constant symbols. Let A be an algebra, such that aA = bA. Obviously,
Γ is not satisfiable in A, but no resolvents can be produced from Γ, hence
⊥ is not derivable.

This simple example can help us to understand what we need in order
to make the resolution complete with respect to the unsatisfiability in an
algebra. The symbols a and b have equal values in A, so if we are reasoning
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with respect to the algebra A, we should be able to unify a with b in order
to produce the resolvent ⊥ from p(a) and ¬p(b).

Definition. Given an algebra A,
(1) if 𝜏 is a ground term, 𝜏A is the value of 𝜏 in A;
(2) if 𝛿 is a ground clause, 𝛿A is the result of replacement in 𝛿 of any

term 𝜏 with p𝜏Aq.

It is not difficult to see that 𝛿A contains no functional symbols for any
clause 𝛿. The clauses without functional symbols will be called relational .

For any ground clause 𝛿 and structure M, 𝛿M = (𝛿𝜕M)M.

Proposition. Given an algebra A, consider the combination of the
following two rules:

1. For any assignment 𝑣 in A, we produce 𝛿[𝑣]A from 𝛿.
2. We produce resolvents from any ground relational clauses 𝛿 and 𝜀.

⊥ is derivable from a set Γ of clauses by these two rules if and only if Γ is
unsatisfiable in A.

This proposition gives us a method which is both sound and complete
with respect to the unsatisfiability in an algebra. In fact, both the sound-
ness and the completeness will be preserved if instead of the basic resolution
method we use positive hyperresolution combined with many other resolu-
tion refinements. Nevertheless, the algorithmic usefulness of such resolutive
procedure is limited.

For one thing, in order to be able to produce 𝛿[𝑣]A from 𝛿, the algebra A
has to be constructivisable (computable).21 And even if this is so, unless
the universe of A is finite, infinitely many clauses 𝛿[𝑣]A will exist, so there
will be infinitely many resolvents, hence we will be able to only semidecide
the problem of the unsatisfiability in an algebra. We will not be able to
use resolution in order to prove the satisfiability in A and, even less so, in
order to build a model M with the property 𝜕M = A.

Remark. Let me mention that the problem of the satisfiability of a
set of clauses in an algebra is much easier than the problem of the satisfi-
ability in an algebra of a set of arbitrary formulae. For example, consider
the algebra whose universe is the set of the natural numbers and the func-
tional symbols are interpreted with various computable functions. While
the problem of the unsatisfiability in this algebra of any computably enu-
merable set of clauses is semidecidable, the problem of the unsatisfiability

21That is the interpretations of all functional and predicate symbols are computable
with respect to a some enumeration of the universe of A.
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of even one arbitrary formula is not semidecidable (for most algebras of this
kind).

Resolution which is Complete for Finite Satisfiability

If a set Γ of clauses is satisfiable in an algebra A, then ⊥ is not derivable
by resolution from Γ. On the other hand, if ⊥ is not derivable from Γ, the
set Γ is universally valid in some but not necessarily satisfiable in A. We
have already seen that the main reason for this is the fact that the usual
unification algorithm is, in a sense, incomplete with respect to A.

Suppose our goal is to find a finite model of a set of clauses. In this case
we are not interested in the satisfiability in a particular algebra A. Instead,
we would like to have a resolutive method which is complete with respect
to sufficiently large class of algebras — large enough to include at least one
finite algebra. If such method is unable to derive ⊥ from a set Γ of clauses,
we can be sure that Γ is satisfiable in at least one finite algebra.

In order to invent such a resolutive method, we have to investigate the
following question: why the usual method of resolution is not complete with
respect to the satisfiability in finite algebras?

Let us look at some examples.

Example. (1) Γ1 = {p(a),¬p(b)} where a and b are different constant
symbols. No resolvents can be derived from Γ1. Notice that Γ1 is finitely
satisfiable. In fact, Γ1 is satisfiable in any algebra A where aA ̸= bA.

(2) Γ2 = {p(f(x, y)),¬p(g(x, x))} where f and g are different functional
symbols. No resolvents can be derived from Γ2. Notice that Γ2 is finitely
satisfiable. Let B be an algebra with two elements 0 and 1 in its universe.
Let fB be a function whose value is always 0 and gB be a function whose
value is always 1. Then Γ2 is satisfiable in B. Moreover, Γ2 is satisfiable in
the cartesian product of B with any other algebra.

(3) Γ3 = {p(x, f(x)),¬p(x, x)}. No resolvents can be derived from Γ3.
Notice that Γ3 is finitely satisfiable. Let B be an algebra with two elements
0 and 1 in its universe and fB(𝑛) = 1 − 𝑛 for any 𝑛 ∈ {0, 1}. Then Γ3 is
satisfiable in B. Moreover, Γ3 is satisfiable in the cartesian product of B
with any other algebra.

It turns out, the incompleteness of the method of resolution is mostly
due to one particular step in the unification algorithm,22 namely the step

22The algorithm of Robinson [26].
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leading from the unification of

f(𝜏1, 𝜏2, . . . , 𝜏𝑛) ∼ f(𝜎1, 𝜎2, . . . , 𝜎𝑛) (1)

to the simultaneous unification of⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝜏1 ∼ 𝜎1

𝜏2 ∼ 𝜎2

. . .

𝜏𝑛 ∼ 𝜎𝑛

(2)

If the system (2) is true in an algebra, then the identity (1) also is true.
The opposite, however, is not so. Identities like (1) are equivalent to the
system (2) only in algebras where the functional symbols are interpreted
by injective functions. One such algebra is the Herbrand algebra (i.e. the
algebraic fragment of a Herbrand structure).23 Notice, however, that it is al-
most impossible to interpret the functional symbols with injective functions
in algebras with finite universe.24

In order to make the unification algorithm complete with respect to a
relatively large class of algebras, instead of terms we have to use different
objects called termoids .

§7. BETA-TERMOIDS

One Simple Language

Several kinds of termoids can be defined. Arguably, the simplest kind
are the beta-termoids.

Suppose we are working in a language with only one unary func-
tional symbol f. Any ground term in this language has the form
f(f(. . . (f(c)) . . . )) for some constant symbol c. For brevity, we are going
to use the notation f𝑘(c) for the term with 𝑘 functional symbols f and
constant c.

Definition. (1)Beta-termoid is an expression of the form 𝑛 + f𝑘(c)
where f𝑘(c) is an arbitrary term and 𝑛 is a natural number.

23Since in Herbrand algebra the identity (1) is equivalent to the system (2), the
method of resolution is both sound and complete with respect to the satisfiability in this
algebra. This observation gives us another perspective for the well known result that a
set of clauses is satisfiable if and only if it is universally valid in some Herbrand structure.

24If there is at least one functional symbol with more than one argument, then this
certainly is impossible.
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(2)Value of the beta-termoid 𝑛+f𝑘(c) in the algebra A is any 𝛼 ∈ |A|,
such that the following identity is true in A:

f𝑛(p𝛼q) ∼ f𝑛+𝑘(c)

(3) 𝜏J𝑣KPM is the set of all values of 𝜏 in the structure M with assign-
ment 𝑣.

Notice that a termoid can have many different values in an algebra. This
one of the most noticeable differences between terms and termoids.

Definition. (1) Informally, beta-clausoid is a clause in which beta-
termoids are used instead of terms.

(2)A beta-clausoid is universally valid in a structure if it is true with
all possible values of its beta-termoids.

Notice that since we want to use resolution in order to prove finite satis-
fiability, we need a resolutive method which is complete but not necessarily
sound. We want to be sure that if ⊥ is not derivable, then the clausoids
have a model of certain kind. On the other hand, we don’t have to require
the resolvent of clausoids 𝛿 and 𝜀 to be universally valid in any structure
where 𝛿 and 𝜀 are universally valid.

Beta-termoidal Substitutions

Given an algebra A, suppose that 𝛼 is value of 𝑛+ f𝑘(c) in A and 𝛽 is
value of 𝑚 + f𝑙(p𝛼q) in A. Then the following two identities will be true
in A:

f𝑚(p𝛽q) ∼ f𝑚+𝑙(p𝛼q)

f𝑛(p𝛼q) ∼ f𝑛+𝑘(c)

Let 𝑗 = max{𝑚,𝑛− 𝑙}. If we apply f𝑗+𝑙−𝑛 to the first identity and f𝑗−𝑚 to
the second one, we can conclude that the following identities are true in A:

f𝑗(p𝛽q) ∼ f𝑗+𝑙(p𝛼q)

f𝑗+𝑙(p𝛼q) ∼ f𝑗+𝑘+𝑙(c)

Therefore, the identity

f𝑗(p𝛽q) ∼ f𝑗+𝑘+𝑙(c)

also is true in A. This means that 𝛽 is value of 𝑗 + f𝑘+𝑙(c) in A.
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This observation motivates the following definition:

Definition. (1)Beta-termoidal substitution is a function mapping each
variable to a beta-termoid.

(2)Given a beta-termoid 𝜏 = 𝑚 + f𝑙(x) and a beta-termoidal substitu-
tion 𝑠, if 𝑠x = 𝑛 + f𝑘(y) and 𝑗 = max{𝑚,𝑛− 𝑙}, then the result of the
application of 𝑠 to 𝜏 , written 𝜏J𝑠KJ𝑋K, is the beta-termoid 𝑗 + f𝑘+𝑙(y).

(3)Given a beta-clausoid 𝛿 and a beta-termoidal substitution 𝑠, the
result of the application to 𝑠 to 𝛿, written 𝛿J𝑠KJ𝑋K, is the clausoid obtained
from 𝛿 by replacing each beta-termoid 𝜏 with 𝜏J𝑠KJ𝑋K.

Proposition. Given a beta-termoid 𝜏 = 𝑚 + f𝑙(x), a beta-termoidal
substitution 𝑠 and a structure M, if 𝛼 is a value in M of 𝑠x and 𝛽 is a
value in M of 𝑚+ f𝑙(p𝛼q), then 𝛽 is a value in M of 𝜏J𝑠KJ𝑋K.

In order to prove the completeness of the resolution we don’t need the
opposite direction of this proposition. In fact, for some kinds of termoids
the application of a termoidal substitution is very rough, so 𝜏J𝑠KJ𝑋K is going
to have much more values than what we can expect from something which
is the result of the application of a substitution to a termoid.

Beta-termoidal Unification

In order to define a resolutive method with beta-termoids, we have to
define some kind of unification between termoids.

Definition. (1)A termoidal identity is an expression of the form 𝜏 ∼ 𝜎,
where both 𝜏 and 𝜎 are beta-termoids or both are beta-clausoids. 𝜏 ∼ 𝜎 is
a termal identity , if both 𝜏 and 𝜎 are terms or both are clauses.

(2)A termoidal system is a set of termoidal identities. A termoidal
system is finite if it is a finite set of identities. The notion termal system is
defined analogously.

(3)An identity 0 + x ∼ 𝜏 is solving for x if there are no occurrences of
x in 𝜏 . Such an identity is solving for a system Θ, if it belongs to Θ and
there are no occurrences of x in the other identities of Θ. In this case we
also say that Θ is solved with respect to x.

(4)The assignment 𝑣 in a structure M is a solution of the termoidal
identity 𝜏 ∼ 𝜎, if 𝜏J𝑣KPM∩𝜎J𝑣KPM ̸= ∅. Notice the peculiarity of this defi-
nition — 𝑣 is a solution of 𝜏 ∼ 𝜎 if at least one value of 𝜏 with assignment 𝑣
is also a value of 𝜎.

(5)The assignment 𝑣 is a solution of the system Θ if 𝑣 is a solution of
each of the identities of Θ.

30



§7. Beta-termoids

(6) A system is termally consistent if it has a solution in Herbrand
algebra (i.e. the algebraic fragment of a Herbrand structure). A system is
termally inconsistent if it is not termally consistent.

(7)Two systems are termally equivalent if they have same solutions in
Herbrand algebra.

We are going to define two kinds of special transformations of a beta-
termoidal system. We are going to call them special solving transformations .

First special solving transformation. If the system contains an
identity of the form 𝑛 + 𝜏 ∼ 𝑚 + 𝜎 where 𝑛 ̸= 𝑚, we replace it with the
identity max{𝑛,𝑚} + 𝜏 ∼ max{𝑛,𝑚} + 𝜎.

Or, if it contains an identity 𝑛 + f(𝜏) ∼ 𝑛 + f(𝜎), we replace it with
(𝑛+ 1) + 𝜏 ∼ (𝑛+ 1) + 𝜎.

Or, if it contains an identity 𝑛+ 𝜏 ∼ 𝑛+x where x is a variable and 𝜏 is
not a variable, we replace it with 0 + x ∼ 𝑛+𝜏 .

Or, if it contains an identity 𝑛 + x ∼ 𝑛 + 𝜏 where 𝑛 ̸= 0, we replace it
with 0 + x ∼ 𝑛+𝜏 .

Or, if it contains an identity p(𝜏1, . . . , 𝜏𝑛) ∼ p(𝜎1, . . . , 𝜎𝑛) where p is
an 𝑛-ary predicate symbol, we replace it with the following identities:
𝜏1 ∼ 𝜎1, 𝜏2 ∼ 𝜎2, . . . , 𝜏𝑛 ∼ 𝜎𝑛.

Or, if it contains an identity ¬𝜙 ∼ ¬𝜓, we replace it with 𝜙 ∼ 𝜓.
Or, if it contains an identity 𝜙′ ∨ 𝜙′′ ∼ 𝜓′ ∨ 𝜓′′, we replace it with the

following two identities: 𝜙′ ∼ 𝜓′ and 𝜙′′ ∼ 𝜓′′.
Second special solving transformation. If the system contains a

solving identity 0 +x ∼ 𝜏 , which, however, is not solving for the system, let
𝑠 be the substitution, such that 𝑠x = 𝜏 and 𝑠𝜉 = 𝜉 for any 𝜉 ̸= x. Then we
replace each identity 𝜏 ′ ∼ 𝜏 ′′ in the system (except 0 + x ∼ 𝜏 itself) with
the identity 𝜏 ′J𝑠KJ𝑋K ∼ 𝜏 ′′J𝑠KJ𝑋K.

Proposition. If we apply a special solving transformation to a sys-
tem Θ, the result being Θ′, any solution of Θ in an algebra is a solution
of Θ′ as well.

Proof. For most kinds of the solving transformations this is obvious. We
only have to see that any solution of 𝑛 + f(𝜏) ∼ 𝑛 + f(𝜎) is a solution of
(𝑛+ 1) + 𝜏 ∼ (𝑛+ 1) + 𝜎.

Suppose the assignment 𝑣 in M is a solution of the identity

𝑛+ f(𝜏) ∼ 𝑛+ f(𝜎)

By definition, 𝑣 is a solution, if (𝑛+ f(𝜏))J𝑣KPM ∩ (𝑛+ f(𝜎))J𝑣KPM ̸= ∅,
so there exists 𝜇 ∈ |M|, such that 𝜇 ∈ (𝑛+ f(𝜏))J𝑣KPM and
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𝜇 ∈ (𝑛+ f(𝜎))J𝑣KPM, hence (fM)𝑛+1(𝜏 [𝑣]M) = (fM)𝑛𝜇 = (fM)𝑛+1(𝜎[𝑣]M),
so 𝑣 is a solution also of the identity (𝑛+ 1) + 𝜏 ∼ (𝑛+ 1) + 𝜎. �

Proposition. If it is impossible to apply any special solving transfor-
mation to a system, then either the system is solved, or it is termally in-
consistent.

Proof. By inspection of the various special solving transformations. �

Proposition. Let Θ be a beta-termoidal system and Θ′ is obtained
from Θ by removing each subexpression of the form “𝑛+”. Then Θ and Θ′

are termally equivalent. In particular, Θ is termally consistent if and only
if Θ′ is termally consistent.

Proof. Notice that in Herbrand algebra any termoid 𝑛+ 𝜏 has just one
value, namely the value of the term 𝜏 . �

Corollary. Suppose we apply a special solving transformation to a sys-
tem Θ, the result being Θ′. If Θ′ is termally inconsistent, then so is Θ.

Proof. We inspect the various special solving transformations and use
the previous proposition in order to reason about terms instead of termoids.

�

Proposition. It is impossible to apply special solving transformations
to a finite beta-termoidal system infinitely many times.

Proof. It is impossible to apply the second solving transformation to a
system infinitely many times, since with each application the system be-
comes solved with respect to one additional variable and if the system is
solved with respect to some variable, it remains such forever.

Suppose we have passed the last application of second solving trans-
formation. After that, it will be impossible to apply only the first solving
transformation to a system infinitely many times, since with each applica-
tion the identities in the system become “simpler”. �

Given a finite system of beta-termoidal identities, consider the following
procedure. We begin applying special solving transformations to the system
(in arbitrary order). After finitely many steps we are going to reach a
system, such that no special solving transformations can be applied to it.
If the resulting system is termally unsolvable,25 then the initial system is

25This is so if and only if the resulting system contains an identity which is termally
unsolvable in an obvious way. For example 𝑛 + c ∼ 𝑛 + f(𝜏), or 𝑛 + f(𝜏) ∼ 𝑛 + c or
𝑛 + c ∼ 𝑛 + d (c ̸= d), or p(. . . ) ∼ q(. . . ) (p ̸= q).
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termally unsolvable. Otherwise, the resulting system is solved, so it has
the form {0 + x1 ∼ 𝜏1, . . . , 0 + x𝑛 ∼ 𝜏𝑛} for some variables x1, . . . , x𝑛 and
beta-termoids 𝜏1, . . . , 𝜏𝑛. In this case any solution of the initial system is a
solution of the resulting system and any solution of the resulting system is
an instance of the substitution:

𝑠𝜉 =

{︃
𝜏𝑖, if 𝜉 = x𝑖,

𝜉, otherwise.

Definition. If we start with a system of the form
{𝜏0 ∼ 𝜏1, 𝜏0 ∼ 𝜏2, . . . , 𝜏0 ∼ 𝜏𝑛}, any substitution obtained in way just de-
scribed is called unifier of the termoids 𝜏0, 𝜏1, . . . , 𝜏𝑛.

§8. FINITE MODELS BY TERMOIDAL RESOLUTION

Resolution with Termoids

Given the definitions of termoid, clausoids, termoidal substitution and
unification of termoids, it is not difficult to define the notions resolvent
and positive hyperresolvent of clausoids. In result, we obtain a resolutive
method with termoids instead of terms. This resolutive method has the
following properties: it is sound in Herbrand structures and it is sound
with respect to satisfiability. However, in general this resolutive method is
not sound with respect to universal validity in a structure. On the other
hand this resolutive method is complete with respect to satisfiability in
large class of algebras.

Proposition. Let Γ be a set of universally valid in a Herbrand struc-
ture clausoids. Then any clausoid derived from Γ by resolution or positive
resolution is universally valid in this structure.

Proof. In any Herbrand structure the termoids are equivalent to terms. �

Corollary. If a set of clausoids is universally satisfiable, then ⊥ is not
derivable by resolution or positive hyperresolution.

Proof. Herbrand’s theorem implies that if a set of clausoids is univer-
sally satisfiable, then its clausoids are universally valid in some Herbrand
structure. �

Notice that the termoidal resolution is sound with respect to validity in
Herbrand structures but not with respect to validity in arbitrary structures.
With some kinds of termoids there exist clausoids 𝛿′ and 𝛿′′ such that both
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are universally valid in a structure M but at the same time some resolvent
of 𝛿′ and 𝛿′′ is false in M.26

Now, let us turn our attention to the completeness of the resolution with
termoids. Since we aim to use this resolution in order to build finite models,
the completeness of the resolution is more important property for us than
the soundness. This is so because if the resolution is complete with respect
to the satisfiability in a particular finite algebra and ⊥ is not derivable from
a set Γ, then it will follow that Γ is satisfiable in this algebra.

Recall that the unification of two termoids 𝜏 ′ and 𝜏 ′′ has the following
property: either 𝜏 ′ and 𝜏 ′′ are not unifiable, in which case the identity
𝜏 ′ ∼ 𝜏 ′′ is termally unsolvable, or 𝜏 ′ and 𝜏 ′′ are unifiable, in which case any
solution of the identity 𝜏 ′ ∼ 𝜏 ′′ (in any algebra) is an instance of the unifier.
We shall see that it is possible to use this property in order to prove that
the resolution with termoids is complete with respect to the satisfiability
in any algebra where all identities belonging to a particular set of termally
unsolvable identities are unsolvable.

This set of termally unsolvable identities will be finite in the case when
there are only finitely many resolvents that can be produced from the set
of clausoids. Therefore, the following theorem is true:

Theorem. If the set of clausoids Γ is such that there are only finitely
many clausoids that can be derived by positive hyperresolution from Γ and
⊥ is not derivable, then there exists a finite set of termally unsolvable iden-
tities, such that Γ is universally satisfiable in any algebra where none of
these identities is solvable.

It can be shown that for any finite set of termally unsolvable termoidal
identities there exists a finite algebra where none of these identities is solv-
able. Therefore, we obtain the following corollary:

Corollary. Let the set of clausoids Γ be such that there are only finitely
many clausoids that can be derived by positive hyperresolution from Γ and
⊥ is not derivable. Then the elements of Γ are universally valid in some
finite structure.

Example. Let Γ be the set of the following two clausoids: p(0 + c)
and ¬p(0+d). If the structure M is such that cM = dM, these two clausoids
can not be simultaneously valid in M. Therefore, Γ is not universally
satisfiable in any algebra A, such that cA = dA. Nevertheless, since the

26This situation is impossible with the simplest kind of termoids, the beta-termoids,
we are considering now. That is why I am unable to give an example here.
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termoids 0+c and 0+d are not unifiable, it is impossible to derive ⊥ from Γ
by resolution.

The appropriate finite set of termally unsolvable identities is
{0 + c ∼ 0 + d}. Notice that Γ is universally satisfiable in any algebra
where the identity 0 + c ∼ 0 + d is unsolvable, that is in any algebra A
where cA ̸= dA. Obviously, there are finite algebras with this property.

The Example by Baaz, Revisited

Consider again the example by Baaz:

p(x, x)

¬p(f(x), f(y)) ∨ p(x, y)

¬p(c, f(x))

The set of these three clauses is not universally satisfiable in any finite
algebra, yet, no new positive hyperresolvent can be produced from them.

If we convert these clauses to clausoids we will obtain the following set
(for convenience, the variables are marked with indices):

p(0 + x1, 0 + x1) (1)
¬p(0 + f(x2), 0 + f(y2)) ∨ p(0 + x2, 0 + y2) (2)

¬p(0 + c, 0 + f(x3)) (3)

In order to produce a hyperresolvent from (2) and (1), we start the unifi-
cation process with the system⃒⃒⃒

p(0 + f(x2), 0 + f(y2)) ∼ p(0 + x1, 0 + x1)

By applying the first special solving transformation to this system we obtain⃒⃒⃒⃒
⃒ 0 + f(x2) ∼ 0 + x1

0 + f(y2) ∼ 0 + x1

then ⃒⃒⃒⃒
⃒ 0 + x1 ∼ 0 + f(x2)

0 + f(y2) ∼ 0 + x1

then by substitution (second solving transformation)⃒⃒⃒⃒
⃒ 0 + x1 ∼ 0 + f(x2)

0 + f(y2) ∼ 0 + f(x2)
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then by the first special solving transformation about the second identity⃒⃒⃒⃒
⃒ 0 + x1 ∼ 0 + f(x2)

1 + y2 ∼ 1 + x2

and finally we obtain the following solved system:⃒⃒⃒⃒
⃒ 0 + x1 ∼ 0 + f(x2)

0 + y2 ∼ 1 + x2

The application of the corresponding termoidal substitution to the clausoids
(2) and (1) gives the following clausoids:

¬p(0 + f(x2), 0 + f(x2)) ∨ p(0 + x2, 1 + x2)

p(0 + f(x2), 0 + f(x2))

In result, we obtain the following positive hyperresolvent from (2) and (1):

p(0 + x2, 1 + x2) (4)

Analogously, from (2) and (4) we obtain hyperresolvent

p(0 + x2, 2 + x2) (5)

then from (2) and (5)

p(0 + x2, 3 + x2) (6)

and so on.
We see that while no new hyperresolvents can be produced from the

initial clauses, if we use resolution with termoids we are able to produce
infinitely many hyperresolvents. It can be shown that if the termoidal
resolution produces finitely many clausoids, then the termal resolution is
going to produce finitely many clauses as well. Although the example of
Baaz shows that there are cases when the termal resolution produces finitely
many clauses and yet, the set is not finitely satisfiable, if the termoidal
resolution produces finitely many clausoids, the set is going to be finitely
satisfiable for sure.

No hyperresolvent can be produced from the clausoids ¬p(0+c, 0+f(x3))
and p(0 + x2, 𝑛 + x2) for any natural 𝑛. This suggests that the initial set
of clausoids will be universally satisfiable in any algebra where the identity
p(0 + c, 0 + f(x3)) ∼ p(0 + x2, 𝑛 + x2) has no solutions for any natural 𝑛.
This is so if and only if the identity 𝑛 + c ∼ 𝑛 + f(x) has no solutions for
any 𝑛. It can be shown, however, that in any finite algebra there exists a
natural number 𝑛, such that the identity 𝑛+ c ∼ 𝑛+ f(x) has a solution.
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Alpha-, Beta-, Gamma-, Delta-, Epsilon-,. . .

There isn’t one universal sort of termoids that can be used for anything.
In this work several kinds of termoids are going to be defined.

Alpha-termoids are simply terms in disguise. Since the termal unifi-
cation is correct only in Herbrand algebra, alpha-termoids can not be used
in order to build finite models.

Beta-termoids. We won’t talk more about them. Beta-termoids are
special case of epsilon-termoids.

Gamma-termoids are expressions like f−1
2 (f(g(c), g−1

1 (g(d)), c)).
The interpretation of the functional symbols is traditional — given

a structure M, 𝜇 is value in M of gamma-termoid f(𝜏1, 𝜏2, 𝜏3) if
𝜇 = fM(𝜈1, 𝜈2, 𝜈3) for some values 𝜈1, 𝜈2, 𝜈3 of 𝜏1, 𝜏2, 𝜏3. The symbols like f−1

2

are interpreted as inverse functions (the subscript 2 means that we are in-
versing on the second argument of f) — 𝜇 is a value of gamma-termoid
f−1
2 (𝜏) if fM(𝜈 ′, 𝜇, 𝜈 ′′) is value of 𝜏 for some 𝜈 ′ and 𝜈 ′′.

Gamma-termoids permit useful unification. For example we can trans-
form the identity f(𝜏1, . . . , 𝜏𝑛) ∼ f(𝜎1, . . . , 𝜎𝑛) to the system⃒⃒⃒⃒

⃒⃒⃒⃒
⃒⃒
𝜏1 ∼ f−1

1 (f(𝜎1, . . . , 𝜎𝑛))

𝜏2 ∼ f−1
2 f(𝜎1, . . . , 𝜎𝑛))

. . .

𝜏𝑛 ∼ f−1
𝑛 f(𝜎1, . . . , 𝜎𝑛))

Notice that any solution of the identity (in any algebra) is a solution of the
system as well.

Delta-termoids are expressions like 1 + f(g(c), 3 + g(d), c). The in-
tended meaning of the numbers is similar to what we saw in beta-termoids
but the exact definition is more difficult to state.

Given a structure M, each gamma-termoid with 𝑛 free variables defines
a multi-valued function t : |M|𝑛 → P |M|. Then we can say that 𝜇 is value
of delta-termoid 𝑛 + 𝜏 if 𝜇 ∈ t(𝜈, 𝜈1, 𝜈2, . . . , 𝜈𝑘) for some 𝜈, 𝜈1, 𝜈2, . . . , 𝜈𝑘
such that 𝜈 is a value of 𝜏 and the multi-valued function t is defined by a
gamma-termoid whose “height” is smaller than or equal to 𝑛.

Delta-termoids permit useful unification. For example we can transform
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the identity f(𝜏1, . . . , 𝜏𝑛) ∼ 𝑛+ f(𝜎1, . . . , 𝜎𝑛) to the system⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝜏1 ∼ (𝑛+ 1) + 𝜎1

𝜏2 ∼ (𝑛+ 1) + 𝜎2

. . .

𝜏𝑛 ∼ (𝑛+ 1) + 𝜎𝑛

Notice that any solution of the identity (in any algebra) is a solution of the
system as well.

Epsilon-termoids. Like beta-termoids, epsilon-termoids are expres-
sions of the form 𝑛+ 𝜏 where 𝜏 is a term. The interpretation of the epsilon-
termoids is like that of the delta-termoids with the following difference —
in order to find the values of 𝑛+ 𝜏 we apply multivalued functions defined
by gamma-termoids not only to 𝜏 , but also to the components of 𝜏 . Each
epsilon-termoid is equivalent to a delta-termoid of special kind. For example
the epsilon-termoid

3 + f(g(h(c), g(c, h(d))))

is equivalent to the delta-termoid

3 + f(4 + g(5 + h(6 + c), 5 + g(6 + c, 6 + h(7 + d))))

Notice how the deeper the subterm is, the greater its number is.
In this work it will be shown that epsilon-termoids can be used in order

to prove that the class VED has the finite model property.

§9. OUTLINE OF THE FURTHER SECTIONS

When a new interesting kind of termoids is found, it is not enough to
give a simple definition. We have to define how to make substitutions, how
to unify termoids, how to make resolvents and we have to prove that the
resulting resolutive procedure is complete. All these things are relatively
long, so it will be beneficial if we manage to make most of them in a more
general way rather than separately for each kind of termoids. This means
we have to investigate what properties termoids have to have so that the
termoidal resolution is useful. After that we have to develop the theory of
termoids axiomatically, or rather algebraically. Finally, we have to show
that the termoids we are interested of satisfy the specified axioms.

In §§10–13 we begin with the well known theory of terms using a new
terminology. The main reason I decided to write about well known facts
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in a new way is to prepare the reader with the terminology we have to use
while developing the theory of termoids. I think it is going to be easier if
we first apply this new terminology on well known objects in order to get
used to it. An additional benefit of this approach is that while the theory
of termoids is being developed it will be easier to compare termoids with
terms in order to feel better in what aspects termoids are identical with
terms and in what aspects they are different.

In §14 we proceed with the algebraic theory of termoids. As an example,
in §15 we show that terms can be considered special kind of termoids — the
so called alpha-termoids. The results from this section are not going to be
used later so the reader may want to skip it. §16 contains several important
propositions about connections between the various manipulations of ter-
moids and the corresponding manipulations of terms. In §§17–18 a rather
general unification procedure for termoids is specified.

In §§19–23 the theory of termoidal resolution is developed. §19 is pre-
liminary. In §20 the formal definition of clausoid is given and in §21 the
theory of SLD resolution with termoids is developed. In result a proof is
given that the machinery of Prolog has the finite model property.

In §§22–23 the theory of the positive hyperresolution with termoids is
developed. The theory I have presented here does not make use of any
orderings. Since anything in these sections is based on the abstract algebraic
notion of termoid from §14 rather than on one particular kind of termoids,
if we were to prove the completeness of the resolution with orderings, we
would have to work with orderings in rather abstract way and I think this
would be unnecessarily complex. Nevertheless, I think the completeness of
the termoidal resolution with orderings can be proved in more or less the
same way as the completeness of the usual termal resolution.

In §§24–26 the definitions of gamma-, delta- and epsilon-termoids are
given and in §§27-28 it is shown that delta- and epsilon-termoids have useful
unification. Although gamma-termoids have useful unification as well, no
proof of this will be given.

In §§29-30 the finite model property of the class VED is proved.
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§10. STRUCTURES

A)The structures we are going to use in this work will be many-sorted.
This is not going to cause any significant difficulties and has the following
advantages:

• In some cases we won’t have to differenciate between functional sym-
bols and predicate symbols. The only difference between these sym-
bols is that they have different result sorts.

• We will need structures where the values of the formulae are not
simply true or false but some other objects. This implies that our
structures have to have at least two carriers — one where the values
of the terms reside, and second for the values of the formulae. Since it
won’t be too different whether our structures have two sorts or many
sorts, it makes sense to permit many sorts.

• The use of sorts leads to significant reduction of the number of resol-
vents. [13, p. 229] There are cases when many-sorted resolution gener-
ates only finitely many clauses while the sort-less resolution generates
infinitely many. Consequently, many-sorted resolution is more useful
as a tool for model generation than the sort-less resolution.

• The class of formulae for which a finite model theorem holds is richer
in a many-sorted framework than in the one-sorted case. [25]

B)Throughout this work we will fix a set Sort. Its elements will be
called sorts . The special sort Log ∈ Sort is called the logical sort . The
elements of Sort ∖ {Log} will be called algebraic sorts .

We assume that three fixed disjoint sets of “symbols” are given. The
elements of the first set are called functional symbols and the elements of
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the second set are called predicate symbols . The third set is {∨,∧,¬,⊥,⊤};
its elements are called logical symbols .

In addition we assume there is a fixed function assigning a type to each
functional, predicate and logical symbol. The type of any functional symbol
is an element of (Sort ∖ {Log})𝑛 × (Sort ∖ {Log}) for some 𝑛 and the type
of any predicate symbol is an element of (Sort ∖ {Log})𝑛×{Log}. The type
of ∨ and ∧ is ⟨⟨Log, Log⟩, Log⟩, the type of ¬ is ⟨⟨Log⟩, Log⟩ and the type
of ⊥ and ⊤ is ⟨⟨⟩, Log⟩.

Operation symbol is a functional, predicate or logical symbol. Constant
symbol is a nullary functional symbol.

When an operation symbol d has type ⟨⟨𝜅1, . . . , 𝜅𝑘⟩, 𝜆⟩ we say
⟨𝜅1, . . . , 𝜅𝑘⟩ is the argument type of d and 𝜆 is its result sort . We also
say d is nullary , unary , binary , ternary , 𝑛-ary , etc, if the length of its
argument type is 0, 1, 2, 3, 𝑛, respectively.

All operation symbols are assumed to be different from all other formal
symbols we are going to use — parentheses, comma, etc.

C) Let 𝐼 be a set. 𝐼-indexed object 𝜉 = {𝜉𝑖}𝑖∈𝐼 is a function with
domain 𝐼. The image of 𝑖 ∈ 𝐼 is denoted by 𝜉𝑖. All such images are called
components of 𝜉.

An 𝐼-indexed object 𝑋 = {𝑋𝑖}𝑖∈𝐼 is called 𝐼-indexed set , if all 𝑋𝑖 are
sets. An 𝐼-indexed object 𝑓 = {𝑓𝑖}𝑖∈𝐼 is called 𝐼-indexed function, if all 𝑓𝑖
are functions.

It will be convenient to say that 𝜉 is an element of the 𝐼-indexed set
𝑋 = {𝑋𝑖}𝑖∈𝐼 and write 𝜉 ∈ 𝑋 when 𝜉 is an element of 𝑋𝑖 for some 𝑖.

The 𝐼-indexed set 𝑋 is a subset of the 𝐼-indexed set 𝑌 if 𝑋𝑖 ⊆ 𝑌𝑖 for
any 𝑖 ∈ 𝐼.

Let 𝑓 be an 𝐼-indexed function. The domain of 𝑓 is the 𝐼-indexed
set Dom 𝑓 = {Dom 𝑓𝑖}𝑖∈𝐼 ; the codomain of 𝑓 , written Cod 𝑓 , is defined
analogously.

If 𝑓 is an 𝐼-indexed function and 𝜉 ∈ Dom 𝑓 , then define 𝑓𝜉 = {𝑓𝑖𝜉𝑖}𝑖∈𝐼 .
Obviously 𝑓𝜉 ∈ Cod 𝑓 .

If 𝑓 = {𝑓𝑖}𝑖∈𝐼 and 𝑔 = {𝑔𝑖}𝑖∈𝐼 , then 𝑓 ∘ 𝑔 = {𝑓𝑖 ∘ 𝑔𝑖}𝑖∈𝐼 .
If 𝑋 is a subset of the domain of the 𝐼-indexed function 𝑓 , then the

restriction {𝑓𝑖 �𝑋𝑖}𝑖∈𝐼 of 𝑓 to 𝑋 will be denoted 𝑓 �𝑋.
For any two 𝐼-indexed sets 𝑋 = {𝑋𝑖}𝑖∈𝐼 and 𝑌 = {𝑌𝑖}𝑖∈𝐼 , let 𝑋 ∩ 𝑌 ,

𝑋 ∪ 𝑌 and 𝑋 × 𝑌 be the 𝐼-indexed sets {𝑋𝑖 ∩ 𝑌𝑖}𝑖∈𝐼 , {𝑋𝑖 ∪ 𝑌𝑖}𝑖∈𝐼 and
{𝑋𝑖 × 𝑌𝑖}𝑖∈𝐼 , respectively.

For any 𝐼-indexed set 𝑋 = {𝑋𝑖}𝑖∈𝐼 , let P𝑋 be the 𝐼-indexed
set {P𝑋𝑖}𝑖∈𝐼 .
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Given an 𝐼-indexed function 𝑓 = {𝑓𝑖}𝑖∈𝐼 from 𝑋 to 𝑌 , let
𝑓P : P𝑋 → P𝑌 be the 𝐼-indexed function {𝑓𝑖P}𝑖∈𝐼 .

It can be shown that the 𝐼-indexed sets together with the 𝐼-indexed
functions form a category Set𝐼 .

D)Definition. Denote by Σ the set of all operation symbols. A struc-
ture M is an ordered tuple ⟨{𝐴𝜅}𝜅∈Sort, {𝑗d}d∈Σ⟩, where {𝐴𝜅}𝜅∈Sort is a
Sort-indexed family of sets and {𝑗d}d∈Σ is a Σ-indexed family of functions,
such that if d ∈ Σ has type ⟨⟨𝜅1, 𝜅2, . . . , 𝜅𝑛⟩, 𝜆⟩, then 𝑗d is a function from
𝐴𝜅1 × 𝐴𝜅2 × · · · × 𝐴𝜅𝑛 to 𝐴𝜆.

The Sort-indexed family {𝐴𝜅}𝜅∈Sort, written |M|, is called universe
of M. The sets 𝐴𝜅, written M𝜅, are called the carriers of M. The carriers
of algebraic sorts are algebraic carriers and MLog is the logical carrier . If d
is an operation symbol, the function 𝑗d, written dM, is called the interpre-
tation of d in M. The interpretations of all operation symbols are called
fundamental operations of M.

Notice that we do not require from the carriers to be non-empty sets.

E)Definition. If M and K are two structures, a homomorphism ℎ
from M to K is a Sort-indexed family of functions from the carriers of M
to the corresponding carriers of K, such that for every operation symbol d
with type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and for any ⟨𝛼1, . . . , 𝛼𝑛⟩ ∈ M𝜅1 × · · · ×M𝜅𝑛 we
have

ℎ𝜆(d
M⟨𝛼1, . . . , 𝛼𝑛⟩) = dK⟨ℎ𝜅1𝛼1, . . . , ℎ𝜅𝑛𝛼𝑛⟩

When it is clear from the context that 𝛼 ∈ M𝜅, we will permit ourselves
to write ℎ𝛼 instead of ℎ𝜅𝛼.

F) Structures and homomorphisms between them form a category Str.
If 𝜅 ∈ Sort, the map M ↦→ M𝜅 is a functor from Str to Set. The map
M ↦→ |M| is a functor from Str to SetSort.

G) As usually, a homomorphism ℎ : M → K is called an isomorphism,
if all its components are bijective.

H)Definition. (1) A structure is normal if all its carriers are non-
empty sets.

(2)The structure M is a logical structure if M is normal, MLog = {0, 1}
and MLog together with the interpretation of the logical operations forms
the standard two-element Boolean algebra (1 is true and 0 is false).

(3)The structure M is a logical variant of K if M is a logical structure,
M and K have identical algebraic carriers and fM = fK for any functional
symbol f.
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I)Proposition. If ℎ : M → K is a homomorphism between logical
structures, then ℎLog0 = 0 and ℎLog1 = 1.

Proof. In all logical structures, ⊥ and ⊤ are interpreted as 0 and 1,
respectively.27 All homomorphisms from M to K map the interpretations
of ⊥ and ⊤ in M to the corresponding interpretations in K. �

J)Proposition. Let ℎ : M → K be a homomorphism. There exist
unique structure N and homomorphisms ℎ′ : M → N and ℎ′′ : N → K,
such that

1. The algebraic carriers of N and the interpretations of the functional
symbols are the same as in M.

2. The logical carrier of N and the interpretations of the logical symbols
are the same as in K.

3. The homomorphism ℎ′ is identity over the algebraic carriers and the
same as ℎ over the logical carrier. The homomorphism ℎ′′ is identity
over Log and the same as ℎ over the algebraic carriers.

4. ℎ = ℎ′′ ∘ ℎ′

Proof. (!) The uniqueness of ℎ′ and ℎ′′ immediately follows from
the third condition. The proposition specifies everything about N ex-
cept the interpretation of the predicate symbols. Choose an arbitrary
predicate symbol p. The homomorphism ℎ′ is identity for the alge-
braic sorts, so for any element 𝜈 of an algebraic carrier of N we have
ℎ′′𝜈 = (ℎ′′ ∘ ℎ′)𝜈 = ℎ𝜈. The homomorphism ℎ′′ is identity over
Log, whence for arbitrary elements 𝜈1, . . . , 𝜈𝑛 of the algebraic carriers
of N we have pN⟨𝜈1 . . . , 𝜈𝑛⟩ = ℎ′′pN⟨𝜈1 . . . , 𝜈𝑛⟩ = pK⟨ℎ′′𝜈1 . . . , ℎ′′𝜈𝑛⟩ =
pK⟨ℎ𝜈1 . . . , ℎ𝜈𝑛⟩ = ℎpM⟨𝜈1 . . . , 𝜈𝑛⟩.

(∃∃∃) Obviously we can define N, ℎ′ and ℎ′′ as it has been specified in
the condition of the proposition and during the proof of the uniqueness.
A simple check shows that ℎ′ and ℎ′′ are homomorphisms. Condition 4.
follows from condition 3. �

K)Corollary. Let M be a normal structure, K be a logical structure
and ℎ : M → K be a homomorphism. Then there exists unique logical
variant N of M and a homomorphism 𝑔 : N → K, such that 𝑔 and ℎ are
identical over the algebraic carriers.

Proof. (∃∃∃) Let N, ℎ′ and ℎ′′ be as in (J). The algebraic carriers of N
are the same as the algebraic carriers of M and M is normal, hence N is

27Strictly speaking, the interpretations of ⊥ and ⊤ are nullary functions mapping ⟨⟩
to 0 and 1, respectively.
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normal. Moreover, the logical carrier of N and the interpretations of the
logical symbols are the same as in K, whence N is logical. The algebraic
carriers and the interpretations of the functional symbols in N are the same
as in M, whence N is a logical variant of M. We also know ℎ′′ and ℎ are
identical over the algebraic carriers, so we can define 𝑔 = ℎ′′.

(!) We are going to apply (J) again. The algebraic carriers of N and
the interpretations of the functional symbols are the same as in M because
N is a logical variant of M. The logical carrier of N and the interpretation
of the logical symbols are the same as in K because both structures are
logical. Let ℎ′ : M → N be the Sort-indexed function that is identity
over the algebraic carriers and same as ℎ over the logical carrier. Obviously
ℎ′ is a homomorphism. Define ℎ′′ = 𝑔, then ℎ′′ will be the same as ℎ
over the algebraic carriers. But it also is a homomorphism between logical
structures, so (I) implies ℎ′′ is identity over the logical carrier. This and the
definition of ℎ′ imply ℎ = ℎ′′ ∘ ℎ′, hence the uniqueness of N and 𝑔 follows
from (J). �

L)Definition. Given a structure M, by PM we will denote the struc-
ture whose carriers are the power sets of the carriers of M. More formally,
(PM)𝜅 = P (M𝜅) for any 𝜅 and the operation symbols are interpreted in
the following way:

dPM⟨𝛼1, . . . , 𝛼𝑛⟩ = {dM⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ 𝛼1, . . . , 𝛽𝑛 ∈ 𝛼𝑛}

M)Definition. Given a homomorphism ℎ : M → K, by ℎP we will
denote the homomorphism ℎP : PM → PK, such that ℎP is the Sort-
indexed function defined in (2C): ℎP𝛼 = {ℎ𝛽 : 𝛽 ∈ 𝛼}.

We have to prove that ℎP is indeed a homomorphism.
Proof. By definition, ℎP is a Sort-indexed function mapping |MP |

to |KP |. Choose an arbitrary operation symbol d. Then

ℎP (dPM⟨𝛼1, . . . , 𝛼𝑛⟩ = ℎP ({dM⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ 𝛼1, . . . , 𝛽𝑛 ∈ 𝛼𝑛})

= {ℎ(dM⟨𝛽1, . . . , 𝛽𝑛⟩) : 𝛽1 ∈ 𝛼1, . . . , 𝛽𝑛 ∈ 𝛼𝑛}
= {dK⟨ℎ𝛽1, . . . , ℎ𝛽𝑛⟩ : 𝛽1 ∈ 𝛼1, . . . , 𝛽𝑛 ∈ 𝛼𝑛}

= {dK⟨𝛾1, . . . , 𝛾𝑛⟩ :∃𝛽1 ∈ 𝛼1(𝛾1 = ℎ𝛽1), . . . ,∃𝛽𝑛 ∈ 𝛼𝑛(𝛾𝑛 = ℎ𝛽𝑛)}
= {dK⟨𝛾1, . . . , 𝛾𝑛⟩ : 𝛾1 ∈ ℎP𝛼1, . . . , 𝛾𝑛 ∈ ℎP𝛼𝑛}
= dPK⟨ℎP𝛼1, . . . , ℎ

P𝛼𝑛⟩

�

Notice that P is an endofunctor in the category Str of all structures.
In particular, (𝑔 ∘ ℎ)P = 𝑔P ∘ ℎP and (idA)P = idPA.
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N)Proposition. Given a structure M, let {}M : |M| → |PM| be the
Sort-indexed function, such that ({}M)𝜅𝜇 = {𝜇} for any sort 𝜅. Then {}M
is an injective homomorphism from M to PM.

Proof. The definition of {}M implies that all components of {}M
are injective functions, so we only have to prove that {}M is
a homomorphism. Let d be an arbitrary operation symbol with
type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩. Then for any 𝜇1 ∈ M𝜅1 ,. . . ,𝜇𝑛 ∈ M𝜅𝑛 we have
({}M)𝜆(𝑑

M⟨𝜇1, . . . , 𝜇𝑛⟩) = {𝑑M⟨𝜇1, . . . , 𝜇𝑛⟩} = 𝑑PM⟨{𝜇1}, . . . , {𝜇𝑛}⟩ =
𝑑PM⟨({}M)𝜅1𝜇1, . . . , ({}M)𝜅𝑛𝜇𝑛⟩. �

§11. TERMS AND FORMULAE

A)We need a way to include arbitrary mathematical objects in syntactic
objects (terms, formulae, etc.). In order to achieve this, we assume that
for any Sort-indexed set 𝑋 and sort 𝜅 we have a function called “nam𝑋,𝜅”
mapping the elements of 𝑋𝜅 to symbols. If y ∈ 𝑋𝜅, then nam𝑋,𝜅(y) is called
the name of y. We assume only the following properties of the functions
nam𝑋,𝜅:

1. nam𝑋,𝜅(y) is defined whenever y ∈ 𝑋𝜅 and for all sorts 𝜅.
2. The symbols nam𝑋,𝜅(y) are different from all operation symbols and

from any other formal symbols we are going to use — parentheses,
comma, etc.

3. If 𝜅 ̸= 𝜆 or y ̸= z, then nam𝑋,𝜅(y) ̸= nam𝑋,𝜆(z).
4. If 𝑋𝜅 = 𝑌𝜅, then nam𝑋,𝜅(y) = nam𝑌,𝜅(y) for any y ∈ 𝑋𝜅.
With a suitable definition of what constitutes a “symbol” or “syntactic

object” we can simply assume that nam𝑋,𝜅(y) = ⟨𝜅, y⟩. On the other hand,
if we have been given a predefined set of symbols, then the proof that a
mapping nam𝑋,𝜅 exists may require the use of the axiom of choice.28 In any
case, obviously we have to have sufficiently many symbols.

B)Definition. (1) Let 𝑋 be a Sort-indexed set. Termal expressions
over 𝑋 are defined inductively:

• If y ∈ 𝑋𝜅, then nam𝑋,𝜅(y) is a termal expression of sort 𝜅 over 𝑋.
• If d is an operation symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and 𝜏1, . . . , 𝜏𝑛 are

termal expressions over 𝑋 of sorts 𝜅1, . . . , 𝜅𝑛, respectively, then the
string d(𝜏1, . . . , 𝜏𝑛) is a termal expression of sort 𝜆 over 𝑋.

28 If we don’t want to limit the sets 𝑋 somehow (for instance, by requiring that all
possible sets 𝑋 form a set), the proof that the function nam𝑋,𝜅 exists may depend on
the Morse-Kelley set theory and the axiom of global choice.
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(2) Term over 𝑋 is a termal expression over 𝑋 of an algebraic sort.
Formula over 𝑋 is a termal expression over 𝑋 of logical sort that con-
tains no names of logical sort. Atomic formula is a formula without logical
symbols.29 Literal is an atomic formula or negation of an atomic formula.

C)Notation. In the following sections I will prefer to write pyq for
nam𝑋,𝜅(y); this convention creates an ambiguity which seldom causes a
problem. When c is a nullary operation symbol I will prefer to write
simply c for c(). Occasionally, when ∆ is a binary operation sym-
bol I will prefer to write 𝜏 ′∆𝜏 ′′ for ∆(𝜏 ′, 𝜏 ′′) and when ∆ is an unary
operation symbol I will prefer to write ∆𝜏 for ∆(𝜏). In particular,
I will write 𝜙 ∨ 𝜓, 𝜙 ∧ 𝜓, ¬𝜙, ⊥ and ⊤ for ∨(𝜙, 𝜓), ∧(𝜙, 𝜓), ¬(𝜙),
⊥() and ⊤(), respectively. I will assume left grouping for the paren-
theses, for example I will write 𝜙1 ∨ 𝜙2 ∨ 𝜙3 ∨ 𝜙4 ∨ · · · ∨ 𝜙𝑛 instead of
(. . . (((𝜙1 ∨ 𝜙2) ∨ 𝜙3) ∨ 𝜙4) ∨ . . . ) ∨ 𝜙𝑛.

D)Example. Suppose we have two algebraic sorts Int and Real and
two binary functional symbols “+” and “/” of types ⟨⟨Int, Int⟩, Int⟩ and
⟨⟨Real, Int⟩, Real⟩, respectively. Let the Sort-indexed set 𝑋 be such that
42 ∈ 𝑋Int and 3.14 ∈ 𝑋Real. Then /(p3.14q,+(p42q, p42q)) is a termal
expression over 𝑋 of sort Real. We may write this termal expression more
conveniently as p3.14q/(p42q+ p42q).

E)Definition. (1) Given a Sort-indexed set 𝑋, the termal structure
over 𝑋, written [𝑋], is defined as follows: for any sort 𝜅, the carrier [𝑋]𝜅
is the set of all termal expressions of sort 𝜅 over 𝑋 and the fundamental
operations of [𝑋] satisfy

d[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩ = d(𝜏1, . . . , 𝜏𝑛)

where on the right side of the equality sign stays a formal expression, d is an
operation symbol with argument type ⟨𝜅1, . . . , 𝜅𝑛⟩ and 𝜏1, . . . , 𝜏𝑛 are termal
expressions of sorts 𝜅1, . . . , 𝜅𝑛, respectively.

(2) Suppose 𝑓 : 𝑋 → 𝑌 is an arbitrary Sort-indexed function. Then
[𝑓 ] : [𝑋] → [𝑌 ] is the Sort-indexed function replacing all occurrences of
names pzq in its argument with p𝑓zq.

More formally, [𝑓 ] : [𝑋] → [𝑌 ] is the Sort-indexed function replacing all
occurrences of nam𝑋,𝜆(z) in the termal expressions of sort 𝜅 over 𝑋 (for any
sort 𝜆 and z ∈ 𝑋𝜆) with nam𝑌,𝜆(𝑓𝜆z).

(3) It is convenient to use postfix notation for this function, thus 𝛼[𝑓 ]
means to apply [𝑓 ] to 𝛼.

29Consequently, neither ⊥, nor ⊤ is an atomic formula.
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F)Remark. If for all sorts 𝜅 there is at least one nullary operation
symbol with result sort 𝜅 or the set 𝑋𝜅 is non-empty, then for all sorts 𝜅
there is at least one termal expression of sort 𝜅, whence in this case the
structure [𝑋] is normal.

Notice that this is only a sufficient, but not a necessary condition.
For example, suppose we have only two algebraic sorts Int and Real, a
nullary functional symbol “1” of type ⟨⟨⟩, Int⟩, a binary functional symbol
“−” of type ⟨⟨Int, Int⟩, Int⟩ and a binary functional symbol “/” of type
⟨⟨Int, Int⟩, Real⟩. Then 1/1 is a term of sort Real, so [𝑋] is a normal
structure even if 𝑋Real = ∅.

G)Proposition. For any Sort-indexed function 𝑓 : 𝑋 → 𝑌 , [𝑓 ] is a
homomorphism from [𝑋] to [𝑌 ].

Proof. First we show by induction that 𝜏 ∈ [𝑋]𝜅 implies30 𝜏 [𝑓 ]𝜅 ∈ [𝑌 ]𝜅.
If 𝜏 = nam𝑋,𝜅(z), then by the definition of [𝑓 ], 𝜏 [𝑓 ]𝜅 = nam𝑌,𝜅(𝑓z) ∈
[𝑌 ]𝜅. Otherwise, 𝜏 = d(𝜏1, . . . , 𝜏𝑛), where 𝜏𝑖 ∈ [𝑋]𝜆𝑖 for some sorts 𝜆𝑖. By
induction hypothesis, 𝜏𝑖[𝑓 ] ∈ [𝑌 ]𝜆𝑖 , whence 𝜏 [𝑓 ] = d(𝜏1[𝑓 ], . . . , 𝜏𝑛[𝑓 ]) ∈ [𝑌 ]𝜅.

It only remains to notice that for any operation symbol d of
type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and arbitrary termal expressions 𝜏1, . . . , 𝜏𝑛
of sorts 𝜅1, . . . , 𝜅𝑛, (d[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩)[𝑓 ]𝜆 = d(𝜏1, . . . , 𝜏𝑛)[𝑓 ]𝜆 =
d(𝜏1[𝑓 ]𝜅1 , . . . , 𝜏𝑛[𝑓 ]𝜅𝑛) = d[𝑌 ]⟨𝜏1[𝑓 ]𝜅1 , . . . , 𝜏𝑛[𝑓 ]𝜅𝑛⟩. �

H)Remark. Definition (E2) implies that [𝑓 ∘ 𝑔] = [𝑓 ] ∘ [𝑔] and
[id𝑋 ] = id[𝑋]. Therefore, from proposition (G) we can conclude that the
map [ . ] is a functor from SetSort to Str.

I)Proposition. (1)Given a Sort-indexed function 𝑓 : 𝑋 → 𝑌 and
𝜉 ∈ 𝑋, p𝜉q[𝑓 ] = p𝑓𝜉q.

(2)Given a Sort-indexed function 𝑓 : 𝑋 → 𝑌 , [𝑓 ] ∘ nam𝑋 = nam𝑌 ∘𝑓 .

Proof. (1) follows immediately from definition (E2).
(2) is a reformulation of (1). �

J)Definition. Given a structure M, the value of a termal expression 𝜏
over |M| in M, written 𝜏M, is defined recursively:31

1. If 𝜇 ∈ M𝜅, the value of the name of 𝜇 is 𝜇. More formally,
(nam|M|,𝜅(𝜇))M = 𝜇.

2. If 𝜏 = d(𝜏1, . . . , 𝜏𝑛), then 𝜏M = dM⟨𝜏M1 , . . . , 𝜏M𝑛 ⟩.
30Recall we are using postfix notation for [𝑓 ].
31Recall |M| is the Sort-indexed set of the carriers of M. The termal expressions

over |M| may contain names of the elements of the carriers of M.
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K)Definition. Let valM be the Sort-indexed function, such that
valM,𝜅 maps the termal expressions over |M| of sort 𝜅 to their corresponding
values in M.

L)Proposition. For any structure M, the evaluating function valM
is a homomorphism from [|M|] to M.

Proof. By definition, the carriers of [|M|] consist of the termal ex-
pressions over |M|, hence valM is a Sort-indexed function from the uni-
verse of [|M|] to the universe of M. For any operation symbol d,
valM(d[|M|]⟨𝜏1, . . . , 𝜏𝑛⟩) = valM(d(𝜏1, . . . , 𝜏𝑛)) = dM⟨valM 𝜏1, . . . , valM 𝜏𝑛⟩. �

M)Notation. Given an arbitrary structure M and a Sort-indexed
function 𝑣 : 𝑋 → |M|, let [𝑣]M = valM ∘ [𝑣]. It is convenient to use postfix
notation for the homomorphism [𝑣]M. Notice that 𝜏([𝑣]M) = (𝜏 [𝑣])M so
we can write 𝜏 [𝑣]M without ambiguity and call 𝜏 [𝑣]M value of the termal
expression 𝜏 in the structure M with assignment 𝑣.

Occasionally, we are going to informally call functions like 𝑣 assignment
functions .

N)Proposition. (1)Given a homomorphism ℎ : M → K and a termal
expression 𝜏 over |M|, ℎ(𝜏M) = 𝜏 [ℎ]K.

(2)Given a homomorphism ℎ : M → K, ℎ ∘ valM = valK ∘ [ℎ].

Proof. (1) By induction on the termal expression 𝜏 . If 𝜏 = p𝜇q, where
𝜇 ∈ M𝜅, then ℎ𝜅(𝜏

M) = ℎ𝜅(𝜇) = (pℎ𝜅(𝜇)q)K = p𝜇q[ℎ]K = 𝜏 [ℎ]K. If 𝜏 =
d(𝜏1, . . . , 𝜏𝑛), by induction hypothesis, ℎ(𝜏M𝑖 ) = 𝜏𝑖[ℎ]K, whence ℎ(𝜏M) =
ℎ(dM⟨𝜏M1 , . . . , 𝜏M𝑛 ⟩) = dK⟨ℎ(𝜏M1 ), . . . , ℎ(𝜏M𝑛 )⟩ = dK⟨𝜏1[ℎ]K, . . . , 𝜏𝑛[ℎ]K⟩ =
(d[|M|]⟨𝜏1, . . . , 𝜏𝑛⟩)[ℎ]K = 𝜏 [ℎ]K.

(2) is a reformulation of (1). �

O)Proposition. Given a structure M and a Sort-indexed func-
tion 𝑣 : 𝑋 → |M|, valM ∘ [𝑣] is the unique homomorphism from [𝑋] to M,
mapping the name of any element 𝜉 of 𝑋 to 𝑣𝜉.

Proof. By definition valM ∘ [𝑣] is a homomorphism from [𝑋] to M, map-
ping the name of any element 𝜉 of 𝑋 to 𝑣𝜉.

Suppose both ℎ and 𝑔 are homomorphisms from [𝑋] to M, mapping the
name of any element 𝜉 of 𝑋 to 𝑣𝜉. We will prove ℎ𝜏 = 𝑔𝜏 by induction
on the termal expression 𝜏 . If 𝜉 ∈ 𝑋 and 𝜏 = p𝜉q, then both ℎ and 𝑔
map 𝜏 to 𝑣𝜉. If 𝜏 = d(𝜏1, . . . , 𝜏𝑛), then by induction hypothesis ℎ𝜏𝑖 = 𝑔𝜏𝑖,
whence ℎ𝜏 = ℎd(𝜏1, . . . , 𝜏𝑛) = ℎ(d[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩) = dM⟨ℎ𝜏1, . . . , ℎ𝜏𝑛⟩) =
dM⟨𝑔𝜏1, . . . , 𝑔𝜏𝑛⟩) = 𝑔(d[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩) = 𝑔d(𝜏1, . . . , 𝜏𝑛) = 𝑔𝜏 �
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P)Corollary. Given homomorphisms ℎ, 𝑔 : [𝑋] → M, if ℎp𝜉q = 𝑔p𝜉q
for any 𝜉 ∈ 𝑋, then ℎ = 𝑔. More formally, if ℎ𝜅(nam𝑋,𝜅 𝜉) = 𝑔𝜅(nam𝑋,𝜅 𝜉)
for any sort 𝜅 and 𝜉 ∈ 𝑋𝜅, then ℎ = 𝑔.

Proof. Define the Sort-indexed function 𝑣 : 𝑋 → |M| by 𝑣𝜅𝜉 = ℎ𝜅𝜉 =
𝑔𝜅𝜉. Then (O) will imply there is unique homomorphism mapping the name
of any 𝜉 ∈ 𝑋 to 𝑣𝜉. Since both ℎ and 𝑔 are such homomorphisms, ℎ = 𝑔. �

Q)Proposition. (1) Given a Sort-indexed assignment function
𝑣 : 𝑋 → |M|, a homomorphism ℎ : M → K and a termal expression 𝜏
over 𝑋, ℎ(𝜏 [𝑣]M) = 𝜏 [ℎ ∘ 𝑣]K.

(2) In addition, if the structures M and K are logical and 𝜙 is a formula
over 𝑋, 𝜙[𝑣]M = 𝜙[ℎ ∘ 𝑣]K.

Proof. (1) Simply apply (N) for 𝜎 = 𝜏 [𝑣]: ℎ(𝜏 [𝑣]M) = ℎ(𝜎M) = 𝜎[ℎ]K =
𝜏 [𝑣][ℎ]K = 𝜏 [ℎ ∘ 𝑣]K.

(2) follows from (1) and (10I). �

R)Definition. (1) A (termal) substitution is a Sort-indexed function
whose codomain is the universe of a termal structure, i.e. a function of the
form 𝑠 : 𝑋 → |[𝑌 ]|.

(2)Given a substitution 𝑠 : 𝑋 → |[𝑌 ]|, 𝜏 [𝑠][𝑌 ] is called application of the
substitution 𝑠 to the termal expression 𝜏 .

Given a substitution 𝑠 : 𝑋 → |[𝑌 ]|, from (P) it follows that
[𝑠][𝑌 ] : [𝑋] → [𝑌 ] is the only homomorphism mapping any name p𝜉q to 𝑠𝜉.

The following proposition shows that this definition of application of
substitution is equivalent with the more common one.

S)Proposition. Let 𝑠 : 𝑋 → |[𝑌 ]| be a substitution. Then [𝑠][𝑌 ] is the
Sort-indexed function replacing all occurrences of names pzq, z ∈ 𝑋 in the
termal expressions of the carriers of [𝑋] with 𝑠z.

Proof. By induction on the termal expression 𝜏 . If 𝜏 is the name pzq,
then by definition 𝜏 [𝑠][𝑌 ] = pzq[𝑠][𝑌 ] = p𝑠zq[𝑌 ] = 𝑠z. If 𝜏 = d(𝜏1, . . . , 𝜏𝑛)
and 𝜏 ′1 = 𝜏1[𝑠]

[𝑌 ], . . . , 𝜏 ′𝑛 = 𝜏𝑛[𝑠][𝑌 ], then by induction hypothesis 𝜏 ′1, . . . , 𝜏 ′𝑛
are the result of the replacement of all occurrences of names pzq in 𝜏1, . . . , 𝜏𝑛
with 𝑠z. Consequently, 𝜏 [𝑠][𝑌 ] = d(𝜏1, . . . , 𝜏𝑛)[𝑠][𝑌 ] = d[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩[𝑠][𝑌 ] =
d[𝑌 ]⟨𝜏1[𝑠][𝑌 ], . . . , 𝜏𝑛[𝑠][𝑌 ]⟩ = d(𝜏 ′1, . . . , 𝜏

′
𝑛). �

T)Lemma (of the substitutions). Given a substitution 𝑠 : 𝑋 →
|[𝑌 ]| and an assignment function 𝑣 : 𝑌 → |K|, define a new assignment
function 𝑤 : 𝑋 → |K|, such that 𝑤𝜉 = (𝑠𝜉)[𝑣]K. Then for any termal
expression 𝜏 , 𝜏 [𝑤]K = (𝜏 [𝑠][𝑌 ])[𝑣]K. In other words, [𝑣]K ∘ [𝑠][𝑌 ] = [[𝑣]K ∘𝑠]K.
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Proof. The definition 𝑤 = [𝑣]K ∘ 𝑠 implies [𝑤] = [[𝑣]K] ∘ [𝑠], so we only
have to prove that [𝑣]K ∘ ([𝑠][𝑌 ]) = valK ∘ [[𝑣]K] ∘ [𝑠]. This follows from the
commutativity of the following diagram

[𝑋]
[𝑠][𝑌 ]

//

[𝑠]

!!D
DD

DD
DD

DD
DD

DD
DD

[𝑌 ]
[𝑣]K

//K

[|[𝑌 ]|]
[[𝑣]K]

//

val[𝑌 ]

OO

[|K|]

valK

OO

The commutativity of the triangle follows from (M) and the commutativity
of the square follows from (N), where M is [𝑌 ] and ℎ is [𝑣]K. �

One difference between the substitutions defined in (R1) and the com-
mon notion of substitution is that our substitutions may replace names of
logical type with formulae. The following corollary shows that we can use
such substitutions in order to prove that if we replace a subformula 𝜙 ∨ 𝜓
in a formula with 𝜓 ∨ 𝜙, we will obtain an equivalent formula.

U)Corollary. Let K be a structure, 𝑣 : 𝑋 → |K| be an assignment
function and 𝜏1 and 𝜏2 be termal expressions over 𝑋, such that 𝜏2 is obtained
from 𝜏1 by replacing a termal expression 𝜎1 with termal expression 𝜎2. If
𝜎1[𝑣]K = 𝜎2[𝑣]K, then 𝜏1[𝑣]K = 𝜏2[𝑣]K.

Proof. Take some z /∈ 𝑋, let 𝑌 is obtained from 𝑋 by adding to it z as
sort 𝜅 and let 𝜏 be the termal expression obtained from 𝜏1 by replacing the
same occurrence of 𝜎1 with pzq. Define substitutions 𝑠1, 𝑠2 : 𝑌 → [𝑋]:

𝑠1𝜉 =

{︃
𝜎1, if 𝜉 = z,

𝜉, otherwise.
𝑠2𝜉 =

{︃
𝜎2, if 𝜉 = z,

𝜉, otherwise.

Then 𝜏 [𝑠1]
[𝑋] = 𝜏1 and 𝜏 [𝑠2]

[𝑋] = 𝜏2. In addition, define new assign-
ment functions 𝑤1, 𝑤2 : 𝑌 → |K| such that 𝑤𝑖𝜉 = (𝑠𝑖𝜉)[𝑣]K. By definition,
𝑤1 and 𝑤2 are identical for 𝜉 ̸= z and for 𝜉 = z we have 𝑤1𝜉 = 𝜎1[𝑣]K =
𝜎2[𝑣]K = 𝑤2𝜉. Consequently, 𝑤1 = 𝑤2. Now from the lemma we obtain
𝜏1[𝑣]K = (𝜏 [𝑠1]

[𝑋])[𝑣]K = 𝜏 [𝑤1]
K = 𝜏 [𝑤2]

K = (𝜏 [𝑠2]
[𝑋])[𝑣]K = 𝜏2[𝑣]K. �

Recall that the naming morphism nam𝑋 : 𝑋 → |[𝑋]| maps each 𝜉 ∈ 𝑋
to the name p𝜉q. This morphism is a substitution and its application does
not change the termal expression. Notice also that for any structure M,
the value of the name p𝜇q is 𝜇. The following proposition states formally
these two simple facts.
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V)Proposition. (1) Given a termal expression 𝜏 over 𝑋, we have
𝜏 [nam𝑋 ][𝑋] = 𝜏 . Equivalently, val[𝑋] ∘ [nam𝑋 ] = id[𝑋].

[𝑋]
[nam𝑋 ]

// [|[𝑋]|]
val[𝑋]

// [𝑋]

(2) Given a structure M and 𝜇 ∈ |M|, we have (p𝜇q)M = 𝜇. Equiva-
lently, valM ∘ nam|M| = id|M|.

|M|
nam|M|

//|[|M|]| valM //|M|

Proof. (1) For any 𝜉 ∈ 𝑋, immediately from definitions (E2) and (J) it
follows that (nam𝑋 𝜉)[nam𝑋 ][𝑋] = (nam|[𝑋]|(nam𝑋 𝜉))

[𝑋] = nam𝑋 𝜉. Conse-
quently the homomorphism [nam𝑋 ][𝑋] preserves all names, so (P) implies
this homomorphism is the identity homomorphism.

(2) immediately follows from definition (J). �

W)Remark. We have defined two functors [ . ] : SetSort → Str and
| . | : Str → SetSort in (H) and (10F), respectively. Proposition (I) implies
that nam𝑋 is a natural transformation from the identity functor of SetSort

to the functor composition |[ . ]|. Proposition (N) implies that valM is a
natural transformation from the functor composition [| . |] to the identity
functor of Str. Proposition (V) implies that the functors [ . ] : SetSort → Str
and | . | : Str → SetSort form an adjunction where [ . ] is the left adjoint
and | . | is the right adjoint. The naming morphism nam𝑋 is the unit of this
adjunction and the evaluation morphism valM is its counit.

§12. ALGEBRAS. ALGEBRAIC FRAGMENT OF A STRUCTURE

The traditional definition of algebra or algebraic structure is a structure
for a language without predicate symbols. However, in this work we will
benefit if we work always with only one fixed language with fixed sets of
functional and predicate symbols. In order to be able to talk about algebraic
structures in a language with predicate symbols we need a canonical way
to supply any algebra with a logical carrier and with an interpretation of
the predicate and the logical symbols.

There are two natural ways to do this. The simplest one seems to be the
following. Let the logical carrier be some set with only one element. Since
the logical carrier has unique element, there is only one possible interpre-
tation for the predicate and the logical symbols. This observation leads to
the following definition:
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A)Definition. A structure A is a terminal algebraic structure if ALog =
{0}.

B) The main usefulness of the terminal algebraic structures is due to
their simplicity. In particular, when defining a terminal algebraic struc-
ture we don’t have to specify the interpretation of the predicate and the
logical symbols. Indeed, since the logical carrier contains unique element,
there can be only one possible interpretation of the predicate and the log-
ical symbols. Similarly, when defining a homomorphism between terminal
algebraic structures we don’t have to specify the mapping of the elements
of the logical carrier (as there is only one element in it). Unfortunately, for
our purposes a different and more complex definition will be more useful.

C)Definition. (1) A relational termal expression (or term, or formula)
is a termal expression (resp. term, formula) with no functional symbols and
no names of logical sort.32

(2) The structure A is an initial algebraic structure or simply algebra, if
the carrier ALog is the set of all relational formulae over |A|, the predicate
symbols satisfy pA⟨𝛼1, . . . , 𝛼𝑛⟩ = p(p𝛼1q, . . . , p𝛼𝑛q) and the logical symbols
satisfy dA⟨𝜙1, . . . , 𝜙𝑛⟩ = d(𝜙1, . . . , 𝜙𝑛).

(3) The algebraic fragment of a structure M is the unique algebra 𝜕M,
such that M and 𝜕M have same algebraic carriers and the functional sym-
bols in 𝜕M are interpreted the same way as in M.33

(4) Given a homomorphism ℎ : M → K, we can define a homomorphism
𝜕ℎ : 𝜕M → 𝜕K and call it the algebraic fragment of ℎ. Let 𝜕ℎ maps the
algebraic carriers the same way as ℎ and if 𝜙 ∈ (𝜕M)Log, let (𝜕ℎ)𝜙 = 𝜙[ℎ].

(5) A is a normal algebra if A is an algebra and A is a normal structure.

We have to prove that 𝜕ℎ is a homomorphism.
Immediately from the definition, it follows that if ℎ : M → K is a

homomorphism, then 𝜕ℎ maps the carriers of 𝜕M to the corresponding car-
riers of 𝜕K. For all functional symbols f we have 𝜕ℎ(f𝜕M⟨𝜇1, . . . , 𝜇𝑛⟩) =
ℎ(fM⟨𝜇1, . . . , 𝜇𝑛⟩) = fK⟨ℎ𝜇1, . . . , ℎ𝜇𝑛⟩ = f𝜕K⟨(𝜕ℎ)𝜇1, . . . , (𝜕ℎ)𝜇𝑛⟩. For all
predicate symbols p we have 𝜕ℎ(p𝜕M⟨𝜇1, . . . , 𝜇𝑛⟩) = (p𝜕M⟨𝜇1, . . . , 𝜇𝑛⟩)[ℎ]
= (p(p𝜇1q, . . . , p𝜇𝑛q))[ℎ] = p(pℎ𝜇1q, . . . , pℎ𝜇𝑛q) = p𝜕K⟨ℎ𝜇1, . . . , ℎ𝜇𝑛⟩
= p𝜕K⟨(𝜕ℎ)𝜇1, . . . , (𝜕ℎ)𝜇𝑛⟩. And for all logical symbols d we have
𝜕ℎ(d𝜕M⟨𝜙1, . . . , 𝜙𝑛⟩) = (d𝜕M⟨𝜙1, . . . , 𝜙𝑛⟩)[ℎ] = d𝜕K⟨𝜙1[ℎ], . . . , 𝜙𝑛[ℎ]⟩) =
d𝜕K⟨(𝜕ℎ)𝜙1, . . . , (𝜕ℎ)𝜙𝑛⟩).

32This definition implies that all relational terms are names.
33Definition (C2) determines uniquely the interpretation of the predicate and the

logical symbols in an algebra.
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D)Example. Suppose we have a single algebraic sort Nat, a binary
functional symbol “+” of type ⟨⟨Nat, Nat⟩, Nat⟩ and a binary predicate sym-
bol p of type ⟨⟨Nat, Nat⟩, Log⟩. Let the algebra A be such that the carrier
ANat be the set of the natural numbers and the functional symbol “+” is
interpreted as the function addition. Then p(p42q, p2q+ p2q) is an atomic
formula over |A| and its value in A is the relational formula p(p42q, p4q).

E)Definition. (1)The structures M and K are variants (one of an-
other), if they have identical carriers and the functional symbols are inter-
preted the same way.

(2)The homomorphisms ℎ′ : M′ → K′ and ℎ′′ : M′′ → K′′ are variants
(one of another), if M′ and M′′ are variants, K′ and K′′ are variants and
ℎ′ and ℎ′′ map the algebraic carriers the same way.

F)Obviously, the relations defined in (E) are reflexive, symmetric and
transitive. For any structure M, M and 𝜕M are variants and for any
homomorphism ℎ, ℎ and 𝜕ℎ are variants.

G)Lemma. Given an algebra A, a structure K and a homomorphism
ℎ : A → K, if 𝜙 is an element of the logical carrier of A, then ℎ𝜙 = 𝜙[ℎ]K.

Proof. According to the definition of algebra (C2), 𝜙 is a relational
formula. We will prove the Lemma by induction on 𝜙.

Let 𝜙 = p(𝜏1, . . . , 𝜏𝑛) for some predicate symbol p and terms 𝜏1, . . . , 𝜏𝑛.
But 𝜙 is relational so these terms are not permitted to contain functional
symbols, hence 𝜏1 = p𝛼1q, . . . , 𝜏𝑛 = p𝛼𝑛q for some elements 𝛼1, . . . , 𝛼𝑛 of
the algebraic carriers of A. Consequently, ℎ𝜙 = ℎp(p𝛼1q, . . . , p𝛼𝑛q) =
ℎ(pA⟨𝛼1, . . . , 𝛼𝑛⟩) = pK⟨ℎ𝛼1, . . . , ℎ𝛼𝑛⟩ = (p(pℎ𝛼1q, . . . , pℎ𝛼𝑛q))K =
(p(p𝛼1q[ℎ], . . . , p𝛼𝑛q[ℎ]))K = p(p𝛼1q, . . . , p𝛼𝑛q)[ℎ]K = 𝜙[ℎ]K.

If 𝜙 = d(𝜓1, . . . , 𝜓𝑛) for some logical symbol d and formulae 𝜓1, . . . , 𝜓𝑛,
then by induction hypothesis ℎ𝜓𝑖 = 𝜓𝑖[ℎ]K, whence ℎ𝜙 = ℎd(𝜓1, . . . , 𝜓𝑛) =
ℎ(dA⟨𝜓1, . . . , 𝜓𝑛⟩) = dK⟨ℎ𝜓1, . . . , ℎ𝜓𝑛⟩ = dK⟨𝜓1[ℎ]K, . . . , 𝜓𝑛[ℎ]K⟩ =
(d(𝜓1[ℎ], . . . , 𝜓𝑛[ℎ]))K = d(𝜓1, . . . , 𝜓𝑛)[ℎ]K = 𝜙[ℎ]K. �

H)Proposition. (1) If two algebras are variants, they are equal.
(2) Given an algebra A, a structure K and homomorphisms ℎ and 𝑔

from A to K, if ℎ and 𝑔 are variants, they are equal.

Proof. (1) Suppose the algebras A and B are variants. Then A and B
have the same algebraic carriers and the functional symbols are interpreted
the same way. Their logical carriers are the sets of all relational formula
over |A| and |B|, respectively. Since formulae may contain no names of
logical sort, the logical carriers of A and B are identical. It remains to
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notice that the definition of algebra (C2) implies that the predicate and the
logical symbols are interpreted identically in A and in B.

(2) By definition of variants, ℎ𝛼 = 𝑔𝛼 if 𝛼 belongs to some of the alge-
braic carriers of A. Take an arbitrary element 𝜙 of the logical carrier of A.
From (G) it follows that ℎ𝜙 = 𝜙[ℎ]K and 𝑔𝜙 = 𝜙[𝑔]K. The homomorphisms
[ℎ] and [𝑔] map the names of the algebraic sorts the same way and there
are no names of the logical sort in 𝜙, whence 𝜙[ℎ] = 𝜙[𝑔]. �

I)Corollary. (1) The algebraic fragment of a structure M is the only
algebra which is a variant of M.

(2) The algebraic fragment of a homomorphism ℎ : M → K is the only
homomorphism from 𝜕M to 𝜕K which is a variant of ℎ.

Proof. (1) If the algebra A is a variant of M, then A and 𝜕M are
variants. Therefore, from (H1) we conclude that A = 𝜕M.

(2) If 𝑔 : 𝜕M → 𝜕K is a variant of ℎ, then 𝑔 and 𝜕ℎ are variants.
Therefore, from (H2) we conclude that 𝑔 = 𝜕ℎ. �

J)Corollary. (1) Any algebra is the algebraic fragment of itself.
(2) Any homomorphism between algebras is the algebraic fragment of

itself.

Proof. (1) follows from (I1) because any algebra is a variant of its alge-
braic fragment.

(2) follows from (I2) because any homomorphism ℎ : A → B is a variant
of 𝜕ℎ : 𝜕A → 𝜕B and if A and B are algebras then (1) implies A = 𝜕A
and B = 𝜕B. �

The reader is kindly asked to remember the following proposition be-
cause I shell not give references to it when I use it.

K)Proposition. (1) 𝜕A = A, if A is algebra.
(2) 𝜕ℎ = ℎ, if ℎ is a homomorphism between algebras.
(3)M and K are variants if and only if 𝜕M = 𝜕K.
(4)ℎ and 𝑔 are variants if and only if 𝜕ℎ = 𝜕𝑔.
(5) 𝜕( idM) = id𝜕M for any structure M.
(6) 𝜕(ℎ∘𝑔) = (𝜕ℎ)∘(𝜕𝑔), if the domain of ℎ is identical with the codomain

of 𝑔.
(7) 𝜕(𝜕M) = 𝜕M, 𝜕(𝜕ℎ) = 𝜕ℎ
(8) 𝜕 is an idempotent endofunctor in Str.

Proof. (1) and (2) are reformulations of (J).
(3) First notice that by definition (C3), M and 𝜕M have identical al-

gebraic carriers and the functional symbols are interpreted the same way.
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Analogous property is also valid for K and 𝜕K. Consequently M and K
are variants if and only if 𝜕M and 𝜕K are variants. According to (H1), this
is so if and only if 𝜕M = 𝜕K.

(4) If the domains and the codomains of ℎ and 𝑔 are not variants, then
neither 𝑓 and 𝑔 are variants, nor 𝜕ℎ = 𝜕𝑔. Suppose that the domains of ℎ
and 𝑔 are variants and the codomains of ℎ and 𝑔 are variants as well. Then
by definition, ℎ and 𝑔 are variants if and only if ℎ and 𝑔 map the algebraic
carriers identically, if and only if 𝜕ℎ and 𝜕𝑔 map the algebraic carriers
identically (because by definition (C4), ℎ and 𝜕ℎ map the algebraic carriers
identically and 𝑔 and 𝜕𝑔 similarly do), if and only if 𝜕𝑓 = 𝜕𝑔 (because
of H2).

(5) By definition (C4), 𝜕( idM) maps the algebraic carriers identically
to id𝜕M, so the required follows from (H2).

(6) By definition (C4), 𝜕(ℎ ∘ 𝑔) and 𝜕ℎ ∘ 𝜕𝑔 map the algebraic carriers
identically to ℎ ∘ 𝑔, so the required follows from (H2) as well.

(7) follows from (K1) and (K2) because 𝜕M is an algebra and 𝜕ℎ is a
homomorphism between algebras.

(8) follows from (5), (6) and (7). �

L)Definition. Given an arbitrary structure M, let
∫︀
M

be the Sort-
indexed function from |𝜕M| to |M|, such that

∫︀
M

is identity over the alge-
braic carriers and if 𝜙 ∈ (𝜕M)Log, then

∫︀
M
𝜙 = 𝜙M.

The definition is correct because (C2) implies all elements of (𝜕M)Log are
formulae over |𝜕M| without names of logical sort. However, 𝜕M and M
have same algebraic carriers, hence all elements of (𝜕M)Log are formulae
over |M|.

M)Proposition. (1)
∫︀
M

: 𝜕M → M is a homomorphism for any struc-
ture M.

(2) 𝜕(
∫︀
M

) = id𝜕M for any structure M.
(3)

∫︀
M

and idM are variants.
(4)

∫︀
A

= idA for any algebra A.
(5)

∫︀
K

∘ 𝜕ℎ = ℎ ∘
∫︀
M

for any homomorphism ℎ : M → K.

𝜕M∫︀
M
��

𝜕ℎ // 𝜕K∫︀
K
��

M
ℎ //K

Proof. (1) The homomorphism
∫︀

is identity over the algebraic carriers
and M and 𝜕M interpret the functional symbols the same way, so if f is a
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functional symbol, then∫︀
M
f𝜕M⟨𝜇1, . . . , 𝜇𝑛⟩ = f𝜕M⟨𝜇1, . . . , 𝜇𝑛⟩

= fM⟨𝜇1, . . . , 𝜇𝑛⟩
= fM⟨

∫︀
M
𝜇1, . . . ,

∫︀
M
𝜇𝑛⟩

If p is a predicate symbol, then∫︀
M
p𝜕M⟨𝜇1, . . . , 𝜇𝑛⟩ =

∫︀
M
p(p𝜇1q, . . . , p𝜇𝑛q) from (C2)

= (p(p𝜇1q, . . . , p𝜇𝑛q))
M from (L)

= pM⟨𝜇1, . . . , 𝜇𝑛⟩
= pM⟨

∫︀
M
𝜇1, . . . ,

∫︀
M
𝜇𝑛⟩ from (L)

If d is a logical symbol, then∫︀
M
d𝜕M⟨𝜙1, . . . , 𝜙𝑛⟩ =

∫︀
M
d(𝜙1, . . . , 𝜙𝑛) from (C2)

= (d(𝜙1, . . . , 𝜙𝑛))M from (L)
= dM⟨𝜙M

1 , . . . , 𝜙
M
𝑛 ⟩

= dM⟨
∫︀
M
𝜙1, . . . ,

∫︀
M
𝜙𝑛⟩ from (L)

(2) The definition of
∫︀
M

implies that
∫︀
M

and idM are variants, so 𝜕(
∫︀
M

)
and 𝜕( idM) are variants. Now the required follows from (K5) and (H2).

(3) From (2) it follows that 𝜕(
∫︀
M

) = id𝜕M = 𝜕( idM).
(4) follows from (3), (H2) and the fact that 𝜕A = A.
(5) 𝜕(

∫︀
K

∘ 𝜕ℎ) = 𝜕(
∫︀
K

) ∘ 𝜕(𝜕ℎ) = id𝜕K ∘ 𝜕ℎ = 𝜕ℎ = 𝜕ℎ ∘ id𝜕M =
𝜕ℎ ∘ 𝜕(

∫︀
M

) = 𝜕(ℎ ∘
∫︀
M

), hence
∫︀
K

∘ 𝜕ℎ and ℎ ∘
∫︀
M

are variants so (H2)
implies the required. �

N)Remark. According to (M5),
∫︀
M

is a natural transformation from 𝜕
to the identity endofunctor of Str.

O)Proposition. (1) For any algebra A, a structure K and a homo-
morphism ℎ : A → K we have ℎ =

∫︀
K

∘ 𝜕ℎ.
(2)For any algebra A, a structure K and a homomorphism 𝑓 : A → 𝜕K,

there exists unique homomorphism ℎ : A → K, such that 𝜕ℎ = 𝑓 .
(3) For any normal algebra A, a logical structure K and a homomor-

phism ℎ : A → K, there exists unique logical variant N of K and a homo-
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morphism 𝑔 : N → K, such that ℎ = 𝑔 ∘
∫︀
N
.

A

ℎ

  B
BB

BB
BB

BB
BB

BB
BB∫︀

N

��

𝜕ℎ=𝑓
// 𝜕K∫︀

K

��

N 𝑔
//K

Proof. (1) From (M5) it follows that
∫︀
K

∘ 𝜕ℎ = ℎ ∘
∫︀
A

and (M4) implies∫︀
A

= idA.
(2) Suppose 𝜕ℎ = 𝑓 . Then (1) implies ℎ =

∫︀
K

∘ 𝜕ℎ =
∫︀
K

∘ 𝑓 . This
proves the uniqueness. In order to prove the existence, let ℎ =

∫︀
K

∘𝑓 . Then∫︀
K

∘ 𝜕ℎ =
∫︀
K

∘ 𝜕(
∫︀
K

∘ 𝑓) =
∫︀
K

∘ 𝜕(
∫︀
K

) ∘ 𝜕𝑓 =
∫︀
K

∘ id𝜕K ∘ 𝜕𝑓 =
∫︀
K

∘ 𝜕𝑓 =∫︀
K

∘ 𝑓 = ℎ.
(3) For any logical variant N of A and a homomorphism 𝑔 : N → K,

the homomorphisms 𝑔 and ℎ are identical over the algebraic carriers if and
only if 𝜕𝑔 = 𝜕ℎ.

This is so if and only if ℎ = 𝑔 ∘
∫︀
N

. Indeed, on one hand if 𝜕ℎ = 𝜕𝑔,
then (1) implies ℎ =

∫︀
K

∘ 𝜕ℎ =
∫︀
K

∘ 𝜕𝑔 = 𝑔 ∘
∫︀
N

, because of (M5). On the
other hand, if ℎ = 𝑔 ∘

∫︀
N

, then 𝜕ℎ = 𝜕𝑔 ∘ 𝜕(
∫︀
N

) = 𝜕𝑔 ∘ idA = 𝜕𝑔.
Therefore, from (10K) we obtain the required.34

�

P)Corollary. (1)Given a structure M and a termal expression 𝜏
over |M| which doesn’t contain names of logical sort, 𝜏M =

∫︀
M

(𝜏𝜕M).
(2) Given a structure M and a term 𝜏 over |M|, 𝜏M = 𝜏𝜕M.
(3)Given structures M′ and M′′ that are variants, if 𝜏 is a term

over |M′|, then 𝜏 also is a term over |M′′| and 𝜏M′
= 𝜏M

′′.
(4) Given a structure M and a formula 𝜙 over |M|, 𝜙M = (𝜙𝜕M)M.
(5)Given an algebra A and a relational formula 𝜙 over |A|, 𝜙A = 𝜙.
(6)Given an algebra A and a formula 𝜙 over |A|, (𝜙A)A = 𝜙A.

Proof. (1) 𝜏 doesn’t contain names of logical sort and 𝜏 is a termal
expression over |M|, so 𝜏 is a termal expression over |𝜕M| as well. Moreover,∫︀
M

is identity over the algebraic carriers, so 𝜏 [
∫︀
M

] = 𝜏 . From (11N) it
follows that

∫︀
M

(𝜏𝜕M) = 𝜏 [
∫︀
M

]M = 𝜏M.
(2) Follows from (1) because

∫︀
M

is identity over the algebraic carriers.
(3) 𝜕M′ = 𝜕M′′, so from (2) it follows that 𝜏M′

= 𝜏𝜕M
′
= 𝜏𝜕M

′′
= 𝜏M

′′ .
(4) Formulae do not contain names of logical sort, so from (1) it follows

that 𝜙M =
∫︀
M

(𝜙𝜕M) = (𝜙𝜕M)M.
34The structure M in (10K) is our algebra A.
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(5) By definition (C2), the logical carrier of A contains all relational
formulae over |A|, so 𝜙 ∈ ALog, hence definition (L) implies 𝜙A =

∫︀
A

(𝜙),
so 𝜙A = 𝜙 because of (M4).

(6) A = 𝜕A for any algebra A, so from (4) it follows that 𝜙A =
(𝜙𝜕A)A = (𝜙A)A.

Alternatively, we can deduce (6) as a corollary from (5). Indeed, 𝜙A

belongs to the logical carrier of A, so it is a relational formula. �

Q)Observation. (1) When defining an algebra, it is enough to specify
only the algebraic carriers and the interpretation of the functional symbols.

(2) When defining a homomorphism from algebra to some structure it
is enough to consider only the algebraic sorts. More formally, suppose A
is an algebra, M is a structure, we have defined a Sort ∖ {Log}-indexed
function 𝑔 from the algebraic carriers A𝜅 to the corresponding carriers M𝜅

and we have proved that 𝑔𝜅(fA⟨𝛼1, . . . , 𝛼𝑛⟩) = fM⟨𝑔𝜅𝛼1, . . . , 𝑔𝜅𝛼𝑛⟩ for any
functional symbol f. Then there exists unique homomorphism ℎ : A → M,
such that for all algebraic sorts 𝜅 we have ℎ𝜅 = 𝑔𝜅.

Proof. (1) Let A be the unique terminal algebraic structure with speci-
fied algebraic carriers and interpretation of the functional symbols (it exists,
see B). Then 𝜕A is an algebra with specified algebraic carriers and inter-
pretation of the functional symbols; moreover it is unique because of (I1).

(2) Let A′ and M′ be terminal algebraic structures that are variants
of A and M, respectively (they exist, see B). Let ℎ′ : A′ → M′ be a
homomorphism, such that for all algebraic sorts 𝜅 we have ℎ′𝜅 = 𝑔𝜅 (there
is such homomorphism and only one at that, see B). Now, we can define
ℎ = 𝜕(ℎ′). The uniqueness of ℎ is guaranteed by (I2). �

R)Definition. (1) For any Sort-indexed set 𝑋, let 𝑋∘ be the Sort-
indexed set, such that (𝑋∘)Log = ∅ and (𝑋∘)𝜅 = 𝑋𝜅 for all algebraic sorts 𝜅.

(2) For any Sort-indexed function 𝑓 : 𝑋 → 𝑌 , let 𝑓 ∘ : 𝑋∘ → 𝑌 ∘ be
the Sort-indexed function, such that (𝑓 ∘)Log is the function whose both the
domain and the codomain are empty sets and (𝑓 ∘)𝜅 = 𝑓𝜅 for all algebraic
sorts 𝜅.

The following proposition is obvious. It says that ∘ is an idempotent
endofunctor of SetSort.

S)Proposition. (1) (id𝑋)∘ = id𝑋∘.
(2) (𝑓 ∘ 𝑔)∘ = (𝑓 ∘) ∘ (𝑔∘).
(3) (𝑋∘)∘ = 𝑋∘, (𝑓 ∘)∘ = 𝑓 ∘.

T)Proposition. (1) If 𝑋∘ = 𝑌 ∘, then 𝜕[𝑋] = 𝜕[𝑌 ] for any Sort-

59



Algebras and Terms

indexed sets 𝑋 and 𝑌 .
(2) If 𝑓 ∘ = 𝑔∘, then 𝜕[𝑓 ] = 𝜕[ℎ] for any Sort-indexed functions 𝑓 and 𝑔.

Proof. (1) If 𝑋∘ = 𝑌 ∘, then term over 𝑋 and term over 𝑌 are one and
the same thing, so [𝑋] and [𝑌 ] are variants, i.e. the corresponding algebraic
carriers are identical.

(2) If 𝑓 ∘ = 𝑔∘, then from (1) it follows that the domains of [𝑓 ] and [𝑔]
are variants and the codomains also are variants. Moreover, 𝑓 and 𝑔 map
the algebraic names the same way, so [𝑓 ] and [𝑔] map the terms from the
domain of [𝑓 ] and [𝑔] identically. Consequently [𝑓 ] and [𝑔] are variants. �

U)Proposition. (1)Given Sort-indexed functions 𝑓, 𝑔 : 𝑋∘ → 𝑌 , if
the algebraic components of 𝑓 and 𝑔 are equal, then 𝑓 = 𝑔.

(2)Given Sort-indexed functions 𝑓, 𝑔 : 𝑋∘ → 𝑌 , if 𝑓 ∘ = 𝑔∘, then 𝑓 = 𝑔.

Proof. Obviously 𝑓 ∘ = 𝑔∘ if and only if the algebraic component of 𝑓
and 𝑔 are equal. On the other hand the logical components of 𝑓 and 𝑔 are
necessarily equal because their domain is the empty set. �

§13. SATISFIABILITY IN AN ALGEBRA

A)Definition. (1)Given a logical structure M, a formula 𝜙 over |M|
is true in M if 𝜙M = 1.

(2) A formula 𝜙 over 𝑋 is universally valid in a logical structure M, if
for any assignment function 𝑣 : 𝑋 → |M|, 𝜙[𝑣] is true in M.

(3)A formula is tautology if it is universally valid in all logical structures.

B)Definition. Let A be an algebra. Two termal expressions 𝜏1
and 𝜏2 over |A| with no names of logical sort are equivalent in A, if for any
logical variant M of A, 𝜏M1 = 𝜏M2 .

C)Example. Suppose we have an unary functional symbol f of type
⟨⟨𝜅⟩, 𝜅⟩, a constant symbol c of type ⟨⟨⟩, 𝜅⟩ and a predicate symbol p of
type ⟨⟨𝜅⟩, Log⟩. Take an arbitrary algebra A. Then the formulae p(f(c))
and p(pfA⟨cA⟩q) are equivalent in A.

Notice that (p(f(c)))A = p(pfA⟨cA⟩q).

D)Proposition. Given logical structures M and K and a homo-
morphism ℎ : M → K, if a formula is universally valid in K, then it is
universally valid in M.

Proof. Let 𝜙 be a formula over 𝑋, such that 𝜙 is universally valid in K.
Let 𝑣 : 𝑋 → |M| be an arbitrary assignment function. Then (11Q2) implies
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𝜙[𝑣]M = 𝜙[ℎ∘𝑣]K. On the other hand, 𝜙[ℎ∘𝑣]K = 1 because 𝜙 is universally
valid in K. Consequently, 𝜙[𝑣]M = 1. �

E)Proposition. For any algebra A and formula 𝜙 over |A|, 𝜙 and
𝜙A are equivalent in A.

Proof. Take an arbitrary logical variant K of A. From (12P4) and
𝜕K = A it follows that 𝜙K = (𝜙A)K. �

F)Definition. (1)Given an algebra A, a formula over |A| is satisfiable
in A if it is true in some logical variant of A.

(2)A a formula is universally satisfiable if it is universally valid in some
logical structure.

(3)A formula is universally satisfiable in an algebra A if it is universally
valid in some logical variant of A.

(4)Given an algebra A, a set of formulae over |A| is satisfiable in A, if
there exists a logical variant M of A, such that all formulae from the set
are true in M.

(5)A set of formulae is universally satisfiable if there exists a logical
structure M, such that all formulae from the set are universally valid in M.

(6) A set of formulae is universally satisfiable in an algebra A, if there
exists a logical variant M of A, such that all formulae from the set are
universally valid in M.

Any universally satisfiable set of formulae is universally valid in some
Herbrand structure. The following proposition states a mild generalisation
of this fact.

G)Proposition. Suppose [𝑋] is normal. A set of formulae35 is uni-
versally satisfiable if and only if it is universally satisfiable in 𝜕[𝑋].

Proof. (⇐) By definition.
(⇒) Suppose the given set of formulae is universally valid in some logical

structure K. Take an arbitrary assignment function 𝑣 : 𝑋 → |K|. Then
[𝑣]K is a homomorphism from [𝑋] to K, so 𝜕([𝑣]K) is a homomorphism from
𝜕[𝑋] to 𝜕K, hence

∫︀
K

∘ 𝜕([𝑣]K) is a homomorphism from 𝜕[𝑋] to K. Now
from (12O3) we obtain a logical variant N of 𝜕[𝑋] and a homomorphism
𝑔 : N → K, so (D) implies the given set of formulae is universally valid

35Not necessarily formulae over 𝑋.
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in N.

𝜕[𝑋]∫︀
N

��

𝜕([𝑣]K)
// 𝜕K∫︀

K

��

N
𝑔

//K

�

H)Proposition. Let Λ be a family of satisfiable in the algebra A
sets which contain only literals and for any Γ′,Γ′′ ∈ Λ, either Γ′ ⊆ Γ′′, or
Γ′′ ⊆ Γ′. Then the union of the elements of Λ also is satisfiable in A.

Proof. Let Γ be the union of the elements of Λ. Let M be a logi-
cal variant of A interpreting the predicate symbols in the following way:
pM⟨𝛼1, . . . , 𝛼𝑛⟩ = 1 if and only if there exist terms 𝜏1, . . . , 𝜏𝑛, such that
𝜏A1 = 𝛼1, 𝜏

A
2 = 𝛼2, . . . , 𝜏

A
𝑛 = 𝛼𝑛 and p(𝜏1, . . . , 𝜏𝑛) ∈ Γ. By definition, all

atomic formulae in Γ are true in M. Let ¬p(𝜏1, . . . , 𝜏𝑛) be an arbitrary
negated literal belonging to Γ. Then it belongs to some Γ′ ∈ Λ. Sup-
pose it is false in M. Then p(𝜏1, . . . , 𝜏𝑛) is true in M, hence Γ contains
an atomic formula p(𝜏 ′1, . . . , 𝜏

′
𝑛), such that 𝜏A1 = 𝜏 ′1

A, . . . , 𝜏A𝑛 = 𝜏 ′𝑛
A. Then

p(𝜏 ′1, . . . , 𝜏
′
𝑛) ∈ Γ′′ for some Γ′′ ∈ Λ. Regardless of whether Γ′ ⊆ Γ′′, or

Γ′′ ⊆ Γ′, one of these sets contains both p(𝜏 ′1, . . . , 𝜏
′
𝑛) and ¬p(𝜏1, . . . , 𝜏𝑛)

which is impossible because it is a satisfiable set. �

I)Definition. (1)Given an algebra A, two sets Γ and ∆ of formulae
over |A| are equivalent in A, if for any logical variant M of A, such that all
formulae from one of these sets are true in M, all formulae from the other
set also are true in M.

(2)Two formulae 𝜙1 and 𝜙2 are equivalent in an algebra A, if {𝜙1}
and {𝜙2} are equivalent in A.

(3)A set Γ of formulae is equivalent in an algebra A with a formula 𝜙,
if Γ is equivalent with {𝜙} in A.

(4)Two sets Γ and ∆ of formulae are universally equivalent , if for any
logical structure M, such that all formulae from one of these sets are uni-
versally valid in M, all formulae from the other set also are universally valid
in M.

(5) Let A be an algebra. Two sets Γ and ∆ of formulae are universally
equivalent in A, if for any logical variant M of A, such that all formulae
from one of these sets are universally valid in M, all formulae from the
other set also are universally valid in M.

(6)Two formulae 𝜙1 and 𝜙2 are universally equivalent , if {𝜙1} and {𝜙2}
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are universally equivalent. They are universally equivalent in an algebra A,
if {𝜙1} and {𝜙2} are universally equivalent in A.

(7)A set Γ of formulae is universally equivalent with a formula 𝜙, if Γ is
universally equivalent with {𝜙}. The set Γ is universally equivalent with 𝜙
in an algebra A, if Γ is universally equivalent with {𝜙} in the algebra A.

The following proposition is obvious.

J)Proposition. (1)The equivalency, the universal equivalency and the
universal equivalency in an algebra are equivalence relations, i.e. they are
reflexive, symmetric and transitive relations.

(2) If Θ1 and Θ2 are equivalent in A (formulae or sets of formulae),
then they are universally equivalent in A.

(3) If A is an algebra and Θ1 and Θ2 are equivalent in A (formulae or
sets of formulae), then Θ1 is satisfiable in A if and only if Θ2 is satisfiable.

(4) If Θ1 and Θ2 are universally equivalent (formulae or sets of for-
mulae), then Θ1 is universally satisfiable if and only if Θ2 is universally
satisfiable.

(5) If A is an algebra and Θ1 and Θ2 are universally equivalent in A
(formulae or sets of formulae), then Θ1 is universally satisfiable in A if
and only if Θ2 is universally satisfiable in A.

K)Definition. (1)The formula 𝜙 follows in the algebra A from the
set of formulae Γ, if for any logical variant M of A, such that all formulae
from Γ are true in M, the formula 𝜙 also is true in M.

(2)The formula 𝜙 universally follows in the algebra A from the set of
formulae Γ, if for any logical variant M of A, such that all formulae from Γ
are universally valid in M, the formula 𝜙 also is universally valid in M.

(3)The formula 𝜙 universally follows from the set of formulae Γ, if for
any logical structure M, such that all formulae from Γ are universally valid
in M, the formula 𝜙 also is universally valid in M.

Obviously if 𝜙 universally follows from Γ, then 𝜙 universally follows
from Γ in any algebra A.
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§14. TERMINATORS

Recall that the most noticeable difference between terms and termoids
is that while each term over |M| has exactly one value, a termoid over |M|
may have many values. For any structure M we have a homomorphism
valM : [|M|] → M, such that valM 𝜏 = 𝜏M for any termal expression 𝜏 . No
such homomorphism exists for termoids. Instead we have a Sort-indexed
function ValM : J|M|K → PM, such that ValM 𝜏 = 𝜏PM for any termoid 𝜏 .
This Sort-indexed function is not even a homomorphism. It is going to be
what we call a quasimorphism.

A)Definition. (1)Given Sort-indexed functions 𝑓, 𝑔 : 𝑋 → P𝑌 , we
write 𝑓 ≤ 𝑔, if 𝑓𝜉 ⊆ 𝑔𝜉 for any 𝜉 ∈ 𝑋.

(2)Given Sort-indexed functions 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → P𝑌 , we
write 𝑓 ≪ 𝑔, if 𝑓𝜉 ∈ 𝑔𝜉 for any 𝜉 ∈ 𝑋.

B)Proposition. (1) Given Sort-indexed functions 𝑓, 𝑔 : 𝑋 → P𝑌 and
ℎ : 𝑍 → 𝑋, if 𝑓 ≤ 𝑔, then 𝑓 ∘ ℎ ≤ 𝑔 ∘ ℎ.

(2)Given Sort-indexed functions 𝑓, 𝑔 : 𝑋 → P𝑌 and ℎ : 𝑌 → 𝑍, if
𝑓 ≤ 𝑔, then ℎP ∘ 𝑓 ≤ ℎP ∘ 𝑔.

Proof. (1)(𝑓 ∘ ℎ)𝜁 = 𝑓(ℎ𝜁) ⊆ 𝑔(ℎ𝜁) = (𝑔 ∘ ℎ)𝜁 for any 𝜁 ∈ 𝑍.
(2)If 𝜁 ∈ (ℎP ∘ 𝑓)𝜉 for some 𝜉 ∈ 𝑋, then 𝜁 = ℎ𝜐 for some 𝜐 ∈ 𝑓𝜉. But

𝑓𝜉 ⊆ 𝑔𝜉, so 𝜐 ∈ 𝑔𝜉, hence 𝜁 = ℎ𝜐 ∈ ℎP (𝑔𝜉) = (ℎP ∘ 𝑔)𝜉. �

C)Definition. A Sort-indexed function ℎ : |M| → |PK| is
quasimorphism from M to PK, if for each functional symbol f of type
⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and for any 𝛼1 ∈ M𝜅1 , . . . , 𝛼𝑛 ∈ M𝜅𝑛 we have

fPK⟨ℎ𝜅1𝛼1, . . . , ℎ𝜅𝑛𝛼𝑛⟩ ⊆ ℎ𝜆(f
M⟨𝛼1, . . . , 𝛼𝑛⟩)
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In addition, for each predicate or logical symbol d we have

dPK⟨ℎ𝜅1𝛼1, . . . , ℎ𝜅𝑛𝛼𝑛⟩ = ℎ𝜆(d
M⟨𝛼1, . . . , 𝛼𝑛⟩) (♯)

D)Corollary. A composition of quasimorphism with homomorphism
is a quasimorphism. A composition of homomorphism with quasimorphism
is a quasimorphism.

Proof. Immediately follows from the definitions. �

E)Lemma. Given an algebra A and a structure K, if the algebraic
components of the quasimorphism ℎ : A → PK map to non-empty sets,
then all components of ℎ map to non-empty sets.

Proof. Let 𝜙 ∈ ALog. We are going to to prove that ℎ𝜙 ̸= ∅ by in-
duction on 𝜙. If 𝜙 = p(p𝛼1q, . . . , p𝛼𝑛q) for some predicate symbol p, then
ℎ𝜙 = ℎ(p(p𝛼1q, . . . , p𝛼𝑛q)) = ℎ(pA⟨𝛼1, . . . , 𝛼𝑛⟩) = pPK⟨ℎ𝛼1, . . . , ℎ𝛼𝑛⟩ =
{pK⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ ℎ𝛼1, . . . , 𝛽𝑛 ∈ ℎ𝛼𝑛}. The last set is non-empty since
the algebraic components of ℎ map to non-empty sets, so ℎ𝛼1, . . . , ℎ𝛼𝑛 are
non-empty.

If 𝜙 = d(𝜙1, . . . , 𝜙𝑛) for some logical symbol d, then ℎ𝜙 =
ℎ(d(𝜙1, . . . , 𝜙𝑛)) = ℎ(dA⟨𝜙1, . . . , 𝜙𝑛⟩) = dPK⟨ℎ𝜙1, . . . , ℎ𝜙𝑛⟩ =
{dK⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ ℎ𝜙1, . . . , 𝛽𝑛 ∈ ℎ𝜙𝑛}. The last set is non-empty
since by the induction hypothesis, ℎ𝜙1, . . . , ℎ𝜙𝑛 are non-empty sets. �

F)Lemma. Given an algebra A and a structure K, if the algebraic
components of the quasimorphism ℎ : A → PK map to one-element sets,
then all components of ℎ map to one-element sets.

Proof. Let 𝜙 ∈ ALog. We are glint to to prove that ℎ𝜙 is one-
element set by induction on 𝜙. If 𝜙 = p(p𝛼1q, . . . , p𝛼𝑛q) for some pred-
icate symbol p, then ℎ𝜙 = ℎ(p(p𝛼1q, . . . , p𝛼𝑛q)) = ℎ(pA⟨𝛼1, . . . , 𝛼𝑛⟩) =
pPK⟨ℎ𝛼1, . . . , ℎ𝛼𝑛⟩ = {pK⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ ℎ𝛼1, . . . , 𝛽𝑛 ∈ ℎ𝛼𝑛}. The last
set contains one element since the algebraic components of ℎ map to one-
element sets, so the sets ℎ𝛼1, . . . , ℎ𝛼𝑛 contain exactly one element each.

If 𝜙 = d(𝜙1, . . . , 𝜙𝑛) for some logical symbol d, then ℎ𝜙 =
ℎ(d(𝜙1, . . . , 𝜙𝑛)) = ℎ(dA⟨𝜙1, . . . , 𝜙𝑛⟩) = dPK⟨ℎ𝜙1, . . . , ℎ𝜙𝑛⟩ =
{dK⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ ℎ𝜙1, . . . , 𝛽𝑛 ∈ ℎ𝜙𝑛}. The last set contains one-
element since by the induction hypothesis, the sets ℎ𝜙1, . . . , ℎ𝜙𝑛 contain
one-element each. �

G)Lemma. Given an algebra A and a structure K, let the quasimor-
phisms ℎ, 𝑔 : A → PK be such that for any 𝛼 belonging to an algebraic
carrier of A, ℎ𝛼 ⊆ 𝑔𝛼. Then ℎ ≤ 𝑔.
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Proof. Let 𝜙 ∈ ALog. We are going to to prove that ℎ𝜙 ⊆ 𝑔𝜙 by in-
duction on 𝜙. If 𝜙 = p(p𝛼1q, . . . , p𝛼𝑛q) for some predicate symbol p, then
ℎ𝜙 = ℎ(p(p𝛼1q, . . . , p𝛼𝑛q)) = ℎ(pA⟨𝛼1, . . . , 𝛼𝑛⟩) = pPK⟨ℎ𝛼1, . . . , ℎ𝛼𝑛⟩ =
{pK⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ ℎ𝛼1, . . . , 𝛽𝑛 ∈ ℎ𝛼𝑛}. Since 𝛼1, . . . , 𝛼𝑛 belong to alge-
braic carriers of A, ℎ𝛼𝑖 ⊆ 𝑔𝛼𝑖 for any 𝑖 ∈ {1, . . . , 𝑛}, so the above set is a
subset of {pK⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ 𝑔𝛼1, . . . , 𝛽𝑛 ∈ 𝑔𝛼𝑛} = pPK⟨𝑔𝛼1, . . . , 𝑔𝛼𝑛⟩ =
𝑔(pA⟨𝛼1, . . . , 𝛼𝑛⟩) = 𝑔(p(p𝛼1q, . . . , p𝛼𝑛q)) = 𝑔𝜙.

If 𝜙 = d(𝜙1, . . . , 𝜙𝑛) for some logical symbol d, then ℎ𝜙 =
ℎ(d(𝜙1, . . . , 𝜙𝑛)) = ℎ(dA⟨𝜙1, . . . , 𝜙𝑛⟩) = dPK⟨ℎ𝜙1, . . . , ℎ𝜙𝑛⟩ =
{dK⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ ℎ𝜙1, . . . , 𝛽𝑛 ∈ ℎ𝜙𝑛}. By induction hypothe-
sis, ℎ𝜙𝑖 ⊆ 𝑔𝜙𝑖 for any 𝑖 ∈ {1, . . . , 𝑛}, so the above set is a subset
of {pK⟨𝛽1, . . . , 𝛽𝑛⟩ : 𝛽1 ∈ 𝑔𝜙1, . . . , 𝛽𝑛 ∈ 𝑔𝜙𝑛} = pPK⟨𝑔𝜙1, . . . , 𝑔𝜙𝑛⟩ =
𝑔(pA⟨𝜙1, . . . , 𝜙𝑛⟩) = 𝑔(p(𝜙1, . . . , 𝜙𝑛)) = 𝑔𝜙. �

H)Corollary. Given an algebra A and a structure K, let the quasi-
morphisms ℎ, 𝑔 : A → PK be such that for any 𝛼 belonging to an algebraic
carrier of A, ℎ𝛼 = 𝑔𝛼. Then ℎ = 𝑔.

Proof. From (G) we obtain both ℎ ≤ 𝑔 and 𝑔 ≤ ℎ. �

I)Definition. We specify the axioms of termoids in an structure
called “terminator”. The intuitive meaning of these axioms will be explained
in (K).

Terminator is a quadruple ⟨J.K,ValM,Vals𝑋 ,Nam𝑋⟩, such that:
1. J𝑋K is an algebra for any Sort-indexed set 𝑋.
2. J𝑓K is a homomorphism from J𝑋K to J𝑌 K for any Sort-indexed func-

tion 𝑓 : 𝑋 → 𝑌 . We are going to use postfix notation for this homo-
morphism, thus 𝜏J𝑓K means to apply J𝑓K to 𝜏 .

3. Given Sort-indexed sets 𝑋 and 𝑌 , |J𝑋K| ∩ |J𝑌 K| = |J𝑋 ∩ 𝑌 K|.36

4. Given Sort-indexed functions 𝑓 ′ : 𝑋 ′ → 𝑌 ′ and 𝑓 ′′ : 𝑋 ′′ → 𝑌 ′′, if𝑋 ′ is
a subset of 𝑋 ′′, 𝑌 ′′ is a subset of 𝑌 ′ and 𝑓 ′𝜉 = 𝑓 ′′𝜉 for any 𝜉 ∈ 𝑋 ′,
then 𝜏J𝑓 ′K = 𝜏J𝑓 ′′K for any 𝜏 ∈ |J𝑋 ′K|. In particular, this implies that
J𝑓 �𝑋K = J𝑓K�J𝑋K provided 𝑋 is a subset of the domain of 𝑓 .

5. J𝑋K = J𝑋∘K and J𝑓K = J𝑓 ∘K for any Sort-indexed set 𝑋 and func-
tion 𝑓 .

6. Jid𝑋K = idJ𝑋K.
7. J𝑓 ∘ 𝑔K = J𝑓K ∘ J𝑔K, if the domain of 𝑓 and the codomain of 𝑔 are

identical.
36Recall that 𝑍 ′ ∩ 𝑍 ′′ = {𝑍 ′

𝜅 ∩ 𝑍 ′′
𝜅}𝜅∈Sort for any Sort-indexed sets 𝑍 ′ = {𝑍 ′

𝜅}𝜅∈Sort
and 𝑍 ′′ = {𝑍 ′′

𝜅}𝜅∈Sort.
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8. Nam𝑋 is a Sort-indexed function from 𝑋∘ to |J𝑋K| for any Sort-
indexed set 𝑋.

9. J𝑓K ∘ Nam𝑋 = Nam𝑌 ∘𝑓 ∘ for any Sort-indexed function 𝑓 : 𝑋 → 𝑌 .

𝑋∘

𝑓∘

��

Nam𝑋 // |J𝑋K|

J𝑓K

��

𝑌 ∘ Nam𝑌 // |J𝑌 K|

10. ValM is a quasimorphism from J|M|K to PM for any structure M.
11. ValM 𝜏 = Val𝜕M 𝜏 for any 𝜏 belonging to an algebraic carrier of J|M|K.

Notice that (I5) implies that J|M|K = J|𝜕M|K.
12. For any structure M the quasimorphism ValM maps only to non-

empty sets. For any Sort-indexed set 𝑋 the quasimorphism Val[𝑋]

maps only to one-element sets.
13. ℎP ∘ ValM ≤ ValK ∘JℎK for any homomorphism ℎ : M → K.

J|M|K

≥JℎK

��

ValM // PM

ℎP

��

J|K|K ValK // PK

14. Vals𝑋 is a homomorphism from J|J𝑋K|K to J𝑋K for any Sort-indexed
set 𝑋.

15. Given a Sort-indexed set 𝑋, a structure K, a Sort-indexed func-
tion 𝑘 : 𝑋 → |J|K|K| and a Sort-indexed function 𝑓 : 𝑋 → |K|, if
𝑓 ≪ ValK ∘ 𝑘,

𝑋

𝑓

��

𝑘 // |J|K|K|

ValK

��

|K| ∈ |PK|

68



§14. Terminators

then ValK ∘J𝑓K ≤ ValK ∘ Vals|K| ∘J𝑘K.

J𝑋K

≤
J𝑓K

##F
FFFFFFFFFFFFFFF

J𝑘K
// J|J|K|K|K

Vals|K|
// J|K|K

ValK

��

J|K|K ValK // PK

16. J𝑓K ∘ Vals𝑋 = Vals𝑌 ∘JJ𝑓KK for any Sort-indexed function 𝑓 : 𝑋 → 𝑌 .

J|J𝑋K|K

JJ𝑓KK

��

Vals𝑋 // J𝑋K

J𝑓K

��

J|J𝑌 K|K Vals𝑌 // J𝑌 K

17. idJ𝑋K = Vals𝑋 ∘ JNam𝑋K for any Sort-indexed set 𝑋.

J𝑋K = J𝑋∘K
JNam𝑋K

//J|J𝑋K|K Vals𝑋 //J𝑋K

18. (ValM ∘ Nam|M|)𝜇 = {𝜇} for any structure M, algebraic sort 𝜅 and
𝜇 ∈ |M|𝜅.

|M|∘
Nam|M|

//|J|M|K| ValM //|PM|

J)Definition. Termoidal expression of sort 𝜅 over the Sort-indexed
set 𝑋 is an element of |J𝑋K|𝜅. If 𝜅 is an algebraic sort, then this termoidal
expression is called termoid . If 𝜅 = Log, it is formuloid . Notice that (I1)
and (12C2) imply that 𝜙 is a formuloid over 𝑋 if an only if 𝜙 is a relational
formula over |J𝑋K|. Atomic formuloid over 𝑋 is a relational atomic formula
over |J𝑋K|.

K) In the informal sections I defined the “formuloid” as a formula in
which termoids are used instead of terms. Such a definition supposes that
termoids are strings of symbols satisfying some peculiar properties in order
be able to implement correct syntactic analysis of formuloids. This is incon-
venient. Therefore, it is preferable to define the formuloids to be formulae
in which the arguments of the predicate symbols are names of termoids. In
this way termoids do not have to be strings of symbols and we do not have
to distract our reasoning with unnecessary syntactic considerations. As a
side effect, the axioms describing termoids are going to become simpler.
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The termal structure [𝑋] is not an algebra. The elements of the logical
carrier of [𝑋] are termal expressions, so if, for example, p is a predicate
symbol of suitable type and 𝜏 is a term, then p(𝜏) is an atomic formula.
On the other hand, in (I1) we define J𝑋K to be an algebra. Therefore, the
elements of the logical carrier of J𝑋K are relational formulae over |J𝑋K|, so
if p is a predicate symbol of suitable type and 𝜏 is a termoid, then p(p𝜏q) is
an atomic formuloid.

According to (I2), (I6) and (I7), J . K is a functor from the category of
Sort-indexed sets SetSort to the category of the structures Str. This is
analogous to [𝑋] also being a functor.

If 𝜏 is a termoid over 𝑋 and 𝑋 ⊆ 𝑌 , then from (I3) we can conclude
that 𝜏 is a termoid over 𝑌 as well.

Let 𝑓 : 𝑋 ′ → 𝑌 ′ and 𝑓 ′′ : 𝑋 ′′ → 𝑌 ′ be two Sort-indexed functions,
𝑍 ⊆ 𝑋 ′ ∩𝑋 ′′, 𝑓 ′ �𝑍 = 𝑓 ′′ �𝑍 and 𝜏 be a termoid over 𝑍. Then (I4) implies
that 𝜏J𝑓 ′K = 𝜏J𝑓 ′′K.

While some elements of the logical carrier of [𝑋] are not formulae, all
elements of the logical carrier of J𝑋K are formulae, so no names of logical
sort are permitted. Therefore J𝑋 ′K = J𝑋 ′′K if the algebraic components of
𝑋 ′ and 𝑋 ′′ are equal. This follows from (I5). Similar property is valid for
the renaming morphism J𝑓K.

Just as nam𝑋 is a natural transformation from the identity functor
of SetSort to the functor composition |[ . ]|, so Nam𝑋 is a natural trans-
formation from the functor ( . )∘ to the functor composition |J . K|. This
follows from (I8) and (I9).

We do not have analogue of the evaluating morphism valM. We have
only two fragments of this morphism: ValM and Vals𝑋 .

The intuitive meaning of ValM 𝜏 is 𝜏PM. This Sort-indexed function is
not a homomorphism, but only a quasimorphism (I10). According to (I13),
this quasimorphism tries to be something like a natural transformation from
the functor J . K to the functor P , but instead it is only a “quasitransforma-
tion”.37

According to (12P2), 𝜏M = 𝜏𝜕M for any structure M and term 𝜏
over |M|. In other words, the value of 𝜏 does not depend on the inter-
pretation of the predicate symbols in M. According to (I11), the same is
true for the termoids.

In the termal case, we defined the application of a substitution as a
special case of a value in a structure: 𝜏 [𝑠][𝑋] is the result of the application of
the substitution 𝑠 : 𝑋 → [𝑋] to 𝜏 . We can not do the same for the termoids
because we can not use the quasimorphism Val in order to evaluate 𝜏 J𝑋K.

37Compare with (11N).
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Therefore, we are going to postulate the existence of an additional Sort-
indexed function Vals𝑋 . (I14) says it is a homomorphism and (I16) says
it is a natural transformation from the functor composition J|J . K|K to the
functor J . K.

Since we have two independent Sort-indexed functions ValM and Vals𝑋 ,
we need an axiom connecting them. Such an axiom is (I15) and it serves
one purpose only: in order to prove a termoidal analogue of the Lemma of
the substitutions (11T).

In the termal case the functors [ . ] and | . | form an adjunction. In
the termoidal case this is not true. What remains true is stated by (I17)
and (I18). In non-functional form, these axioms say that 𝜏JNam𝑋KJ𝑋K = 𝜏

for any termoid 𝜏 and (p𝜇q)PM = {𝜇} for any 𝜇 ∈ |M|.

L)Definition. The structure M is called structure of terms if 𝜕M =
𝜕[𝑋] for some Sort-indexed set 𝑋.

Notice that both [𝑍] and 𝜕[𝑍] are structures of terms for any Sort-
indexed set 𝑍.

M)Lemma. If M is a structure of terms, then ValM maps only to
one-element sets.

Proof. Suppose that 𝜕M = 𝜕[𝑍] for some Sort-indexed set 𝑍.
From (I11) it follows that the algebraic components of ValM and Val𝜕M are
identical and the algebraic components of Val[𝑍] and Val𝜕[𝑍] also are iden-
tical. But 𝜕M = 𝜕[𝑍], hence the algebraic components of ValM and Val[𝑍]
are identical. From this and the second part of (I12) it follows that the
algebraic components of ValM map only to one-element sets. It remains to
see that the logical component also maps to one-element sets. This follows
from (F). �

N) According to (M), for any structure of terms M, the quasimorphism
ValM maps only to one-element sets. Define the Sort-indexed function
ValtM : |J|M|K| → |M|, such that for any 𝜏 we have {ValtM 𝜏} = ValM 𝜏 .

O)Proposition. (1) ValtM : J|M|K → M is a homomorphism for any
structure of terms M.

(2) ℎ ∘ ValtM = ValtK ∘ JℎK for any structures of terms M and K and
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homomorphism ℎ : M → K.38

J|M|K

JℎK

��

ValtM //M

ℎ

��

J|K|K ValtK //K

(3) ValtM ∘ JValtMK = ValtM ∘ Vals|M|, for any structure of terms M.

J|J|M|K|K
Vals|M|

//

JValtMK

��

J|M|K

ValtM

��

J|M|K
ValtM

//M

(4) For any structure of terms M, the algebraic components of
(ValtM ∘ Nam|M|) are identities.

|M|∘
Nam|M|

// |J|M|K| ValtM // |M|

Proof. (1) Let d be an arbitrary operation symbol. Then

{ValtM(dJ|M|K⟨𝜏1, . . . , 𝜏𝑛⟩)} = ValM(dJ|M|K⟨𝜏1, . . . , 𝜏𝑛⟩) from (N)

⊇ dPM⟨ValM 𝜏1, . . . ,ValM 𝜏𝑛⟩ from (C)

= dPM⟨{ValtM 𝜏1}, . . . , {ValtM 𝜏𝑛}⟩ from (N)
= {dM⟨ValtM 𝜏1, . . . ,ValtM 𝜏𝑛⟩}

Consequently, ValtM(dJ|M|K⟨𝜏1, . . . , 𝜏𝑛⟩) = dM⟨ValtM 𝜏1, . . . ,ValtM 𝜏𝑛⟩.
(2) Let 𝜏 be an arbitrary element of a carrier of J|M|K. Then from (N)

and (I13) it follows that {ℎ(ValtM 𝜏)} = ℎP{ValtM 𝜏} = ℎP (ValM 𝜏) = (ℎP ∘

ValM)𝜏 ⊆ (ValK ∘ JℎK)𝜏 = ValK(𝜏JℎK) = {ValtK(𝜏JℎK)}. Consequently,
ℎ(ValtM 𝜏) = ValtK(𝜏JℎK).

38This equality implies that ValtM is a natural transformation from the functor com-
position J| . |K to the identity functor.
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(3)

J|J|M|K|K

JValtMK

&&LLLLLLLLLLLLLLLLLLL

JidJ|M|KK
// J|J|M|K|K

Vals|M|
// J|M|K

ValM

��

J|M|K
ValM

// PM

From definition (N) it follows that ValtM ≪ ValM, hence ValtM ≪
ValM ∘ idJ|M|K. From this and (I15),39 we obtain that ValM ∘ JValtMK ≤
ValM ∘ Vals|M| ∘ JidJ|M|KK. But JidJ|M|KK = idJ|J|M|K|K, hence ValM ∘ JValtMK ≤
ValM ∘ Vals|M|. Considering that ValM 𝜏 = {ValtM 𝜏} for any 𝜏 , this gives
us ValtM ∘ JValtMK = ValtM ∘ Vals|M|.

(4) Let 𝜇 be an arbitrary element of an algebraic carrier
of M. Then from (I18) it follows that {(ValtM ∘ Nam|M|)𝜇} =
{ValtM(Nam|M| 𝜇)} = ValM(Nam|M| 𝜇) = (ValM ∘ Nam|M|)𝜇 = {𝜇}. Con-
sequently, (ValtM ∘ Nam|M|)𝜇 = 𝜇. �

P)Notation. By analogy with termal expressions, it will be convenient
to write p𝜉q for Nam𝑋 𝜉, 𝜏PM for ValM 𝜏 , 𝜏 J𝑋K for Vals𝑋 𝜏 and 𝜏M for
ValtM 𝜏 . Also by analogy, for the composition of the homomorphism JℎK
with these homomorphisms we are going to use JℎKPM, JℎKJ𝑋K and JℎKM in
postfix notation.

Q)Remark. According to (O), termoids behave much more nicely when
we evaluate them in a structure of terms. If M is a structure of terms and
𝜏 is a termoid over |M|, the value 𝜏M is well defined and has nice properties.
In particular, the Sort-indexed function ValtM is a natural transformation
from the functor J . K to the identity functor of the category of the structures
of terms.

R)Proposition. Let the Sort-indexed set 𝑋 be a subset of 𝑌 .40 Then:
(1) |J𝑋K| ⊆ |J𝑌 K|.
(2)Any termoidal expression of sort 𝜅 over 𝑋 is a termoidal expression

of sort 𝜅 over 𝑌 .
(3) If 𝜏 is a termoidal expression over |J𝑋K|, then 𝜏 is a termoidal

expression over |J𝑌 K| and 𝜏 J𝑋K = 𝜏 J𝑌 K.

Proof. (1) According to (I3), |J𝑋K| = |J𝑌 ∩𝑋K| = |J𝑌 K|∩|J𝑋K| ⊆ |J𝑌 K|.
39In (I15) we use 𝑘 = idJ|M|K and 𝑓 = ValtM
40I.e. 𝑋𝜅 ⊆ 𝑌𝜅 for any sort 𝜅. See (10C).
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(2) is a reformulation of (1).
(3) From (1) it follows that |J𝑋K| ⊆ |J𝑌 K|, hence (2) implies that 𝜏 is

a termoidal expression over |J𝑌 K|. Let 𝑖 be the identity inclusion map
𝑖 : 𝑋 → 𝑌 , i.e. 𝑖𝜂 = 𝜂 for any 𝜂 ∈ 𝑋. From (I4) it follows that 𝜎J𝑖K = 𝜎
for any 𝜎 ∈ |J𝑋K|, hence also by (I4), 𝜎JJ𝑖KK = 𝜎 for any 𝜎 ∈ |J|J𝑋K|K|. But
according to (I16), (𝜏 J𝑋K)J𝑖K = (𝜏JJ𝑖KK)J𝑌 K, hence 𝜏 J𝑋K = 𝜏 J𝑌 K. �

S)Definition. (1)A termoidal substitution is a Sort-indexed func-
tion 𝑠 : 𝑋 → |J𝑌 K|, where 𝑋 and 𝑌 are Sort-indexed sets.

(2)Given a substitution 𝑠 : 𝑋 → |J𝑌 K|, 𝜏J𝑠KJ𝑌 K will be called application
of the substitution 𝑠 to the termoidal expression 𝜏 .

T)Lemma (of the substitutions, for terminators). (1) Given a
termoidal substitution 𝑠 : 𝑋 → |J𝑌 K| and assignment functions 𝑣 : 𝑌 → |K|
and 𝑤 : 𝑋 → |K|, if 𝑤𝜉 ∈ (𝑠𝜉)J𝑣KPK for any 𝜉 ∈ 𝑋, then for any termoidal
expression 𝜏 over 𝑋, 𝜏J𝑤KPK ⊆ (𝜏J𝑠KJ𝑌 K)J𝑣KPK.

(2) Given a structure of terms K, a termoidal substitution 𝑠 : 𝑋 → |J𝑌 K|
and an assignment function 𝑣 : 𝑌 → |K|, define a new termal substitution
𝑤 : 𝑋 → |K|, such that 𝑤𝜉 = (𝑠𝜉)J𝑣KK, i.e. 𝑤 = J𝑣KK ∘ 𝑠. Then for any
termoidal expression 𝜏 over 𝑋, 𝜏J𝑤KK = (𝜏J𝑠KJ𝑌 K)J𝑣KK, i.e. 𝜏JJ𝑣KK ∘ 𝑠KK =
(𝜏J𝑠KJ𝑌 K)J𝑣KK.

Proof. (1) Let 𝑍 ′ = {𝑍 ′
𝜅}𝜅∈Sort be the Sort-indexed set, such that 𝑍 ′

𝜅 =
{⟨𝜉, 𝑠𝜉⟩ : 𝜉 ∈ 𝑋𝜅} for any sort 𝜅 and 𝑍 ′′ = {𝑍 ′′

𝜅}𝜅∈Sort be the Sort-indexed
set, such that 𝑍 ′′

𝜅 = {⟨𝜉, (𝑠𝜉)J𝑣K⟩ : 𝜉 ∈ 𝑋𝜅} for any sort 𝜅. Obviously
𝑍 ′ ⊆ 𝑋 × |J𝑌 K| and 𝑍 ′′ ⊆ 𝑋 × |J|K|K|.41

Let 𝑠′ : 𝑋 → 𝑍 ′ be the Sort-indexed function, such that 𝑠′𝜉 = ⟨𝜉, 𝑠𝜉⟩
for any 𝜉 ∈ 𝑋, let 𝑧 : 𝑍 ′ → 𝑍 ′′ be the Sort-indexed function, such that
𝑧⟨𝜉, 𝜏⟩ = ⟨𝜉, 𝜏J𝑣K⟩ for any ⟨𝜉, 𝜏⟩ ∈ 𝑍 ′ and let 𝑓 : 𝑍 ′′ → |K| be the Sort-
indexed function, such that 𝑓⟨𝜉, 𝜏⟩ = 𝑤𝜉 for any ⟨𝜉, 𝜏⟩ ∈ 𝑍 ′′.

Furthermore, let 𝑘′ : 𝑍 ′ → |J𝑌 K| be the right projection, i.e. 𝑘′⟨𝜉, 𝜏⟩ = 𝜏
for any ⟨𝜉, 𝜏⟩ ∈ 𝑍 ′ and let 𝑘′′ : 𝑍 ′′ → |J|K|K| be the right projection as well,
i.e. 𝑘′′⟨𝜉, 𝜏⟩ = 𝜏 for any ⟨𝜉, 𝜏⟩ ∈ 𝑍 ′′.

41Recall that for any two Sort-indexed sets 𝑋 = {𝑋𝑖}𝑖∈Sort and 𝑌 = {𝑌𝑖}𝑖∈Sort,
𝑋 × 𝑌 is the Sort-indexed set {𝑋𝑖 × 𝑌𝑖}𝑖∈Sort.
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Consider the following diagram:

J𝑋K
J𝑠′K

//

J𝑤K

��
22

22
22

22
22

22
22

22
22

22
22

22
22

2

J𝑠K

%%

J𝑍 ′K
J𝑘′K

//

J𝑧K

��

J|J𝑌 K|K Vals𝑌 //

JJ𝑣KK

��

J𝑌 K

J𝑣K

��

J𝑍 ′′K
J𝑘′′K

//

J𝑓K

��

J|J|K|K|K
Vals|K|

//

≤

J|K|K

ValK

��

J|K|K
ValK

// PK

The definitions of 𝑠′ and 𝑘′ imply 𝑠 = 𝑘′ ∘ 𝑠′, hence the segment on top
of the diagram commutes.

For any 𝜉 ∈ 𝑋 we have (𝑓 ∘ 𝑧 ∘ 𝑠′)𝜉 = 𝑓(𝑧(𝑠′𝜉)) = 𝑓(𝑧⟨𝜉, 𝑠𝜉⟩) =
𝑓⟨𝜉, (𝑠𝜉)J𝑣K⟩ = 𝑤𝜉, hence the triangle in this diagram also commutes.

The top left square commutes because the definitions of 𝑧, 𝑘′ and 𝑘′′

imply J𝑣K ∘ 𝑘′ = 𝑘′′ ∘ 𝑧.
The top right square commutes because (I16) implies J𝑣K ∘ Vals𝑌 =

Vals|K| ∘JJ𝑣KK.
It only remains to consider the rectangle in this diagram. By definition,

all elements of 𝑍 ′′ are of the form ⟨𝜉, (𝑠𝜉)J𝑣K⟩, where 𝜉 ∈ 𝑋. On one hand,
for any such element we have 𝑓⟨𝜉, (𝑠𝜉)J𝑣K⟩ = 𝑤𝜉. On the other hand,
for the same element we have (ValK ∘ 𝑘′′)⟨𝜉, (𝑠𝜉)J𝑣K⟩ = ValK((𝑠𝜉)J𝑣K) =
(𝑠𝜉)J𝑣KPK. But by the condition of the Lemma, 𝑤𝜉 ∈ (𝑠𝜉)J𝑣KPK for any
𝜉 ∈ 𝑋, hence 𝑓 ≪ ValK ∘ 𝑘′′. Now we are ready to apply (I15). We obtain
that ValK ∘ J𝑓K ≤ ValK ∘ Vals|K| ∘ J𝑘′′K.

This inequality together with the commutativity of the rest of the
diagram implies that ValK ∘ J𝑤K ≤ (ValK ∘ J𝑣K) ∘ (Vals𝑌 ∘ J𝑠K), hence
𝜏J𝑤KPK ⊆ (𝜏J𝑠KJ𝑌 K)J𝑣KPK for any 𝜏 ∈ |J𝑋K|.

(2) Since 𝑤𝜉 = (𝑠𝜉)J𝑣KK, definition (N) implies that 𝑤𝜉 ∈ {(𝑠𝜉)J𝑣KK} =
(𝑠𝜉)J𝑣KPK, hence we are permitted to apply (1) and from (1) we obtain that
𝜏J𝑤KPK ⊆ (𝜏J𝑠KJ𝑌 K)J𝑣KPK. But by definition (N), 𝜏J𝑤KPK = {𝜏J𝑤KK} and
(𝜏J𝑠KJ𝑌 K)J𝑣KPK = {(𝜏J𝑠KJ𝑌 K)J𝑣KK}, hence 𝜏J𝑤KK = (𝜏J𝑠KJ𝑌 K)J𝑣KK. �

U)Notice that because of (I5), if M and K are algebraically equivalent,
then the notions of termoid or formuloid over |M| are equivalent to the
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notions termoid or formuloid over |K|. In particular, an object is termoid
or formuloid over |M| if and only if it is termoid or formuloid over |𝜕M|.

V)Proposition. (
∫︀
M

)
P ∘ Val𝜕M = ValM for any structure M.

Proof. By definition (12L) the algebraic components of
∫︀
M

are identity,
so the equality is true for the algebraic components due to (I11). It only
remains to apply (H). �

W)Corollary. (1)Given a structure M and a termoid 𝜏 over |M|,
𝜏PM = 𝜏P (𝜕M).

(2) Given a structure M and a formuloid 𝜙 over |M|, ValM 𝜙 =
{valM 𝜓 : 𝜓 ∈ Val𝜕M 𝜙}. In other words, 𝜙PM = {𝜓M : 𝜓 ∈ 𝜙P (𝜕M)}.

(3)Given a structure M of terms and a termoid 𝜏 over |M|, 𝜏M = 𝜏𝜕M.
In other words, ValtM 𝜏 = Valt𝜕M 𝜏 .

(4) Given a structure M of terms and a formuloid 𝜙 over |M|, 𝜙M =
(𝜙𝜕M)M. In other words, ValtM 𝜙 = valM(Valt𝜕M 𝜙).

Proof.
∫︀
M

is identity over the algebraic carriers so (1) follows from (V).
Alternatively, one can obtain (1) as a corollary from (I11).

(2) follows easily from (V) as well, taking into account that for any
formula 𝜓 over |M|,

∫︀
M
𝜓 = 𝜓M = valM 𝜓 (see definition 12L).

(3) follows from (1) because 𝜏PM = {𝜏M} and 𝜏P (𝜕M) = {𝜏𝜕M}. We
only have to notice that both Valt𝜕M and 𝜏𝜕M are well defined since M is
a structure of terms, so 𝜕M is a structure of terms as well.

(4) follows from (2) because 𝜙PM = {𝜙M} and 𝜙P (𝜕M) = {𝜙𝜕M}. We
only have to notice that both Valt𝜕M and 𝜙𝜕M are well defined since M is
a structure of terms, so 𝜕M is a structure of terms as well. �

The following definition is analogous to the corresponding definition for
formulae.

X)Definition. (1)A formuloid 𝜙 over |M| 𝜙 is true in the logical
structure M, if 𝜙PM = {1}.

(2)A formuloid 𝜙 over 𝑋 is universally valid in a logical structure M,
if for any assignment function 𝑣 : 𝑋 → |M|, 𝜙J𝑣K is true in M.

(3)A formuloid 𝜙 over |A| is satisfiable in an algebra A, if it is true in
some logical variant of A.

(4)A formuloid is universally satisfiable if it is universally valid in some
logical structure.

(5)A formuloid is universally satisfiable in an algebra A, if it is univer-
sally valid in some logical variant of A.

(6)Given an algebra A, a set of formuloids over |A| is satisfiable in A,
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if there exists a logical variant M of A, such that all formuloids from the
set are true in M.

(7)A set of formuloids is universally satisfiable if there exists a logical
structure M, such that all formuloids from the set are universally valid
in M.

(8)A set of formuloids is universally satisfiable in an algebra A, if there
exists a logical variant M of A, such that all formuloids from the set are
universally valid in M.

(9)The formuloid 𝜙 follows in the algebra A from the set of formuloids Γ,
if for any logical variant M of A, such that all formuloids from Γ are true
in M, the formuloid 𝜙 also is true in M.

(10)The formuloid 𝜙 universally follows in the algebra A from the set
of formuloids Γ, if for any logical variant M of A, such that all formuloids
from Γ are universally valid in M, the formuloid 𝜙 also is universally valid
in M.

(11)The formuloid 𝜙 universally follows from the set of formuloids Γ, if
for any logical structure M, such that all formuloids from Γ are universally
valid in M, the formuloid 𝜙 also is universally valid in M.

§15. THE ALPHA-TERMINATOR

A) In this section we will see that the terms can be used in order to
construct a terminator. This terminator will be called alpha-terminator .

Although our original intent for the alpha-terminator might be to de-
fine J𝑋K = [𝑋] we are not permitted to do so because axiom (14I1) requires
J𝑋K to be an algebra and [𝑋] is not an algebra. So, instead, we are go-
ing to define J𝑋K = 𝜕[𝑋]. This definition implies that alpha-termoids and
terms will be one and the same thing. There will be, however, two im-
portant differences between the alpha-termoidal expressions of logical sort
and the termal expressions of logical sort. First, by definition the ele-
ments of the logical carrier of any algebra are formulae, so they are not
permitted to contain names of logical sort (see 12C2). Consequently, the
termal expressions of logical sort that are not formulae do not have an
analogue among the alpha-termoidal expressions of logical sort. Second,
according to (14J), alpha-formuloid over 𝑋 is the same thing as relational
formula over |𝜕[𝑋]|. Since [𝑋] and 𝜕[𝑋] are algebraically equivalent, alpha-
formuloid over 𝑋 is the same thing as relational formula over |[𝑋]|. For
example, p(pcq, pf(x)q) will be the the alpha-formuloid corresponding to
the formula p(c, f(x)).

B)Definition. The alpha-terminator is terminator, such that:
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(1) J𝑋K = 𝜕[𝑋] and J𝑓K = 𝜕[𝑓 ].
(2) (Nam𝑋)𝜅𝜉 = (nam𝑋)𝜅𝜉 for all algebraic sorts 𝜅.
(3) Any termoid over |M| is a term over |M|, so we are permitted

to define ValM 𝜏 = {valM 𝜏} for any termoid 𝜏 over |M|. This uniquely
determines the algebraic components of the homomorphism ValM.

(4) For any termoid 𝜏 over |J𝑋K| let Vals𝑋 𝜏 = val[𝑋] 𝜏 . This uniquely
determines the algebraic components of the homomorphism Vals𝑋 .

Because of (12Q2), we do not have to specify the logical components of
ValM and Vals𝑋 .

C) In order to avoid ambiguities, if necessary, I am going to use notation
such as J𝑋K𝛼 instead of J𝑋K, Nam𝛼

𝑋 instead of Nam𝑋 , Val𝛼M instead of ValM,
etc. For the same reason, if necessary I am going to use expressions such
as “alpha-termoids”, “alpha-formuloids”, etc.

D)Observation. The notations 𝜏 J𝑋K, 𝜏M and 𝜏PM are unambiguous
whether we are regarding 𝜏 as a term, or as an alpha-termoid.

Proof. (𝜏 J𝑋K) If we regard 𝜏 as termoid, then 𝜏 J𝑋K = Vals𝑋 𝜏 and if we
regard it as term, then 𝜏 J𝑋K = 𝜏𝜕[𝑋] = 𝜏 [𝑋] = val[𝑋] 𝜏 . But according to the
definition of the alpha-terminator, Vals𝑋 𝜏 = val[𝑋] 𝜏 .

(𝜏M) Unless M is a structure of terms, the meaning of 𝜏M is not defined
when we regard 𝜏 as a termoid.

Suppose M is a structure of terms and 𝜏 is a termoid (and term)
over |M|. If we regard 𝜏 as a termoid, then {𝜏M} = 𝜏PM = ValM 𝜏 =
{valM 𝜏} and if we regard it as a term, then {𝜏M} = {valM 𝜏}.

(𝜏PM) The notation 𝜏PM will not be correct when we regard 𝜏 as a
term if 𝜏 contains names, because the names in 𝜏 are names for |M| and
not names for |PM|.

Suppose 𝜏 is a termoid (and term) without names and let
{}M : M → PM be the homomorphism defined in (10N). If we regard
𝜏 as termoid, then 𝜏PM = ValM 𝜏 = {valM 𝜏} and if we regard it as term,
then 𝜏 [{}M] = 𝜏 (because 𝜏 contains no names), so according to (11N),
𝜏PM = (𝜏 [{}M])PM = (valPM ∘ [{}M])𝜏 = ({}M ∘ valM)𝜏 = {valM 𝜏}. �

E)We haven’t proved yet that the alpha-terminator is indeed a termi-
nator, i.e. that (B) satisfies all axioms of (14I).

Proof.(1) J𝑋K = 𝜕[𝑋] is an algebra by definition.
(2) J𝑓K = 𝜕[𝑓 ] is a homomorphism from J𝑋K = 𝜕[𝑋] to J𝑌 K = 𝜕[𝑌 ] by

definition.
(3) and (4) immediately follow from the definitions and (5) follows

from (12T).
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(6) Jid𝑋K = 𝜕[id𝑋 ] = 𝜕id[𝑋] = id𝜕[𝑋] = idJ𝑋K.
(7) J𝑓 ∘ 𝑔K = 𝜕[𝑓 ∘ 𝑔] = 𝜕([𝑓 ] ∘ [𝑔]) = 𝜕[𝑓 ] ∘ 𝜕[𝑔] = J𝑓K ∘ J𝑔K.
(8) Nam𝑋 has to be a Sort-indexed function from 𝑋∘ to |J𝑋K|. From

J𝑋K = 𝜕[𝑋] it follows that (B2) defines correctly (Nam𝑋)𝜅 for all algebraic
sorts 𝜅. On the other hand, there is no need to define (Nam𝑋)Log because
(𝑋∘)Log = ∅.

(9) We are going to use (12U).

(J𝑓K ∘ Nam𝑋)∘ = (J𝑓K)∘ ∘ (Nam𝑋)∘ from (12S)
= (𝜕[𝑓 ])∘ ∘ (nam𝑋)∘ from (B1) and (B2)
= ([𝑓 ])∘ ∘ (nam𝑋)∘

= ([𝑓 ] ∘ nam𝑋)∘ from (12S)
= (nam𝑌 ∘𝑓)∘ from (11I)
= (nam𝑌 )∘ ∘ 𝑓 ∘ from (12S)
= (Nam𝑌 )∘ ∘ (𝑓 ∘)∘ from (B2) and (12S)
= (Nam𝑌 ∘𝑓 ∘)∘ from (12S)

(10) For any functional symbol f we have

ValM(fJ|M|K⟨𝜏1, . . . , 𝜏𝑛⟩) = {valM(f𝜕[|M|]⟨𝜏1, . . . , 𝜏𝑛⟩)} from (B3)

= {valM(f[|M|]⟨𝜏1, . . . , 𝜏𝑛⟩)} from (12C3)
= {fM⟨valM 𝜏1, . . . , valM 𝜏𝑛⟩}
= fPM⟨{valM 𝜏1}, . . . , {valM 𝜏𝑛}⟩
= fPM⟨ValM 𝜏1, . . . ,ValM 𝜏𝑛⟩

Because of (12Q2) we don’t have to perform analogous checks for the pred-
icate and the logical symbols.

(11) Follows from definition (B3), since valM 𝜏 = val𝜕M 𝜏 for any term 𝜏
(see 12P2).

(12) In this terminator ValM always maps to one-element sets, including
the case when M = [𝑋].

(13) We are going to use (12H2). For any structure N, let {}N be as
defined in (10N).

𝜕(ℎP ∘ ValM) = 𝜕(ℎP ) ∘ 𝜕(ValM) from (12K8)

= 𝜕(ℎP ) ∘ 𝜕({}M ∘ valM) from (B3)

= 𝜕(ℎP ∘ {}M ∘ valM) from (12K8)
= 𝜕({}K ∘ ℎ ∘ valM)
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= 𝜕({}K ∘ valK ∘ [ℎ]) from (11N)
= 𝜕({}K ∘ valK) ∘ 𝜕[ℎ] from (12K8)
= 𝜕(ValK) ∘ 𝜕(𝜕[ℎ]) from (B3) and (12K7)
= 𝜕(ValK ∘𝜕[ℎ]) from (12K8)
= 𝜕(ValK ∘JℎK) from (B1)

(14) For any functional symbol f we have

Vals𝑋(fJ|J𝑋K|K⟨𝜏1, . . . , 𝜏𝑛⟩) = Vals𝑋(f𝜕[|𝜕[𝑋]|]⟨𝜏1, . . . , 𝜏𝑛⟩) from (B1)

= Vals𝑋(f𝜕[|[𝑋]|]⟨𝜏1, . . . , 𝜏𝑛⟩) from (12T)

= Vals𝑋(f[|[𝑋]|]⟨𝜏1, . . . , 𝜏𝑛⟩)
= val[𝑋](f

[|[𝑋]|]⟨𝜏1, . . . , 𝜏𝑛⟩) from (B4)

= f[𝑋]⟨val[𝑋] 𝜏1, . . . , val[𝑋] 𝜏𝑛⟩
= f[𝑋]⟨Vals𝑋 𝜏1, . . . ,Vals𝑋 𝜏𝑛⟩ from (B4)

= f𝜕[𝑋]⟨Vals𝑋 𝜏1, . . . ,Vals𝑋 𝜏𝑛⟩
= fJ𝑋K⟨Vals𝑋 𝜏1, . . . ,Vals𝑋 𝜏𝑛⟩ from (B1)

Because of (12Q2) we don’t have to perform analogous checks for the pred-
icate and the logical symbols.

(15) Notice that 𝑓 ≪ ValK ∘ 𝑘,

𝑋

𝑓

��

𝑘 // |J|K|K|

ValK

��

|K| ∈ |PK|

implies that 𝑓𝜉 ∈ ValK(𝑘𝜉) = {valK(𝑘𝜉)} for any 𝜉 ∈ 𝑋, hence 𝑓𝜉 =
valK(𝑘𝜉) for any 𝜉 ∈ 𝑋, so 𝑓 ∘ = (valK ∘ 𝑘)∘, hence from (12T) we can
conclude that 𝜕[𝑓 ] = 𝜕[valK ∘ 𝑘].

In order to prove that ValK ∘ J𝑓K ≤ ValK ∘ Vals|K| ∘ J𝑘K,

J𝑋K

≤
J𝑓K

##F
FFFFFFFFFFFFFFF

J𝑘K
// J|J|K|K|K

Vals|K|
// J|K|K

ValK

��

J|K|K ValK // PK
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we are going to use (12H2). Let {}K be as defined in (10N). Then

𝜕(ValK ∘ J𝑓K) = 𝜕(ValK) ∘ 𝜕J𝑓K from (12K8)
= 𝜕({}K ∘ valK) ∘ 𝜕(𝜕[𝑓 ]) from (B3) and (B1)
= 𝜕({}K ∘ valK) ∘ 𝜕[𝑓 ] from (12K7)
= 𝜕({}K ∘ valK) ∘ 𝜕[valK ∘ 𝑘] see above
= 𝜕({}K ∘ valK) ∘ 𝜕[valK] ∘ 𝜕[𝑘] from (12K8) and (11H)
= 𝜕({}K ∘ valK ∘ [valK]) ∘ 𝜕[𝑘] from (12K8)
= 𝜕({}K ∘ valK ∘ [valK]) ∘ 𝜕(𝜕[𝑘]) from (12K7)
= 𝜕({}K ∘ valK ∘ [valK]) ∘ 𝜕J𝑘K from (B1)
= 𝜕({}K ∘ valK ∘ val[|K|]) ∘ 𝜕J𝑘K from (11N)
= 𝜕({}K ∘ valK) ∘ 𝜕(val[|K|]) ∘ 𝜕J𝑘K from (12K8)
= 𝜕(ValK) ∘ 𝜕(Vals|K|) ∘ 𝜕J𝑘K from (B3) and (B4)
= 𝜕(ValK ∘ Vals|K| ∘ J𝑘K) from (12K8)

(16) Notice that [𝑓 ]∘ = (𝜕[𝑓 ])∘, so (12T) implies 𝜕[[𝑓 ]] = 𝜕[𝜕[𝑓 ]].
We are going to use (12H2) again.

𝜕(J𝑓K ∘ Vals𝑋) = 𝜕J𝑓K ∘ 𝜕(Vals𝑋) from (12K8)
= 𝜕(𝜕[𝑓 ]) ∘ 𝜕(val[𝑋]) from (B1) and (B4)
= 𝜕[𝑓 ] ∘ 𝜕(val[𝑋]) from (12K7)
= 𝜕([𝑓 ] ∘ val[𝑋]) from (12K8)
= 𝜕(val[𝑌 ] ∘ [[𝑓 ]]) from (11N)
= 𝜕(val[𝑌 ]) ∘ 𝜕[[𝑓 ]] from (12K8)
= 𝜕(val[𝑌 ]) ∘ 𝜕[𝜕[𝑓 ]]

= 𝜕(Vals𝑌 ) ∘ 𝜕[J𝑓K] from (B4) and (B1)
= 𝜕(Vals𝑌 ) ∘ 𝜕(𝜕[J𝑓K]) from (12K7)
= 𝜕(Vals𝑌 ) ∘ 𝜕JJ𝑓KK from (B1)
= 𝜕(Vals𝑌 ∘JJ𝑓KK) from (12K8)

(17) We are going to use (12H2) again.

𝜕(Vals𝑋 ∘JNam𝑋K) = 𝜕(Vals𝑋) ∘ 𝜕JNam𝑋K from (12K8)
= 𝜕(val[𝑋]) ∘ 𝜕(𝜕[Nam𝑋 ]) from (B4) and (B1)
= 𝜕(val[𝑋]) ∘ 𝜕[Nam𝑋 ] from (12K7)
= 𝜕(val[𝑋]) ∘ 𝜕[nam𝑋 ] from (B2) and (12T)
= 𝜕(val[𝑋] ∘ [nam𝑋 ]) from (12K8)
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= 𝜕(id[𝑋]) from (11V1)
= 𝜕(𝜕(id[𝑋])) from (12K7)
= 𝜕(id𝜕[𝑋]) from (12K5)
= 𝜕(idJ𝑋K) from (B1)

(18) For any 𝜇 belonging to an algebraic carrier of M we have

(ValM ∘ Nam|M|)𝜇 = ValM(Nam|M| 𝜇)

= ValM(nam|M| 𝜇) from (B2)
= {valM(nam|M| 𝜇)} from (B3)
= {(valM ∘ nam|M|)𝜇}
= {𝜇} from (11V2)

This completes the proof. �

§16. THE TERMAL EMBEDDING

A) In this section it will be shown that the world of terms and formulae
can be embedded isomorphically into the world of termoids and formuloids
(for arbitrary terminator). Only if a termal expression contains names of
logical sort, it won’t have a representative among the termoidal expressions.

For example, consider again the beta-termoids defined in the introduc-
tory sections. For any term 𝜏 , the termoid 0 + 𝜏 has exactly the same
meaning as the term 𝜏 . Therefore, beta-termoids having the form 0 + 𝜏
form an isomorphic copy of the terms.

It turns out we can define the correspondence between terms and ter-
moids algebraically. [Nam𝑋 ]J𝑋K is the injective homomorphism mapping
terms into termoids. There is also a homomorphism mapping termoids in
terms: Jnam𝑋K[𝑋].

The notation [Nam𝑋 ]J𝑋K reflects the fact that this homomorphism is
equal to the composition valJ𝑋K ∘ [Nam𝑋 ] and similarly Jnam𝑋K[𝑋] is equal to
the composition Valt[𝑋] ∘ Jnam𝑋K. Of course, we have to use this definition
in order to prove the properties of these two homomorphisms. Nevertheless,
I would like to adwise the reader to disregard the meaning of this notation
and to remember that [Nam𝑋 ]J𝑋K and Jnam𝑋K[𝑋] are nothing more than
two homomorphisms — the first mapping terms to termoids and the second
mapping termoids to terms.42

42For a while I was contemplating to introduce a special notation for these two ho-
momorphisms. Eventually I decided not to do so because I have tried to limit the use of
mathematical symbolic in this work to the possible minimum. That is why, for example,
I do not use the notation “Γ |= 𝜙” but say in simple words “from Γ follows 𝜙”.
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B)Proposition. (1) (𝜏 [Nam𝑋 ]J𝑋K)Jnam𝑋K[𝑋] = 𝜏 for any termal ex-
pression 𝜏 over 𝑋 without names of logical sort.

(2) (Jnam𝑋K[𝑋]) ∘ ([Nam𝑋 ]J𝑋K) = id[𝑋], if 𝑋Log = ∅.
(3) [Nam𝑋 ]J𝑋K : [𝑋] → J𝑋K is an injective homomorphism, if 𝑋Log = ∅.

[|J𝑋K|]
valJ𝑋K

''NNNNNNNNNNNN
J|[𝑋]|K

Valt[𝑋]

''NNNNNNNNNNNN

[𝑋]

[Nam𝑋 ]
77pppppppppppp

[Nam𝑋 ]J𝑋K
// J𝑋K

Jnam𝑋K
77pppppppppppp

Jnam𝑋K[𝑋]
// [𝑋]

Proof. (1) Consider the following diagram, where 𝑖 is the identity inclu-
sion map of |[𝑋]|∘ into |[𝑋]|:

[𝑋∘]
[Nam𝑋 ]

//

[(nam𝑋)∘]

��

[|J𝑋K|]
valJ𝑋K

//

[Jnam𝑋K]

��

J𝑋K

Jnam𝑋K

��

[|[𝑋]|∘]
[Nam|[𝑋]|]

//

[𝑖]

��

[|J|[𝑋]|K|]
valJ|[𝑋]|K

//

[Valt[𝑋]]

xxqqqqqqqqqqqqqqqqqqqq
J|[𝑋]|K

Valt[𝑋]

��

[|[𝑋]|]
val[𝑋]

// [𝑋]

It is commutative. Indeed, the left rectangle is commutative be-
cause (14I9)43 implies Jnam𝑋K ∘ Nam𝑋 = Nam[𝑋] ∘(nam𝑋)∘. The right
rectangle is commutative because (11N)44 implies Jnam𝑋K ∘ valJ𝑋K =
valJ|[𝑋]|K ∘ [Jnam𝑋K]. The triangle is commutative because (14O4) implies
Valt[𝑋] ∘ Nam[𝑋] = 𝑖. And the trapezoid is commutative because (11N)45

implies Valt[𝑋] ∘ valJ|[𝑋]|K = val[𝑋] ∘ [Valt[𝑋]].
Since 𝜏 contains no names of logical sort, 𝜏 is a termal expression

over 𝑋∘, so 𝜏 ∈ [𝑋∘]. Because of the commutativity of this diagram,
(𝜏 [Nam𝑋 ]J𝑋K)Jnam𝑋K[𝑋] = 𝜏 [(nam𝑋)∘][𝑖][𝑋]. Since 𝜏 contains no names of
logical sort, 𝜏 [(nam𝑋)∘][𝑖][𝑋] = 𝜏 [𝑖 ∘ (nam𝑋)∘][𝑋] = 𝜏 [nam𝑋 ][𝑋]. Finally,
(11V1) implies that 𝜏 [nam𝑋 ][𝑋] = 𝜏 .

(2) follows from (1) and (3) follows from (2). �

43The function 𝑓 in (14I9) is nam𝑋 .
44The homomorphism ℎ in (11N) is Jnam𝑋K.
45The homomorphism ℎ in (11N) is Valt[𝑋].
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Since the alpha-termoids are simply terms, in the case of the alpha ter-
minator we may expect both Jnam𝑋K[𝑋] and [Nam𝑋 ]J𝑋K to be isomorphisms.
This is indeed the case.

C)Proposition. In the case of the alpha-terminator, if 𝑋Log = ∅, then:
(1) ([Nam𝑋 ]J𝑋K) ∘ (Jnam𝑋K[𝑋]) = idJ𝑋K.
(2)The algebraic components of [Nam𝑋 ]J𝑋K and Jnam𝑋K[𝑋] are identi-

ties.
(3)Both Jnam𝑋K[𝑋] : J𝑋K → [𝑋] and [Nam𝑋 ]J𝑋K : [𝑋] → J𝑋K are

isomorphisms.

Proof. (1) First, notice that

𝜕(Jnam𝑋K[𝑋]) = 𝜕(Valt[𝑋] ∘ 𝜕[nam𝑋 ]) from (15B1) and (14P)
= 𝜕(Valt[𝑋]) ∘ 𝜕[nam𝑋 ] from (12K8) and (12K7)
= 𝜕(val[𝑋]) ∘ 𝜕[nam𝑋 ] from (15B3) and (14N)
= 𝜕(val[𝑋] ∘ [nam𝑋 ]) from (12K8)
= 𝜕(id[𝑋]) from (11V1)
= id𝜕[𝑋] = idJ𝑋K from (12K5)

Because in the case of the alpha-terminator J𝑋K = 𝜕[𝑋] is an alge-
bra, from (12O1) it follows that Jnam𝑋K[𝑋] =

∫︀
[𝑋]

∘ 𝜕(Jnam𝑋K[𝑋]) =∫︀
[𝑋]

∘ idJ𝑋K =
∫︀
[𝑋]

. The algebraic components of
∫︀
[𝑋]

are identities by
definition (12L). From this and (B2) it follows that the algebraic com-
ponents of [Nam𝑋 ]J𝑋K also are identities. Consequently, the algebraic com-
ponents of ([Nam𝑋 ]J𝑋K) ∘ (Jnam𝑋K[𝑋]) are identities, hence (12H2) implies
that ([Nam𝑋 ]J𝑋K) ∘ (Jnam𝑋K[𝑋]) = idJ𝑋K.

(2) has been proved during the proof of (1).
(3) follows from (1) and (B2). �

It doesn’t matter whether we apply renaming morphism J𝑓K to a termoid
and then convert it to term, or we first convert it to term and then apply [𝑓 ]
to it. Nor it does matter whether we apply the renaming morphism [𝑓 ] to
a term and then convert it to termoid, or we first convert it to termoid and
then apply J𝑓K to it.

D)Proposition. Given a Sort-indexed function 𝑓 : 𝑋 → 𝑌 ,
(1) ([Nam𝑌 ]J𝑌 K) ∘ [𝑓 ] = J𝑓K ∘ ([Nam𝑋 ]J𝑋K), if 𝑋Log = ∅ and 𝑌Log = ∅.
(2) (Jnam𝑌 K[𝑌 ]) ∘ J𝑓K = [𝑓 ] ∘ (Jnam𝑋K[𝑋]).

Proof. (1) Considering that [Nam𝑋 ]J𝑋K = valJ𝑋K ∘ [Nam𝑋 ] and
[Nam𝑌 ]J𝑌 K = valJ𝑌 K ∘ [Nam𝑌 ], (1) follows from the commutativity of the
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following diagram:

[𝑋]
[Nam𝑋 ]

//

[𝑓 ]

��

[|J𝑋K|]
valJ𝑋K

//

[J𝑓K]

��

J𝑋K

J𝑓K

��

[𝑌 ]
[Nam𝑌 ]

// [|J𝑌 K|]
valJ𝑌 K

// J𝑌 K

The commutativity of the first rectangle follows from (14I9) and (11H) and
the commutativity of the second rectangle follows from (11N).

(2) Considering that Jnam𝑋K[𝑋] = Valt[𝑋] ∘Jnam𝑋K and Jnam𝑌 K[𝑌 ] =
Valt[𝑌 ] ∘Jnam𝑌 K, (2) follows from the commutativity of the following dia-
gram:

J𝑋K
Jnam𝑋K

//

J𝑓K

��

J|[𝑋]|K
Valt[𝑋]

//

J[𝑓 ]K

��

[𝑋]

[𝑓 ]

��

J𝑌 K
Jnam𝑌 K

// J|[𝑌 ]|K
Valt[𝑌 ]

// [𝑌 ]

The commutativity of the first rectangle follows from (11I) and (14I7) and
the commutativity of the second rectangle follows from (14O2). �

It doesn’t matter whether we create a termal name by nam𝑋 and
then convert it to a termoid, or we create immediately a termoidal name
by Nam𝑋 . Nor it does matter whether we create a termoidal name by Nam𝑋

and then convert it to a term, or we create immediately a termal name
by nam𝑋 .

E)Proposition. If 𝑋Log = ∅, then:
(1) ([Nam𝑋 ]J𝑋K) ∘ nam𝑋 = Nam𝑋

(2) (Jnam𝑋K[𝑋]) ∘ Nam𝑋 = nam𝑋

Proof. Considering that [Nam𝑋 ]J𝑋K = valJ𝑋K ∘ [Nam𝑋 ], (1) follows from
the commutativity of the following diagram:

𝑋
Nam𝑋 //

nam𝑋

��

|J𝑋K|

nam|J𝑋K|

��

|J𝑋K|

|[𝑋]|
[Nam𝑋 ]

// [|J𝑋K|]

valJ𝑋K

<<xxxxxxxxxxxxxxxx
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The rectangle is commutative because of (11I) and the triangle is commu-
tative because of (11V2).

(2) From (1) and (B2) it follows that (Jnam𝑋K[𝑋]) ∘ Nam𝑋 =
(Jnam𝑋K[𝑋]) ∘ ([Nam𝑋 ]J𝑋K) ∘ nam𝑋 = nam𝑋 . �

Does it matter whether we convert a term to a termoid and then eval-
uate it by ValM, or we evaluate it immediately by valM? According to the
following proposition if the structure M is such that ValM is a homomor-
phism, then it doesn’t matter.46

F)Proposition. Let {}M be as defined in (10N), 𝑖 be the identity in-
clusion map from |M|∘ to |M| and ValM be not just a quasimorphism, but
a homomorphism. Then:

(1) ValM ∘ ([Nam|M|]
J|M|K) = {}M ∘ valM ∘ [𝑖].

(2) If (𝜏 [Nam|M|]
J|M|K)PM = {𝜏M} for any term or formula 𝜏 over |M|.

Proof. Considering that [Nam|M|]
J|M|K = valJ|M|K ∘ [Nam|M|], (1) follows

from the commutativity of the following diagram:

[|M|∘]
[𝑖]

wwooooooooo [Nam|M|]

((QQQQQQQQQQ

[|M|]

[{}M] ''OOOOOOOOO

valM

��

[|J|M|K|]

[ValM]vvmmmmmmmmm

valJ|M|K

��

[|PM|]

valPM

��

M

{}M ''PPPPPPPPPPP J|M|K

ValMvvmmmmmmmmmmm

PM

The top square is commutative because of (14I18) and the other two squares
are commutative because of (11N).

(2) Neither terms nor formulae may contain names of logical sort, so 𝜏
is not only a termal expression over |M|, but also over |M|∘. Consequently,
(2) is a reformulation of (1). �

46I would like to give an example when {𝜏M} is not equal to (𝜏 [Nam𝑋 ]J𝑋K)PM. Un-
fortunately, in order to do this I have to use the epsilon-termoids defined in (26T).

Let the symbol c be of type ⟨⟨⟩, 𝜅⟩ and the symbols f and g be of type ⟨⟨𝜅⟩, 𝜅⟩. Let
the structure M be such that M𝜅 = {0, 1}, cM = 0, fM be the identity function and
gM𝜇 = 0 for any 𝜇.

Let 𝜏 = f(c) and 𝜏 ′ = 𝜏 [Nam𝜀
𝑋 ]J𝑋K𝜀 = p0q+f(c). Then 𝜏M = 0 and (𝜏 ′)PM = {0, 1}.
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G)Corollary. Let 𝑋 be an arbitrary Sort-indexed set and 𝑖 be the
identity inclusion map from |[𝑋]|∘ to |[𝑋]|. Then:

(1) Valt[𝑋] ∘ ([Nam|[𝑋]|]
J|[𝑋]|K) = val[𝑋] ∘ [𝑖].

(2) (𝜏 [Nam|[𝑋]|]
J|[𝑋]|K)[𝑋] = 𝜏 [𝑋] for any term or formula 𝜏 over |[𝑋]|.

Proof. (1) If M is a structure of terms, then ValM = {}M ∘ValtM, where
{}M is as defined in (10N). Therefore, from (14O) we can conclude that
ValM is a homomorphism, hence (1) follows from (F1) and the definition
of Valt[𝑋] (see 14N).

(2) Neither terms nor formulae may contain names of logical sort, so 𝜏 is
not only a termal expression over |[𝑋]|, but also over |[𝑋]|∘. Consequently,
(2) is a reformulation of (1). �

If we convert the beta-termoid 5 + f(c) to term we will obtain the
term f(c). Clearly, the value of f(c) is a value of 5+f(c), however 5 + f(c)
can have other values.

H)Proposition. (1) valM ∘ (Jnam|M|K[|M|]) ≪ ValM.

J|M|K
Jnam|M|K

vvllllllllllllll

ValM //

Jnam|M|K[|M|]

��

PM

J|[|M|]|K

Valt[|M|]
((RRRRRRRRRRRRRR

[|M|] valM //M

(2) (𝜏Jnam|M|K[|M|])M ∈ 𝜏PM for any termoidal expression 𝜏 over |M|.

Proof. (1) For any structure N, let {}N be as defined in (10N). Then:

{}M ∘ valM ∘ (Jnam|M|K[|M|]) = {}M ∘ valM ∘ Valt[|M|] ∘ Jnam|M|K

= (valM)P ∘ {}[|M|] ∘ Valt[|M|] ∘ Jnam|M|K

= (valM)P ∘ Val[|M|] ∘ Jnam|M|K from (14N)
≤ ValM ∘ JvalMK ∘ Jnam|M|K from (14I13)
= ValM ∘ JvalM ∘ nam|M|K from (14I7)
= ValM from (11V2)

(2) is a reformulation of (1). �

I)Corollary. If M is a structure of terms, then

ValtM = valM ∘ (Jnam|M|K[|M|]).
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In other words, if M is a structure of terms, then for any termoidal
expression 𝜏 over |M|

𝜏M = (𝜏Jnam|M|K[|M|])M.

Proof. See (H1) and the definition of ValtM (14N). �

J)Corollary. (1) If a formuloid 𝜙 over 𝑋 is universally valid in a
structure M, then the formula 𝜙Jnam𝑋K[𝑋] is universally valid in M.

(2)Let M be a structure of terms. A formuloid 𝜙 over 𝑋 is universally
valid in M if and only if the formula 𝜙Jnam𝑋K[𝑋] is universally valid in M.

(3) If a set Γ of formuloids over 𝑋 is universally satisfiable in a al-
gebra A, then then the set {𝜙Jnam𝑋K[𝑋] : 𝜙 ∈ Γ} of formulae over 𝑋 is
universally satisfiable in A.

(4) Let A be an algebra which is a structure of terms. A set Γ of
formuloids over 𝑋 is universally satisfiable in A if and only if the set
{𝜙Jnam𝑋K[𝑋] : 𝜙 ∈ Γ} of formulae over 𝑋 is universally satisfiable in A.

Proof. (1) Let 𝑣 : 𝑋 → |M| be an arbitrary assignment function. Then:

(𝜙Jnam𝑋K[𝑋])[𝑣]M = (([𝑣] ∘ Jnam𝑋K[𝑋])𝜙)M

= ((Jnam|M|K[|M|] ∘ J𝑣K)𝜙)M from (D2)

= ((𝜙J𝑣K)Jnam|M|K[|M|])M

∈ 𝜙J𝑣KPM from (H2)

Since 𝜙 is universally valid in M, 𝜙J𝑣KPM = {1}.
(2) According to (16I), for arbitrary formuloid 𝜙 and assignment func-

tion 𝑣 : X → |M|, the value of 𝜙J𝑣K in a structure of terms M is equal to
the value of the formula 𝜙J𝑣KJnam|M|K[|M|] in M. According to (16D2),
𝜙J𝑣KJnam|M|K[|M|] = (𝜙Jnam|M|K[|M|])[𝑣]. Therefore, a formuloid 𝜙 is uni-
versally valid in M if and only if the formula 𝜙Jnam|M|K[|M|] is universally
valid in M.

(3) follows from (1) and (4) follows from (2). �

The following Proposition is an analogue of (13G) for formuloids.

K)Proposition. Suppose [𝑋] is normal. A set of formuloids47 is
universally satisfiable if and only if it is universally satisfiable in 𝜕[𝑋].

Proof. If a set Γ of formuloids is universally satisfiable, then there exists
a logical structure M, such that all formula of Γ are universally valid in M.

47Not necessarily formuloids over 𝑋.
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Let Γ′ = {𝜙Jnam𝑋K[𝑋] : 𝜙 ∈ Γ}. According to (J1), Γ′ is universally valid
in M, so from (13G) it follows that Γ′ is universally satisfiable in 𝜕[𝑋].
But 𝜕[𝑋] is an algebra which is a structure of terms, so from (J4) we can
conclude that Γ is universally satisfiable in 𝜕[𝑋]. �

L)Lemma. (1) (Jnam𝑋K[𝑋]) ∘ Vals𝑋 = Valt[𝑋] ∘ JJnam𝑋K[𝑋]K for any
Sort-indexed set 𝑋.

(2) (𝜏 J𝑋K)Jnam𝑋K[𝑋] = (𝜏JJnam𝑋K[𝑋]K)[𝑋] for any termoidal expression 𝜏
over |J𝑋K|.

Proof. (1)

J|J𝑋K|K JJnam𝑋KK
//

Vals𝑋

��

JJnam𝑋K[𝑋]K

''

J|J|[𝑋]|K|K
JValt[𝑋]K

//

Vals|[𝑋]|

��

J|[𝑋]|K

Valt[𝑋]

��

J𝑋K
Jnam𝑋K

//

Jnam𝑋K[𝑋]

88
J|[𝑋]|K

Valt[𝑋]

// [𝑋]

The left rectangle in this diagram is commutative because of (14I16) and
the right rectangle is commutative because of (14O3). The segments are
simply notational conventions, see (14P).

(2) is a reformulation of (1). �

For any termoidal substitution 𝑠 : 𝑋 → J𝑋K we have a corresponding
termal substitution 𝑠′ : 𝑋 → [𝑋] where 𝑠′ = Jnam𝑋K[𝑋] ∘ 𝑠. It doesn’t
matter whether we apply 𝑠 to a termoid and then convert it to a term, or
we first convert the termoid to a term and then apply 𝑠′ to it.

M)Proposition. Given a Sort-indexed set 𝑋 and a termoidal sub-
stitution 𝑠 : 𝑋 → J𝑋K, define a termal substitution 𝑠′ : 𝑋 → [𝑋], such that
𝑠′𝜉 = (𝑠𝜉)Jnam𝑋K[𝑋] for any 𝜉 ∈ 𝑋. Then for any termoidal expression 𝜏
over 𝑋,

(𝜏J𝑠KJ𝑋K)Jnam𝑋K[𝑋] = 𝜏J𝑠′K[𝑋] = (𝜏Jnam𝑋K[𝑋])[𝑠′][𝑋]

Proof. We have to prove that

Jnam𝑋K[𝑋] ∘ Vals𝑋 ∘ J𝑠K = Valt[𝑋] ∘ JJnam𝑋K[𝑋]K ∘ J𝑠K

= val[𝑋] ∘ [𝑠′] ∘ Jnam𝑋K[𝑋]
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Consider the following diagram:

J𝑋K
Jnam𝑋K[𝑋]

// [𝑋]

J𝑋K
J𝑠K

//

Jnam𝑋K[𝑋]

��

J|J𝑋K|K JJnam𝑋K[𝑋]K
//

Jnam|J𝑋K|K[|J𝑋K|]

��

Vals𝑋

OO

J|[𝑋]|K

Jnam|[𝑋]|K[|[𝑋]|]

��

Valt[𝑋]

OO

[𝑋]
[𝑠]

//

[𝑠′]

;;
[|J𝑋K|]

[Jnam𝑋K[𝑋]]

// [|[𝑋]|]

val[𝑋]

[[

The right segment is commutative due to (I), the top square is commutative
due to (L1), the other two squares are commutative due to (D2) and the
bottom segment is commutative due to the definition of 𝑠′. �

N)Proposition. Let 𝑋 be a Sort-indexed set and 𝑠 : 𝑋 → [𝑋] be a
termal substitution. Then for any termoidal expression 𝜏 over 𝑋,

𝜏J𝑠K[𝑋] = (𝜏Jnam𝑋K[𝑋])[𝑠][𝑋]

Proof. We have to prove that

Valt[𝑋] ∘ J𝑠K = val[𝑋] ∘ [𝑠] ∘ Jnam𝑋K[𝑋]

Consider the following diagram:

J𝑋K
J𝑠K

//

Jnam𝑋K[𝑋]

��

J|[𝑋]|K

Jnam|[𝑋]|K[|[𝑋]|]

��

Valt[𝑋]

''NNNNNNNNNNNN

[𝑋]

[𝑋]
[𝑠]

// [|[𝑋]|]
val[𝑋]

77pppppppppppp

The rectangle is commutative due to (D2) and the triangle is commutative
due to (I). �

90



§17. Finitarity and Dependencies

§17. FINITARITY AND DEPENDENCIES

A)Definition. (1)A Sort-indexed set 𝑋 is finite if for all sorts 𝜅 the
components 𝑋𝜅 are finite sets and only finitely many of them are different
from ∅.

(2) A termoidal expression 𝜏 over𝑋 is finitary if the Sort-indexed set𝑋
has a finite subset 𝑌 ,48 such that 𝜏 is a termoidal expression over 𝑌 .

B)Proposition. For any finitary termoidal expression 𝜏 there exists a
smallest Sort-indexed set 𝑋, such that 𝜏 is a termoidal expression over 𝑋.
This Sort-indexed set is finite.

Proof. Let 𝑌 be some finite Sort-indexed set such that 𝜏 is a termoidal
expression over 𝑌 . Consider all Sort-indexed sets of the form 𝑌 ∩ 𝑍, such
that 𝜏 is a termoidal expression over 𝑍. From (14I3) it follows that 𝜏 is a
termoidal expression over each of these sets. Since 𝑌 ∩ 𝑍 is a subset of 𝑌
and 𝑌 is a finite set, there are only finitely many such sets. Let 𝑋 be the
intersection of these sets. On one hand, 𝑋 is a subset of all Sort-indexed
sets 𝑍, such that 𝜏 is a termoidal expression over 𝑍. On the other hand,
since we are intersecting finitely many sets, from (14I3) it follows that 𝜏 is
a termoidal expression over 𝑋.

The finiteness of 𝑋 follows from definition (A2). �

C)Definition. A termal (termoidal) expression 𝜏 over 𝑋 depends on
𝜉 ∈ 𝑋 if 𝜏 [𝑓 ] ̸= 𝜏 (resp., 𝜏J𝑓K ̸= 𝜏) for at least one Sort-indexed function 𝑓
with domain 𝑋, such that 𝑓𝜂 = 𝜂 for any 𝜂 ̸= 𝜉.

D)Proposition. If a termal (termoidal) expression 𝜏 over 𝑋 is finitary,
then there are finitely many 𝜉 ∈ 𝑋, such that 𝜏 depends on 𝜉.

Proof. According to (B), there exists a finite subset 𝑌 of 𝑋, such that
𝜏 is a termoidal expression over 𝑌 . Let 𝑓 : 𝑌 → 𝑋 be the identity inclusion
map from 𝑌 to 𝑋 and let 𝑓 ′ : 𝑌 → 𝑌 be the identity function. According
to (14I6), 𝜏J𝑓 ′K = 𝜏 and according to (14I4), 𝜏J𝑓K = 𝜏J𝑓 ′K, hence 𝜏J𝑓K = 𝜏 .

Now, suppose that 𝜏 depends on some 𝜉 ∈ 𝑋. Then there exists a Sort-
indexed function 𝑔 with domain 𝑋, such that 𝑔𝜂 = 𝜂 for any 𝜂 ̸= 𝜉 and
𝜏J𝑔K ̸= 𝜏 . But 𝜏J𝑔K = 𝜏J𝑓KJ𝑔K = 𝜏J𝑔 ∘ 𝑓K, so 𝑔 ∘ 𝑓 is not identity, hence
𝜉 ∈ 𝑌 . The Sort-indexed set 𝑌 is finite, so there are finitely many such 𝜉. �

E)Proposition. (1)A termal expression 𝜏 over 𝑋 depends on 𝜉 ∈ 𝑋
if and only if p𝜉q occurs in 𝜏 .

(2) A termal (termoidal) expression 𝜏 over 𝑋 depends on 𝜉 ∈ 𝑋 if and
48I.e. 𝑌𝜅 ⊆ 𝑋𝜅 for all 𝜅.
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only if 𝜏 is not a termal (termoidal) expression over 𝑋 ∖ {𝜉}.49

Proof. (1,⇒) Let 𝑓 : 𝑋 → 𝑌 be a Sort-indexed function, such that
𝜏 [𝑓 ] ̸= 𝜏 and 𝑓𝜂 = 𝜂 for any 𝜂 ̸= 𝜉. Suppose that 𝜏 is a termal expression
over 𝑋 ∖{𝜉}. Then from (14I4) it follows 𝜏 [𝑓 ] = 𝜏 [𝑓 �(𝑋 ∖{𝜉})] = 𝜏 [id] = 𝜏 ,
hence we obtain a contradiction.

(1,⇐) Let p𝜉q occurs in 𝜏 and suppose that 𝜏 does not depend on 𝜉. By
definition, 𝜏 [𝑓 ] = 𝜏 for any Sort-indexed function 𝑓 with domain 𝑋, such
that 𝑋 is the domain of 𝑓 and 𝑓𝜂 = 𝜂 for any 𝜂 ̸= 𝜉. Well, this can not
be so. Let 𝜅 be the sort of 𝜉 and let the Sort-indexed set 𝑌 be such that
𝑋 ⊆ 𝑌 and 𝑌𝜅 contains an element 𝜉′, such that 𝜉′ /∈ 𝑋. Let 𝑓 : 𝑋 → 𝑌
be such that 𝑓𝜉 = 𝜉′ and 𝑓𝜂 = 𝜂 for 𝜂 ̸= 𝜉. Clearly, 𝜉′ occurs in 𝜏 [𝑓 ], hence
𝜏 [𝑓 ] ̸= 𝜏 .

(2,⇒) follows easily from (1) when 𝜏 is a termal expression, so it remains
to consider the case when 𝜏 is a termoidal expression over 𝑋, such that
𝜏 depends on 𝜉 ∈ 𝑋𝜅. Suppose that 𝜏 is a termoidal expression over 𝑋∖{𝜉}.
Then there exists a Sort-indexed function 𝑓 : 𝑋 → 𝑌 , such that 𝜏 [𝑓 ] ̸= 𝜏
and 𝑓𝜂 = 𝜂 for any 𝜂 ̸= 𝜉. Therefore, from (14I4) and (14I6) we can
conclude that 𝜏J𝑓K = 𝜏J𝑓 �(𝑋 ∖ {𝜉})K = 𝜏JidK = 𝜏 which is a contradiction.

(2,⇐) follows easily from (1) when 𝜏 is a termal expression, so it remains
to consider the case when 𝜏 is a termoidal expression over 𝑋, such that 𝜏 is
not a termoidal expression over 𝑋 ∖ {𝜉}. Suppose that 𝜏 does not depend
on 𝜉 ∈ 𝑋. Let 𝜉′ and 𝜉′′ be arbitrary different objects which do not belong
to 𝑋. Let 𝑋 ′ be like 𝑋 but instead of 𝜉, 𝑋 ′ contains 𝜉′. Similarly, let
𝑋 ′′ be like 𝑋 but instead of 𝜉, 𝑋 ′′ contains 𝜉′′. Let 𝑓 ′ : 𝑋 → 𝑋 ′ be the
Sort-indexed function, such that 𝑓 ′𝜉 = 𝜉′ and 𝑓 ′𝜂 = 𝜂 for 𝜂 ̸= 𝜉. Similarly,
let 𝑓 ′′ : 𝑋 → 𝑋 ′ be the Sort-indexed function, such that 𝑓 ′′𝜉 = 𝜉′′ and
𝑓 ′′𝜂 = 𝜂 for 𝜂 ̸= 𝜉. Since 𝜏 does not depend on 𝜉, 𝜏J𝑓 ′K = 𝜏 and 𝜏J𝑓 ′′K = 𝜏 .
On the other hand 𝜏J𝑓 ′K is a termoidal expression over 𝑋 ′ and 𝜏J𝑓 ′′K is
a termoidal expression over 𝑋 ′′, hence 𝜏 is a termoidal expression both
over 𝑋 ′ and over 𝑋 ′′. From (14I3) it follows that 𝜏 is a termoidal expression
over 𝑋 ′ ∩𝑋 ′′. Since 𝑋 ∖ {𝜉} = 𝑋 ′ ∩𝑋 ′′, we conclude that 𝜏 is a termoidal
expression over 𝑋 ∖ {𝜉}, which is a contradiction. �

F)Proposition. (1)Let 𝑋 be a Sort-indexed set, 𝑠 : 𝑋 → |[𝑋]| be
a termal substitution and 𝑍 be the Sort-indexed set of all 𝜉, such that
𝑠𝜉 ̸= p𝜉q. If 𝜏 is a termal expression which does not depend on any 𝜉 ∈ 𝑍,
then 𝜏 [𝑠][𝑋] = 𝜏 .

(2)Let 𝑋 be a Sort-indexed set, 𝑠 : 𝑋 → |J𝑋K| be a termoidal substi-
49We use the notation informally. Let 𝜉 ∈ 𝑋𝜅. Then 𝑋 ∖ {𝜉} is the Sort-indexed

set 𝑌 , such that 𝑌𝜅 = 𝑋𝜅 ∖ {𝜉} and 𝑌𝜆 = 𝑋𝜆 for 𝜆 ̸= 𝜅.
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tution and 𝑍 be the Sort-indexed set of all 𝜉, such that 𝑠𝜉 ̸= p𝜉q. If 𝜏 is
a finitary termoidal expression which does not depend on any 𝜉 ∈ 𝑍, then
𝜏J𝑠KJ𝑋K = 𝜏 .

Proof. (1) 𝑠𝜉 = nam𝑋 𝜉 for any 𝜉, such that p𝜉q occurs in 𝜏 . Conse-
quently, 𝜏 [𝑠] = 𝜏 [nam𝑋 ], hence 𝜏 [𝑠][𝑋] = 𝜏 [nam𝑋 ][𝑋] = 𝜏 , due to (11V1).

(2) Let 𝑌 be a finite subset of the Sort-indexed set 𝑋, such that 𝜏 is a
termoidal expression on 𝑌 . Then 𝑠𝜉 = p𝜉q for any 𝜉 ∈ 𝑌 , so 𝑠�𝑌 = Nam𝑌 ,
hence

𝜏J𝑠KJ𝑋K = 𝜏J𝑠�𝑌 KJ𝑋K from (14I4)

= 𝜏JNam𝑌 KJ𝑋K

= 𝜏JNam𝑌 KJ𝑌 K from (14R3)
= 𝜏 from (14I17)

�

G)Definition. The termal (termoidal) expressions 𝜏1, . . . , 𝜏𝑛 over 𝑋
have disjoint dependency if there is no 𝜉 ∈ 𝑋, such that more then one of
these termal (termoidal) expressions depends on 𝜉.

H)Proposition. Given finitary termoidal expressions 𝜏 and 𝜎 over 𝑋
and Sort-indexed functions 𝑓, 𝑔 : 𝑋 → 𝑌 , if 𝜏 and 𝜎 have disjoint depen-
dency, then there exists a Sort-indexed function ℎ : 𝑋 → 𝑌 , such that
𝜏J𝑓K = 𝜏JℎK and 𝜎J𝑔K = 𝜎JℎK.

Proof. Let ℎ𝜉 = 𝑓𝜉 if 𝜏 depends on 𝜉, let ℎ𝜉 = 𝑔𝜉 if 𝜎 depends on 𝜉
and define ℎ𝜉 arbitrarily if neither 𝜏 , nor 𝜎 depends on 𝜉.50 Suppose that
𝜏J𝑓K ̸= 𝜏JℎK. Let 𝑍 be the smallest subset of 𝑋, such that 𝜏 is a termoidal
expression over 𝑍; there is such set according to (B). According to (14I4),
𝜏J𝑓K = 𝜏J𝑓 �𝑍K and 𝜏JℎK = 𝜏Jℎ�𝑍K, hence 𝑓 �𝑍 ̸= ℎ�𝑍, so 𝑓𝜉 ̸= ℎ𝜉 for
some 𝜉 ∈ 𝑍, hence 𝜏 does not depend on 𝜉, so, according to (E2), 𝜏 is a
termoidal expression over 𝑍∖{𝜉}, which is a contradiction because 𝑍 was the
smallest set with this property. Consequently, 𝜏J𝑓K = 𝜏JℎK. Analogously,
we can prove that 𝜎J𝑔K = 𝜎JℎK. �

I)Proposition. (1)Given a termoidal expression 𝜏 over 𝑋, if
𝜏Jnam𝑋K[𝑋] depends on 𝜉 ∈ 𝑋, then 𝜏 depends on 𝜉 as well.

(2) If the termoidal expressions 𝜏1, . . . , 𝜏𝑛 over 𝑋 have disjoint depen-
dency, then the termal expressions 𝜏1Jnam𝑋K[𝑋], . . . , 𝜏𝑛Jnam𝑋K[𝑋] have dis-
joint dependency as well.

50The case when both 𝜏 and 𝜎 depend on some 𝜉 is impossible, since 𝜏 and 𝜎 have
disjoint dependency.
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Proof. (1) Since 𝜏Jnam𝑋K[𝑋] depends on 𝜉, there exists a Sort-indexed
function 𝑓 with domain 𝑋, such that 𝑓𝜂 = 𝜂 for any 𝜂 ̸= 𝜉 and
𝜏Jnam𝑋K[𝑋][𝑓 ] ̸= 𝜏Jnam𝑋K[𝑋]. According to (16D2), 𝜏Jnam𝑋K[𝑋][𝑓 ] =
𝜏J𝑓KJnam𝑋K[𝑋], hence 𝜏J𝑓KJnam𝑋K[𝑋] ̸= 𝜏Jnam𝑋K[𝑋], so 𝜏J𝑓K ̸= 𝜏 , hence
𝜏 depends on 𝜉.

(2) follows from (1). �

J)Proposition. Given a termal expression 𝜏 over 𝑋, if
𝜏 [Nam𝑋 ]J𝑋K depends on 𝜉 ∈ 𝑋, then 𝜏 depends on 𝜉 as well.

Proof. Suppose that 𝜏 does not depend on 𝜉 and let 𝑌 = 𝑋 ∖ {𝜉};
then 𝜏 will be a termal expression over 𝑌 . Let 𝑓 : 𝑌 → 𝑋 be the identity
inclusion map of 𝑌 in 𝑋.

According to (14I4) and (14I6), J𝑓K is the identity inclusion map from
J𝑌 K to J𝑋K, so from (14I9) we can conclude that Nam𝑌 = Nam𝑋 � 𝑌 , so
𝜏 [Nam𝑋 ] = 𝜏 [Nam𝑌 ].

Since J𝑓K is an identity inclusion map, [J𝑓K] also is an identity in-
clusion map from [|J𝑌 K|] to [|J𝑋K|]. Therefore, from (11N) we can con-
clude that 𝜏 [Nam𝑌 ]J𝑌 K = 𝜏 [Nam𝑌 ]J𝑋K, hence 𝜏 [Nam𝑌 ]J𝑌 K = 𝜏 [Nam𝑋 ]J𝑋K, so
𝜏 [Nam𝑋 ]J𝑋K is a termoidal expression over 𝑌 , hence it does not depend on 𝜉
which is a contradiction. �

§18. REDUCTORS AND UNIFICATION

A)Definition. (1)A termal identity of sort 𝜅 over the Sort-indexed
set 𝑋 is an expression of the form

𝜏 ∼ 𝜎

where both 𝑡 and 𝑠 are termal expressions over 𝑋 of sort 𝜅.
(2)A termal system over 𝑋 is a set of identities over 𝑋 (of any sort). A

termal system is finite if it is a finite set of identities.
(3)The notions termoidal identity , termoidal system and finite termoidal

system are analogous, but we use termoidal expressions instead of termal
expressions.

(4) An identity of the form p𝜉q ∼ 𝜎 is solving for 𝜉 if 𝜎 does not depend
on 𝜉. Such an identity is solving for a system Θ, if it belongs to Θ and the
termal (termoidal) expressions of the other identities of Θ do not depend
on 𝜉. In this case, we also say that Θ is solved with respect to 𝜉.

(5)A system is solved if all its identities are solving for it.
(6)An identity depends on 𝜉 if at least one of its termal (termoidal)

expressions depends on 𝜉. A system depends on 𝜉 if at least one of its
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identities depends on 𝜉.
(7)A system is finitary if there exists a finite Sort-indexed set 𝑋, such

that all termal (termoidal) expressions in the systems are termal (termoidal)
expressions over 𝑋.

(8)Given a Sort-indexed set 𝑋, a termal identity 𝜏 ∼ 𝜎 over 𝑋 and a
structure M, the assignment function 𝑣 : 𝑋 → |M| is a solution in M of
𝜏 ∼ 𝜎, if 𝜏 [𝑣]M = 𝜎[𝑣]M.

(9)Given a Sort-indexed set 𝑋, a termoidal identity 𝜏 ∼ 𝜎 over 𝑋 and
a structure M, the assignment function 𝑣 : 𝑋 → |M| is a solution in M of
𝜏 ∼ 𝜎, if 𝜏J𝑣KPM ∩ 𝜎J𝑣KPM ̸= ∅.

(10)A Sort-indexed function is a solution in a structure M of the sys-
tem Θ, if it is a solution in M of each identity of Θ.

(11)A system is termally consistent , if it has a solution in an algebra
which is a structure of terms.51 A system is termally inconsistent , if it is
not termally consistent.

(12)A system Θ is termally equivalent to a system Φ if Θ and Φ have
same solutions in any algebra which is a structure of terms.

(13)A system Θ is reducible to a system Φ if Θ and Φ are termally
equivalent and all solutions of Θ in any structure are solutions of Φ as well.

B)Notice that if M is a structure of terms, then 𝜏J𝑣KPM = {𝜏J𝑣KM} for
any 𝜏 and 𝑣, hence an assignment function 𝑣 : 𝑋 → |M| is a solution in M
of the termoidal identity 𝜏 ∼ 𝜎, if and only if 𝜏J𝑣KM = 𝜎J𝑣KM.

C)Definition. (1)Given a Sort-indexed set 𝑋, a termal substitution
𝑠 : 𝑋 → [𝑋] and a structure M, the assignment function 𝑣 : 𝑋 → |M| is
an instance of 𝑠 in M, if 𝑣 = [𝑤]M ∘ 𝑠 for some assignment function
𝑤 : 𝑋 → |M|.

(2)Given a Sort-indexed set 𝑋, a termoidal substitution 𝑠 : 𝑋 → J𝑋K
and a structure M, the assignment function 𝑣 : 𝑋 → |M| is an instance
of 𝑠 in M, if 𝑣 ≪ J𝑤KPM ∘ 𝑠 for some assignment function 𝑤 : 𝑋 → |M|.52

D)Proposition. Let Θ = {p𝜉1q ∼ 𝜎1, p𝜉2q ∼ 𝜎2, . . . , p𝜉𝑛q ∼ 𝜎𝑛} be a
solved termal (termoidal) system over 𝑋 and 𝑠 be the substitution

𝑠𝜉 =

{︃
𝜎𝑖, if 𝜉 = 𝜉𝑖 for some 𝑖 ∈ {1, . . . , 𝑛},
p𝜉q, otherwise.

Then:
51For the definition of “structure of terms” see (14L). Each algebra which is a structure

of terms is the algebraic fragment of a termal structure [𝑋].
52For the definition of “≪” see (14A).
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(1) All instances of 𝑠 in an algebra which is a structure of terms are
solutions of Θ.

(2) If 𝑣 is an arbitrary solution of Θ, then 𝑣 = [𝑣]M ∘ 𝑠 (in the termal
case) or 𝑣 ≪ J𝑣KPM ∘ 𝑠 (in the termoidal case).

(3)All solutions of Θ are instances of 𝑠.

Proof. (1,terms) Let A be an algebra which is a structure of terms and
𝑣 be an instance of 𝑠 in A. Then 𝑣 = [𝑤]A ∘ 𝑠 for some assignment function
𝑤 : 𝑋 → |A|. Consequently,

p𝜉𝑖q[𝑣]A = p𝜉𝑖q [[𝑤]A ∘ 𝑠]A

= (p𝜉𝑖q [𝑠][𝑋])[𝑤]A from (11T)
= 𝜎𝑖[𝑤]A because 𝑠𝜉𝑖 = 𝜎𝑖

= (𝜎𝑖[𝑠]
[𝑋])[𝑤]A from (17F)

= 𝜎𝑖[[𝑤]A ∘ 𝑠]A from (11T)
= 𝜎𝑖[𝑣]A

(1,termoids) Let A be an algebra which is a structure of terms and 𝑣 be
an instance of 𝑠 in A. Then 𝑣 ≪ J𝑤KPA ∘ 𝑠 for some assignment function
𝑤 : 𝑋 → |A|. From this and (14N) it follows 𝑣 = J𝑤KA ∘ 𝑠. Consequently,

p𝜉𝑖qJ𝑣KA = p𝜉𝑖q JJ𝑤KA ∘ 𝑠KA

= (p𝜉𝑖q J𝑠KJ𝑋K)J𝑤KA from (14T2)
= 𝜎𝑖J𝑤KA because 𝑠𝜉𝑖 = 𝜎𝑖

= (𝜎𝑖J𝑠KJ𝑋K)J𝑤KA from (17F)
= 𝜎𝑖JJ𝑤KA ∘ 𝑠KA from (14T2)
= 𝜎𝑖J𝑣KA

(2,terms) p𝜉𝑖q[𝑣]M = 𝜎𝑖[𝑣]M, because 𝑣 is a solution of Θ. Conse-
quently, from (11V2) and (11I) it follows 𝑣𝜉𝑖 = (p𝑣𝜉𝑖q)M = p𝜉𝑖q[𝑣]M =
𝜎𝑖[𝑣]M = (𝑠𝜉𝑖)[𝑣]M = ([𝑣]M ∘ 𝑠)𝜉𝑖.

On the other hand, if 𝜉 /∈ {𝜉1, . . . , 𝜉𝑛}, then 𝑠𝜉 = p𝜉q, hence also from
(11V2) and (11I) it follows 𝑣𝜉 = (p𝑣𝜉q)M = p𝜉q[𝑣]M = (𝑠𝜉)[𝑣]M = ([𝑣]M∘𝑠)𝜉.

(2,termoids) From (14I9) and (14I18) it follows p𝜉𝑖qJ𝑣KPM =
(p𝑣𝜉𝑖q)PM = {𝑣𝜉𝑖}. But p𝜉𝑖qJ𝑣KPM ∩ 𝜎𝑖J𝑣KPM ̸= ∅, because 𝑣 is a solution
of Θ. Consequently, 𝑣𝜉𝑖 ∈ 𝜎𝑖J𝑣KPM = (𝑠𝜉𝑖)J𝑣KPM = (J𝑣KPM ∘ 𝑠)𝜉𝑖.

On the other hand, if 𝜉 /∈ {𝜉1, . . . , 𝜉𝑛}, then 𝑠𝜉 = p𝜉q, hence from (14I18)
and (14I9) it follows 𝑣𝜉 ∈ {𝑣𝜉} = (p𝑣𝜉q)PM = p𝜉qJ𝑣KPM = (𝑠𝜉)J𝑣KPM =
(J𝑣KPM ∘ 𝑠)𝜉.
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(3) immediately follows from (2) and the definition of “instance” (C). �

E)Proposition. Let 𝜏 , 𝜎′ and 𝜎′′ be termal (termoidal) expressions
over the Sort-indexed set 𝑋, 𝜉 ∈ 𝑋, 𝜉 and 𝜏 are of the same sort and
𝜎′ and 𝜎′′ are of the same sort. Let 𝑠 be the substitution

𝑠𝜂 =

{︃
𝜏, if 𝜂 = 𝜉,

p𝜂q, otherwise.

Then the system {p𝜉q ∼ 𝜏, 𝜎′ ∼ 𝜎′′} is reducible to the
system {p𝜉q ∼ 𝜏, 𝜎′[𝑠][𝑋] ∼ 𝜎′′[𝑠][𝑋]} (resp., to the system
{p𝜉q ∼ 𝜏, 𝜎′J𝑠KJ𝑋K ∼ 𝜎′′J𝑠KJ𝑋K}).

Proof. (terms) First, let us notice that if 𝑣 : 𝑋 → |M| is an arbitrary
solution of the identity p𝜉q ∼ 𝜏 in a structure M, then from (D1) it follows
that 𝑣 = [𝑣]M ∘ 𝑠, hence from (11T) we obtain 𝜎[𝑣]M = 𝜎[𝑠][𝑋][𝑣]M for any
termoidal expression 𝜎.

In particular, 𝜎′[𝑣]M = 𝜎′[𝑠][𝑋][𝑣]M and 𝜎′′[𝑣]M = 𝜎′′[𝑠][𝑋][𝑣]M, so any
solution of {p𝜉q ∼ 𝜏, 𝜎′ ∼ 𝜎′′} is a solution of {p𝜉q ∼ 𝜏, 𝜎′[𝑠][𝑋] ∼ 𝜎′′[𝑠][𝑋]},
and vice versa.

(termoids) First, let us notice that if 𝑣 : 𝑋 → |M| is an arbitrary
solution of the identity p𝜉q ∼ 𝜏 in a structure M, then from (D1) it follows
𝑣 ≪ J𝑣KPM ∘ 𝑠, hence from (14T1) we obtain 𝜎J𝑣KPM ⊆ 𝜎J𝑠KJ𝑋KJ𝑣KPM for
any termoidal expression 𝜎.

In particular, if 𝑣 is a solution of {p𝜉q ∼ 𝜏, 𝜎′ ∼ 𝜎′′},
then 𝜎′J𝑣KPM ⊆ 𝜎′J𝑠KJ𝑋KJ𝑣KPM and 𝜎′′J𝑣KPM ⊆ 𝜎′′J𝑠KJ𝑋KJ𝑣KPM, so
𝜎′J𝑣KPM ∩ 𝜎′′J𝑣KPM ̸= ∅ implies 𝜎′J𝑠KJ𝑋KJ𝑣KPM ∩ 𝜎′′J𝑠KJ𝑋KJ𝑣KPM ̸= ∅,
hence 𝑣 is a solution of 𝜎′J𝑠KJ𝑋K ∼ 𝜎′′J𝑠KJ𝑋K.

On the other hand, if 𝑣 is a solution of {p𝜉q ∼ 𝜏, 𝜎′J𝑠KJ𝑋K ∼ 𝜎′′J𝑠KJ𝑋K} in
an algebra A which is a structure of terms, then 𝜎′J𝑣KPA ⊆ 𝜎′J𝑠KJ𝑋KJ𝑣KPA

and 𝜎′′J𝑣KPA ⊆ 𝜎′′J𝑠KJ𝑋KJ𝑣KPA, hence 𝜎′J𝑣KPA = 𝜎′J𝑠KJ𝑋KJ𝑣KPA and
𝜎′′J𝑣KPA = 𝜎′′J𝑠KJ𝑋KJ𝑣KPA, so

𝜎′J𝑣KPA ∩ 𝜎′′J𝑣KPA = 𝜎′J𝑠KJ𝑋KJ𝑣KPA ∩ 𝜎′′J𝑠KJ𝑋KJ𝑣KPA ̸= ∅,

hence 𝑣 is a solution of 𝜎′ ∼ 𝜎′′. �

F)Definition. A partial function f is called termal (termoidal) reduc-
tor , if

(1) The argument of f is a termal (termoidal) identity. The value of f
is a finite set of termal (termoidal) identities.

(2) If f(𝜏 ′ ∼ 𝜏 ′′) is defined, then the system {𝜏 ′ ∼ 𝜏 ′′} is termally equiv-
alent to the system f(𝜏 ′ ∼ 𝜏 ′′).

97



Algebraic Theory of Termoids

(3) If f(𝜏 ′ ∼ 𝜏 ′′) is defined and some of its elements depends on 𝜉, then
𝜏 ′ ∼ 𝜏 ′′ also depends on 𝜉.

(4) If the identity 𝜏 ′ ∼ 𝜏 ′′ is not solving and f(𝜏 ′ ∼ 𝜏 ′′) is not defined,
then this identity is termally inconsistent.

(5) There exists no infinite sequence 𝜏1 ∼ 𝜎1, 𝜏2 ∼ 𝜎2, 𝜏3 ∼ 𝜎3, . . . , such
that 𝜏𝑖+1 ∼ 𝜎𝑖+1 ∈ f(𝜏𝑖 ∼ 𝜎𝑖) for any 𝑖.

G)Definition. A partial function f is called strong reductor , if
f is termoidal reductor and whenever f(𝜏 ′ ∼ 𝜏 ′′) is defined, the system
{𝜏 ′ ∼ 𝜏 ′′} is reducible to the system f(𝜏 ′ ∼ 𝜏 ′′).53

H) Given a reductor f, it is possible to define two special transformations
of a system over a Sort-indexed set 𝑋. We are going to call them special
solving transformations .

First special solving transformation. If the system contains at least
one identity for which f is defined, then replace simultaneously all such
identities 𝜏 ′ ∼ 𝜏 ′′ in the system with the identities belonging to f(𝜏 ′ ∼ 𝜏 ′′).

Second special solving transformation. If the system contains a
solving identity p𝜉q ∼ 𝜏 which, however, is not solving for the system, let
𝑠 be the substitution

𝑠𝜂 =

{︃
𝜏, if 𝜂 = 𝜉,

p𝜂q, otherwise.

We replace each identity 𝜏 ′ ∼ 𝜏 ′′ of the system (except p𝜉q ∼ 𝜏) with the
identity 𝜏 ′[𝑠][𝑋] ∼ 𝜏 ′′[𝑠][𝑋] (in the termal case) or 𝜏 ′J𝑠KJ𝑋K ∼ 𝜏 ′′J𝑠KJ𝑋K (in
the termoidal case).

I)Proposition. If we apply a special solving transformation to a sys-
tem, then this system is termally equivalent to the new one. In addition,
if the reductor is a strong reductor, then the original system is reducible to
the new one.

Proof. If we apply the first special solving transformation to a system,
then we are replacing some identities 𝜏 ′ ∼ 𝜏 ′′ with all identities belonging
to f(𝜏 ′ ∼ 𝜏 ′′). According to the definition of a reductor (F2), the system
{𝜏 ′ ∼ 𝜏 ′′} is termally equivalent to f(𝜏 ′ ∼ 𝜏 ′′), whence the original system
is termally equivalent to the new system. In addition, if the reductor is
a strong one, then according to (G) the system {𝜏 ′ ∼ 𝜏 ′′} is reducible to
the system f(𝜏 ′ ∼ 𝜏 ′′), whence the original system is reducible to the new
system.

53Compare this with (F2).
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If we apply the second special solving transformation, then from (E)
it follows that the original system is reducible to the new system (and in
particular, termally equivalent). �

J)Proposition. Given a reductor, if no special solving transformation
can be applied to a system, then either the system is solved, or the system
contains a termally inconsistent identity.

Proof. If the system contains at least one identity which is not solving,
then this identity is termally inconsistent, because otherwise we would be
able to apply the first special solving transformation on this identity — see
(F4) and (H).

Suppose all identities in the system are solving. Then all these identities
must be solving for the system, because otherwise we would be able to apply
the second special solving transformation. According to definition (A4), the
system is solved. �

K)Proposition. If we apply a special solving transformation to a
system which is solved with respect to 𝜉, then the resulting system is solved
with respect to 𝜉 as well.

Proof. Suppose that Θ is solved with respect to 𝜉 and Θ contains an
identity of the form p𝜉q ∼ 𝜏 . Then none of the other identities in Θ may
depend on 𝜉.

According to (F3), if we apply the first special solving transformation
to Θ, then we replace some identities 𝜏 ′ ∼ 𝜏 ′′ with identities 𝜎′ ∼ 𝜎′′ having
the property that if 𝜎′ ∼ 𝜎′′ depends on some 𝜂, then 𝜏 ′ ∼ 𝜏 ′′ depends on 𝜂
as well. Consequently, we replace 𝜏 ′ ∼ 𝜏 ′′ with identities, of which none
depends on 𝜉. Moreover, the identity p𝜉q ∼ 𝜏 remains in the system after
the transformation, so the system remains solved with respect to 𝜉.

If we apply the second special solving transformation to Θ, then Θ con-
tains an identity of the form p𝜂q ∼ 𝜎 which is solving but is not solving for Θ
and we apply to each identity in Θ (other than p𝜂q ∼ 𝜎) the substitution

𝑠𝜁 =

{︃
𝜎, if 𝜁 = 𝜂,

p𝜁q, otherwise.

Since 𝜎 does not depend on 𝜉, if we apply 𝑠 to a termal (termoidal) expres-
sion which does not depend on 𝜉 we obtain a termal (termoidal) expression
which does not depend on 𝜉 as well. By the definition of solved system (A4),
p𝜉q ∼ 𝜏 is the only one identity of Θ depending on 𝜉, so 𝜉 ̸= 𝜂, hence if
we apply 𝑠 to the identity p𝜉q ∼ 𝜏 , p𝜉q remains p𝜉q and 𝜏 is replaced
with termal (termoidal) expression which does not depend on 𝜉. On the
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other hand, if we apply 𝑠 to some other identity of Θ (let that be 𝜏 ′ ∼ 𝜏 ′′),
since 𝜏 ′ and 𝜏 ′′ do not depend on 𝜉, the resulting identity will not depend
on 𝜉 either. According to the definition of solved system (A4), the system
remains solved with respect to 𝜉. �

L)Proposition. Given a system Θ, if we apply to it the second special
solving transformation about the identity p𝜉q ∼ 𝜏 , then the resulting system
will be solved with respect to 𝜉.

Proof. Let Θ be a system over the Sort-indexed set 𝑋. Let 𝑠 be the
substitution

𝑠𝜂 =

{︃
𝜏, if 𝜂 = 𝜉,

p𝜂q, otherwise.

To apply the second special solving transformation to Θ about p𝜉q ∼ 𝜏
means to apply the substitution 𝑠 to each identity 𝜏 ′ ∼ 𝜏 ′′ of the system
except to p𝜉q ∼ 𝜏 . Since 𝜏 does not depend on 𝜉 (otherwise the identity
p𝜉q ∼ 𝜏 would not be solving and we would not be permitted to apply
the second solving transformation), the substitution 𝑠 maps to termal (ter-
moidal) expressions which do not depend on 𝜉. Consequently, after we
apply the second special solving transformation, the resulting system con-
tains a solving identity p𝜉q ∼ 𝜏 , such that no other identity of the system
depends on 𝜉. According to definition (A4), the resulting system is solved
with respect to 𝜉. �

M)Proposition. Special solving transformations can not be applied to
a finitary system infinitely many times.

Proof. According to (L), if we apply the second special solving trans-
formation about an identity p𝜉q ∼ 𝜏 , the resulting system is going to be
solved with respect to 𝜉. On the other hand, according to (K), if a system
is solved with respect to some 𝜉, then it remains solved to this 𝜉 no matter
what special special solving transformation we apply. These two facts to-
gether with the finitarity of the system imply that it is impossible to apply
the second special solving transformation infinitely many times.

It remains to prove that if we do not apply the second special solving
transformation, then it will be impossible to apply the first special solving
transformation infinitely many times. Each time we apply the first special
solving transformation we are replacing identities of the form 𝜏 ′ ∼ 𝜏 ′′ with
the elements of f(𝜏 ′ ∼ 𝜏 ′′). According to the definition of reductor (F1), we
are replacing the identity 𝜏 ′ ∼ 𝜏 ′′ with finitely many identities. In addi-
tion, according to the same definition (F5), there exists no infinite sequence
𝜏 ′1 ∼ 𝜏 ′′1 , 𝜏

′
2 ∼ 𝜏 ′′2 , 𝜏

′
3 ∼ 𝜏 ′′3 , . . . , such that 𝜏 ′𝑖+1 ∼ 𝜏 ′′𝑖+1 ∈ f(𝜏 ′𝑖 ∼ 𝜏 ′′𝑖 ) for all 𝑖.
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Consequently, the König’s lemma implies that the first special solving trans-
formation can not be applied infinitely many times. �

N)Definition. (1)Termal equaliser for 𝑋 is a function e, such that
for any finitary termal system Θ over 𝑋, e(Θ) is a finite set of termal
substitutions from 𝑋 to [𝑋].

(2)Termoidal equaliser for 𝑋 is a function e, such that for any finitary
termoidal system Θ over 𝑋, e(Θ) is a finite set of termoidal substitutions
from 𝑋 to J𝑋K.

O)Definition. Given a reductor f, let ef be an equaliser, such that
for any finitary system Θ, ef(Θ) be a set of substitutions obtained in the
following way.54

Let Θ1 = Θ. Consider the following nondeterministic procedure: we
apply repeatedly the first and the second special solving transformation
(in arbitrary order) in order to produce systems Θ2,Θ3,Θ4, . . . . On any
step, if Θ𝑖 contains an identity 𝜏 ′ ∼ 𝜏 ′′ which is not solving and for which
f(𝜏 ′ ∼ 𝜏 ′′) is undefined, then stop — we do not produce Θ𝑖+1. If it becomes
impossible to apply any special solving transformation on some step, then
we stop as well.

According to (I), Θ1 is termally equivalent to Θ2, Θ2 is termally equiv-
alent to Θ3, and so on, hence Θ1 is termally equivalent to Θ𝑖 for all 𝑖. In
addition, if the reductor is a strong one, then Θ1 is reducible to Θ2, Θ2 is
reducible to Θ3, and so on, hence Θ1 is reducible to Θ𝑖 for all 𝑖.

Suppose we reach Θ𝑖, such that Θ𝑖 contains an identity 𝜏 ′ ∼ 𝜏 ′′ which is
not solving and for which f(𝜏 ′ ∼ 𝜏 ′′) is undefined. In this case (F4) implies
that 𝜏 ′ ∼ 𝜏 ′′ is termally inconsistent, so Θ𝑖 is termally inconsistent, hence
Θ1 is termally inconsistent. Let ef(Θ) = ∅, in this case.

Otherwise, that is if we never reach such Θ𝑖, then according to (M), after
finitely many steps we will obtain a system Θ𝑛, such that no special solving
transformation can be applied to Θ𝑛. From (J) it follows that the system Θ𝑛

is solved, hence from (D) we obtain a substitution 𝑠, such that all solutions
of Θ𝑛 are instances of 𝑠 and all instances of 𝑠 in an algebra which is a
structure of terms are solutions of Θ𝑛. But Θ1 is termally equivalent to Θ𝑛,
hence Θ1 and Θ𝑛 have same solutions in algebras which are structures of
terms, so the solutions of Θ1 in any algebra which is a system of terms are
exactly the instances of 𝑠. In addition, if the reductor is a strong one, then
Θ1 is reducible to Θ𝑛, hence all solutions of Θ1 are solutions of Θ𝑛, so all
solutions of Θ1 are instances of 𝑠. Let ef(Θ) be some finite non-empty set of

54Notice that that this set is not determined uniquely. Therefore, in some cases we
may need to use some weak form of the axiom of choice in order to prove that ef exists.
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substitutions 𝑠 obtained in this way (not necessarily all such substitutions,
only one will suffice).

P)Definition. (1) An equaliser e is termally sound , if for any system Θ,
any instance of an element of e(Θ) in an algebra of terms is a solution of Θ
in this algebra.

(2) An equaliser e is termally complete, if for any system Θ, any solution
of Θ in an algebra of terms is an instance of all elements of e(Θ).

(3) An equaliser e is near-complete, if for any termally consistent sys-
tem Θ, any solution of Θ (in any structure) is an instance of all elements
of e(Θ).

Q) The reasoning in (O) show that for any reductor f, the equaliser ef
is both termally sound and termally complete. In addition, if f is a strong
reductor, then ef is near-complete.

R)Definition. (1)Given a set ∆ of termal expressions over the Sort-
indexed set 𝑋, the termal substitution 𝑠 : 𝑋 → [𝑋] is unifier of ∆ if for
any 𝜏 ′, 𝜏 ′′ ∈ ∆, 𝜏 ′[𝑠][𝑋] = 𝜏 ′′[𝑠][𝑋].

(2)Given a set ∆ of termal expressions over the Sort-indexed set 𝑋, the
termal substitution 𝑠 : 𝑋 → [𝑋] is most general unifier of ∆, if 𝑠 is unifier
of ∆ and for any unifier 𝑠′ of ∆, there exists a substitution 𝑠′′ : 𝑋 → [𝑋],
such that 𝑠′𝜉 = (𝑠𝜉)[𝑠′′][𝑋] for any 𝜉 ∈ 𝑋 (or, equivalently, 𝑠′ = [𝑠′′][𝑋] ∘ 𝑠).

S) It is a well known fact that if a finite set of terms has an unifier,
then it has a most general unifier. The most general unifier is unique up
to renaming of the variables/names. Let mgu be equaliser, such that for
any a termal system Θ of the form {𝜏 ∼ 𝜎1, . . . , 𝜏 ∼ 𝜎𝑛}, mgu(Θ) is one-
element set containing some most general unifier of the set {𝜏, 𝜎1, . . . , 𝜎𝑛},
if such unifier exists, or the empty set, if such unifier does not exist. If 𝑠 is
some most general unifier of the set {𝜏, 𝜎1, . . . , 𝜎𝑛}, then 𝑠 is variant of the
element of mgu(Θ).

T)Definition. Given a termoidal substitution 𝑠 : 𝑋 → J𝑋K, define a
termal substitution 𝑠 : 𝑋 → [𝑋], such that 𝑠𝜉 = (𝑠𝜉)Jnam𝑋K[𝑋] for any 𝜉.
In other words, 𝑠 = Jnam𝑋K[𝑋] ∘ 𝑠.

U)Proposition. Let e be a termoidal equaliser for 𝑋,
Θ be the system {𝜏 ∼ 𝜎1, . . . , 𝜏 ∼ 𝜎𝑛} and ∆ be the system
{𝜏Jnam𝑋K[𝑋], 𝜎1Jnam𝑋K[𝑋], . . . , 𝜎𝑛Jnam𝑋K[𝑋]}. Then:

(1) If e is termally sound and 𝑠 ∈ e(Θ), then 𝑠 is unifier of ∆.
(2) If e is both termally sound and termally complete and ∆ has an

unifier, then there exists some 𝑠 ∈ e(Θ), such that 𝑠 is most general unifier
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of ∆.

Proof. (1) According to the definition of “termally sound equaliser” (P1),
any instance of 𝑠 in a structure of terms is a solution of Θ. Notice that
𝑠 = Jnam𝑋K[𝑋] ∘ 𝑠 is an instance of 𝑠 in [𝑋], so 𝑠 has to be a solution
of Θ in [𝑋], hence 𝜏J𝑠K[𝑋] = 𝜎𝑖J𝑠K[𝑋] for any 𝑖 ∈ {1, . . . , 𝑛}. According
to (16M), 𝜏J𝑠K[𝑋] = (𝜏Jnam𝑋K[𝑋])[𝑠][𝑋] and 𝜎𝑖J𝑠K[𝑋] = (𝜎𝑖Jnam𝑋K[𝑋])[𝑠][𝑋],
so (𝜏Jnam𝑋K[𝑋])[𝑠][𝑋] = (𝜎𝑖Jnam𝑋K[𝑋])[𝑠][𝑋]. Consequently, 𝑠 is an unifier
of ∆.

(2) Suppose that 𝑠1 : 𝑋 → [𝑋] is most general unifier of ∆. Then
(𝜏Jnam𝑋K[𝑋])[𝑠1]

[𝑋] = (𝜎𝑖Jnam𝑋K[𝑋])[𝑠1]
[𝑋] for any 𝑖. According to (16N),

(𝜏Jnam𝑋K[𝑋])[𝑠1]
[𝑋] = 𝜏J𝑠1K[𝑋] and (𝜎𝑖Jnam𝑋K[𝑋])[𝑠1]

[𝑋] = 𝜎𝑖J𝑠1K[𝑋], so
𝜏J𝑠1K[𝑋] = 𝜎𝑖J𝑠1K[𝑋], hence 𝑠1 is a solution of Θ in [𝑋]. But e is ter-
mally complete, hence there exists 𝑠 ∈ e(Θ) and a Sort-indexed function
𝑠2 : 𝑋 → [𝑋], such that 𝑠1 ≪ J𝑠2KP [𝑋] ∘ 𝑠, which implies 𝑠1 = J𝑠2K[𝑋] ∘𝑠. Ac-
cording to (16N), J𝑠2K[𝑋] = [𝑠2]

[𝑋]∘Jnam𝑋K[𝑋], so 𝑠1 = [𝑠2]
[𝑋]∘Jnam𝑋K[𝑋]∘𝑠 =

[𝑠2]
[𝑋] ∘ 𝑠.
Suppose that 𝑠3 is some arbitrary unifier of ∆. Since 𝑠1 is most general

unifier, there exists a termal substitution 𝑠4, such that 𝑠3 = [𝑠4]
[𝑋] ∘ 𝑠1, so

𝑠3 = [𝑠4]
[𝑋] ∘ [𝑠2]

[𝑋] ∘ 𝑠, hence, according to (11T), 𝑠3 = [𝑠
[𝑋]
4

∘ 𝑠2]
[𝑋] ∘ 𝑠. �

V)Proposition. Let 𝜏 and 𝜎 be termal expressions over the Sort-
indexed set 𝑋 such that 𝜏 and 𝜎 have disjoint dependency. Let 𝜎′ be a
variant of 𝜎, such that 𝜎′ has disjoint dependency with 𝜏 . Let the Sort-
indexed functions 𝑓, 𝑔 : 𝑋 → 𝑋 be such that 𝜎′ = 𝜎[𝑓 ], 𝜎 = 𝜎′[𝑔] and
𝑓𝜉 = 𝜉 and 𝑔𝜉 = 𝜉 whenever the name p𝜉q occurs in 𝜏 .

If 𝑠 : 𝑋 → [𝑋] is a most general unifier of 𝜏 and 𝜎, then 𝑠 ∘ 𝑔 is a most
general unifier of 𝜏 and 𝜎′.

Proof. Since 𝑓𝜉 = 𝜉 and 𝑔𝜉 = 𝜉 whenever the name p𝜉q occurs in 𝜏 ,
𝜏 [𝑓 ] = 𝜏 and 𝜏 [𝑔] = 𝜏 . Consequently, 𝜏 [𝑠 ∘ 𝑔][𝑋] = 𝜏 [𝑔][𝑠][𝑋] = 𝜏 [𝑠][𝑋] =
𝜎[𝑠][𝑋] = 𝜎′[𝑔][𝑠][𝑋] = 𝜎′[𝑠 ∘ 𝑔][𝑋], so 𝑠 ∘ 𝑔 is an unifier of 𝜏 and 𝜎′.

Suppose that 𝑠′ is an unifier of 𝜏 and 𝜎′. Then 𝜏 [𝑠′ ∘ 𝑓 ][𝑋] = 𝜏 [𝑓 ][𝑠′][𝑋] =
𝜏 [𝑠′][𝑋] = 𝜎′[𝑠′][𝑋] = 𝜎[𝑓 ][𝑠′][𝑋] = 𝜎[𝑠′ ∘𝑓 ][𝑋], so 𝑠′ ∘𝑓 is an unifier of 𝜏 and 𝜎.
But 𝑠 is a most general unifier of these termal expressions, so there exists
a substitution 𝑠′′ : 𝑋 → [𝑋], such that 𝑠′ ∘ 𝑓 = ([𝑠′′][𝑋]) ∘ 𝑠. Without loss of
generality we may assume that 𝑓 ∘ 𝑔 = id𝑋 , so 𝑠′ = 𝑠′ ∘ 𝑓 ∘ 𝑔 = ([𝑠′′][𝑋]) ∘ 𝑠 ∘ 𝑔.
Consequently, 𝑠 ∘ 𝑔 is a most general unifier of 𝜏 and 𝜎′. �

W)Definition. We say that some property is true for almost any
normal algebra if there exists a finite set of termally inconsistent systems,
such that the property is true for any normal algebra A, such that none of

103



Algebraic Theory of Termoids

the systems belonging to this set has a solution in A.

X)Lemma. If a property is true for almost any normal algebra and
another property also is true for almost any normal algebra, then the con-
junction of both properties is true for almost any normal algebra.

Proof. Let Γ′ be a set, such that the the first property is true for any
algebra A, such that none of the systems belonging to Γ′ has a solution in A.
Let Γ′′ be similarly defined for the second property. Then the conjunction
of both properties will be true for any algebra A, such that none of the
systems belonging to Γ′ ∪ Γ′′ has a solution in A. Notice also that any
system belonging to Γ′ ∪ Γ′′ is termally inconsistent. �
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§19. ABSTRACT DEDUCTION

A)Definition. Given a set 𝐹 , the relation Γ ⊢ 𝜙, where Γ and 𝜙 are
respectively a subset and an element of 𝐹 , is a deductive relation over 𝐹 , if
the following two conditions hold:

(1) If Γ ⊆ 𝐹 and 𝜙 ∈ Γ, then Γ ⊢ 𝜙. (reflexivity)
(2) If Γ ⊢ 𝜙 and ∆ ⊢ 𝜓 for all 𝜓 ∈ Γ, then ∆ ⊢ 𝜙. (transitivity)

Whenever ⊢ is a deductive relation, the usual notational convention will
be used: we will write Γ, 𝜙 ⊢ 𝜓 instead of Γ∪{𝜙} ⊢ 𝜓 and 𝜙, 𝜓 ⊢ 𝜒 instead
of {𝜙, 𝜓} ⊢ 𝜒, etc.

B)Proposition (monotonicity). If ⊢ is a deductive relation over 𝐹 ,
then Γ ⊢ 𝜙 and Γ ⊆ ∆ ⊆ 𝐹 imply ∆ ⊢ 𝜙.

Proof. By reflexivity, ∆ ⊢ 𝜓 for any 𝜓 ∈ Γ. By transitivity, this im-
plies ∆ ⊢ 𝜙. �

Deductive relations can be defined “by minimality”. This is formalised
by the following proposition.

C)Proposition. Suppose Φ is a set and p is a binary relation con-
necting a subset of Φ with an element of Φ. Then there exists a minimal
deductive relation ⊢, such that p(Γ, 𝜙) implies Γ ⊢ 𝜙.

Proof. Obviously an intersection of deductive relations is a deductive
relation. Moreover, an intersection of relations extending p is a relation
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extending p. Consequently, the intersection of all deductive relations over Φ
extending p is the minimal deductive relation extending p. �

As usually, to every “definition by minimality” there is a corresponding
induction principle. For deductive relations, however, in most cases we can
use the following simpler induction principle:

D)Proposition (simple inductive principle). Given subsets Γ
and ∆ of Φ, let p be a binary relation connecting a subset of Φ with an
element of Φ and ⊢ be the minimal deductive relation extending p. Suppose
that:

1. Γ ⊆ ∆ and
2. if Θ ⊆ ∆ and p(Θ, 𝜙), then 𝜙 ∈ ∆ (for any Θ and 𝜙).

Then Γ ⊢ 𝜙 implies 𝜙 ∈ ∆ for any 𝜙.

Proof. Let q(Θ, 𝜙) be the relation

Θ ⊢ 𝜙 and (Θ is not a subset of ∆ or 𝜙 ∈ ∆)

We are going to prove that q is a deductive relation extending p. This
will imply that q extends ⊢, since ⊢ is the minimal deductive relation
extending p. Therefore, from Γ ⊢ 𝜙 it will follow q(Γ, 𝜙), so Γ is not a
subset of ∆ or 𝜙 ∈ ∆. But Γ is a subset of ∆, so 𝜙 ∈ ∆.

Condition (A1) is obvious: if 𝜙 ∈ Θ, then on one hand, Θ ⊢ 𝜙 (because
⊢ is deductive) and, on the other hand, Θ is not a subset of ∆ or 𝜙 ∈ Θ ⊆ ∆.

In order to prove (A2), suppose that q(Θ, 𝜙) and for any 𝜓 ∈ Θ, q(Ξ, 𝜓).
Since q implies ⊢, Θ ⊢ 𝜙 and for any 𝜓 ∈ Θ, Ξ ⊢ 𝜓. But ⊢ is deductive,
so Ξ ⊢ 𝜙. If Ξ is not a subset of ∆, then we obtain q(Ξ, 𝜙). Otherwise, let
Ξ ⊆ ∆. Since for any 𝜓 ∈ Θ, q(Ξ, 𝜓), we obtain that for any 𝜓 ∈ Θ, 𝜓 ∈ ∆.
Therefore, Θ ⊆ ∆, so from q(Θ, 𝜙) we obtain 𝜙 ∈ ∆, whence q(Ξ, 𝜙).

It remains to prove that q extends p. Suppose that p(Θ, 𝜙) for some Θ
and 𝜙. According to condition 2 of the Proposition, Θ is not a subset of ∆
or 𝜙 ∈ ∆. On the other hand p implies ⊢. Consequently, q(Θ, 𝜙) is true. �

E)We are going to call the condition ∆′ ⊆ ∆ from (D) “induction hy-
pothesis”.

F)Definition. A deductive relation ⊢ is finitary if Γ ⊢ 𝜙 implies that
there exists a finite subset ∆ of Γ, such that ∆ ⊢ 𝜙.

G)Proposition. Given a set Φ, let p(Γ, 𝜙) be a binary relation con-
necting a subset of Φ with an element of Φ, such that whenever p(Γ, 𝜙) is
true, there exists a finite subset ∆ of Γ, such that p(∆, 𝜙) is true. Then
the minimal deductive relation extending p is finitary.
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Proof. Let ⊢ be the minimal deductive relation extending p and let
Γ ⊢′ 𝛿 be true if and only if ∆ ⊢ 𝛿 for some finite subset ∆ of Γ. We are
going to prove that Γ ⊢′ 𝜙 is a deductive relation extending p. Since Γ ⊢ 𝜙 is
the minimal deductive relation extending p, we obtain the required.

If p(Γ, 𝜙) is true, then p(∆, 𝜙) is true for some finite subset ∆ of Γ,
hence ∆ ⊢ 𝜙, so Γ ⊢′ 𝜙. Therefore, Γ ⊢′ 𝜙 extends p(Γ, 𝜙).

If 𝜙 ∈ Γ, then {𝜙} ⊆ Γ, so {𝜙} ⊢ 𝜙 implies Γ ⊢′ 𝜙. Therefore,
Γ ⊢′ 𝜙 satisfies (A1).

Suppose that Γ ⊢′ 𝜙 and for any 𝜓 ∈ Γ, ∆ ⊢′ 𝜓. Then Γ′ ⊢ 𝜙 for some
finite subset Γ′ of Γ and for any 𝜓 ∈ Γ there exists a finite subset ∆𝜓 of ∆,
such that ∆𝜓 ⊢ 𝜓. Let ∆′ =

⋃︀
𝜓∈Γ′ ∆𝜓. The set ∆′ is a finite union of finite

sets, hence it is finite. Moreover, from (B) it follows ∆′ ⊢ 𝜓 for any 𝜓 ∈ Γ′.
By transitivity, ∆′ ⊢ 𝜙, hence ∆ ⊢′ 𝜙. Therefore, Γ ⊢′ 𝜙 satisfies (A2). �

H)Lemma. Any injective monotone function from a linearly ordered
set to a partially ordered set is an order-embedding.

Proof. Let f : 𝑋 → 𝑌 be a monotone function from the linearly ordered
set 𝑋 to the partially ordered set 𝑌 . This means that 𝜂 ≤ 𝜉 implies f𝜂 ≤ f𝜉
for any 𝜂, 𝜉 ∈ 𝑋. We have to prove that f𝜂 ≤ f𝜉 implies 𝜂 ≤ 𝜉. But if
𝜂 ≤ 𝜉 were not true, then 𝜉 ≤ 𝜂 because the order on 𝑋 is linear. Then the
monotonicity would imply f𝜉 ≤ f𝜂, so by antisymmetry we would obtain
f𝜂 = f𝜉 which would contradict the injectivity of f. �

I)Lemma (Bourbaki-Witt). Let Θ = ⟨Θ,⪯⟩ be a partially ordered
set, such that every subset of Θ which is well-ordered by ⪯ has an up-
per bound.55 Let f : Θ → Θ be an inflationary function, i.e. a ⪯ fa for
any a ∈ Θ. Then the function f has a fixed point, i.e. there is a ∈ Θ, such
that fa = a.

Proof. Let a ≺ b means “a ⪯ b and a ̸= b”.
Suppose that f has no fixed points, i.e. a ≺ fa for all a ∈ Θ. By

transfinite recursion we are going to define an injective monotone map g
from the class of all ordinals to the set Θ, which is clearly a contradiction.

The set Θ is non-empty because the empty set is a well-ordered subset
of Θ, so it has to have some upper bound. Define g0 to be an arbitrary
element of Θ. Let g(𝜉 + 1) = f(g𝜉). And if 𝜉 is a limit ordinal, then define
g𝜉 to be some upper bound of {g𝜂 : 𝜂 < 𝜉} if such upper bound exists56 or

55In its usual formulation, the lemma of Bourbaki-Witt is weakened by the require-
ment that any chain (not necessarily a well-ordered one) has a least upper bound.

56We have to use the axiom of choice here. In its usual formulation, the Lemma of
Bourbaki-Witt requires the existence of least upper bounds. Then we can define g𝜉 to
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g𝜉 = g0, otherwise.
In order to prove that 𝜂 < 𝜉 implies g𝜂 ≺ g𝜉 we will use transfinite

induction on 𝜉.
If 𝜉 is a successor ordinal, then 𝜉 = 𝜉′ + 1 for some 𝜉′, so g𝜉′ ≺ f(g𝜉′) =

g(𝜉′ + 1) = g𝜉, hence if 𝜂 < 𝜉, then 𝜂 ≤ 𝜉′, so by induction hypothesis
g𝜂 ⪯ g𝜉′, hence g𝜂 ≺ g𝜉.

On the other hand, if 𝜉 is a limit ordinal, then by induction hypothesis
𝜂′ < 𝜂′′ implies g𝜂′ ≺ g𝜂′′ for any ordinals 𝜂′ and 𝜂′′, such that 𝜂′′ < 𝜉. This
and (H) imply that the set {g𝜂 : 𝜂 < 𝜉} is well-ordered by ≺, hence this set
has an upper bound, so by definition, g𝜉 is some upper bound of this set,
hence g𝜂 ⪯ g𝜉 for any 𝜂, so g𝜂 ≺ g(𝜂 + 1) implies g𝜂 ≺ g𝜉 for any 𝜂.57

�

The following theorem can be used to prove the completeness of deduc-
tive relations.

J)Theorem. Suppose we are given a set, whose elements are called
sentences and a set whose elements are called conditions. In addition, let
≺ be an irreflexive partial order on the conditions, a |= 𝜙 be a partial binary
relation58 connecting a condition a with a sentence 𝜙 and “a forces Γ” be a
binary relation connecting a condition a with a set Γ of sentences.

Suppose the following statements are true:
(1) If a forces a set Γ then a forces all subsets of Γ.
(2) If a forces {𝜙} then a |= 𝜙 is either true or undefined.
(3) If a forces a set Γ and a |= 𝜙 is undefined for at least one sentence 𝜙,

then there exists a condition b, such that a ≺ b and b forces Γ.
(4) Any non-empty well-ordered by ≺ set of conditions Λ has an up-

per bound a, such that a forces any set of sentences which is forced by all
elements of Λ.

Then, for any set of sentences Γ, which is forced by by at least one
condition, there exists a condition b, such that b |= 𝜙 for all 𝜙 ∈ Γ.

Proof. Take an arbitrary set of sentences Γ, which is forced by at least
one condition. Define the following set of conditions:

Θ = {a : a forces Γ}

As a set of conditions, the set Θ is partially ordered by ≺. It is non-empty,
because Γ is forced by at least one condition. Let Λ be an arbitrary subset
be the least upper bound of {g𝜂 : 𝜂 < 𝜉} and the Lemma can be proved without the
axiom of choice.

57 In fact we we have proved somewhat stronger proposition, namely that for any
a ∈ Θ the function f has a fixed point which is comparable to a, i.e. there is b ∈ Θ, such
that fb = b and a ⪯ b. In order to achieve this, simply define g0 = a.

58This means that a |= 𝜙 is either true, or false, or undefined.
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of Θ, which is well-ordered by ≺. If Λ = ∅, then any element of Θ is an
upper bound of Λ. If Λ ̸= ∅, then (4 implies Λ has an upper bound a, such
that a forces any set which is forced by all elements of Λ. Since Λ ⊆ Θ, all
elements of Λ force Γ, so a forces Γ, hence a ∈ Θ. Thus, we have proved that
any subset of Θ which is well-ordered by ≺ has an upper bound belonging
to Θ.

Now we are going to define an inflationary function f : Θ → Θ. Define
fa = a, if a |= 𝜙 is defined for all sentences 𝜙. Otherwise, a |= 𝜙 is undefined
for at least one sentence 𝜙, so (3 and the axiom of choice permit us to define
fa in a way, such that a ≺ fa.

From (I) it follows that the function f has some fixed point b. Accord-
ing to the definition of f, this is possible only if b |= 𝜙 is defined for all
sentences 𝜙.

Let 𝜙 be an arbitrary element of Γ. From b ∈ Θ it follows that b forces Γ,
so (1 implies that b forces {𝜙}, hence (2 implies that b |= 𝜙 is either true
or undefined. But we have already proved that b |= 𝜙 is always defined,
so b |= 𝜙 has to be true. Consequently, b |= 𝜙 is defined and true for all
𝜙 ∈ Γ. �

§20. CLAUSES AND CLAUSOIDS

A)Definition. (1)Literal is an atomic formula or negation of an atomic
formula. Literaloid is an atomic formuloid or negation of an atomic formu-
loid.

(2) The following notation will be used. If 𝜙 is an atomic formula or
atomic formuloid, then 𝜙 = ¬𝜙 and ¬𝜙 = 𝜙. Obviously 𝜆 = 𝜆 for any
literal or literaloid 𝜆.

B)Definition. (1)Clauses over a Sort-indexed set 𝑋 are defined in-
ductively with the following rules: ⊥ is a clause over 𝑋; any literal over 𝑋
is a clause over 𝑋; if 𝜆 is a literal over 𝑋 and 𝛿 is a clause over 𝑋 and
𝛿 ̸= ⊥, then 𝜆 ∨ 𝛿 is a clause over 𝑋.

(2)Clausoids over 𝑋 are defined analogously but with literaloids instead
of literals.

C)Definition. (1) Given an algebra A and a clause 𝛿 over 𝑋, all
clauses of the form 𝛿[𝑣]A, where 𝑣 is an arbitrary Sort-indexed function
from 𝑋 to |A|, are called instances of 𝛿 in A.

(2) Given an algebra A and a clausoid 𝛿 over 𝑋, all clauses belonging
to sets of the form 𝛿J𝑣KPA, where 𝑣 is an arbitrary Sort-indexed function
from 𝑋 to |A|, are called instances of 𝛿 in A. Notice that the instances of
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a clausoid are not clausoids but clauses.

D)Example. (1)Consider the clause p(p𝜉q, p𝜂q), where 𝜉 ∈ 𝑋 and
𝜂 ∈ 𝑋 have suitable sorts. Then the instances of this clause in an algebra A
are all clauses p(p𝛼q, p𝛽q), such that 𝛼 ∈ |A| and 𝛽 ∈ |A| have suitable
sorts.

(2)Consider the clausoid p(pp𝜉qq, pp𝜂qq), where 𝜉 ∈ 𝑋 and 𝜂 ∈ 𝑋 have
suitable sorts. Then the instances of this clausoid in an algebra A are all
clauses p(p𝛼q, p𝛽q), such that 𝛼 ∈ |A| and 𝛽 ∈ |A| have suitable sorts.

E)Corollary. Let the algebra A be a structure of terms and 𝛿 be a
clausoid over 𝑋. Then a clausoid is an instance of 𝛿 in A if and only if it
is equal to 𝛿J𝑣KA for some Sort-indexed function 𝑣 : 𝑋 → |A|.

F)Definition. A clause or literal is relational if it is a relational
formula.

G)Proposition. All instances of a clause or clausoid are relational
clauses.

Proof. By definition (C), the instances of a clause or clausoid belong to
the logical carrier of an algebra. By definition (12C2) all elements of the
logical carrier of algebra are relational formulae. �

H)Proposition. Given a logical structure M, a clause or clausoid 𝛿
over 𝑋 is universally valid in M if and only if all instances of 𝛿 in 𝜕M are
true in M.

Proof. The proof differs depending on whether 𝛿 is a clause or a clausoid.
(clause) By definition (13A2), a clause 𝛿 over 𝑋 is universally valid

in M if and only if for any assignment function 𝑣 : 𝑋 → |M| we have
𝛿[𝑣]M = 1. But clauses are formulae and formulae may not contain names
of logical sort, hence this is so if and only if for any assignment function
𝑣 : 𝑋 → |𝜕M| we have 𝛿[𝑣]M = 1. Because of (13E) this is so if and only if
for any assignment function 𝑣 : 𝑋 → |𝜕M| we have (𝛿[𝑣]𝜕M)

M
= 1. This is

so if and only if all instances of 𝛿 in 𝜕M are true in M.
(clausoid) By definition (14X) a clausoid 𝛿 over 𝑋 is universally valid

in M if and only if for any assignment function 𝑣 : 𝑋 → |M| we have
𝛿J𝑣KPM = {1}. Because of (14I5), this is so if and only if for any as-
signment function 𝑣 : 𝑋∘ → |M|∘ we have 𝛿J𝑣KPM = {1}. Considering
that |M|∘ = |𝜕M|∘, this is so if and only if for any assignment function
𝑣 : 𝑋∘ → |𝜕M|∘ we have 𝛿J𝑣KPM = {1}, if and only if for any assignment
function 𝑣 : 𝑋 → |𝜕M| we have 𝛿J𝑣KPM = {1}. Because of (14W2), this
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is so if and only if for any assignment function 𝑣 : 𝑋 → |𝜕M| we have
{𝜓M : 𝜓 ∈ 𝛿J𝑣KP (𝜕M)} = {1}, if and only if for any assignment function
𝑣 : 𝑋 → |𝜕M| all elements of 𝛿J𝑣KP (𝜕M) are true in M, if and only if all
instances of 𝛿 in 𝜕M are true in M. �

I)Corollary. If a set Γ of clauses (clausoids) is not universally sat-
isfiable in an algebra A, then the set of all instances in A of the elements
of Γ is not satisfiable in A.

Proof. Suppose Γ is not universally satisfiable in A but the set Γ′ of all
instances in A of the elements of Γ is satisfiable in A. Then there exists
a logical structure M, such that 𝜕M = A and the elements of Γ′ are true
in M. This, however, contradicts (H). �

J)Definition. (1)The sequence of a clause (clausoid) is defined induc-
tively: ⟨⟩ is the sequence of ⊥; if 𝜆 is a literal (literaloid), then ⟨𝜆⟩ is the
sequence of 𝜆; if ⟨𝜆1, . . . , 𝜆𝑛⟩ is the sequence of 𝛿, then ⟨𝜆, 𝜆1, . . . , 𝜆𝑛⟩ is the
sequence of 𝜆 ∨ 𝛿.

(2)A literal (literaloid) belongs to a clause (clausoid) if it belongs to its
sequence.

K)Corollary. (1)Any clause over 𝑋 is a formula over 𝑋 and any
clausoid over 𝑋 is a formuloid over 𝑋.

(2)Any clause or clausoid over 𝑋 has unique sequence.
(3)The sequence of a clause over 𝑋 is a sequence of literals over 𝑋.

The sequence of a clausoid over 𝑋 is a sequence of literaloids over 𝑋.
(4)For any finite sequence of literals (literaloids) over 𝑋 there is unique

clause (clausoid) over 𝑋 whose sequence is the given sequence.

Proof. By trivial induction. �

L)Proposition. (1) If 𝛿 is a clause over 𝑋 and ℎ : [𝑋] → [𝑌 ] is
an arbitrary homomorphism, then ℎ𝛿 is a clause over 𝑌 . Moreover, if
⟨𝜆1, . . . , 𝜆𝑛⟩ is the sequence of 𝛿, then ⟨ℎ𝜆1, . . . , ℎ𝜆𝑛⟩ is the sequence of ℎ𝛿.

(2) If 𝛿 is a clausoid over 𝑋 and ℎ : J𝑋K → J𝑌 K is an arbitrary homo-
morphism, then ℎ𝛿 is a clausoid over 𝑌 . Moreover, if ⟨𝜆1, . . . , 𝜆𝑛⟩ is the
sequence of 𝛿, then ⟨ℎ𝜆1, . . . , ℎ𝜆𝑛⟩ is the sequence of ℎ𝛿.

(3) If 𝛿 is a clausoid over 𝑋 and ℎ : J𝑋K → [𝑌 ] is an arbitrary ho-
momorphism, then ℎ𝛿 is a clause over 𝑌 . Moreover, if ⟨𝜆1, . . . , 𝜆𝑛⟩ is the
sequence of 𝛿, then ⟨ℎ𝜆1, . . . , ℎ𝜆𝑛⟩ is the sequence of ℎ𝛿.

(4) If 𝛿 is a clause over 𝑋 and ℎ : [𝑋] → J𝑌 K is an arbitrary homo-
morphism, then ℎ𝛿 is a clausoid over 𝑌 . Moreover, if ⟨𝜆1, . . . , 𝜆𝑛⟩ is the
sequence of 𝛿, then ⟨ℎ𝜆1, . . . , ℎ𝜆𝑛⟩ is the sequence of ℎ𝛿.
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(5) Given an algebra A, if 𝛿 is a clause over 𝑋 and ℎ : [𝑋] → A is an
arbitrary homomorphism, then ℎ𝛿 is a relational clause over |A|. Moreover,
if ⟨𝜆1, . . . , 𝜆𝑛⟩ is the sequence of 𝛿, then ⟨ℎ𝜆1, . . . , ℎ𝜆𝑛⟩ is the sequence of ℎ𝛿.

(6) Given an algebra A, if 𝛿 is a clausoid over 𝑋 and ℎ : J𝑋K → PA
is an arbitrary quasimorphism, then ℎ𝛿 is a set of relational clauses
over |A|. Moreover, if ⟨𝜆1, . . . , 𝜆𝑛⟩ is the sequence of 𝛿, then the se-
quences of the elements of ℎ𝛿 are all sequences ⟨𝜇1, . . . , 𝜇𝑛⟩, such that
𝜇1 ∈ ℎ𝜆1, . . . , 𝜇𝑛 ∈ ℎ𝜆𝑛.

(7) Given an algebra A, if 𝛿 is a clausoid over 𝑋 and ℎ : J𝑋K → A is an
arbitrary homomorphism, then ℎ𝛿 is a relational clause over |A|. Moreover,
if ⟨𝜆1, . . . , 𝜆𝑛⟩ is the sequence of 𝛿, then ⟨ℎ𝜆1, . . . , ℎ𝜆𝑛⟩ is the sequence of ℎ𝛿.

Proof. (1) By simple induction on the length of the sequence. When
the length is 0, the sequence is ⟨⟩, 𝛿 = ⊥ and the proposition is trivial.
When the length is 1, then the sequence is ⟨𝜆⟩ for some literal 𝜆 and 𝛿 = 𝜆.
If 𝜆 = p(𝜏1, . . . , 𝜏𝑛), then ℎ𝛿 = ℎ(p[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩) = p[𝑌 ]⟨ℎ𝜏1, . . . , ℎ𝜏𝑛⟩ =
p(ℎ𝜏1, . . . , ℎ𝜏𝑛). On the other hand, if 𝜆 = ¬p(𝜏1, . . . , 𝜏𝑛), then ℎ𝛿 =
¬(ℎ(p[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩)) = ¬(p[𝑌 ]⟨ℎ𝜏1, . . . , ℎ𝜏𝑛⟩) = ¬p(ℎ𝜏1, . . . , ℎ𝜏𝑛). Con-
sequently, when 𝛿 is a literal, then ℎ𝛿 is a literal, hence ⟨ℎ𝜆⟩ is the se-
quence of ℎ𝛿. Suppose that the proposition is true when the length is 𝑛
and ⟨𝜆1, . . . , 𝜆𝑛⟩ is the sequence of 𝛿. We have already proved that ℎ𝜆 is
literal for any literal 𝜆, so ℎ(𝜆 ∨ 𝛿) = (ℎ𝜆) ∨ (ℎ𝛿) is a clause. Moreover, by
induction hypothesis ⟨ℎ𝜆1, . . . , ℎ𝜆𝑛⟩ is the sequence of ℎ𝛿, so the sequence
of ℎ(𝜆 ∨ 𝛿) = (ℎ𝜆) ∨ (ℎ𝛿) is ⟨ℎ𝜆, ℎ𝜆1, . . . , ℎ𝜆𝑛⟩.

(2) is analogous to (1) but we use J𝑋K, J𝑌 K, p(p𝜏1q, . . . , p𝜏𝑛q) and
p(pℎ𝜏1q, . . . , pℎ𝜏𝑛q) instead of [𝑋], [𝑌 ], p(𝜏1, . . . , 𝜏𝑛) and p(ℎ𝜏1, . . . , ℎ𝜏𝑛).

(3) is analogous to (1) but we use J𝑋K and p(p𝜏1q, . . . , p𝜏𝑛q) instead of
[𝑋] and p(𝜏1, . . . , 𝜏𝑛).

(4) is analogous to (1) but we use J𝑌 K and p(pℎ𝜏1q, . . . , pℎ𝜏𝑛q) instead
of [𝑌 ] and p(ℎ𝜏1, . . . , ℎ𝜏𝑛).

(5) is analogous to (1) but we use A and p(pℎ𝜏1q, . . . , pℎ𝜏𝑛q) instead of
[𝑌 ] and p(ℎ𝜏1, . . . , ℎ𝜏𝑛).

(6) By simple induction on the length of the sequence. When the
length is 0, then the sequence is ⟨⟩, 𝛿 = ⊥, ℎ𝛿 = {⊥} and the proposi-
tion is trivial. When the length is 1, then the sequence is ⟨𝜆⟩ for some
literaloid 𝜆 and 𝛿 = 𝜆. If 𝜆 = p(𝜏1, . . . , 𝜏𝑛), then ℎ𝛿 = ℎ(p[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩) =
pPA⟨ℎ𝜏1, . . . , ℎ𝜏𝑛⟩ = {p(p𝛼1q, . . . , p𝛼𝑛q)) : 𝛼1 ∈ ℎ𝜏1, . . . , 𝛼𝑛 ∈ ℎ𝜏𝑛}. On the
other hand, if 𝜆 = ¬p(𝜏1, . . . , 𝜏𝑛), then ℎ𝛿 = ¬(ℎ(p[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩)) =
¬(pPA⟨ℎ𝜏1, . . . , ℎ𝜏𝑛⟩) = {¬p(p𝛼1q, . . . , p𝛼𝑛q) : 𝛼1 ∈ ℎ𝜏1, . . . , 𝛼𝑛 ∈ ℎ𝜏𝑛}.
Consequently, when 𝛿 is a literaloid, then ℎ𝛿 is a set of relational literaloids
over |A|, hence the sequences of the elements of ℎ𝛿 are all sequences ⟨𝜇⟩,
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such that 𝜇 ∈ ℎ𝜆. Suppose that the proposition is true when the length is 𝑛
and ⟨𝜆1, . . . , 𝜆𝑛⟩ is the sequence of 𝛿. We have already proved that ℎ𝜆 is a set
of literals for any literaloid 𝜆, so ℎ(𝜆∨𝛿) = {𝜇 ∨ 𝜀 : 𝜇 ∈ ℎ𝜆 and 𝜀 ∈ ℎ𝛿} is a
set of clauses. Moreover, by induction hypothesis the sequences of the ele-
ments of ℎ𝛿 are all sequences ⟨𝜇1, . . . , 𝜇𝑛⟩, such that 𝜇1 ∈ ℎ𝜆1, . . . , 𝜇𝑛 ∈ ℎ𝜆𝑛,
so the sequence of the elements of ℎ(𝜆 ∨ 𝛿) = {𝜇 ∨ 𝜀 : 𝜇 ∈ ℎ𝜆 and 𝜀 ∈ ℎ𝛿}
are all sequences ⟨𝜇, 𝜇1, . . . , 𝜇𝑛⟩, such that 𝜇 ∈ ℎ𝜆, 𝜇1 ∈ ℎ𝜆1, . . . , 𝜇𝑛 ∈ ℎ𝜆𝑛.

(7) is analogous to (1) but we use J𝑋K, A, p(p𝜏1q, . . . , p𝜏𝑛q) and
p(pℎ𝜏1q, . . . , pℎ𝜏𝑛q) instead of [𝑋], [𝑌 ], p(𝜏1, . . . , 𝜏𝑛) and p(ℎ𝜏1, . . . , ℎ𝜏𝑛). �

M)Definition. (1)Two clauses — 𝛿 over 𝑋 and 𝜀 over 𝑌 — are variants ,
if there exist Sort-indexed functions 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋, such that
𝛿[𝑓 ] = 𝜀 and 𝜀[𝑔] = 𝛿. The definition of variant clausoids is analogous, but
we use J𝑓K and J𝑔K instead of [𝑓 ] and [𝑔].

(2) If ⟨𝜆1, . . . , 𝜆𝑛⟩ is the sequence of 𝛿 and ⟨𝜇1, . . . , 𝜇𝑛⟩ is the sequence
of 𝜀, then for any 𝑖, we say the literal (literaloid) 𝜆𝑖 is corresponding to 𝜇𝑖.

N)Notice that if 𝜀 and 𝛿 are variants, then the sequences of 𝜀 and 𝛿
have the same length. Hence each literal or literaloid of 𝜀 has corresponding
literal or literaloid in 𝛿.

O) It is not difficult to see that “being variants” is equivalence relation.
It is reflexive — we can use ℎ = 𝑔 = id𝑋 to see that any clause (clausoid)
over 𝑋 is variant of itself. It is a symmetric relation — obviously if 𝛿 is
variant of 𝜀, then 𝜀 is variant of 𝛿. And it is transitive as well — if 𝛿 is
variant of 𝜀 and 𝜀 is variant of 𝜁 and 𝑓 ′𝛿 = 𝜀, 𝑔′𝜀 = 𝛿, 𝑓 ′′𝜀 = 𝜁 and 𝑔′′𝜁 = 𝜀,
then (𝑓 ′′ ∘ 𝑓 ′)𝜀 = 𝜁 and (𝑔′ ∘ 𝑔′′)𝜁 = 𝜀.

P)Proposition. If the clausoids 𝛿 and 𝜀 over 𝑋 are variants, then
the clauses 𝛿Jnam𝑋K[𝑋] and 𝜀Jnam𝑋K[𝑋] are variants as well.

Proof. Let 𝛿J𝑓K = 𝜀 and 𝜀J𝑔K = 𝛿 for some Sort-indexed functions
𝑓, 𝑔 : 𝑋 → 𝑋. According to (16D2), (𝛿Jnam𝑋K[𝑋])[𝑓 ] = 𝛿([𝑓 ]∘Jnam𝑋K[𝑋]) =
𝛿(Jnam𝑋K[𝑋] ∘ J𝑓K) = (𝛿J𝑓K)Jnam𝑋K[𝑋] = 𝜀Jnam𝑋K[𝑋] and, analogously,
(𝜀Jnam𝑋K[𝑋])[𝑔] = 𝛿Jnam𝑋K[𝑋]. �

Q)Proposition. If the clauses (clausoids) 𝛿 and 𝜀 are variants, then
𝛿 and 𝜀 have the same instances in any algebra.

Proof. We will consider only the case when 𝛿 and 𝜀 are clausoids. The
case when they are clauses is analogous.

Let 𝜀J𝑔K = 𝛿. Any instance of 𝛿 belongs to 𝛿J𝑣KPA, so it is an instance
of 𝜀 because 𝛿J𝑣KPA = (𝜀J𝑔K)J𝑣KPA = 𝜀J𝑣 ∘ 𝑔KPA. Analogously we can see
that every instance of 𝜀 is an instance of 𝛿. �
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R)Corollary. If a clause or clausoid is universally valid in a logical
structure M, all its variants are universally valid in M as well.

Proof. Let 𝛿 be universally valid in M and 𝛿′ be a variant of 𝛿. By (H),
all instances of 𝛿 in 𝜕M are true in M. By (Q), 𝛿 and 𝛿′ have same in-
stances in 𝜕M, hence all instances of 𝛿′ in 𝜕M are true in M. By (H), 𝛿′ is
universally valid in M. �

S)Proposition. (1)Let A be an algebra, 𝑋 and 𝑌 be Sort-indexed
sets, 𝑠 : 𝑋 → [𝑌 ] be a termal substitution and 𝛿 be a clause over 𝑋. Then
all instances of 𝛿[𝑠][𝑌 ] in A are instances of 𝛿 in A.

(2)Let A be an algebra which is a structure of terms.59 Let 𝑋 and 𝑌
be Sort-indexed sets, 𝑠 : 𝑋 → J𝑌 K be a termoidal substitution and 𝛿 be a
clausoid over 𝑋. Then all instances of 𝛿J𝑠KJ𝑌 K in A are instances of 𝛿 in A.

Proof. (1) Let 𝛿′ be an instance of 𝛿[𝑠][𝑌 ] in A. Then 𝛿′ = 𝛿[𝑠][𝑌 ][𝑢]A

for some assignment function 𝑢 : 𝑌 → |A|. From the lemma of the termal
substitutions (11T) it follows that 𝛿′ = 𝛿[𝑤]A, where 𝑤 : 𝑋 → |A| is the
assignment function 𝑤 = ([𝑢]A) ∘ 𝑠, hence 𝛿′ is an instance of 𝛿 in A.

(2) Let 𝛿′ be an instance of 𝛿J𝑠KJ𝑌 K in A. Then 𝛿′ ∈ 𝛿J𝑠KJ𝑌 KJ𝑢KPA for
some assignment function 𝑢 : 𝑌 → |A|, hence 𝛿′ = 𝛿J𝑠KJ𝑌 KJ𝑢KA. From
the lemma of the substitutions for terminators (14T2) it follows that 𝛿′ =
𝛿J𝑤KA, where 𝑤 : 𝑋 → |A| is the assignment function 𝑤 = (J𝑢KA) ∘𝑠, hence
𝛿′ is an instance of 𝛿 in A. �

T)Proposition. Let the Sort-indexed function 𝑓 : 𝑋 → 𝑌 be such
that all its components 𝑓𝜅 : 𝑋𝜅 → 𝑌𝜅 are injective. Then for any clause 𝛿
over 𝑋, 𝛿[𝑓 ] is a variant of 𝛿 and for any clausoid 𝛿 over 𝑋, 𝛿J𝑓K is a
variant of 𝛿.

Proof. We will prove the proposition for the case of clausoids. The other
case is analogous.

For any injective function 𝑓𝜅 : 𝑋𝜅 → 𝑌𝜅 there exists a function
𝑔𝜅 : 𝑌𝜅 → 𝑋𝜅, such that 𝑔𝜅 ∘ 𝑓𝜅 = id𝑋𝜅 . Let 𝑔 : 𝑌 → 𝑋 be a Sort-
indexed function composed of such functions 𝑔𝜅. Then 𝑔 ∘ 𝑓 = id𝑋 , so
(𝛿J𝑓K)J𝑔K = 𝛿J𝑔 ∘ 𝑓K = 𝛿, hence 𝛿 and 𝛿J𝑓K are variants. �

U)Definition. Two termal substitutions 𝑠′ : 𝑋 → [𝑌 ] and 𝑠′′ : 𝑋 → [𝑍]
are variants if there exist Sort-indexed functions 𝑓 : 𝑌 → 𝑍 and 𝑔 : 𝑍 → 𝑌 ,
such that 𝑠′ = [𝑔] ∘ 𝑠′′ and 𝑠′′ = [𝑓 ] ∘ 𝑠′.

The definition of variant termoidal substitutions is analogous, but we
use J𝑌 K, J𝑍K, J𝑓K and J𝑔K instead of [𝑌 ], [𝑍], [𝑓 ] and [𝑔].

59See (14L) for the definition of structure of terms.

114



§20. Clauses and Clausoids

V)Proposition. (1) If 𝑠′ : 𝑋 → [𝑌 ] and 𝑠′′ : 𝑋 → [𝑍] are variant
termal substitutions, then for any clause 𝛿 over 𝑋, 𝛿[𝑠′][𝑌 ] and 𝛿[𝑠′′][𝑍] are
variant clauses. Moreover, if the Sort-indexed functions 𝑓 and 𝑔 are such
that 𝑠′ = [𝑔] ∘ 𝑠′′ and 𝑠′′ = [𝑓 ] ∘ 𝑠′, then 𝛿[𝑠′][𝑌 ] = (𝛿[𝑠′′][𝑍])[𝑔] and 𝛿[𝑠′′][𝑍] =
(𝛿[𝑠′][𝑌 ])[𝑓 ].

(2) If 𝑠′ : 𝑋 → J𝑌 K and 𝑠′′ : 𝑋 → J𝑍K are variant termoidal sub-
stitutions, then for any clausoid 𝛿 over 𝑋, 𝛿J𝑠′KJ𝑌 K and 𝛿J𝑠′′KJ𝑍K are vari-
ant clausoids. Moreover, if the Sort-indexed functions 𝑓 and 𝑔 are such
that 𝑠′ = J𝑔K ∘ 𝑠′′ and 𝑠′′ = J𝑓K ∘ 𝑠′, then 𝛿J𝑠′KJ𝑌 K = (𝛿J𝑠′′KJ𝑍K)J𝑔K and
𝛿J𝑠′′KJ𝑍K = (𝛿J𝑠′KJ𝑌 K)J𝑓K.

Proof. Only a proof for the termal case will be provided. The termoidal
case is completely analogous.

Let 𝑓 and 𝑔 be such that 𝑠′ = [𝑔] ∘ 𝑠′′ and 𝑠′′ = [𝑓 ] ∘ 𝑠′ and consider the
following diagram:

[[𝑍]]
val[𝑍]

//

[[𝑔]]

��

[𝑍]

[𝑔]

��

[𝑋]

[𝑠′′]
77nnnnnnnnnnn

[𝑠′] ''PPPPPPPPPPP

[[𝑌 ]]
val[𝑌 ]

// [𝑌 ]

The triangle is commutative because 𝑠′ = [𝑔] ∘ 𝑠′′ and the commutativity of
the square follows from (11N) in the termal case and from (14I16) in the
termoidal case. Consequently, for any clause 𝛿 over𝑋, 𝛿[𝑠′][𝑌 ] = (𝛿[𝑠′′][𝑍])[𝑔].
Analogously, 𝛿[𝑠′′][𝑍] = (𝛿[𝑠′][𝑌 ])[𝑓 ]. �

W)Definition. (1)A literal (literaloid) 𝜆 is positive if it does not con-
tain a negation. It is negative, if it contains a negation.

(2)A clause (clausoid) is positive, if it contains no negative literals
(literaloids). It is non-positive, if it is not positive.

(3)A clause (clausoid) is negative, if it contains no positive literals
(literaloids). It is non-negative, if it is not negative.

X) This proposition tells us that we do not have to use clauses and
clausoids over many different Sort-indexed sets. Let us fix one specific
Sort-indexed set X. It will be enough to impose on X only the following
two properties:

• The components of X have sufficiently large cardinality, so that for
any Sort-indexed set 𝑌 , such that we want to be able to use clauses
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or clausoids over 𝑌 , there exists a Sort-indexed function 𝑓 : 𝑌 → X
with injective components.

• Each component of X is an infinite set.
Given such a set X, if 𝛿 is a clause (clausoid) over 𝑌 and the Sort-indexed
function 𝑓 : 𝑌 → X has injective components, then 𝛿[𝑓 ] (respectively, 𝛿J𝑓K)
will be a variant of 𝛿. Consequently, for any clause or clausoid we are able
to find a variant of it over X.

Y) For convenience, in few cases we will assume that the following ad-
ditional properties are true:

• All elements of X are symbols different from the functional symbols,
predicate symbols, logical symbols, brackets, comma and any other
symbol we use to build termal expressions.

• We will also suppose that pxq = x for any x ∈ X.
This assumption is not necessary, it is here only for convenience. Because of
it, we may write the clauses as p(x, f(y))∨¬q(x) instead of p(pxq, f(pyq))∨
¬q(pxq).

Z)Remark. Every clause 𝛿 over 𝑌 may contain only finitely many
names of the elements of 𝑌 . This can be used in order to prove that there
always exists a clause over X which is a variant of 𝛿. This, however, is
not true for the clausoids. This means that the statement in (X) “for any
Sort-indexed set 𝑌 , such that we want to be able to use clauses or clausoids
over 𝑌 ” is an informal one. Strictly speaking, we have to fix some cardinal
and to restrict ourselves with Sort-indexed sets whose components do not
have greater cardinality. This limitation is not required in order to develop
the theory of the resolution with clausoids; nevertheless, using only one
Sort-indexed set X for all clauses and clausoids, is going save as from some
unwanted technicalities.

§21. SLD RESOLUTION

A) In this section we will assume that we are working with a terminator,
where all termoidal expressions are finitary.60

B)Definition. (1)A Horn clause (clausoid) is a clause (clausoid) over X
in whose sequence only the first literal (literaloid) may be positive and all
other literals (literaloids) are negative.

60See (17A2) for the definition of “finitary”.
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(2)A selection function is a function sel, such that for any non-empty
finite sequence of literals 𝜆1, . . . , 𝜆𝑘 over X, sel(⟨𝜆1, . . . , 𝜆𝑘⟩) is a natu-
ral number among 1, 2, . . . , 𝑘. We will assume that sel(⟨𝜆1, . . . , 𝜆𝑘⟩) =
sel(⟨𝜆1[𝑓 ], . . . , 𝜆𝑘[𝑓 ]⟩) for any bijective Sort-indexed function 𝑓 .

Any selection function sel for literals over X can be extended standardly
for literaloids over X in the following way: if 𝜆1, . . . , 𝜆𝑘 are literaloids over X,
then let sel(⟨𝜆1, . . . , 𝜆𝑘⟩) = sel(⟨𝜆1JnamXK[X], . . . , 𝜆𝑘JnamXK[X]⟩).

(3) Given a selection function sel, an equaliser e, a negative Horn
clause 𝛿 over X with sequence ⟨𝜆1, . . . , 𝜆𝑘⟩ and a non-negative Horn-
clause 𝜀 over X with sequence ⟨𝜇0, 𝜇1, . . . , 𝜇𝑚⟩, if 𝑗 = sel(⟨𝜆1, . . . , 𝜆𝑘⟩) and
𝑠 ∈ e({𝜆𝑗 ∼ 𝜇0}), then the clause whose sequence is

⟨𝜆1[𝑠][X], . . . , 𝜆𝑗−1[𝑠]
[X], 𝜇1[𝑠]

[X], . . . , 𝜇𝑚[𝑠][X], 𝜆𝑗+1[𝑠]
[X], 𝜆𝑘[𝑠]

[X]⟩

is called e-sel-SLD resolvent of 𝛿 and 𝜀.
The notion e-sel-SLD resolvent of clausoids is defined analogously, but

instead of clauses, literals, 𝜆𝑖[𝑠][X] and 𝜇𝑖[𝑠]
[X] we use clausoids, literaloids,

𝜆𝑖J𝑠KJXK and 𝜇𝑖J𝑠KJXK.

C)The machinery of Prolog uses SLD-resolution with the following
trivial selection function: sel(𝜁) = 1 for every sequence 𝜁. In other words,
Prolog always resolves the first literal of the clauses.

D)Proposition. Let sel be a selection function and e be a termally
sound and termally complete equaliser such that for any system Θ, the
set e(Θ) contains at most one element. Then for no pair of clausoids 𝛿
and 𝜀 there exists more than one e-sel-SLD resolvent of 𝛿 and 𝜀.

Proof. Follows immediately from definition (B3). �

Informally, the following Lemma says that if 𝜁 ′ is a mgu-sel-SLD resol-
vent of the clauses 𝛿′ and 𝜀′ and 𝛿′ and 𝜀′ correspond to the clausoids 𝛿
and 𝜀, then 𝜁 ′ corresponds to some e-sel-SLD resolvent of 𝛿 and 𝜀. The
termal equaliser mgu is defined in (18S).

E)Lemma. Suppose sel is a selection function, e is a termally sound
and termally complete equaliser, the clauses 𝛿′ and 𝜀′ have disjoint depen-
dency and the clause 𝜁 ′ is an mgu-sel-SLD resolvent of 𝛿′ and 𝜀′. If the
clausoids 𝛿 and 𝜀 are such that 𝛿 and 𝜀 have disjoint dependency, 𝛿′ is a
variant of 𝛿JnamXK[X] and 𝜀′ is a variant of 𝜀JnamXK[X], then 𝛿 and 𝜀 have
an e-sel-SLD resolvent 𝜁, such that 𝜁 ′ is a variant of 𝜁JnamXK[X].

Proof. Let ⟨𝜆1, . . . , 𝜆𝑙⟩ be the sequence of 𝛿, ⟨𝜆′1, . . . , 𝜆′𝑙⟩ be the sequence
of 𝛿′, ⟨𝜇0, 𝜇1, . . . , 𝜇𝑚⟩ be the sequence of 𝜀 and ⟨𝜇′

0, 𝜇
′
1, . . . , 𝜇

′
𝑚⟩ be the se-
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quence of 𝜀′. Let 𝑗 = sel(⟨𝜆1, . . . , 𝜆𝑙⟩) = sel(⟨𝜆′1, . . . , 𝜆′𝑙⟩). Let 𝑠′ be the
substitution used to produce 𝜁 ′ from 𝛿′ and 𝜀′. Therefore, the sequence
of 𝜁 ′ is

⟨𝜆′1[𝑠′][X], . . . , 𝜆′𝑗−1[𝑠
′][X], 𝜇′

1[𝑠
′][X], . . . , 𝜇′

𝑚[𝑠′][X], 𝜆′𝑗+1[𝑠
′][X], . . . , 𝜆′𝑙[𝑠

′][X]⟩

Since 𝛿′ is a variant of 𝛿JnamXK[X] and 𝜀′ is a variant of 𝜀JnamXK[X], there
exist Sort-indexed functions 𝑓, 𝑔 : X → X, such that 𝛿′ = 𝛿JnamXK[X][𝑓 ]
and 𝜀′ = 𝜀JnamXK[X][𝑔]. Since 𝛿 and 𝜀 have disjoint dependency, according
to (17I2), 𝛿JnamXK[X] and 𝜀JnamXK[X] also have disjoint dependency. Conse-
quently, without loss of generality we may assume that 𝑓 and 𝑔 are bijective
and 𝑓 = 𝑔. So 𝜀′ = 𝜀JnamXK[X][𝑓 ] and the sequence of 𝜁 ′ is

⟨𝜆1JnamXK[X][𝑠′ ∘ 𝑓 ][X], . . . , 𝜆𝑗−1JnamXK[X][𝑠′ ∘ 𝑓 ][X],

𝜇1JnamXK[X][𝑠′ ∘ 𝑓 ][X], . . . , 𝜇𝑚JnamXK[X][𝑠′ ∘ 𝑓 ][X],

𝜆𝑗+1JnamXK[X][𝑠′ ∘ 𝑓 ][X], . . . , 𝜆𝑙JnamXK[X][𝑠′ ∘ 𝑓 ][X]⟩

Since 𝑠′ is a most general unifier of 𝜆′𝑗 and 𝜇′
0, 𝑠′ ∘ 𝑓 is a most gen-

eral unifier of 𝜆𝑗JnamXK[X] and 𝜇0JnamXK[X]. From this and (18U2) we
can conclude that there exists a substitution 𝑠 ∈ e({𝜆𝑗 ∼ 𝜇0}), such that
𝑠 = JnamXK[X] ∘ 𝑠 is a most general unifier of 𝜆𝑗JnamXK[X] and 𝜇0JnamXK[X].
Since both 𝑠 and 𝑠′ ∘ 𝑓 are most general unifiers of these literals, we can
conclude that these substitutions are variants. Therefore 𝜁 ′ is a variant of
the clause whose sequence is

⟨𝜆1JnamXK[X][𝑠][X], . . . , 𝜆𝑗−1JnamXK[X][𝑠][X],

𝜇1JnamXK[X][𝑠][X], . . . , 𝜇𝑚JnamXK[X][𝑠][X],

𝜆𝑗+1JnamXK[X][𝑠][X], . . . , 𝜆𝑙JnamXK[X][𝑠][X]⟩

According to (16M) and (20L) this clause is equal to 𝜁JnamXK[X], where
𝜁 is the clausoid whose sequence is

⟨𝜆1J𝑠KJXK, . . . , 𝜆𝑗−1J𝑠KJXK, 𝜇1J𝑠KJXK, . . . , 𝜇𝑚J𝑠KJXK, 𝜆𝑗+1J𝑠KJXK, . . . , 𝜆𝑙J𝑠KJXK⟩

Notice that 𝜁 is an e-sel-SLD resolvent of 𝛿 and 𝜀. �

F)Lemma. Suppose the clauses 𝛿′ and 𝜀′ have disjoint dependency,
sel is a selection function and e is a termally sound and termally com-
plete equaliser, such that e(Θ) contains no more than one element for any
system Θ. If the clausoids 𝛿 and 𝜀 are such that 𝛿 and 𝜀 have disjoint de-
pendency, 𝛿′ is a variant of 𝛿JnamXK[X], 𝜀′ is a variant of 𝜀JnamXK[X] and
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𝛿 and 𝜀 have an e-sel-SLD resolvent 𝜁, then 𝛿′ and 𝜀′ have an mgu-sel-
SLD resolvent 𝜁 ′, such that 𝜁 ′ is a variant of 𝜁JnamXK[X].

Proof. Let ⟨𝜆1, . . . , 𝜆𝑙⟩ be the sequence of 𝛿, ⟨𝜆′1, . . . , 𝜆′𝑙⟩ be the sequence
of 𝛿′, ⟨𝜇0, 𝜇1, . . . , 𝜇𝑚⟩ be the sequence of 𝜀 and ⟨𝜇′

0, 𝜇
′
1, . . . , 𝜇

′
𝑚⟩ be the se-

quence of 𝜀′. Let 𝑗 = sel(⟨𝜆1, . . . , 𝜆𝑙⟩) = sel(⟨𝜆′1, . . . , 𝜆′𝑙⟩). Let 𝑠 be the
substitution used to produce 𝜁 from 𝛿 and 𝜀. Therefore, the sequence of 𝜁
is

⟨𝜆1J𝑠KJXK, . . . , 𝜆𝑗−1J𝑠KJXK, 𝜇1J𝑠KJXK, . . . , 𝜇𝑚J𝑠KJXK, 𝜆𝑗+1J𝑠KJXK, . . . , 𝜆𝑙J𝑠KJXK⟩

so, according to (16M), the sequence of 𝜁JnamXK[X] is equal to

⟨𝜆1JnamXK[X][𝑠][X], . . . , 𝜆𝑗−1JnamXK[X][𝑠][X],

𝜇1JnamXK[X][𝑠][X], . . . , 𝜇𝑚JnamXK[X][𝑠][X],

𝜆𝑗+1JnamXK[X][𝑠][X], . . . , 𝜆𝑙JnamXK[X][𝑠][X]⟩

where 𝑠 = JnamXK[X] ∘ 𝑠.
Since 𝛿′ is a variant of 𝛿JnamXK[X] and 𝜀′ is a variant of 𝜀JnamXK[X], there

exist Sort-indexed functions 𝑓, 𝑔 : X → X, such that 𝛿JnamXK[X] = 𝛿′[𝑓 ]
and 𝜀JnamXK[X] = 𝜀′[𝑔]. Since 𝛿 and 𝜀 have disjoint dependency, according
to (17I2), 𝛿JnamXK[X] and 𝜀JnamXK[X] also have disjoint dependency. Conse-
quently, without loss of generality we may assume that 𝑓 and 𝑔 are bijective
and 𝑓 = 𝑔. So 𝜀JnamXK[X] = 𝜀′[𝑓 ] and the sequence of 𝜁JnamXK[X] is

⟨𝜆′1[𝑠 ∘ 𝑓 ][X], . . . ,𝜆′𝑗−1[𝑠 ∘ 𝑓 ][X],

𝜇′
1[𝑠 ∘ 𝑓 ][X], . . . , 𝜇′

𝑚[𝑠 ∘ 𝑓 ][X],

𝜆′𝑗+1[𝑠 ∘ 𝑓 ][X], . . . , 𝜆′𝑙[𝑠 ∘ 𝑓 ][X]⟩

Since e(Θ) contains no more than one element for any system Θ,
from (18U) we can conclude that 𝑠 is a most general unifier of 𝜆𝑗JnamXK[X]
and 𝜇0JnamXK[X]. Therefore, 𝑠 ∘ 𝑓 is a most general unifier of 𝜆′𝑗 and 𝜇′

0.
Consequently, there exists a substitution 𝑠′ ∈ mgu({𝜆′𝑗 ∼ 𝜇′

0}), which is a
most general unifier of 𝜆′𝑗 and 𝜇′

0. Since both 𝑠 ∘ 𝑓 and 𝑠′ are most gen-
eral unifiers of these literals, we can conclude that these substitutions are
variants. Therefore 𝜁JnamXK[X] is a variant of the clause whose sequence is

⟨𝜆′1[𝑠′][X], . . . ,𝜆′𝑗−1[𝑠
′][X],

𝜇′
1[𝑠

′][X], . . . , 𝜇′
𝑚[𝑠′][X],

𝜆′𝑗+1[𝑠
′][X], . . . , 𝜆′𝑙[𝑠

′][X]⟩
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According to definition (B3), the clause having this sequence is an mgu-sel-
SLD resolvent of 𝛿′ and 𝜀′. �

G)Lemma. We are applying to a finite sequence of natural numbers the
following transformation: we remove an arbitrary element of the sequence
and replace the removed natural number with arbitrarily many smaller natu-
ral numbers. It is impossible to apply transformations of this kind infinitely
many times

Proof. Suppose z is a finite sequence of natural numbers, such that we
can apply to z transformations of mentioned kind infinitely many times.
Let 𝑛 be the greatest element of z.

Each time we apply a transformation removing a number equal to 𝑛, we
a replacing it with smaller natural numbers. Since z contains only finitely
many elements equal to 𝑛 and none of the transformations can create new
numbers equal to 𝑛, we can apply only finitely many times transformations
removing numbers equal to 𝑛. After the last such transformation, we will
obtain a sequence z1 with the following property: it is possible to apply
infinitely many times transformations of the mentioned kind to z1, such
that none of them removes numbers equal to 𝑛.

Now, similar reasoning can show us that we can apply to z1 only finitely
many times transformations removing numbers equal to 𝑛 − 1. After the
last such transformation we will obtain a sequence z2 with the following
property: it is possible to apply infinitely many times transformations of
the mentioned kind to z2, such that none of them removes numbers equal
to 𝑛 or 𝑛− 1.

Analogously, from z2 we can obtain a sequence z3 with the following
property: it is possible to apply infinitely many times transformations of
the mentioned kind to z3, such that none of them removes numbers equal
to 𝑛, 𝑛− 1 or 𝑛− 2.

From z3 we obtain z4, then z5 and so on. This is a contradiction because
z𝑛 will have to have the following property: it is possible to apply infinitely
many times transformations of the mentioned kind to z𝑛, such that none of
them removes any element of z𝑛. �

H)Definition. A set Γ of Horn clauses (clausoids) over X is called
e-sel-closed if:

(1) 𝛿 and 𝜀 have disjoint dependency whenever 𝛿 is a negative element
of Γ and 𝜀 is a non-negative element of Γ;

(2) Γ contains a variant of every e-sel-SLD resolvent of elements of Γ.

We shell see that if a set of clausoids is universally satisfiable in almost
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any normal algebra, then the set is universally satisfiable in some algebra
with finite carriers. Therefore, from the following Theorem we can conclude
that if the SLD-resolution with clausoids saturates and stops generating new
clausoids, then the initial set of clausoids is satisfiable in an algebra with
finite carriers.

I)Theorem. Let e be a near-complete equaliser, sel be a selection
function and Γ be a finite e-sel-complete set of Horn clausoids over X, such
that ⊥ /∈ Γ. Then Γ is universally satisfiable in almost any normal algebra.

Proof. Let Γ− be the set of all negative elements of Γ and Γ+ be the set
of all non-negative elements of Γ. Since Γ is e-sel-closed set, all elements
of Γ− have disjoint dependency with all elements of Γ+.

Since both Γ− and Γ+ are finite, there exist finitely many pairs ⟨𝜆, 𝜇⟩,
such that 𝜆 is a literaloid of a clausoid belonging to Γ−, 𝜇 is a literaloid of a
clausoid belonging to Γ+ and the system {𝜆 ∼ 𝜇} is termally inconsistent.
Let Θ be the set all such termally inconsistent identities. The set Θ is finite.

Let A be an arbitrary normal algebra, such that none of the systems
in Θ has a solution in A. In order to prove the theorem, it will be enough
to prove that the set Γ = Γ+ ∪ Γ− is universally satisfiable in A.

Let Σ be a set of positive literals over |A| defined inductively by the
following rule:

If ⟨𝜆0, 𝜆1, . . . , 𝜆𝑛⟩ is the sequence of an element of Γ+,61

𝑣 : X → |A| is an arbitrary Sort-indexed function and each of
the sets 𝜆1J𝑣KPA, . . . , 𝜆𝑛J𝑣KPA contains at least one element of Σ,
then all elements of 𝜆0J𝑣KPA are elements of Σ.

We will define sets Σ0,Σ1,Σ2, . . . , such that Σ = Σ0∪Σ1∪Σ2∪ . . . . Let
Σ0 = ∅ and Σ𝑖+1 be the union of Σ𝑖 and the set of all positive literals 𝜆,
such that there exists an element of Γ+ whose sequence is ⟨𝜆0, 𝜆1, . . . , 𝜆𝑛⟩
and a Sort-indexed function 𝑣 : X → |A|, such that 𝜆 ∈ 𝜆0J𝑣KPA and each
of the sets 𝜆1J𝑣KPA, . . . , 𝜆𝑛J𝑣KPA contains at least one element of Σ𝑖.

Since A is a normal structure, there exists a logical structure K, such
that K is a variant of A and the predicate symbols are interpreted in the
following way: pK⟨𝛼1, . . . , 𝛼𝑛⟩ = 1 if and only if p(p𝛼1q, . . . , p𝛼𝑛q) ∈ Σ.
Notice that a relational positive literal over |K| is true in K if and only if
it is an element of Σ.

We are going to prove that the elements of Γ = Γ+ ∪ Γ− are universally
valid in K. This will imply that the set Γ+ ∪ Γ− is universally satisfiable
in A.

61Notice that 𝜆0 is a positive literaloid and 𝜆1, . . . , 𝜆𝑛 are negative.
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Suppose this is not so. There are two cases to consider – either some
element of Γ+ is not universally valid in K, or some element of Γ− is not
universally valid in K.

If an element of Γ+ with sequence ⟨𝜆0, 𝜆1, . . . , 𝜆𝑛⟩ is not universally
valid in K, then there exists an assignment function 𝑣 : X → |K|, such that
0 ∈ 𝜆0J𝑣KPK and 1 ∈ 𝜆𝑖J𝑣KPK for any 𝑖 ∈ {1, . . . , 𝑛}. Since the literaloids
𝜆0, 𝜆1, . . . , 𝜆𝑛 are positive, from (14W2) and the definition of the structure K
it follows that the set 𝜆0J𝑣KPA is not a subset of Σ and each of the sets
𝜆1J𝑣KPA, . . . , 𝜆𝑛J𝑣KPA contains at least one element of Σ. This, however,
contradicts the definition of Σ.

Now, suppose there exists an element 𝛿 of Γ− which is not universally
valid in K. Let ⟨𝜆1, . . . , 𝜆𝑘⟩ be the sequence of 𝛿. Since 𝛿 is not univer-
sally valid in K, there exists an assignment function 𝑣 : X → |A|, such that
0 ∈ 𝛿J𝑣KPK. This is possible only if 1 ∈ 𝜆𝑖J𝑣KPK for all 𝑖 ∈ {1, . . . , 𝑘}.
Notice that the literaloids 𝜆𝑖 are positive.

If 𝜆𝑖 = p(p𝜏1q, . . . , p𝜏𝑚q), then

1 ∈ 𝜆𝑖J𝑣KPK ⇐⇒ 1 ∈ p(p𝜏1q, . . . , p𝜏𝑚q)J𝑣KPK

⇐⇒ 1 ∈ pPK⟨𝜏1J𝑣KPK, . . . , 𝜏𝑚J𝑣KPK⟩
⇐⇒ 1 = pK⟨𝛼1, . . . , 𝛼𝑚⟩ for some 𝛼𝑖 ∈ 𝜏𝑖J𝑣KPK

⇐⇒ p(p𝛼1q, . . . , p𝛼𝑚q) ∈ Σ for some 𝛼𝑖 ∈ 𝜏𝑖J𝑣KPK

⇐⇒ p(p𝛼1q, . . . , p𝛼𝑚q) ∈ Σ for some 𝛼𝑖 ∈ 𝜏𝑖J𝑣KPA

⇐⇒ p(p𝜏1q, . . . , p𝜏𝑚q)J𝑣KPA ∩ Σ ̸= ∅
⇐⇒ 𝜆𝑖J𝑣KPA ∩ Σ ̸= ∅

Therefore, each of the sets 𝜆𝑖J𝑣KPA contains at least one element of Σ.
Before we continue with the proof, let us give the following definition:

Definition. Given a negative Horn clausoid 𝛿 with sequence
⟨𝜆1, . . . , 𝜆𝑘⟩, we will say the sequence of natural numbers
⟨𝑚1, . . . ,𝑚𝑘⟩ is a numerical bound of 𝛿, if there exists a Sort-
indexed function 𝑣 : X → |A|, such that 𝜆𝑖J𝑣KPA ∩ Σ𝑚𝑖

̸= ∅
for any 𝑖 ∈ {1, . . . , 𝑘}. Notice that if a clausoid has a numerical
bound, then it is not universally valid in K.

Since each of the sets 𝜆𝑖J𝑣KPA contains at least one element of Σ, the
clausoid 𝛿 has a numerical bound. Let ⟨𝑚1, . . . ,𝑚𝑘⟩ be a numerical bound
of 𝛿. This means that 𝜆𝑖J𝑣KPA ∩ Σ𝑚𝑖

̸= ∅ for any 𝑖 ∈ {1, . . . , 𝑘}.
Let 𝛼1, . . . , 𝛼𝑘 be such that 𝛼𝑖 ∈ 𝜆𝑖J𝑣KPA ∩ Σ𝑚𝑖

and let 𝑗 =
sel(⟨𝜆1, . . . , 𝜆𝑘⟩). Since 𝛼𝑗 ∈ Σ𝑚𝑗

, the definition of Σ implies that there
exists an element 𝜀 of Γ+ with sequence ⟨𝜇0, 𝜇1, . . . , 𝜇𝑙⟩ and a Sort-indexed
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function 𝑣′ : X → |A|, such that 𝛼𝑗 ∈ 𝜇0J𝑣′KPA and each of the sets
𝜇1J𝑣′KPA, . . . , 𝜇𝑙J𝑣′KPA contains at least one element of Σ𝑚𝑗−1. Let 𝛽1, . . . , 𝛽𝑙
be such that 𝛽𝑖 ∈ 𝜇𝑖J𝑣′KPA ∩ Σ𝑚𝑗−1 for any 𝑖 ∈ {1, . . . , 𝑙}.

Since 𝜀 has disjoint dependency with 𝛿, according to (17H), there exists
a Sort-indexed function 𝑤 : X → |A|, such that 𝛿J𝑣K = 𝛿J𝑤K and 𝜀J𝑣′K =
𝜀J𝑤K. Therefore, 𝛼𝑗 belongs both to 𝜆𝑗J𝑣KPA = 𝜆𝑗J𝑤KPA and to 𝜇0J𝑣′KPA =
𝜇0J𝑤KPA, which means that 𝑤 is a solution in A of the identity 𝜆𝑗 ∼ 𝜇0.
Now, the definition of the set Θ and the choice of A imply that this identity
is termally consistent. But the equaliser e is near-complete, so there exists
some 𝑠 ∈ e({𝜆𝑗 ∼ 𝜇0}), such that 𝑤 is an instance of 𝑠. According to the
definition of “instance” (18C), there exists a Sort-indexed function 𝑤′, such
that 𝑤 ≪ J𝑤′KPA ∘ 𝑠. The lemma of the substitutions (14T1) now implies
that for any termoidal expression 𝜁 over X,

𝜁J𝑤KPA ⊆ (𝜁J𝑠KJXK)J𝑤′KPA (♯)

According to the definition of SLD resolvent, the clausoid with sequence
⟨𝜆1J𝑠KJXK, . . . , 𝜆𝑗−1J𝑠KJXK, 𝜇1J𝑠KJXK, . . . , 𝜇𝑙J𝑠KJXK, 𝜆𝑗+1J𝑠KJXK, . . . , 𝜆𝑘J𝑠KJXK⟩ is
an e-sel-SLD resolvent of 𝛿 and 𝜀. Considering that 𝛼𝑖 ∈ 𝜆𝑖J𝑣K = 𝜆𝑖J𝑤K and
𝛽𝑖 ∈ 𝜇𝑖J𝑣′KPA = 𝜇𝑖J𝑤KPA and taking into account (♯), we can conclude that
the clause over |A| whose sequence is ⟨𝛼1, . . . , 𝛼𝑗−1, 𝛽1, . . . , 𝛽𝑙, 𝛼𝑗+1, 𝛼𝑘⟩ is
an instance in A of this e-sel-SLD resolvent.

Since Γ− ia an e-sel-closed set, Γ− contains a variant 𝛿′ of this e-sel-
SLD resolvent. According to (20Q), variants have same instances, hence
the clause with sequence ⟨𝛼1, . . . , 𝛼𝑗−1, 𝛽1, . . . , 𝛽𝑙, 𝛼𝑗+1, 𝛼𝑘⟩ is an instance
in A of 𝛿′. Since 𝛼𝑖 ∈ Σ𝑚𝑖

and 𝛽𝑖 ∈ Σ𝑚𝑗−1, the sequence

⟨𝑚1, . . . ,𝑚𝑗−1,𝑚𝑗 − 1, . . . ,𝑚𝑗 − 1⏟  ⏞  
𝑙 times

,𝑚𝑗+1, . . . ,𝑚𝑘⟩

is a numerical bound of the clausoid 𝛿′. Notice that any clausoid with a
numerical bound is not universally valid in K.

So, we started with a clausoid 𝛿 ∈ Γ− which is not universally valid
in K, we assumed 𝛿 has a numerical bound ⟨𝑚1, . . . ,𝑚𝑘⟩ and we obtained
a clausoid 𝛿′ ∈ Γ−, such that 𝛿′ is not universally valid in K and has a
numerical bound

⟨𝑚1, . . . ,𝑚𝑗−1,𝑚𝑗 − 1, . . . ,𝑚𝑗 − 1⏟  ⏞  
𝑙 times

,𝑚𝑗+1, . . . ,𝑚𝑘⟩

Since the numerical bound of 𝛿′ can be obtained from the numerical bound
of 𝛿 by means of a transformation of the kind described in (G), this is a
contradiction. �
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J)Definition. Given an equaliser e, a selection function sel and a set
Γ of non-negative Horn clauses over X, an e-sel-SLD search tree for Γ is a
finite or infinite rooted tree t with the following properties:

(1)Any node of t is labelled with a negative Horn clause.
(2) If a node labelled with 𝛿 has a child labelled with 𝜀, then 𝜀 is a

variant of an e-sel-SLD resolvent of 𝛿 and some variant 𝛿′ of an element
of Γ such that 𝛿 and 𝛿′ have disjoint dependency.

(3) If a node is labelled with 𝛿 and 𝜀 is an e-sel-SLD resolvent of 𝛿
and some variant 𝛿′ of an element of Γ such that 𝛿 and 𝛿′ have disjoint
dependency, then some child of this node is labelled with a variant of 𝜀.

K)Proposition. Let e be an equaliser, such that e(Θ) contains no more
than one element for any system Θ, sel be a selection function, Γ′ be a finite
set of non-negative Horn clauses over X, t be a finite mgu-sel-SLD search
tree for Γ′ whose root is labelled with the clause 𝜁 ′ and no node is labelled
with ⊥. If Γ = {𝛿[NamX]JXK : 𝛿 ∈ Γ′} and 𝜁 ′ has disjoint dependency with
all elements of Γ′, then there exists a finite e-sel-closed set ∆ of clausoids,
such that Γ ∪ {𝜁 ′[NamX]JXK} ⊆ ∆ and ⊥ /∈ ∆.

Proof. Let 𝜁 = 𝜁 ′[NamX]JXK; then according to (16B1), 𝜁 ′ = 𝜁JnamXK[X]
and according to (17J), 𝜁 has disjoint dependency with all elements of Γ.
Moreover, since there are only finite number of names occurring in the
clauses of Γ′ and all components of X are infinite, there exists an injec-
tive Sort-indexed function 𝑓 : X → X, such that for any clausoid 𝜀 over X,
𝜀J𝑓K has disjoint dependency with all elements of Γ. Notice that according
to (20T), for any 𝜀, 𝜀 and 𝜀J𝑓K are variants. In order to prove the propo-
sition, we are going to build a finite e-sel-closed set ∆, such that Γ ⊆ ∆,
⊥ /∈ ∆ and 𝜁 ∈ ∆.

We are going to define set Σ0,Σ1,Σ2, . . . . Let ∆𝑖 = Γ∪Σ0∪Σ1∪· · ·∪Σ𝑖

and ∆ = Γ ∪ Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . .
Let Σ0 = {𝜁}. Since 𝜁 is the only negative element of Σ0, 𝛿 and 𝜀

have disjoint dependency whenever 𝛿 is a negative element of ∆0 and 𝜀 is a
non-negative element of ∆0.

Let Σ1 be the set of all clausoids of the form 𝜀J𝑓K, where 𝜀 is an e-sel-
SLD resolvent of an element of Σ0 and an element of Γ. Due to the way
𝑓 is defined, the set ∆1 still has the property that 𝛿 and 𝜀 have disjoint
dependency whenever 𝛿 is a negative element of ∆1 and 𝜀 is a non-negative
element of ∆1.

Similarly, let Σ2 be the set of all clausoids of the form 𝜀J𝑓K, where 𝜀 is
an e-sel-SLD resolvent of an element of Σ1 and an element of Γ, Σ3 be the
set of all clausoids of the form 𝜀J𝑓K, where 𝜀 is an e-sel-SLD resolvent of an
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element of Σ2 and an element of Γ, and so on.
The set ∆ still has the property that 𝛿 and 𝜀 have disjoint dependency

whenever 𝛿 is a negative element of ∆ and 𝜀 is a non-negative element of ∆.
Therefore, ∆ is an e-sel-closed set.

We will say that 𝑛 is a numerical bound of the clause 𝜀 if the tree t has
a node labelled with a variant of 𝜀, such that the maximal distance from
this node to a leaf of t is less than 𝑛. We will say that 𝑛 is a numerical
bound of the clausoid 𝜀, if 𝑛 is a numerical bound of 𝜀JnamXK[X].

Since 𝜁JnamXK[X] = 𝜁 ′ labels the root of t, the clausoid 𝜁 has a numerical
bound. Let 𝑘 be a numerical bound of 𝜁.

By induction on 𝑖, we are going to prove that 𝑘− 𝑖 is a numerical bound
of all elements of Σ𝑖.

Since Σ0 = {𝜁}, 𝑘 is a numerical bound of the elements of Σ0. Suppose
that 𝑘−𝑖 is a numerical bound of the elements of Σ𝑖 and let 𝜂 ∈ Σ𝑖+1. Then
𝜂 has to be a variant of the e-sel-SLD resolvent of some clausoid 𝛿 ∈ Σ𝑖 and
a clausoid 𝜀 ∈ Γ. Since 𝛿 ∈ Σ𝑖, 𝛿 has a numerical bound 𝑘 − 𝑖, so there is
a node in t labelled with a variant 𝛿′ of 𝛿JnamXK[X], such that the maximal
distance from this node to a leaf of t is less than 𝑘 − 𝑖.

From the definition of Γ if follows that 𝜀 = 𝜀′[NamX]JXK for some 𝜀′ ∈ Γ′

and, according to (16B1), 𝜀′ = 𝜀JnamXK[X], so from this we can conclude that
𝜀JnamXK[X] ∈ Γ′. According to (F), 𝛿′ and 𝜀′ have a mgu-sel-SLD resolvent 𝜂′,
such that 𝜂′ is a variant of 𝜂JnamXK[X]. Since t is a mgu-sel-SLD search tree,
the node labelled with 𝛿′ has a child labelled with a variant of 𝜂′, hence
also with a variant of 𝜂JnamXK[X]. According to the definition of “numerical
bound”, 𝑘 − (𝑖+ 1) is a numerical bound of 𝜂.

This completes the proof of the statement that 𝑘 − 𝑖 is a numerical
bound of all elements of Σ𝑖. From this we will be able to conclude that ∆ is
finite and that ⊥ /∈ ∆.

Indeed, since no clausoid can have a negative number as a numerical
bound and 𝑛 − 𝑖 is a numerical bound of the elements of Σ𝑖, the sets
Σ𝑘+1,Σ𝑘+2,Σ𝑘+3, . . . are equal to ∅. On the other hand, from (D) it follows
that the sets Σ𝑖 are finite for any particular 𝑖. Therefore, ∆ is finite.

Moreover, if 𝜀 is a clausoid having a numerical bound, then some node
of t has to be labelled with a variant of 𝜀JnamXK[X], so 𝜀 ̸= ⊥. Therefore,
⊥ /∈ Σ𝑖, so ⊥ /∈ ∆. �

The following Corollary says that if Prolog fails to prove that a goal 𝜙
follows from a program Γ and during the process does not go into an infinite
loop, then there exists a finite model of Γ∪{¬𝜙}. The author has published
this result in [33].
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L)Corollary. Let Γ′ be a finite set of non-negative Horn clauses
over X, sel be a selection function and t be a finite mgu-sel-SLD search
tree for Γ′, such that none of the leafs of t is labelled with ⊥. If the root
of t is labelled with 𝜁 ′, then the set Γ′ ∪ {𝜁 ′} is universally satisfiable in an
algebra with finite carriers.

Proof. Later in this work we will see that there exists termally sound,
termally complete and near-complete equaliser e for the so called epsilon-
terminator, such that e(Θ) never contains more than one element. Let

Γ = {𝛿[NamX]JXK : 𝛿 ∈ Γ′}

Without loss of generality we may assume that 𝜁 ′ has disjoint dependency
with all elements of Γ′, so from (21K) we can conclude that there exists a
finite e-sel-closed set ∆ of epsilon-clausoids, such that Γ∪{𝜁 ′[NamX]JXK} ⊆ ∆
and ⊥ /∈ ∆. According to (I), the set ∆ is universally satisfiable in almost
any algebra. If a finite set of clausoids is universally satisfiable in almost any
algebra, then it is universally satisfiable in an algebra with finite carriers
(we are going to prove this in 29M). It only remains to use (16J3) and
(16B1) in order to conclude that the union of Γ and and the set of the
clauses labelling nodes of t is universally satisfiable in an algebra with finite
carriers. �

M)Remark. Our definition of e-sel-SLD search tree differs from what
Prolog actually does in the following ways:

• The clauses of a Prolog program are ordered and Prolog applies them
in the specified order. No clause is applied more than once. On the
other hand, in the definition of “e-sel-SLD search tree” no specific
order is prescribed and nothing forbids a clause to be used more than
once in order to produce many child nodes in the tree. This is not
a problem because while not every e-sel-SLD search tree corresponds
to what Prolog does, every search tree built by Prolog satisfies our
definition.

• Almost all implementations of Prolog use unification without the so
called “occurs check”.62 This is not a problem, since if a Prolog imple-
mentation without occurs check fails to prove a goal and stops after
finite time, then every Prolog implementation with occurs check is
going to fail and stop after finite time.

62The only exception I am aware of is Strawberry Prolog [9].
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§22. PROPOSITIONAL POSITIVE HYPERRESOLUTION

A)Throughout this section A will be some fixed normal algebra.

B)Definition. (1)Given a clause 𝛿 with sequence ⟨𝜆1, . . . , 𝜆𝑛⟩ and a
literal 𝜆 occurring in 𝛿, by 𝛿 ∖ 𝜆 we will denote the clause, whose sequence
is obtained from ⟨𝜆1, . . . , 𝜆𝑛⟩ by removing all occurrences of 𝜆.

(2)Given a clause 𝛿 and a set Γ of literals occurring in 𝛿, by 𝛿 ∖ Γ we
will denote the clause, whose sequence is obtained from the sequence of 𝛿
by removing all occurrences of elements of Γ.

(3) A clash sequence is a sequence ⟨𝛿, 𝜀1, . . . , 𝜀𝑛⟩, where 𝑛 ≥ 1, 𝛿 is a
non-positive clause and 𝜀1, . . . , 𝜀𝑛 are positive clauses.

C)Definition. (1) Given a relational clause 𝛿 over |A| with sequence
⟨𝜆1, . . . , 𝜆𝑛⟩ and a positive relational clause 𝜀 over |A|, if 𝜆𝑖 is a negative
literal, such that 𝜆𝑖 occurs in 𝜀 and there are no negative literals among
𝜆1, . . . , 𝜆𝑖−1, then the clause whose sequence is obtained from the sequence
of 𝛿 by replacing 𝜆𝑖 with the sequence of 𝜀∖𝜆𝑖 is called propositional positive
resolvent of 𝛿 and 𝜀. The literal 𝜆𝑖 is called resolved literal .

(2) Let ⟨𝛿, 𝜀1, . . . , 𝜀𝑛⟩ be a clash sequence of relational clauses over |A|.
Let 𝛿0, . . . , 𝛿𝑛 be such that 𝛿0 = 𝛿 and 𝛿𝑖+1 be a propositional positive
resolvent of 𝛿𝑖 and 𝜀𝑖+1 for any 𝑖 ∈ {0, . . . , 𝑛− 1}. If 𝛿𝑛 is a positive clause,
then 𝛿𝑛 is called propositional positive hyperresolvent defined by the clash
sequence ⟨𝛿, 𝜀1, . . . , 𝜀𝑛⟩.

D)Corollary. (1) Let 𝜀 be a propositional positive hyperresolvent de-
fined by the clash sequence ⟨𝛿0, 𝛿1, . . . , 𝛿𝑛⟩. Let 𝜆1, . . . , 𝜆𝑘 be the sequence of
all negative literals of 𝛿0 in the same order as they occur in the sequence
of 𝛿0. Then 𝑘 = 𝑛, 𝜆𝑖 occurs in 𝛿𝑖 for all 𝑖 ∈ {1, . . . , 𝑛} and the sequence of 𝜀
is obtained from the sequence of 𝛿0 by replacing each 𝜆𝑖 with the sequence
of 𝛿𝑖 ∖ 𝜆𝑖.

(2) If 𝜀 is a propositional positive hyperresolvent defined by the clash
sequence ⟨𝛿0, 𝛿1, . . . , 𝛿𝑛⟩, then all positive literals of 𝛿0 occur in 𝜀.

Proof. (1) follows immediately from the previous definition.
(2) follows from (1). �

E)Proposition. (1)The propositional positive resolvent of relational
clauses 𝛿 and 𝜀 over |A| follows in A from {𝛿, 𝜀}.

(2) The propositional positive hyperresolvent of a clash sequence of re-
lational clauses over |A| follows in A from the set of its elements.
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Proof. (1) Let ⟨𝜆1, . . . , 𝜆𝑛⟩ be the sequence of 𝛿 and the resolvent is
obtained from the sequence of 𝛿 by replacing 𝜆𝑖 with the sequence of 𝜀 ∖ 𝜆𝑖.
Suppose that M is a logical variant of A and both 𝛿 and 𝜀 are true in M.
If 𝜆𝑖 is false in M, then 𝛿 contains some literal 𝜇, such that 𝜇 ̸= 𝜆 and 𝜇 is
true in M. But 𝜇 occurs in the resolvent too, hence the resolvent is true
in M. Otherwise, 𝜆𝑖 is true in M, so 𝜆𝑖 is false in M, hence 𝜀 contains at
least one literal 𝜇, such that 𝜇 ̸= 𝜆𝑖 and 𝜇 is true in M. But 𝜇 occurs in
the resolvent, hence the resolvent is true in M.

(2) follows from (1). �

F)Definition. The relation Γ ⊢ 𝛿, where Γ and 𝛿 are respectively
a set of relational clauses over |A| and a relational clause over |A|, is the
minimal deductive relation, such that 𝛿1, . . . , 𝛿𝑛 ⊢ 𝜀 is true whenever 𝜀 is
a hyperresolvent, defined by the clash sequence ⟨𝛿1, . . . , 𝛿𝑛⟩.

This definition is correct, because according to definition (C), all hy-
perresolvents of a clash sequence of relational clauses over |A|, are always
relational clauses over |A|.

G)Corollary. The deductive relation ⊢ is finitary.

Proof. Follows immediately from (19G) where p(Γ, 𝛿) is the relation
“𝛿 is a propositional positive hyperresolvent, defined by a clash sequence
⟨𝛿1, . . . , 𝛿𝑛⟩, such that Γ = {𝛿1, . . . , 𝛿𝑛}”. �

H)Lemma. Given a set Γ of relational clauses over |A|, if Γ ⊢ 𝛿 then
𝛿 follows from Γ in A.

Proof. We are going to apply the simple inductive principle (19D) on
the relation ⊢ . Let ∆ = {𝜙 : 𝜙 follows from Γ in A}. Obviously, Γ ⊆ ∆.
Moreover, if {𝛿1, . . . , 𝛿𝑛} ⊆ ∆ and 𝛿 is an hyperresolvent, defined by the
clash sequence ⟨𝛿1, . . . , 𝛿𝑛⟩, then 𝛿 ∈ ∆ because of (E2). Consequently,
conditions 1 and 2 of (19D) are satisfied, hence Γ ⊢ 𝛿 has to imply that
𝛿 follows from Γ in A. �

I)Definition. (1)A condition is a set a of relational literals over |A|,
such that a is satisfiable in A.

(2)The structure M satisfies the condition a, if M is a logical variant
of A and all literals from a are true in M.

(3)The partial relation a |= 𝜙 is true if 𝜙 is true in all satisfying a struc-
tures. It is not true, if 𝜙 is false in all satisfying a structures. Otherwise,
a |= 𝜙 is undefined.63 We are going to use also the expressions “𝜙 is true

63Since A is a normal structure, there exists logical structure which is a variant of A,
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in a”, “𝜙 is false in a” and “𝜙 is undefined in a”.
(4)A condition a forces a set Γ of relational clauses, written a 
 Γ, if

Γ ∪ a ⊢ ⊥ is not true.

J)Theorem. Let A be a normal algebra. Then a set Γ of relational
clauses over |A| is not satisfiable in A if and only if Γ ⊢ ⊥.

Proof. The “if” part follows from (H).
In order to prove the “only if” part, we are going to apply Theorem (J).

The “sentences” in (19J) are the relational clauses over |A| and the rela-
tion ≺ is the subset inclusion of the conditions. Lemmas (K), (N), (S)
and (T) imply (19J1), (19J2), (19J3) and (19J4), respectively.

Let Γ be a set of relational clauses over |A|, such that Γ ⊢ ⊥ is not
true. Let a = ∅. Since A is a normal structure, there exists a logical variant
of A, so a is a condition. Moreover, obviously a is a condition forcing Γ.
From (19J) we obtain a condition b, such that b |= 𝛿 is true for all elements
𝛿 of Γ. Let M be an arbitrary logical variant of A, such that all elements
of b are true in M (there is such structure, because b is a condition). Then
all elements of Γ are true in M, hence Γ is satisfiable in A. �

K)Lemma. If a forces Γ, then a forces all subsets of Γ.

Proof. Let ∆ ⊆ Γ. If a 
 Γ, then Γ∪a ⊢ ⊥ is not true, so ∆∪a ⊢ ⊥ is
not true due to the monotonicity of ⊢ (19B), hence a 
 ∆. �

Often we are going to use the following Lemma without specific
references. The reader is kindly asked to remember it.

L)Lemma. Let a be a condition and 𝜆 be a relational literal over |A|.
Then:

(1) a |= 𝜆 is true if and only if 𝜆 ∈ a.
(2) a |= 𝜆 is false if and only if 𝜆 ∈ a.

Proof. We are going to give a proof only to (2). The other item of this
lemma can be proved analogously.

The “if” part of the condition immediately follows from the definitions:
if 𝜆 ∈ a, then 𝜆 is true in all satisfying a structures, so 𝜆 is false in all
satisfying a structures, hence a |= 𝜆 is false.

In order to prove the “only if” part, suppose 𝜆 = p(𝜏1, . . . , 𝜏𝑛) (the case
𝜆 = ¬p(𝜏1, . . . , 𝜏𝑛) is analogous). Let ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, Log⟩ be the type of p.
The literal 𝜆 is relational, so for all 𝑖 ∈ {1, . . . , 𝑛} there are 𝛼𝑖 ∈ A𝜅𝑖 , such
that 𝜏𝑖 = p𝛼𝑖q.

so it is impossible for a |= 𝜙 to be both true and false.
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Let M be an arbitrary satisfying a structure. The literal 𝜆 is false
in M, so 𝜆M = pM⟨𝜏M1 , . . . , 𝜏M𝑛 ⟩ = pM⟨𝛼1, . . . , 𝛼𝑛⟩ = 0. Let M′ be a
structure with the same universe as M, where the operation symbols are
interpreted the same way as in M but with only one difference, namely
pM

′⟨𝛼1, . . . , 𝛼𝑛⟩ = 1. Then pM
′⟨𝜏M′

1 , . . . , 𝜏M
′

𝑛 ⟩ = pM
′⟨𝛼1, . . . , 𝛼𝑛⟩ = 1, so

the literal 𝜆 is true in M′. But a |= 𝜆 is false, so M′ does not satisfy a,
hence a contains some literal 𝜇 which is false in M′. On the other hand 𝜇
has to be true in M because M satisfies a.

If q(𝜏 ′1, . . . , 𝜏
′
𝑛) is an arbitrary relational atomic formula and

⟨⟨𝜅′1, . . . , 𝜅′𝑛⟩, Log⟩ is the type of q, then for all 𝑖 ∈ {1, . . . , 𝑛}
there are 𝛽𝑖 ∈ A𝜅′𝑖

, such that 𝜏 ′𝑖 = p𝛽𝑖q. Then (q(𝜏 ′1, . . . , 𝜏
′
𝑛))M =

qM⟨𝜏 ′1
M, . . . , 𝜏 ′𝑛

M⟩ = qM⟨𝛽1, . . . , 𝛽𝑛⟩ and (q(𝜏 ′1, . . . , 𝜏
′
𝑛))M

′
=

qM
′⟨𝜏 ′1

M′
, . . . , 𝜏 ′𝑛

M′
⟩ = qM

′⟨𝛽1, . . . , 𝛽𝑛⟩, so considering this and what
is the only difference between M′ and M, we see that there can
be only one relational literal, which is true in M and false in M′,
namely ¬p(p𝛼1q, . . . , p𝛼𝑛q). Consequently, 𝜇 = ¬p(p𝛼1q, . . . , p𝛼𝑛q), so
𝜇 = ¬p(𝜏1, . . . , 𝜏𝑛) = 𝜆. But 𝜇 ∈ a, so 𝜆 ∈ a. �

M)Lemma. Given a condition a and a relational clause 𝛿 over |A|,
a |= 𝛿 is false if and only if a |= 𝜆 is false for all literals 𝜆 in 𝛿.

Proof. ( =⇒ ) Let 𝜆 be an arbitrary literal occurring in 𝛿. Let M be
an arbitrary satisfying a structure. The clause 𝛿 is false in M because
M satisfies a and a |= 𝛿 is false. Therefore all occurring in 𝛿 literals have
to be false in M. In particular, 𝜆 is false in M. Thus 𝜆 is false in all
satisfying a structures, hence a |= 𝜆 is false.

(⇐= ) Let M be an arbitrary satisfying a structure. All literals from 𝛿
are false in M, hence 𝛿 is false in M. Thus 𝛿 is false in all satisfying a
structures, hence a |= 𝛿 is false. �

N)Lemma. If a 
 {𝛿}, then a |= 𝛿 is true or undefined.

Proof. Suppose a |= 𝛿 is false. Then 𝛿 is false in all satisfying a struc-
tures, so by (M) all literals of 𝛿 are false in all satisfying a structures, hence
by (L) for all literals 𝜆 occurring in 𝛿, the literals 𝜆 belong to a. From
a 
 {𝛿} it follows that {𝛿} ∪ a ⊢ ⊥ is not true. Consequently, there exists
a clause 𝛿, such that:

• {𝛿} ∪ a ⊢ ⊥ is not true.
• For all literals 𝜆 in 𝛿, 𝜆 ∈ a.

From all clauses having these two properties, let 𝜀 be some with smallest
possible number of literals.
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If 𝜀 contains negative literals, let 𝜆1, . . . , 𝜆𝑛 be all negative literals in 𝜀 in
the same order as they occur in the sequence of 𝜀. Then by definition (B3),
the sequence ⟨𝜀, 𝜆1, . . . , 𝜆𝑛⟩ is a clash sequence. Let 𝜀′ be the hyperresol-
vent defined by this clash sequence. The sequence of 𝜀′ is obtained from the
sequence of 𝜀 by removing the occurrences of 𝜆1, . . . , 𝜆𝑛. The clause 𝜀′ con-
tains smaller number of literals than 𝜀. At the same time all literals of 𝜀′
are literals of 𝜀 too, hence 𝜆 ∈ a for all literals 𝜆 of 𝜀′. On the other hand,
{𝜀′} ∪ a ⊢ ⊥ can not be true, since {𝜀} ∪ a ⊢ 𝜀′. This is contradiction,
because by choice, 𝜀 has the smallest possible number of literals among all
clauses satisfying these properties.

If 𝜀 does not contain negative literals, we can reason analogously. In this
case let 𝜆 be an arbitrary literal of 𝜀. Then use the clash sequence ⟨𝜆, 𝜀⟩. �

O)Lemma. Given a condition a and a clause 𝛿, if {𝜆, 𝜆} ∩ a ̸= ∅ for
every occurring 𝛿 relational literal 𝜆, then a |= 𝛿 is defined.

Proof. From (L) it follows that a |= 𝜆 is either true or false for every
occurring in 𝛿 literal 𝜆.

If 𝛿 contains a literal 𝜆, such that a |= 𝜆 is true, then 𝜆 is true in all
satisfying a structures, hence 𝛿 is true in all such structures, so in this case
a |= 𝛿 is true.

Otherwise, 𝛿 does not contain such a literal, so all occurring in 𝛿 literals
are false in all satisfying a structures, hence 𝛿 is false in all such structures,
so a |= 𝛿 is false. �

P)Lemma. Given a relational literal 𝜆 over |A| and a condition a,
a ∪ {𝜆} is a condition if and only if 𝜆 /∈ a.

Proof. a ∪ {𝜆} is a condition if and only if it is a satisfiable in A set, if
and only if 𝜆 is true in some satisfying a structure, if and only if a |= 𝜆 is
not false, if and only if 𝜆 /∈ a (due to L). �

Q)Lemma. Given a set Γ of relational clauses over |A|, a negative
relational literal 𝜆 over |A| and a relational clause 𝛿 over |A|, if 𝛿 ̸= 𝜆 and
Γ ∪ {𝜆} ⊢ 𝛿, then there exists a relational clause 𝛿′ over |A|, such that
Γ ⊢ 𝛿′ and the sequence of 𝛿 can be obtained from the sequence of 𝛿′ by
removing some occurrences of 𝜆.

Proof. Let ∆ be the set of all relational clauses 𝜀 over |A|, such that
there exists a relational clause 𝜀′ over |A|, such that Γ ⊢ 𝜀′ and the sequence
of 𝜀 can be obtained from the sequence of 𝜀′ by removing some occurrences
of 𝜆. We are going to prove that Γ ∪ {𝜆} ⊢ 𝜀 implies 𝜀 ∈ ∆ ∪ {𝜆} by the
simple inductive principle (19D).
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If 𝜀 ∈ Γ ∪ {𝜆}, then obviously 𝜀 ∈ ∆ ∪ {𝜆} with 𝜀′ = 𝜀.
Otherwise 𝜀 is a propositional positive hyperresolvent, defined by a clash

sequence ⟨𝜀0, 𝜀1, . . . , 𝜀𝑛⟩, where each 𝜀𝑖 is an element of ∆ ∪ {𝜆}. If 𝑖 ≥ 1,
then 𝜀𝑖 ∈ ∆, since 𝜀1, . . . , 𝜀𝑛 are positive clauses and 𝜆 is negative.

Regarding 𝜀0, we have two cases. If 𝜀0 = 𝜆, then 𝑛 = 1 and the sequence
of 𝜀 is obtained from the sequence of 𝜀1 by removing all occurrences of 𝜆.
By induction hypothesis there exists a clause 𝜀′1, such that Γ ⊢ 𝜀′1 and the
sequence of 𝜀1 can be obtained from the sequence of 𝜀′1 by removing some
occurrences of 𝜆. Consequently we can use 𝜀′ = 𝜀′1 in order to see that
𝜀 ∈ ∆.

If 𝜀0 ̸= 𝜆, then by induction hypothesis there exist clauses 𝜀′0, 𝜀′1, . . . , 𝜀′𝑛,
such that for all 𝑖, Γ ⊢ 𝜀′𝑖 and the sequence of 𝜀𝑖 can be obtained from the
sequence of 𝜀′𝑖 by removing some occurrences of 𝜆. Clearly, ⟨𝜀′0, 𝜀′1, . . . , 𝜀′𝑛⟩ is
a clash sequence and we can use it in order to derive a propositional pos-
itive hyperresolvent 𝜀′ using exactly the same resolved literals as with the
sequence ⟨𝜀0, 𝜀1, . . . , 𝜀𝑛⟩ in order to derive 𝜀. Then the sequence of 𝜀 can be
obtained from the sequence of 𝜀′ by removing some occurrences of 𝜆, hence
𝜀 ∈ ∆. �

R)Lemma. Given a condition a, a relational literal 𝜆 over |A| and
a set Γ of relational clauses over |A|, if {𝜆, 𝜆} ∩ a = ∅ and a 
 Γ, then
either a ∪ {𝜆} 
 Γ, or a ∪ {𝜆} 
 Γ.

Proof. Since the condition of the Lemma is symmetric with regard to
𝜆 and 𝜆, without loss of generality we may assume that the literal 𝜆 is
negative.

Suppose that both a ∪ {𝜆} 
 Γ and a ∪ {𝜆} 
 Γ are false, that is
a ∪ Γ ∪ {𝜆} ⊢ ⊥ and a ∪ Γ ∪ {𝜆} ⊢ ⊥. From (Q) and a ∪ Γ ∪ {𝜆} ⊢ ⊥
it follows that a ∪ Γ ⊢ 𝛿′ for some clause 𝛿′, such that all elements of its
sequence are equal to 𝜆.

Now, we are going to use the simple inductive principle (19D) in order
to prove that for any clause 𝜀, from a ∪ Γ ∪ {𝜆} ⊢ 𝜀 it follows 𝜀 = 𝜆 or
a ∪ Γ ⊢ 𝜀. Then from a ∪ Γ ∪ {𝜆} ⊢ ⊥ it will follow a ∪ Γ ⊢ ⊥ and this
will contradict a 
 Γ.

If 𝜀 ∈ a ∪ Γ ∪ {𝜆}, then trivially 𝜀 = 𝜆 or a ∪ Γ ⊢ 𝜀.
Otherwise, 𝜀 is a propositional positive hyperresolvent defined by a clash

sequence ⟨𝜀0, 𝜀1, . . . , 𝜀𝑛⟩. By induction hypothesis, for all 𝑖 either 𝜀𝑖 = 𝜆, or
a∪Γ ⊢ 𝜀𝑖. Define 𝜀′𝑖 = 𝜀𝑖 if 𝜀𝑖 ̸= 𝜆 and 𝜀′𝑖 = 𝛿′ if 𝜀𝑖 = 𝜆. Then a∪Γ ⊢ 𝜀′𝑖 for
all 𝑖. As 𝜆 is a positive literal, 𝜀0 ̸= 𝜆, so 𝜀′0 = 𝜀0. Clearly, 𝜀 is a propositional
positive hyperresolvent defined by the clash sequence ⟨𝜀′0, 𝜀′1, . . . , 𝜀′𝑛⟩. �

S)Lemma. Given a condition a and a set Γ of relational clauses
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over |A|, if a 
 Γ and a |= 𝛿 is undefined for at least one relational clause 𝛿
over |A|, then there exists a condition b, such that a ⊆ b, a ̸= b and b 
 Γ.

Proof. Since a |= 𝛿 is undefined, (O) implies that {𝜆, 𝜆} ∩ a = ∅ for at
least one literal 𝜆 over |A|, hence (R) implies that either a ∪ {𝜆} 
 Γ, or
a ∪ {𝜆} 
 Γ. �

T)Lemma. Given a non-empty set Λ of conditions, such that for any
a′, a′′ ∈ Λ either a′ ⊆ a′′, or a′′ ⊆ a′, there exists a condition b, such that
a ⊆ b for all b ∈ Λ and b forces any set of relational clauses over |A| which
is forced by all elements of Λ.

Proof. Let b be the union of all elements of Λ. From (13H) it follows
that b is a condition.

Suppose the set Γ is forced by all elements of Λ, but b 
 Γ is false. Then
b∪ Γ ⊢ ⊥, so from the finitarity of ⊢ we obtain a finite subset ∆ ⊆ b∪ Γ,
such that ∆ ⊢ ⊥. Let b′ = b∩∆. Then b′ is a finite subset of b, such that
∆ ⊆ b′∪Γ, hence b′∪Γ ⊢ ⊥, so b′ does not force Γ. This is a contradiction,
because all finite subsets of b are subsets of some element of Λ, hence all
finite subsets of b force Γ. �

§23. POSITIVE HYPERRESOLUTION

A)Definition. (1)A clause 𝛿 subsumes the clause 𝜀, if all literals of 𝛿
occur in 𝜀.

(2)Given an algebra A, a clause (clausoid) 𝛿 over X subsumes in A the
clause (clausoid) 𝜀 if every instance of 𝜀 in A is subsumed by some instance
of 𝛿 in A.

(3) A condensing function is a function f mapping clauses (clausoids)
over X to clauses (clausoids) over X, such that for any 𝛿, f(𝛿) subsumes 𝛿
and the number of the negative literals in f(𝛿) is less than or equal to the
number of the negative literals in 𝛿.

(4) Given a logical structure M, a condensing function f is M-sound ,
if for any universally valid in M clause (clausoid) 𝛿 over X, f(𝛿) also is
universally valid in M.

Notice that every clause subsumes itself. In addition, if 𝛿 subsumes 𝜀,
then 𝛿 subsumes 𝜀 in every algebra.

B)Proposition. Given a logical structure M and clauses (clausoids)
𝛿 and 𝜀 over X, if 𝛿 is universally valid in M and 𝛿 subsumes 𝜀 in 𝜕M,
then 𝜀 is universally valid in M.
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Proof. 𝛿 is universally valid in M, hence (20H) implies that all instances
in 𝜕M of 𝛿 are true in M. But 𝛿 subsumes 𝜀 in 𝜕M, hence every instance
of 𝜀 in 𝜕M is subsumed by some instance of 𝛿 in 𝜕M, so every instance
of 𝜀 in 𝜕M is subsumed by some true in M clause or clausoid, hence every
instance of 𝜀 in 𝜕M is true in M, so by (20H) 𝜀 is universally valid in M. �

C)Definition. (1) Given a termal equaliser e, a clause 𝛿 over X with
sequence ⟨𝜆1, . . . , 𝜆𝑛⟩, a positive clause 𝜀 over X and a non-empty set Γ
of literals occurring in 𝜀, if 𝜆𝑖 is a negative literal, such that there are no
negative literals among 𝜆1, . . . , 𝜆𝑖−1 and

𝑠 ∈ e({𝜆𝑖 ∼ 𝜇 : 𝜇 ∈ Γ}),

then the clause whose sequence is obtained from the sequence of 𝛿[𝑠][X] by
replacing the literal corresponding to 𝜆𝑖 with the sequence of (𝜀 ∖ Γ)[𝑠][X] is
called positive e-resolvent of 𝛿 and 𝜀. The literal 𝜆𝑖 is called resolved literal .

Given a termoidal equaliser e, the notions “positive e-resolvent of clau-
soids” and “resolved literaloid” are defined analogously, but instead of
clauses, literals, 𝛿[𝑠][X] and (𝜀 ∖ Γ)[𝑠][X], we use clausoids, literaloids, 𝛿J𝑠KJXK

and (𝜀 ∖ Γ)J𝑠KJXK, respectively.
(2) Let e be an equaliser and f be a condensing function. Let

⟨𝛿, 𝜀1, . . . , 𝜀𝑛⟩ be a clash sequence of clauses or clausoids over X. Let
𝛿0, . . . , 𝛿𝑛 be such that 𝛿0 = 𝛿 and 𝛿𝑖+1 is the result of the application
of f to some positive e-resolvent of a variant of 𝛿𝑖 and a variant of 𝜀𝑖+1

(both variants having disjoint dependency). If 𝛿𝑛 is a positive clause or
clausoid, then 𝛿𝑛 is called positive ef-hyperresolvent defined by the clash
sequence ⟨𝛿, 𝜀1, . . . , 𝜀𝑛⟩.

D) Regarding definition (C1), notice that for any particular clauses
(clausoids) 𝛿 and 𝜀, there are finitely many possible sets Γ and finitely
many systems {𝜆𝑖 = 𝜇 : 𝜇 ∈ Γ}, hence there are finitely many possible sub-
stitutions 𝑠. Therefore, for any particular clauses (clausoids) 𝛿 and 𝜀, there
are at most finitely many positive e-resolvents.

E) Also notice that if 𝛿 is a clause (clausoid) whose sequence contains
𝑛 negative literals and 𝜀 is a positive clause (clausoid), then any positive
e-resolvent of 𝛿 and 𝜀 contains 𝑛− 1 negative literals. Because of this,
if there exists a positive ef-hyperresolvent defined by the clash sequence
⟨𝛿, 𝜀1, . . . , 𝜀𝑛⟩, then the sequence of 𝛿 contains exactly 𝑛 negative literals
(literaloids).

F)Definition. (1)A reducing function g is a function mapping each
set Γ of clauses (clausoids) over X to a set g(Γ) of clauses (clausoids) over X.
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(2)Given an algebra A, a reducing function g is A-sound, if for any
set Γ of clauses (clausoids) over X each element of g(Γ) is subsumed in A
by some element of Γ.

(3)Given an algebra A, a reducing function g is A-complete, if for any
set Γ of clauses (clausoids) over X each element of Γ is subsumed in A by
some element of g(Γ).

G)Definition. (1)Given an equaliser e, a condensing function f, a
reducing function g and a set Γ of clauses (clausoids) over X, let Γ′ be
the set of all positive ef-hyperresolvents defined by clash sequences whose
elements belong to Γ. Then the set g(Γ∪Γ′) will be denoted by res(e, f, g ; Γ).

(2) For any natural number 𝑛, res𝑛(e, f, g ; Γ) is the iterative application
of the operator res. Namely, res0(e, f, g ; Γ) = Γ and res𝑛+1(e, f, g ; Γ) =
res(e, f, g ; res𝑛(e, f, g ; Γ)).

(3) Let res*(e, f, g ; Γ) be the union of all res𝑛(e, f, g ; Γ) for all 𝑛.

Notice that res𝑛 is not necessarily monotone on 𝑛. Because of the
reducing function g, the situations when res𝑛(e, f, g ; Γ) is not a subset
of res𝑛+1(e, f, g ; Γ) are common. Nevertheless, The following proposition
compensates sufficiently for the non-monotonicity.

H)Proposition. Given an equaliser e, a condensing function f,
an algebra A, an A-complete reducing function g and a set Γ of clauses
(clausoids), if 𝛿 ∈ res𝑛(e, f, g ; Γ), then for any 𝑚 ≥ 𝑛 there exists 𝜀 ∈
res𝑚(e, f, g ; Γ), such that 𝛿 is subsumed in A by 𝜀.

Proof. By induction on 𝑚. When 𝑚 = 𝑛 the proposition becomes trivial
(we can take 𝜀 = 𝛿).

Suppose that 𝜀 ∈ res𝑚(e, f, g ; Γ) and 𝛿 is subsumed in A by 𝜀.
Let ∆ be the set of all positive ef-hyperresolvents defined by clash se-
quences whose elements belong to res𝑚(e, f, g ; Γ). Then res𝑚+1(e, f, g ; Γ) =
g(res𝑚(e, f, g ; Γ) ∪ ∆). Since g is A-complete and 𝜀 ∈ res𝑚(e, f, g ; Γ), there
exists some 𝜀′ ∈ res𝑚+1(e, f, g ; Γ), such that 𝜀 is subsumed in A by 𝜀′. Ob-
viously, the relation “subsumed” is transitive, so 𝛿 is subsumed in A by 𝜀′. �

Soundness for Structures of Terms

I)The positive hyperresolution with termoids is not sound for arbitrary
structures. It is possible for clausoids to be universally valid in a structure
and yet — some their positive hyperresolvent not to be universally valid
in the same structure. Nevertheless, we are going to prove that the posi-
tive hyperresolution is sound for structures of terms. Since the Herbrand
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structures are structures of terms and considering that a set of clausoids is
universally satisfiable if and only if it is universally satisfiable in a Herbrand
algebra (see 16K), we can conclude that the positive hyperresolution pre-
serves the universal satisfiability. If a set Γ is universally satisfiable and
we add to it positive hyperresolvents, the resulting set also is going to be
universally satisfiable.

J)Lemma. Given a logical structure M of terms,64 a termally sound
termal (termoidal) equaliser e and universally valid in M clauses (clausoids)
𝛿0 and 𝛿1 over X, if 𝜀 is a positive e-resolvent of some variants of 𝛿0 and 𝛿1,
then 𝜀 is universally valid in M too.

Proof. We will give the proof for the case of clausoids. The proof for the
case of clauses is completely analogous.

Let 𝜀′ be an arbitrary instance of 𝜀 in 𝜕M. We are going to prove that
𝜀′ is true in M. From this and (20H) it will follow that 𝜀 is universally valid
in M.

Let 𝛿′0 and 𝛿′1 be variants of 𝛿0 and 𝛿1, such that 𝜀 is a positive e-resolvent
of 𝛿′0 and 𝛿′1. According to the definition of a positive e-resolvent (C1), there
exists a non-empty set Γ of literals occurring in 𝛿′1 and a literal 𝜆′, such that
𝜆′ is the first negative literal in the sequence of 𝛿′0 and for some

𝑠 ∈ e({𝜆′ = 𝜇 : 𝜇 ∈ Γ})

the sequence of 𝜀 can be obtained from the sequence of 𝛿′0J𝑠KJXK by re-
placing the literal corresponding to 𝜆′ with the sequence of (𝛿′1 ∖ Γ)J𝑠KJXK.
Since 𝜀′ is an instance in 𝜕M of 𝜀, there exists an assignment function
𝑣 : X → |𝜕M|, such that 𝜀′ = 𝜀J𝑣K𝜕M, see (20C1) and (20E). From (20L5)
and (20L7) it follows that the sequence of 𝜀′ can be obtained from the se-
quence of 𝛿′0J𝑠KJXKJ𝑣K𝜕M by replacing the literal corresponding to 𝜆′ with
the sequence of (𝛿′1 ∖ Γ)J𝑠KJXKJ𝑣K𝜕M.

Let 𝑤 = (J𝑣K𝜕M) ∘ 𝑠. From (11T) and (14T2) it follows that
𝜏J𝑠KJXKJ𝑣K𝜕M = 𝜏J𝑤K𝜕M for any 𝜏 . Consequently, the sequence of 𝜀′ can
be obtained from the sequence of 𝛿′0J𝑤K𝜕M by replacing the literal corre-
sponding to 𝜆′ with the sequence of (𝛿′1 ∖ Γ)J𝑤K𝜕M.

Since the equaliser e is termally sound, 𝑤 is a solution in M of all iden-
tities belonging to {𝜆′ ∼ 𝜇 : 𝜇 ∈ Γ}, i.e. 𝜆′J𝑤K𝜕M = 𝜇J𝑤K𝜕M for any 𝜇 ∈ Γ.
Consequently, the corresponding to 𝜆′ literal of 𝛿′0J𝑤K𝜕M can not be true
in M if at least one corresponding to a literaloid of Γ literal of 𝛿1J𝑤K𝜕M is
true in M.

64In other words, M is a Herbrand structure.
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On the other hand, 𝛿′0J𝑤K𝜕M and 𝛿′1J𝑤K𝜕M are instances in 𝜕M of 𝛿′0
and 𝛿′1, hence by (20Q) they are instances of 𝛿0 and 𝛿1 too. But 𝛿0 and 𝛿1
are universally valid in 𝜕M, hence both 𝛿′0J𝑤K𝜕M and 𝛿′1J𝑤K𝜕M are true
in 𝜕M. This means that at least one literal of 𝛿′0J𝑤K𝜕M is true in M and at
least one literal of 𝛿′1J𝑤K𝜕M is true in M.

If at least one literal of 𝛿′0J𝑤K𝜕M other than the one corresponding to 𝜆′
is true in M, then 𝜀′ is true in M because all literals of 𝛿′0J𝑤K𝜕M except the
one corresponding to 𝜆′ occur in 𝜀′. Otherwise, the literal corresponding
to 𝜆′ is true, hence none of the literals in {𝜇J𝑤K𝜕M : 𝑤 ∈ Γ} can be true
in M. But 𝛿′1J𝑤K𝜕M is true in M, hence at least one literal of 𝛿′1J𝑤K𝜕M which
is not corresponding to a literaloid of Γ is true in M. All literals of 𝛿′1J𝑤K𝜕M
which are not corresponding to a literaloid of Γ occur in 𝜀′, hence, again,
in this case we can conclude that 𝜀′ is true in M. �

K)Corollary. Given a logical structure M of terms, a termally sound
termal (termoidal) equaliser e and an M-sound condensing function f, if
Γ is a set of universally valid in M clauses (clausoids) over X, then all ef-
hyperresolvents defined by clash sequences whose elements belong to Γ are
universally valid in M.

Proof. Let 𝛿 be an ef-hyperresolvent defined by the clash se-
quence ⟨𝜀0, 𝜀1, . . . , 𝜀𝑛⟩, where 𝜀0, 𝜀1, . . . , 𝜀𝑛 ∈ Γ. By definition (C2), there
exist clauses (clausoids) 𝛿0, 𝛿1, . . . , 𝛿𝑛, such that 𝛿0 = 𝜀0, 𝛿𝑛 = 𝛿 and 𝛿𝑖+1 is
the result of the application of f to some positive e-resolvent of a variant
of 𝛿𝑖 and a variant of 𝜀𝑖+1. We are going to prove by induction on 𝑖 that
𝛿𝑖 is universally valid in M. This will complete the proof because 𝛿 = 𝛿𝑛.

The case 𝑖 = 0 is easy, as 𝛿0 = 𝜀0 and we know that 𝜀0 is universally
valid in M.

Suppose that 𝛿𝑖 is universally valid in M. Since 𝛿𝑖 and 𝜀𝑖+1 are univer-
sally valid, (20R) implies that all their variants are universally valid in M
too, hence (J) implies that all e-resolvents of a variant of 𝛿𝑖 and a variant
of 𝜀𝑖+1 are universally valid in M. But f is M-sound and 𝛿𝑖+1 is the result of
the application of f to such variants, hence 𝛿𝑖+1 is universally valid in M. �

The following Theorem states the soundness of the positive hyperreso-
lution for logical structures of terms.

L)Theorem. Given a logical structure M of terms, a termally sound
equaliser e, an M-sound condensing function f and a 𝜕M-sound reducing
function g, if Γ is a set of universally valid in M clauses (clausoids) over X,
then ⊥ /∈ res*(e, f, g ; Γ).

Proof. By induction on 𝑛 we are going to prove that all elements
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of res𝑛(e, f, g ; Γ) are universally valid in M. Since ⊥ is not true in M,
this completes the proof.

The case 𝑛 = 0 is trivial, because res0(e, f, g ; Γ) = Γ and Γ is a set of
universally valid in M clauses or clausoids.

Suppose that all elements of res𝑛(e, f, g ; Γ) are universally valid in M.
Let Γ′ be the set of all ef-hyperresolvents defined by clash sequences whose
elements belong to res𝑛(e, f, g ; Γ). The induction hypothesis and (K) im-
ply that the elements of Γ′ are universally valid in M, hence all elements
of res𝑛(e, f, g ; Γ) ∪ Γ′ are universally valid in M. Since g is 𝜕M-sound,
each element of g(res𝑛(e, f, g ; Γ) ∪ Γ′) is subsumed in 𝜕M by some element
of res𝑛(e, f, g ; Γ) ∪ Γ′, hence each element of g(res𝑛(e, f, g ; Γ) ∪ Γ′) is sub-
sumed in 𝜕M by some universally valid in M clause or clausoid. But by
definition (G) res𝑛+1(e, f, g ; Γ) = g(res𝑛(e, f, g ; Γ) ∪ Γ′), hence each element
of res𝑛+1(e, f, g ; Γ) is subsumed in 𝜕M by some universally valid in M clause
or clausoid. Now (B) implies that the elements of res𝑛+1(e, f, g ; Γ) are uni-
versally valid in M. �

Completeness for Almost Any Normal Algebra

M)Lemma. Let the Sort-indexed functions 𝑑′, 𝑑′′ : X → X be such that
both 𝑑′ and 𝑑′′ have injective components and for any sort 𝜅 the images of
𝑑′𝜅 and 𝑑′′𝜅 have empty intersection. Then:

(1) For any Sort-indexed functions 𝑓 ′, 𝑓 ′′ : X → 𝑌 there exists a Sort-
indexed function 𝑓 : X → 𝑌 , such that 𝑓 ′ = 𝑓 ∘ 𝑑′ and 𝑓 ′′ = 𝑓 ∘ 𝑑′′.

(2) For any termal (termoidal) expression 𝜏 over X, 𝜏 [𝑑′] and 𝜏 [𝑑′′]
(resp. 𝜏J𝑑′K and 𝜏J𝑑′′K) have disjoint dependency.

Proof. (1) Take an arbitrary sort 𝜅 and 𝜉 ∈ X𝜅. If there exists 𝜂 ∈ X,
such that 𝑑′𝜅𝜂 = 𝜉, then let 𝑓𝜅𝜉 = 𝑓 ′𝜂. If there exists 𝜂 ∈ X, such that 𝑑′′𝜅𝜂 =
𝜉, then let 𝑓𝜅𝜉 = 𝑓 ′′𝜂. Otherwise let 𝑓𝜅𝜉 be arbitrary. According to this
definition, 𝑓𝜅(𝑑′𝜅𝜂) = 𝑓 ′𝜂 and 𝑓𝜅(𝑑′′𝜅𝜂) = 𝑓 ′′𝜂 for any 𝜂 ∈ X𝜅. Consequently,
𝑓 ′ = 𝑓 ∘ 𝑑′ and 𝑓 ′′ = 𝑓 ∘ 𝑑′′.

(2) The lemma is obvious in the case of termal expressions. Let 𝜏 be
a termoidal expression. Let X′ and X′′ be Sort-indexed subsets of X,
such that the image of 𝑑′ is a subset of X′, the image of 𝑑′′ is a subset
of X′′ and X′ and X′′ have no common elements. According to (14I4),
𝜏J𝑑′K is a termoidal expression over X′ and 𝜏J𝑑′′K is a termoidal expres-
sion over X′′. Suppose that there exist some 𝜉 ∈ X, such that both
𝜏J𝑑′K and 𝜏J𝑑′′K depend on 𝜉. According to definition (17C), there ex-
ist functions 𝑔′, 𝑔′′ : X → X, such that 𝑔′ and 𝑔′′ are identity over all ele-
ments of X except 𝜉 and 𝜏J𝑑′KJ𝑔′K ̸= 𝜏J𝑑′K and 𝜏J𝑑′′KJ𝑔′′K ̸= 𝜏J𝑑′′K. Since
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𝜏J𝑑′KJ𝑔′K = 𝜏J𝑔′ ∘ 𝑑′K = 𝜏J(𝑔′ �X′) ∘ 𝑑′K = 𝜏J𝑑′KJ𝑔′ �X′K, the function 𝑔′ �X′ is
not identity, hence 𝜉 belongs to X′. Analogously, 𝜉 belongs to X′′. This is
a contradiction. �

N)Lemma (the lifting lemma for resolvents). Given a near-
complete equaliser e and clauses (clausoids) 𝛿0 and 𝛿1 over X, there exist
variants 𝛿′′0 and 𝛿′′1 of 𝛿0 and 𝛿1, such that 𝛿′′0 and 𝛿′′1 have disjoint dependency
and the following is true for almost any normal algebra A:

If the relational clauses 𝛿′0 and 𝛿′1 over |A| are respective instances in A
of 𝛿0 and 𝛿1 and 𝜀′ is a propositional positive resolvent of 𝛿′0 and 𝛿′1, then
there exists a clause (clausoid) 𝜀 over X, such that 𝜀′ is an instance in A
of 𝜀 and 𝜀 is a positive e-resolvent of 𝛿′′0 and 𝛿′′1 .

Proof. We will give the proof for the case of clausoids. The differences
for the case of clauses will be provided in footnotes.

Let the Sort-indexed functions 𝑑0, 𝑑1 : X → X be with injective com-
ponents and for any sort 𝜅 the images of the components (𝑑0)𝜅 and (𝑑1)𝜅
have empty intersection. From (20T) it follows that 𝛿0J𝑑0K is a variant of 𝛿0
and 𝛿1J𝑑1K is a variant of 𝛿1. Let 𝛿′′0 = 𝛿0J𝑑0K and 𝛿′′1 = 𝛿1J𝑑1K. According
to (M2), 𝛿′′0 and 𝛿′′1 have disjoint dependency.

We are going to use the functions 𝑑0 and 𝑑1 in order to define a finite
set Γ of termally inconsistent systems, such that the property stated in this
Lemma is true for any algebra A, such that none of the systems of Γ has a
solution in A. Let Γ be the set of all termally inconsistent systems whose
identities have the form 𝜆J𝑑0K ∼ 𝜇J𝑑1K where 𝜆 is a negative literal of 𝛿0
and 𝜇 is a positive literal of 𝛿1.

Let A be an arbitrary algebra, sush that none of the systems in Γ has
a solution in A.

Let ⟨𝜆′1, . . . , 𝜆′𝑛⟩, ⟨𝜆1, . . . , 𝜆𝑛⟩, ⟨𝜇′
1, . . . , 𝜇

′
𝑚⟩ and ⟨𝜇1, . . . , 𝜇𝑚⟩ be the se-

quences, respectively, of 𝛿′0, 𝛿0, 𝛿′1 and 𝛿1. Let 𝜆′𝑗 be a negative literal, such
that the literals 𝜆′1, . . . , 𝜆′𝑗−1 are positive. Let 𝜇′

𝑘1
, . . . , 𝜇′

𝑘𝑡
be all literals of 𝛿′1,

such that 𝜆′𝑗 = 𝜇′
𝑘𝑖

, 𝑖 ∈ {𝑘1, . . . , 𝑘𝑡}. Then by the definition of propositional
positive resolvent, the sequence of 𝜀′ can be obtained from the sequence
of 𝛿′0 by replacing 𝜆′𝑗 with the sequence of 𝛿′1 ∖ {𝜇′

𝑘1
, . . . , 𝜇′

𝑘𝑡
}.

Let the Sort-indexed functions 𝑣0 : X → |A| and 𝑣1 : X → |A| be such
that 𝛿′0 ∈ 𝛿0J𝑣0KPA and 𝛿′1 ∈ 𝛿1J𝑣1KPA.65 Because of (20L), 𝜆′𝑖 ∈ 𝜆𝑖J𝑣0KPA

and 𝜇′
𝑖 ∈ 𝜇𝑖J𝑣1KPA for any 𝑖.66

According to (M1), there exists a Sort-indexed function 𝑣 : X → |A|,
such that 𝑣0 = 𝑣 ∘ 𝑑0 and 𝑣1 = 𝑣 ∘ 𝑑1.

65Such that 𝛿′0 = 𝛿0[𝑣0]A and 𝛿′1 = 𝛿1[𝑣1]A.
66𝜆′

𝑖 = 𝜆𝑖[𝑣0]A and 𝜇′
𝑖 = 𝜇𝑖[𝑣1]A
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Notice that 𝜆′𝑗 ∈ 𝜆𝑗J𝑣0KPA = 𝜆𝑗J𝑣 ∘ 𝑑0KPA = (𝜆𝑗J𝑑0K)J𝑣KPA and at
the same time for any 𝑟 ∈ {𝑘1, . . . , 𝑘𝑡} we have 𝜆′𝑗 = 𝜇′

𝑟 ∈ 𝜇𝑟J𝑣1KPA =

𝜇𝑟J𝑣 ∘ 𝑑1KPA = (𝜇𝑟J𝑑1K)J𝑣KPA = (𝜇𝑟J𝑑1K)J𝑣KPA.67 Consequently, 𝑣 is a so-
lution of Θ in A, where Θ is the system of all identities of the form

𝜆𝑗J𝑑0K = 𝜇𝑟J𝑑1K,

where 𝑟 ∈ {𝑘1, . . . , 𝑘𝑡}.
Since Θ has a solution in A, Θ can not be an element of Γ. Therefore,

Θ is termally consistent.
Since the equaliser e is near-complete, there exists 𝑠 ∈ e(Θ) and a Sort-

indexed function 𝑤 : X → |A|, such that 𝑣 ≪ (J𝑤KPA) ∘ 𝑠.68

Let 𝜀 be the clausoid whose sequence is obtained from the se-
quence of (𝛿0J𝑑0K)J𝑠KJXK by replacing (𝜆𝑗J𝑑0K)J𝑠KJXK with the sequence
of (𝛿1J𝑑1K ∖ {𝜇𝑘1J𝑑1K, . . . , 𝜇𝑘𝑡J𝑑1K})J𝑠KJXK. By the definition of positive
e-resolvent, 𝜀 is a positive e-resolvent of 𝛿0J𝑑0K and 𝛿1J𝑑1K, hence it is a
positive e-resolvent of variants of 𝛿0 and 𝛿1.

It remains to show that 𝜀′ is an instance of 𝜀. Because of the way 𝜀′

and 𝜀 are defined and (20L), it is enough to show that 𝛿′0 is an instance
of (𝛿0J𝑑0K)J𝑠KJXK and 𝛿′1 is an instance of (𝛿1J𝑑1K)J𝑠KJXK.

From 𝑣 ≪ (J𝑤KPA) ∘ 𝑠 and (14T1) it follows that for any termoidal
expression 𝜏 over X we have 𝜏J𝑣KPA ⊆ (𝜏J𝑠KJXK)J𝑤KPA.69 In particular,
when 𝜏 = 𝛿0J𝑑0K we obtain70 that

𝛿′0 ∈ 𝛿0J𝑣0KPA by the definition of 𝑣0
= 𝛿0J𝑣 ∘ 𝑑0KPA because 𝑣0 = 𝑣 ∘ 𝑑0

= (𝛿0J𝑑0K)J𝑣KPA from (14I7)

⊆ ((𝛿0J𝑑0K)J𝑠KJXK)J𝑤KPA when 𝜏 = 𝛿0J𝑑0K

67Notice that 𝜆′
𝑗 = 𝜆𝑗 [𝑣0]A = 𝜆𝑗 [𝑣 ∘ 𝑑0]A = (𝜆𝑗 [𝑑0])[𝑣]A and at the same time for any

𝑟 ∈ {𝑘1, . . . , 𝑘𝑡} we have 𝜆′
𝑗 = 𝜇′

𝑟 = 𝜇𝑟[𝑣1]A = 𝜇𝑟[𝑣 ∘ 𝑑1]A = (𝜇𝑟[𝑑1])[𝑣]A = (𝜇𝑟[𝑑1])[𝑣]A.
68Such that 𝑣 = ([𝑤]A) ∘ 𝑠.
69From 𝑣 = ([𝑤]A) ∘ 𝑠 and (11T) it follows that 𝜏 [𝑣]A = (𝜏 [𝑠][X])[𝑤]A.
70We obtain that

𝛿′0 = 𝛿0[𝑣0]A by the definition of 𝑣0
= 𝛿0[𝑣 ∘ 𝑑0]A because 𝑣0 = 𝑣 ∘ 𝑑0

= (𝛿0[𝑑0])[𝑣]A from (11H)

= ((𝛿0[𝑑0])[𝑠][X])[𝑤]A when 𝜏 = 𝛿0[𝑑0]
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Hence 𝛿′0 is an instance of (𝛿0J𝑑0K)J𝑠KJXK. Analogously it can be shown that
𝛿′1 is an instance of (𝛿1J𝑑1K)J𝑠KJXK. �

O)Lemma (the lifting lemma for ef-hyperresolvents). Given
a near-complete equaliser e, a condensing function f and clausoids
𝛿0, 𝛿1, . . . , 𝛿𝑛 over X, the following is true for almost any normal algebra A:

If the relational clauses 𝛿′0, 𝛿′1, . . . , 𝛿′𝑛 over |A| are subsumed by some
instances in A of 𝛿0, 𝛿1, . . . , 𝛿𝑛, respectively, and 𝜀′ is a propositional positive
hyperresolvent defined by the clash sequence ⟨𝛿′0, 𝛿′1, . . . , 𝛿′𝑛⟩, then either 𝜀′ is
subsumed by an instance of an element of {𝛿0, 𝛿1, . . . , 𝛿𝑛} or 𝜀′ is subsumed
by an instance of some positive ef-hyperresolvent defined by a clash sequence
whose elements are among 𝛿0, 𝛿1, . . . , 𝛿𝑛.

Proof. First, we are going to define by recursion finite sets Γ0,Γ1,Γ2, . . .
Let Γ0 = {𝛿0, 𝛿1, . . . , 𝛿𝑛}. For any 𝑖, there exist finitely many pairs
𝜁 ′, 𝜁 ′′ ∈ Γ𝑖, so we can use Lemmas (N) and (18X) in order to find finitely
many variants of the clausoids of these pairs, such that for almost any al-
gebra A any propositional positive resolvent of instances in A of elements
of Γ𝑖 is an instance in A of a positive e-resolvent of some of these finitely
many variants. In addition to this, according to (D), there are finitely many
such positive e-resolvents. Let Γ𝑖+1 be the set containing all elements of Γ𝑖
and all results of the application of f to such e-resolvents.

Let 𝑡 be the number of the negative literaloids in 𝛿0.
For almost any algebra A, any propositional positive resolvent of in-

stances in A of elements of Γ𝑡 is an instance in A of a positive e-resolvent
of some variants of elements of Γ𝑡. Let A be one such algebra.

Let 𝜆1, . . . , 𝜆𝑛 be all negative literals of 𝛿′0 in that order. Let 𝛿′′0 , 𝛿′′1 , . . . , 𝛿′′𝑛
be relational clauses over |A|, such that 𝛿′𝑖 is subsumed by 𝛿′′𝑖 for any 𝑖 and
𝛿′′𝑖 is an instance of 𝛿𝑖 for any 𝑖.

If 𝜆𝑖 does not occur in 𝛿′′𝑖 for some 𝑖, then 𝛿′′𝑖 subsumes 𝛿′𝑖 ∖ 𝜆𝑖, hence it
subsumes 𝜀′ too, so in this case 𝜀′ is subsumed by an instance of an element
of {𝛿0, 𝛿1, . . . , 𝛿𝑛}.

Analogously, if none of 𝜆1, . . . , 𝜆𝑛 occurs in 𝛿′′0 , then 𝛿′′0 subsumes 𝜀′, so
in this case 𝜀′ is subsumed by an instance of an element of {𝛿0, 𝛿1, . . . , 𝛿𝑛}
too.

Let ∆ be the set of all relational clauses over |A|, such that all their
literals occur either in 𝛿′0 or in 𝛿′𝑖 ∖ 𝜆𝑖 for some 𝑖. Since each of the
literals 𝜆1, . . . , 𝜆𝑛 is negative, all positive literals occurring in an element
of ∆ occur in 𝜀′ too, hence if an element of ∆ is a positive clause, then it
subsumes 𝜀′. Consequently, in order to prove the Lemma, it will be enough
to show that some instance of a positive ef-hyperresolvent defined by a clash
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sequence whose elements are among 𝛿0, 𝛿1, . . . , 𝛿𝑛 is an element of ∆.
Notice that any clause subsuming an element of ∆ belongs to ∆ itself.
We are going to find a natural number 𝑚, such that 𝑚 ≤ 𝑡, and to define

clausoids 𝜀0, 𝜀1, . . . , 𝜀𝑚 over X, such that for any 𝑖:
1. 𝜀𝑖 belongs to Γ𝑖 and an instance of 𝜀𝑖 belongs to ∆;
2. 𝜀𝑖+1 is the result of the application of f to some positive e-resolvent of

a variant of 𝜀𝑖 and a variant of an element of {𝛿0, 𝛿1, . . . , 𝛿𝑛};
Let 𝜀0 = 𝛿0. Then 𝜀0 ∈ Γ0 and 𝛿′′0 is an instance of 𝜀0 and belongs to ∆.
If 𝜀𝑖 does not contain any negative literals for some 𝑖, then we are done —

let 𝑚 = 𝑖. Notice that 𝑚 ̸= 0 as we have already considered the case when
𝛿′′0 contains zero negative literals.71 According to 2. and definition (C2), 𝜀𝑚 is
a positive ef-hyperresolvent defined by a clash sequence whose elements are
among 𝛿0, 𝛿1, . . . , 𝛿𝑛. At the same time, according to 1., an instance of 𝜀𝑚
belongs to ∆.

Otherwise, continue. Let 𝜀′′𝑖 be an instance of 𝜀𝑖, such that 𝜀′′𝑖 ∈ ∆. The
definition of ∆ implies that all negative literals of 𝜀′′𝑖 are among 𝜆1, . . . , 𝜆𝑛,
hence the first negative literal occurring in the sequence of 𝜀′′𝑖 is equal to 𝜆𝑘𝑖
for some 𝑘𝑖. Let 𝜁 ′′𝑖+1 be the clause whose sequence is obtained from the
sequence of 𝜀′′𝑖 by replacing 𝜆𝑘𝑖 with the sequence of 𝛿′′𝑘1 ∖ 𝜆𝑘𝑖 .

By definition (22C1), 𝜁 ′′𝑖+1 is a propositional positive resolvent of 𝜀′′𝑖
and 𝛿′′𝑘𝑖 . But 𝜀′′𝑖 and 𝛿′′𝑘𝑖 are instances of 𝜀𝑖 and 𝛿𝑘𝑖 , respectively, and both 𝜀𝑖
and 𝛿𝑘𝑖 belong to Γ𝑖. Therefore, there exists some positive e-resolvent 𝜁𝑖+1

of variants of 𝜀𝑖 and 𝛿𝑘+1, such that f(𝜁𝑖+1) ∈ Γ𝑖+1 and 𝜁 ′′𝑖+1 is an instance
of 𝜁𝑖+1. Let 𝜀𝑖+1 = f(𝜁𝑖+1); then 𝜀𝑖+1 ∈ Γ𝑖+1.

According to the definition of condensing function, 𝜀𝑖+1 subsumes 𝜁𝑖+1

in A. But 𝜁 ′′𝑖+1 is an instance in A of 𝜁𝑖+1, hence 𝜁 ′′𝑖+1 is subsumed by an
instance of 𝜀𝑖+1. On the other hand, from 𝜀′′𝑖 ∈ ∆ and the definition of 𝜁 ′′𝑖+1

it follows that 𝜁 ′′𝑖+1 ∈ ∆. Consequently, an instance of 𝜀𝑖+1 subsumes an
element of ∆, hence an instance of 𝜀𝑖+1 belongs to ∆.

It only remains to see that this process is finite and that 𝑚 ≤ 𝑡. This
is so, because according to the definition of condensing function (A3), the
application of f does not increase the number of the negative literaloids.
Consequently, 𝜀𝑖+1 contains less or equal negative literals than 𝜁𝑖+1.
In addition, 𝜁𝑖+1 contains exactly one negative literaloid less than 𝜀𝑖, hence
the clausoid 𝜀𝑖+1 contains strictly less negative literaloids than 𝜀𝑖. Therefore,
for any 𝑖, the number of the negative literaloids in 𝜀𝑖 is smaller than or equal
to 𝑡− 𝑖. �

71If 𝛿′′0 contains zero negative literals, then none of 𝜆1, . . . , 𝜆𝑛 occurs in 𝛿′′0 .
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P)Definition. A set Γ of clauses (clausoids) is essentially finite if
there exists a finite subset ∆ of Γ, such that for any 𝛿 ∈ Γ some variant
of 𝛿 belongs to ∆.

Q)Theorem. Given a near-complete equaliser e, a condensing func-
tion f, a reducing function g which is A-complete for almost any normal
algebra A, and a set Γ of clausoids, if res*(e, f, g ; Γ) is essentially finite and
⊥ /∈ res*(e, f, g ; Γ), then Γ is universally satisfiable in almost any normal
algebra.

Proof. The essential finiteness of res*(e, f, g ; Γ) and (23E) imply
that there exists a finite set of clash sequences whose clausoids belong
to res*(e, f, g ; Γ) and who are able to derive variants of all hyperresol-
vents belonging to res*(e, f, g ; Γ). Therefore, for almost any normal algebra
we are permitted to apply (O) for clash sequences whose elements belong
to res*(e, f, g ; Γ).

Let A be one such algebra. Suppose that Γ is not universally satisfiable
in A. According to (20I), the set Γ′ of all instances in A of the elements of Γ
is not satisfiable in A, so (22J) implies that Γ′ ⊢ ⊥, where the relation ⊢
is defined in (22F).

By using the simple inductive principle (19D), we can prove that
whenever Γ′ ⊢ 𝛿′, there exists a natural number 𝑛, such that for any 𝑚 ≥ 𝑛
there exists a clausoid 𝛿 ∈ res𝑚(e, f, g ; Γ), such that 𝛿′ is subsumed by an
instance in A of 𝛿. This will give us a contradiction because ⊥ can be sub-
sumed only by ⊥ and ⊥ can be an instance only of ⊥, but ⊥ /∈ res*(e, f, g ; Γ).

If 𝛿′ ∈ Γ′, then 𝛿′ is an instance in A of some 𝜀 ∈ Γ. Since
Γ = res0(e, f, g ; Γ), according to (23H), for any 𝑚 ≥ 0, there exists
𝛿 ∈ res𝑚(e, f, g ; Γ), such that 𝜀 is subsumed in A by 𝛿. Therefore, 𝛿′ is
subsumed by an instance of 𝛿.

Now, suppose that 𝛿′ is a propositional positive hyperresolvent defined
by the clash sequence ⟨𝛿′0, 𝛿′1, . . . , 𝛿′𝑘⟩. By induction hypothesis, there exist
natural numbers 𝑛0, 𝑛1, . . . , 𝑛𝑘, such that whenever 𝑚 ≥ 𝑛𝑖, there exists a
clausoid 𝛿 ∈ res𝑚(e, f, g ; Γ), such that 𝛿′𝑖 is subsumed by an instance of 𝛿.
Let 𝑛 = max{𝑛0, 𝑛1, . . . , 𝑛𝑘}. Then for any 𝑚 ≥ 𝑛 there exist clausoids
𝛿0, 𝛿1, . . . , 𝛿𝑘, such that for any 𝑖, 𝛿𝑖 ∈ res𝑚(e, f, g ; Γ) and 𝛿′𝑖 is subsumed
by an instance of 𝛿𝑖. Since 𝛿0, 𝛿1, . . . , 𝛿𝑘 belong to res𝑚(e, f, g ; Γ), we may
use (O) and conclude that 𝛿′ is subsumed by an instance of an element
of res𝑚+1(e, f, g ; Γ). �
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Epsilon-terminators

§24. THE GAMMA-TERMINATOR

A) For any functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩, let f−1
1 , . . . , f−1

𝑛

be some new symbols, different from any operation symbol, parentheses,
comma, or any other formal symbol we use. For any sort 𝜅, let △𝜅 be a
new symbol different from all mentioned above symbols.

B)Definition. Let 𝑋 be an arbitrary Sort-indexed set. We define the
gamma-semitermoids over 𝑋 inductively:

(1) If y ∈ 𝑋𝜅, then nam𝑋,𝜅(y) is a gamma-semitermoid of sort 𝜅 over 𝑋
for any algebraic sort 𝜅.

(2) If there exists at least one term of sort 𝜅 over 𝑋, then △𝜅 is a
gamma-semitermoid of sort 𝜅 over 𝑋.

(3) If f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and 𝜏1, . . . , 𝜏𝑛
are gamma-semitermoids over 𝑋 of sorts 𝜅1, . . . , 𝜅𝑛, respectively, then the
string f(𝜏1, . . . , 𝜏𝑛) is a gamma-semitermoid of sort 𝜆 over 𝑋.

(4) If f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and 𝜏 is a
gamma-semitermoid over 𝑋 of sort 𝜆, then the string f−1

𝑖 (𝜏) is a gamma-
semitermoid of sort 𝜅𝑖 over 𝑋 for any 𝑖 ∈ {1, . . . , 𝑛}.

C) Intuitively, gamma-semitermoids are terms in an extended language
— one where for any functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩, the sym-
bol f−1

𝑖 is like a functional symbol of type ⟨⟨𝜆⟩, 𝜅𝑖⟩ and the symbol △𝜅 is
like a functional symbol of type ⟨⟨⟩, 𝜅⟩.

For example, given a sort 𝜅, if the type of f is ⟨⟨𝜅, 𝜅⟩, 𝜅⟩ and the type of c
is ⟨⟨⟩, 𝜅⟩, then f(c, c), f(c,△𝜅) and f−1

1 (f(c,△𝜅)) are gamma-semitermoids
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of sort 𝜅.

D) It can be seen by induction, that if no symbol in a gamma-
semitermoid of sort 𝜅 over 𝑋 is of the form f−1

𝑖 or △𝜅, then this gamma-
semitermoid is a term of sort 𝜅 over 𝑋.

Also by induction, it can be seen that each term of sort 𝜅 over 𝑋 is a
gamma-semitermoid of sort 𝜅 over 𝑋.

E)Definition. We define the associated gamma-semitermoid of a
gamma-semitermoid inductively.

(1) nam𝑋,𝜅(y) is the associated gamma-semitermoid of nam𝑋,𝜅(y).
(2)△𝜅 is the associated gamma-semitermoid of △𝜅.
(3) If 𝜎1, . . . , 𝜎𝑛 are associated gamma-semitermoids of 𝜏1, . . . , 𝜏𝑛,

respectively, then f(𝜎1, . . . , 𝜎𝑛) is an associated gamma-semitermoid of
f(𝜏1, . . . , 𝜏𝑛).

(4) If f(𝜎1, . . . , 𝜎𝑛) is an associated gamma-semitermoid of 𝜏 , then 𝜎𝑖 is
an associated gamma-semitermoid of f−1

𝑖 (𝜏).
When the associated gamma-semitermoid of a gamma-semitermoid is

a term, we are going to say that it is an associated term of this gamma-
semitermoid.

The following corollary follows immediately from the above definition.

F)Corollary. (1)Each gamma-semitermoid has at most one associated
gamma-semitermoid.

(2)No symbol of the form f−1
𝑖 occurs in the associated gamma-

semitermoid.
(3) f(𝜏1, . . . , 𝜏𝑛) does not have an associated gamma-semitermoid if at

least one of the gamma-semitermoids 𝜏1, . . . , 𝜏𝑛 does not have an associated
gamma-semitermoid.

(4) If 𝜏 does not have an associated gamma-semitermoid or its associated
gamma-semitermoid is not of the form f(𝜎1, . . . , 𝜎𝑛), then f−1

𝑖 (𝜏) does not
have an associated gamma-semitermoid.

G)Proposition. (1) The associated gamma-semitermoid of a gamma-
semitermoid over 𝑋 is a gamma-semitermoid over 𝑋.

(2) If no symbol of the form f−1
𝑖 occurs in the gamma-semitermoid 𝜏 ,

then 𝜏 is associated gamma-semitermoid of itself.
(3) If no symbol of the form △𝜅 occurs in an associated gamma-

semitermoid, then this gamma-semitermoid is an associated term.
(4) If 𝜏 is a gamma-semitermoid over 𝑋 of sort 𝜅 and 𝜏 has an associated

term, then its associated term is a term over 𝑋 of sort 𝜅.
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Proof. (1) follows immediately from the definitions by induction on the
gamma-semitermoid over 𝑋.

(2) can be proved by induction on 𝜏 .
(3) and (4) follow from (D) and (1). �

H)Definition. Given a structure M we define the set of the values of a
gamma-semitermoid over |M| in M inductively on the gamma-semitermoid:

(1) The set of the values of nam𝛾
|M| 𝜇 is {𝜇}.

(2) The set of the values of △𝜅 is the whole carrier M𝜅.
(3) The set of the values of the gamma-semitermoid f(𝜏1, . . . , 𝜏𝑛) is

{fM⟨𝜇1, . . . , 𝜇𝑛⟩ : 𝜇1 ∈ 𝐴1, . . . , 𝜇𝑛 ∈ 𝐴𝑛}, where the 𝐴1, . . . , 𝐴𝑛 are the sets
of the values of 𝜏1, . . . , 𝜏𝑛 in M, respectively.

(4) The set of the values of the gamma-semitermoid f−1
𝑖 (𝜏) is

{𝜇𝑖 : there exist 𝜇1, . . . , 𝜇𝑖−1, 𝜇𝑖+1, . . . , 𝜇𝑛, such that fM⟨𝜇1, . . . , 𝜇𝑛⟩ ∈ 𝐴},
where 𝐴 is the set of the values of 𝜏 in M.

I)Corollary. (1)Given a structure M and a gamma-semitermoid 𝜏
over |M| of sort 𝜅, all elements of the set of the values of 𝜏 in M belong
to M𝜅.

(2) If a gamma-semitermoid 𝜏 over |M| is a term, then the the set of
the values of 𝜏 in M contains exactly one element, namely the value in M
of 𝜏 as a term.

(3) If a gamma-semitermoid contains no symbol of the form f−1
𝑖 , then

the set of its values in any normal structure is non-empty.

Proof. (1) follows immediately from the above definition.
(2) is true because the above definition and the definition of value of a

term (11J) are basically identical with respect to terms.
(3) can be proved by induction on the gamma-semitermoid. The set of

the values of a gamma-semitermoid of the form nam𝛾
|M| 𝜇 is non-empty by

definition. The set of the values of a gamma-semitermoid of the form △𝜅

is non-empty, since the existence of a term over |M| of sort 𝜅 implies that
the carrier M𝜅 is a non-empty set. The set of the values of a gamma-
semitermoid of the form f(𝜏1, . . . , 𝜏𝑛) is non-empty also by definition, as
long as the sets of the values of 𝜏1, . . . , 𝜏𝑛 are non-empty (what they are by
induction hypothesis). �

J)Proposition. Given a structure M, if 𝜏 is a gamma-semitermoid
over |M| and 𝜎 is its associated gamma-semitermoid, then all elements of
the set of the values of 𝜎 in M belong to the set of the values of 𝜏 in M.

Proof. According to (G1), 𝜎 is a gamma-semitermoid over |M| of the
same sort as the sort of 𝜏 , hence the elements of the set of the values of 𝜎
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are of the proper sort.
We are going to use induction on the gamma-semitermoid 𝜏 .
If 𝜏 = p𝜇q or 𝜏 = △𝜅, then, by the definitions, 𝜏 is its own associated

gamma-semitermoid.
Let 𝜏 = f(𝜏1, . . . , 𝜏𝑛) and 𝜎1, . . . , 𝜎𝑛 be the gamma-semitermoids associ-

ated to 𝜏1, . . . , 𝜏𝑛, respectively (if there were no such gamma-semitermoids,
then 𝜏 would have no associated gamma-semitermoid). Let 𝐴1, . . . , 𝐴𝑛 be
the sets of the values of 𝜎1, . . . , 𝜎𝑛 in M, respectively. By induction hypoth-
esis, the elements of 𝐴1, . . . , 𝐴𝑛 belong the the sets of the values of 𝜏1, . . . , 𝜏𝑛,
respectively. Since f(𝜎1, . . . , 𝜎𝑛) is the gamma-semitermoid associated to 𝜏
and the elements of the set of its values in M have the form fM⟨𝜇1, . . . , 𝜇𝑛⟩
for some 𝜇1 ∈ 𝐴1, . . . , 𝜇𝑛 ∈ 𝐴𝑛, from definition (H3) it follows that these
elements belong to the set of the values of 𝜏 in M.

Let 𝜏 = f−1
𝑖 (𝜏 ′). Since 𝜏 has an associated gamma-semitermoid, from

the definition of associated gamma-semitermoid (E) it follows that 𝜏 ′ has
an associated gamma-semitermoid of the form f(𝜎1, . . . , 𝜎𝑛) and 𝜎𝑖 is the
associated gamma-semitermoid of 𝜏 . Since no symbol of the form f−1

𝑖 oc-
curs in an associated gamma-semitermoid, (I3) implies that the sets of the
values of 𝜎1, . . . , 𝜎𝑛 in M are non-empty. Let 𝜇1, . . . , 𝜇𝑛 are some ele-
ments of these sets. Let 𝜇 be an arbitrary element of the set of the values
of 𝜎𝑖. Then fA⟨𝜇1, . . . , 𝜇𝑖−1, 𝜇, 𝜇𝑖+1, . . . , 𝜇𝑛⟩ belongs to the set of the values
of f(𝜎1, . . . , 𝜎𝑛) in M and, by induction hypothesis, it also belongs to the
set of the values of 𝜏 ′ in M. By definition (H4), 𝜇 belongs to the set of the
values of 𝜏 in M. As 𝜇 was an arbitrarily chosen element of the set of the
values of 𝜎𝑖, this set must be a subset of the set of the values of 𝜏 in M. �

K)Lemma. Given an arbitrary Sort-indexed set 𝑋, the set of the
values in [𝑋] of a gamma-semitermoid over |[𝑋]| is equal to the set of the
values in [𝑋] of its associated gamma-semitermoid.

Proof. By induction on the gamma-semitermoid we are going to prove
that the set of the values of any gamma-semitermoid is a subset of the set
of the values of its associated gamma-semitermoid. This is enough to prove
the lemma, as the opposite set inclusion follows from (J).

The associated gamma-semitermoid of a name or of a gamma-
semitermoid of the form △𝜅 is the gamma-semitermoid itself, so there is
nothing to prove.

If the gamma-semitermoid is f(𝜏1, . . . , 𝜏𝑛), then its associated gamma-
semitermoid is f(𝜎1, . . . , 𝜎𝑛), where 𝜎1, . . . , 𝜎𝑛 are the respective associated
gamma-semitermoids of 𝜏1, . . . , 𝜏𝑛. By induction hypothesis, the sets of the
values of 𝜏1, . . . , 𝜏𝑛 are equal to the respective sets of the values of 𝜎1, . . . , 𝜎𝑛,
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hence by the definition (H3), the sets of the values of f(𝜏1, . . . , 𝜏𝑛) and its
associated gamma-semitermoid are equal.

Let the gamma-semitermoid be f−1
𝑖 (𝜏). Choose an arbitrary element

of the set of the values of this gamma-semitermoid in [𝑋]. Then the set
of the values of 𝜏 in [𝑋] contains an element of the form f[𝑋]⟨𝜌1, . . . , 𝜌𝑛⟩,
such that 𝜌𝑖 is equal to the chosen element. Since f−1

𝑖 (𝜏) has an associ-
ated gamma-semitermoid, definition (E) implies that the associated gamma-
semitermoid of 𝜏 has the form f(𝜎1, . . . , 𝜎𝑛). By induction hypothesis,
f[𝑋]⟨𝜌1, . . . , 𝜌𝑛⟩ belongs to the set of the values of f(𝜎1, . . . , 𝜎𝑛) in [𝑋]. Con-
sidering definitions (H3) and (11E1), we obtain that 𝜌𝑖 belongs to the set
of the values of 𝜎𝑖 in [𝑋] for any 𝑖 ∈ {1, . . . , 𝑛}. Since 𝜎𝑖 is the associated
gamma-semitermoid of f−1

𝑖 (𝜏), this completes the proof. �

L)We can not build a terminator based on gamma-semitermoids for the
following reason. Let f be a binary functional symbol of suitable type and
c be a nullary functional symbol (a constant symbol). Then f−1

1 (c) is a
gamma-semitermoid. Suppose the structure M is such that the value of the
function fM is never equal to cM. It is not difficult to see that the set of
the values of f−1

1 (c) is the empty set. According to (14I12), however, the
value of any termoid in any structure is a non-empty set. This is why we
are going to define gamma-termoids as a special kind of termoids.

Intuitively, 𝜏 is a gamma-termoid, if 𝜏 is a gamma-semitermoid and
symbols like f−1

𝑖 are applied only to expressions who a values of f.

M)Definition. 𝜏 is a gamma-termoid over 𝑋 if 𝜏 is a gamma-
semitermoid over 𝑋 and it has an associated term (i.e. it has an associated
gamma-semitermoid which is a term).

N)Example. Assuming f, g and c are functional symbols of suitable
types and △𝜅 is admitted by (B2):

(1) Each term over 𝑋 is a gamma-termoid over 𝑋.
(2) f−1

2 (g−1
1 (g(f(c, a), c))) is a gamma-termoid and f−1

2 (g−1
2 (g(f(c, c), c)))

is not. The first of these gamma-semitermoids has an associated term a

while the second one has no associated gamma-semitermoid.
(3) f−1

1 (f(c,△𝜅)) is an example of a gamma-termoid containing the sym-
bol △𝜅. Its associated term is c. On the other hand, △𝜅 is the associated
gamma-semitermoid of f−1

2 (f(c,△𝜅)), so this gamma-semitermoid is not a
gamma-termoid.

O)Proposition. If 𝜏 is both a gamma-termoid over 𝑋 and gamma-
semitermoid over 𝑌 , then 𝜏 is a gamma-termoid over 𝑌 .

Proof. In (E) we have defined the notion “associated gamma-semitermoid
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of a gamma-semitermoid”, not “associated gamma-semitermoid of a gamma-
semitermoid over 𝑋”. Consequently, the associated gamma-semitermoid
of 𝜏 is always the same regardless of whether we consider 𝜏 a gamma-
semitermoid over 𝑋, or over 𝑌 . If it is a term, then it is a term. �

P)Lemma. The set of the values of any gamma-termoid over |[𝑋]|
contains exactly one element, namely the value in [𝑋] of its associated term.

Proof. Follows immediately from (K) and (I2). �

Q)Definition. For any Sort-indexed set 𝑋, let J𝑋K𝛾 be the algebra,
such that:

(1)The algebraic carrier of sort 𝜅 of J𝑋K𝛾 is the set of all gamma-
termoids over 𝑋 of sort 𝜅.

(2) For any functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and gamma-
termoids 𝜏1, . . . , 𝜏𝑛 of sorts 𝜅1, . . . , 𝜅𝑛, respectively, let

fJ𝑋K𝛾 (𝜏1, . . . , 𝜏𝑛) = f(𝜏1, . . . , 𝜏𝑛)

where on the right side of the equality sign stays a formal expression.

This definition is correct because:
First, the elements of the algebraic carriers of J𝑋K𝛾 are exactly the

gamma-termoids, hence f(𝜏1, . . . , 𝜏𝑛) belongs to the carrier of sort 𝜆 of J𝑋K𝛾.
Second, any algebra is uniquely determined by its algebraic carriers and

the interpretation of the functional symbols (see 12Q1).

R)Definition. Given Sort-indexed sets 𝑋 and 𝑌 and a Sort-indexed
function 𝑓 : 𝑋 → 𝑌 , let J𝑓K𝛾 : J𝑋K𝛾 → J𝑌 K𝛾 be the homomorphism, who,
when applied to a gamma-termoid 𝜏 , replaces all occurrences of names
nam𝑋,𝜆(z) in 𝜏 with nam𝑌,𝜆(𝑓𝜆z) (i.e. J𝑓K𝛾 replaces all occurrences of pzq
with p𝑓zq).

We are going to use postfix notation for this homomorphism. Thus 𝜏J𝑓K𝛾
means to apply J𝑓K𝛾 to 𝜏 . As an extension of the notation, we are going
to write 𝜏J𝑓K𝛾 even when 𝜏 is not a gamma-termoid, but only a gamma-
semitermoid — let 𝜏J𝑓K𝛾 be the expression which is obtained from 𝜏 by
replacing all occurrences of names nam𝑋,𝜆(z) in 𝜏 with nam𝑌,𝜆(𝑓𝜆z) (i.e.
in 𝜏J𝑓K𝛾 all occurrences of pzq in 𝜏 are replaced with p𝑓zq).

The following proposition shows that the above definition is correct:

S)Corollary. Let 𝑓 : 𝑋 → 𝑌 be a Sort-indexed function. Then:
(1) If 𝜏 is a gamma-semitermoid over 𝑋, then 𝜏J𝑓K𝛾 is a gamma-

semitermoid over 𝑌 .
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(2) If 𝜎 is the associated gamma-semitermoid of the gamma-
semitermoid 𝜏 over 𝑋, then 𝜎J𝑓K𝛾 is the associated gamma-semitermoid
of 𝜏J𝑓K𝛾.

(3) If 𝜏 is a gamma-termoid over 𝑋, then 𝜏J𝑓K𝛾 is a gamma-termoid
over 𝑌 .

(4)There exists unique homomorphism from J𝑋K𝛾 to J𝑌 K𝛾, such that the
result of its application to any gamma-termoid 𝜏 is equal to 𝜏J𝑓K𝛾.

Proof. (1) By induction on 𝜏 .
If p𝜉q is a gamma-semitermoid over 𝑋, then 𝜉 ∈ 𝑋, hence 𝑓𝜉 ∈ 𝑌 , so

p𝑓𝜉q is a gamma-semitermoid over 𝑌 .
If △𝜅 is a gamma-semitermoid over 𝑋, then there exists at least one

term 𝜌 over 𝑋 of sort 𝜅 (see definition B2), hence 𝜌[𝑓 ] is a term over 𝑌
of sort 𝜅, so △𝜅 also is a gamma-semitermoid over 𝑌 , hence △𝜅J𝑓K𝛾 is a
gamma-semitermoid, since △𝜅J𝑓K𝛾 = △𝜅.

If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then 𝜏J𝑓K𝛾 = f(𝜏1J𝑓K𝛾, . . . , 𝜏𝑛J𝑓K𝛾) which is a
gamma-semitermoid, since by induction hypothesis 𝜏𝑖J𝑓K𝛾 is a gamma-
semitermoid for any 𝑖 ∈ {1, . . . , 𝑛}.

If 𝜏 = f−1
𝑖 (𝜏 ′), then 𝜏J𝑓K𝛾 = f−1

𝑖 (𝜏 ′J𝑓K𝛾) which is a gamma-semitermoid,
since by induction hypothesis 𝜏 ′J𝑓K𝛾 is a gamma-semitermoid.

(2) Again by induction on 𝜏 .
If 𝜏 = p𝜉q, then 𝜉 ∈ 𝑋 and 𝜎 = 𝜏 = p𝜉q, so 𝜏J𝑓K𝛾 = 𝜎J𝑓K𝛾 = p𝑓𝜉q,

hence 𝜎J𝑓K𝛾 is the associated gamma-semitermoid of 𝜏J𝑓K𝛾.
If 𝜏 = △𝜅, then 𝜎 = △𝜅, hence 𝜏J𝑓K𝛾 = 𝜎J𝑓K𝛾 = △𝜅, so 𝜎J𝑓K𝛾 is the

associated gamma-semitermoid of 𝜏J𝑓K𝛾.
If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then 𝜎 = f(𝜎1, . . . , 𝜎𝑛) where 𝜎1, . . . , 𝜎𝑛 are the

respective associated gamma-semitermoids of 𝜏1, . . . , 𝜏𝑛. By induction hy-
pothesis 𝜎𝑖J𝑓K𝛾 is the associated gamma-semitermoid of 𝜏𝑖J𝑓K𝛾 for any
𝑖 ∈ {1, . . . , 𝑛}, hence 𝜎J𝑓K𝛾 = f(𝜎1J𝑓K𝛾, . . . , 𝜎𝑛J𝑓K𝛾) is the associated
gamma-semitermoid of 𝜏J𝑓K𝛾 = f(𝜏1J𝑓K𝛾, . . . , 𝜏𝑛J𝑓K𝛾).

If 𝜏 = f−1
𝑖 (𝜏 ′), then the associated gamma-semitermoid of 𝜏 ′ has the

form f(𝜎1, . . . , 𝜎𝑛), where 𝜎𝑖 = 𝜎. By induction hypothesis, the associated
gamma-semitermoid of 𝜏 ′J𝑓K𝛾 is f(𝜎1, . . . , 𝜎𝑛)J𝑓K𝛾 = f(𝜎1J𝑓K𝛾, . . . , 𝜎𝑛J𝑓K𝛾),
hence the associated gamma-semitermoid of 𝜏J𝑓K𝛾 = f−1

𝑖 (𝜏 ′J𝑓K𝛾) is 𝜎𝑖J𝑓K𝛾.
(3) From (1) it follows that 𝜏J𝑓K𝛾 is a gamma-semitermoid over 𝑌 , so

it remains to show that the associated gamma-semitermoid of 𝜏J𝑓K𝛾 is a
term.

Let 𝜎 be the associated term of 𝜏 . Then (2) implies that 𝜎J𝑓K𝛾 is the
associated gamma-semitermoid of 𝜏J𝑓K𝛾. But 𝜎 is a term, so according to
the definition of J.K𝛾, 𝜎J𝑓K𝛾 = 𝜎[𝑓 ], hence 𝜎J𝑓K𝛾 is a term.

(4) follows from (3) and (12Q2). We only have to notice that for
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any functional symbol f and gamma-termoids 𝜏1, . . . , 𝜏𝑛 of suitable sorts,
(fJ𝑋K𝛾⟨𝜏1, . . . , 𝜏𝑛⟩)J𝑓K𝛾 = (f(𝜏1, . . . , 𝜏𝑛))J𝑓K𝛾 = f(𝜏1J𝑓K𝛾, . . . , 𝜏𝑛J𝑓K𝛾) =
fJ𝑌 K𝛾⟨𝜏1J𝑓K𝛾, . . . , 𝜏𝑛J𝑓K𝛾⟩. �

T)Lemma. Given a gamma-termoid 𝜏 over |M| and a homomorphism
ℎ : M → K, if 𝜇 belongs to the set of the values of 𝜏 in M, then ℎ𝜇 belongs
to the set of the values of 𝜏JℎK𝛾 in K.

Proof. By induction on the gamma-semitermoid 𝜏 we are going to prove
that if 𝜎 is obtained from 𝜏 by replacing each occurrence of a name p𝜉q
with p𝑓𝜉q and 𝜇 belongs to the set of the values of 𝜏 in M, then ℎ𝜇 belongs
to the set of the values of 𝜎 in M.

If 𝜏 is a name, then 𝜏 = p𝜇q and the set of the values of 𝜏 in M is {𝜇},
so 𝜎 = pℎ𝜇q, hence the set of the values of 𝜎 in K is {ℎ𝜇}.

If 𝜏 = △𝜅, then 𝜎 = △𝜅. The set of the values of 𝜎 in K is the whole
carrier K𝜅, hence ℎ𝜇 belongs to this set.

Let 𝜏 = f(𝜏1, . . . , 𝜏𝑛). Let 𝐴1, . . . , 𝐴𝑛 be the respective sets of the values
of 𝜏1, . . . , 𝜏𝑛 in M. If 𝜇 belongs to the set of the values of 𝜏 in M, then
𝜇 = fM⟨𝜇1, . . . , 𝜇𝑛⟩ for some 𝜇1 ∈ 𝐴1, . . . , 𝜇𝑛 ∈ 𝐴𝑛. Since ℎ is a homomor-
phism, ℎ𝜇 = ℎ(fM⟨𝜇1, . . . , 𝜇𝑛⟩) = fK⟨ℎ𝜇1, . . . , ℎ𝜇𝑛⟩. By induction hypoth-
esis, ℎ𝜇𝑖 belongs to the set of the values of 𝜏𝑖JℎK𝛾 in K for any 𝑖 ∈ {1, . . . , 𝑛},
hence ℎ𝜇 belongs to the set of the values of 𝜏JℎK𝛾 = f(𝜏1JℎK𝛾, . . . , 𝜏𝑛JℎK𝛾)
in K.

Let 𝜏 = f−1
𝑖 (𝜏 ′). Let 𝐴 be the set of the values of 𝜏 ′ in M. If 𝜇 be-

longs to the set of the values of 𝜏 in M, then there exist 𝜇1, . . . , 𝜇𝑛,
such that fM⟨𝜇1, . . . , 𝜇𝑛⟩ ∈ 𝐴 and 𝜇 = 𝜇𝑖. By induction hypothesis,
ℎ(fM⟨𝜇1, . . . , 𝜇𝑛⟩) belongs to the set of the values of 𝜏 ′JℎK𝛾 in K, hence
fK⟨ℎ𝜇1, . . . , ℎ𝜇𝑛⟩ = ℎ(fM⟨𝜇1, . . . , 𝜇𝑛⟩) belongs to the set of the values of
𝜏 ′JℎK𝛾 in K, so by definition (H4), ℎ𝜇𝑖 = ℎ𝜇 belongs to the set of the values
of 𝜏JℎK𝛾 = (f−1

𝑖 (𝜏 ′))JℎK𝛾 in K. �

U)Definition. Given a structure M, let Val𝛾M : J|M|K𝛾 → PM be
the only homomorphism, such that for any gamma-termoid 𝜏 over |M|,
Val𝛾M 𝜏 is equal to the set of the values of 𝜏 in M.

As an extension of the notation, we are going to write Val𝛾M 𝜏 even when
𝜏 is only a gamma-semitermoid over |M|, not necessarily a gamma-termoid.
In this case too, let Val𝛾M 𝜏 be equal to the set of the values of 𝜏 in M.

According to (12Q2), in order to prove that Val𝛾M is indeed a homo-
morphism, we only have to notice that for any functional symbol f of type
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⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and any termoids 𝜏1 . . . , 𝜏𝑛 of sorts 𝜅1, . . . , 𝜅𝑛,

Val𝛾M(fJ|M|K𝛾⟨𝜏1, . . . , 𝜏𝑛⟩) =

= Val𝛾M(f(𝜏1, . . . , 𝜏𝑛)) from (Q2)
= {fM⟨𝜇1, . . . , 𝜇𝑛⟩ : 𝜇1 ∈ Val𝛾M 𝜏1, . . . , 𝜇𝑛 ∈ Val𝛾M 𝜏𝑛} from (H3)

= fPM⟨Val𝛾M 𝜏1, . . . ,Val𝛾M 𝜏𝑛⟩

V)Definition. Given a Sort-indexed set 𝑋, let
Vals𝛾𝑋 : J|J𝑋K𝛾|K𝛾 → J𝑋K𝛾 be the only homomorphism, such that for any
gamma-termoid 𝜏 over |J𝑋K𝛾|, Vals𝛾𝑋 𝜏 is the result of the replacement in 𝜏
of all names nam|J𝑋K𝛾 | 𝜎 with 𝜎.

As an extension of the notation, we are going to write Vals𝛾𝑋 𝜏 even
when 𝜏 is only a gamma-semitermoid over |J𝑋K𝛾|, not necessarily a gamma-
termoid. In this case too, let Val𝛾𝑋 𝜏 be the result of the replacement in 𝜏
of all names nam|J𝑋K𝛾 | 𝜎 with 𝜎.

W)Example. Assuming f and c are functional symbols of suitable
types, and 𝜉 is an element of the Sort-indexed set 𝑋,

f(pf(c, p𝜉q)q, f(pcq, pp𝜉qq))

is a term and gamma-termoid over |J𝑋K|. To apply Vals𝑋 to this gamma-
termoid means to remove upper level of the symbols p . q:

f(f(c, p𝜉q), f(c, p𝜉q))

The result is a term and gamma-termoid over 𝑋.

The following proposition shows that the definition of Vals𝑋 is correct:

X)Proposition. (1) If 𝜏 is a gamma-semitermoid over |J𝑋K𝛾|, then
Vals𝛾𝑋 𝜏 is a gamma-semitermoid over 𝑋.

(2)For any gamma-semitermoid 𝜏 over |J𝑋K𝛾| let g𝜏 be the result of the
replacement in 𝜏 of all names p𝜎q with the associated term of 𝜎.72 Then
g𝜏 is a gamma-semitermoid over 𝑋.

(3) If 𝜎 is the associated gamma-semitermoid of the gamma-semitermoid
𝜏 over |J𝑋K𝛾|, then g𝜎 is the associated gamma-semitermoid of Vals𝛾𝑋 𝜏 .

(4) If 𝜏 is a gamma-termoid over |J𝑋K𝛾|, then Vals𝛾𝑋 𝜏 is a gamma-
termoid over 𝑋.

(5)There exists unique homomorphism from J|J𝑋K𝛾|K𝛾 to J𝑋K𝛾, such
that the result of its application to any gamma-termoid 𝜏 is equal to Vals𝛾𝑋 𝜏 .

72Notice that p𝜎q is a name of an element of |J𝑋K𝛾 |, hence 𝜎 is a gamma-termoid
over 𝑋, so 𝜎 has an associated term.
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Proof. (1) By induction on 𝜏 .
If 𝜏 = p𝜎q, then according to (B), 𝜎 ∈ |J𝑋K𝛾|, hence 𝜎 is a gamma-

termoid over 𝑋, but Vals𝛾𝑋 𝜏 = 𝜎, so Vals𝛾𝑋 𝜏 is a gamma-termoid over 𝑋.
If 𝜏 = △𝜅, then Vals𝛾𝑋 𝜏 = △𝜅.
If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then Vals𝛾𝑋 𝜏 = f(Vals𝛾𝑋 𝜏1, . . . ,Vals𝛾𝑋 𝜏𝑛) which is

a gamma-semitermoid over 𝑋, since by induction hypothesis Vals𝛾𝑋 𝜏𝑖 is a
gamma-semitermoid over 𝑋 for any 𝑖 ∈ {1, . . . , 𝑛}.

If 𝜏 = f−1
𝑖 (𝜏 ′), then Vals𝛾𝑋 𝜏 = f−1

𝑖 (Vals𝛾𝑋 𝜏
′) which is a gamma-

semitermoid over 𝑋, since by induction hypothesis Vals𝛾𝑋 𝜏
′ is a gamma-

semitermoid over 𝑋.
(2) By induction on 𝜏 .
If 𝜏 = p𝜎q, then g𝜏 is the associated term of 𝜎, hence g𝜏 is a gamma-

semitermoid over 𝑋.
If 𝜏 = △𝜅, then g𝜏 = 𝜏 = △𝜅. Since 𝜏 = △𝜅 is a gamma-semitermoid

over |J𝑋K𝛾| of sort 𝜅, there exists a term 𝜎 over |J𝑋K𝛾| of sort 𝜅. But the
value of the term 𝜎 in J𝑋K𝛾 is an element of the algebraic carrier of J𝑋K𝛾
of sort 𝜅, hence this value is a gamma-termoid of sort 𝜅 over 𝑋, so the
associated term of this gamma-termoid is a term of sort 𝜅 over 𝑋, hence
there exists a term of sort 𝜅 over 𝑋, so g𝜏 = △𝜅 is a gamma-termoid
over 𝑋.

If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then g𝜏 = f(g𝜏1, . . . , g𝜏𝑛) which is a gamma-
semitermoid over 𝑋, since by induction hypothesis g𝜏𝑖 is a gamma-
semitermoid over 𝑋 for any 𝑖 ∈ {1, . . . , 𝑛}.

If 𝜏 = f−1
𝑖 (𝜏 ′), then g𝜏 = f−1

𝑖 (g𝜏 ′) which is a gamma-semitermoid
over 𝑋, since by induction hypothesis g𝜏 ′ is a gamma-semitermoid over 𝑋.

(3) By induction on 𝜏 .
If 𝜏 = p𝜌q, then 𝜎 = 𝜏 = p𝜌q, so Vals𝛾𝑋 𝜏 = 𝜌 and g𝜎 = 𝜋, where 𝜋 is

the associated term of 𝜌.
If 𝜏 = △𝜅, then 𝜎 = 𝜏 = △𝜅 and also Vals𝛾𝑋 𝜏 = △𝜅 and g𝜎 = △𝜅.
If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then 𝜎 = f(𝜎1, . . . , 𝜎𝑛), where 𝜎1 . . . , 𝜎𝑛 are

the respective associated gamma-semitermoids of 𝜏1, . . . , 𝜏𝑛. By induc-
tion hypothesis g𝜎𝑖 is the associated gamma-semitermoid of Vals𝛾𝑋 𝜏𝑖 for
any 𝑖 ∈ {1, . . . , 𝑛}, so g𝜎 = f(g𝜎1, . . . , g𝜎𝑛) is the associated gamma-
semitermoid of Vals𝛾𝑋 𝜏 = f(Vals𝛾𝑋 𝜏1, . . . ,Vals𝛾𝑋 𝜏𝑛).

If 𝜏 = f−1
𝑖 (𝜏 ′), then the associated gamma-semitermoid of 𝜏 ′ has the

form f(𝜎1, . . . , 𝜎𝑛) and 𝜎 = 𝜎𝑖. By induction hypothesis g(f(𝜎1, . . . , 𝜎𝑛)) =
f(g𝜎1, . . . , g𝜎𝑛) is the associated gamma-semitermoid of Vals𝛾𝑋 𝜏

′, so the
associated gamma-semitermoid of Vals𝛾𝑋 𝜏 = f−1

𝑖 (Vals𝛾𝑋 𝜏
′) is g𝜎𝑖, i.e. g𝜎.

(4) From (1) it follows that Vals𝑋 𝜏 is a gamma-semitermoid over 𝑋.
Let 𝜎 be the associated term of 𝜏 ; then from (3) it follows that g𝜎 is the
associated gamma-semitermoid of Vals𝑋 𝜏 . But g𝜎 also is a term (obviously,
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when g is applied to a term, the result also is a term), so Vals𝑋 𝜏 is a
gamma-termoid.

(5) follows from (4) and (12Q2). We only have to no-
tice that for any functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩
and any gamma-termoids 𝜏1 . . . , 𝜏𝑛 over |J𝑋K𝛾| of sorts 𝜅1, . . . , 𝜅𝑛,
we have Vals𝛾𝑋(fJ|J𝑋K𝛾 |K𝛾⟨𝜏1, . . . , 𝜏𝑛⟩) = fJ𝑋K𝛾⟨Vals𝛾𝑋 𝜏1, . . . ,Vals𝛾𝑋 𝜏𝑛⟩.
This is so because anything Vals𝛾𝑋 replaces is a name and f is
not a name, Vals𝛾𝑋(fJ|J𝑋K𝛾 |K𝛾⟨𝜏1, . . . , 𝜏𝑛⟩) = Vals𝛾𝑋(f(𝜏1, . . . , 𝜏𝑛)) =
f(Vals𝛾𝑋 𝜏1, . . . ,Vals𝛾𝑋 𝜏𝑛) = fJ𝑋K𝛾⟨Vals𝛾𝑋 𝜏1, . . . ,Vals𝛾𝑋 𝜏𝑛⟩. �

Y)Definition. Given a Sort-indexed set 𝑋, let Nam𝛾
𝑋 : 𝑋∘ → |J𝑋K𝛾|

be the Sort-indexed function, such that for any x ∈ 𝑋∘

Nam𝛾
𝑋(x) = nam𝑋(x)

Z)Definition. The quadruple ⟨J.K𝛾,Val𝛾,Vals𝛾,Nam𝛾⟩ is the gamma-
terminator .

In order to avoid ambiguities, the termoidal expressions and the formu-
loids defined by this terminator will be called “gamma-termoidal expression”
and “gamma-formuloid”. Because of (Q), the notion of termoid correspond-
ing to this terminator (see definition 14J) is identical with the notion of
gamma-termoid, as defined in (M).

We have to prove that the above definition is correct.
Proof. We are going to prove the requirements of definition (14I) one by

one.
(1) J𝑋K𝛾 is algebra by definition (Q).
(2) If 𝑓 : 𝑋 → 𝑌 is an arbitrary Sort-indexed function, according to

definition (R), J𝑓K𝛾 is a homomorphism from J𝑋K𝛾 to J𝑌 K𝛾.
(3) If 𝜏 is a gamma-semitermoid over 𝑋 and at the same time a gamma-

semitermoid over 𝑌 , then 𝜏 is a gamma-semitermoid over 𝑋 ∩ 𝑌 as well
(see definition B).

(4) Definition (R) implies that if the values of 𝑓 ′ : 𝑋 ′ → 𝑌 ′ and
𝑓 ′′ : 𝑋 ′′ → 𝑌 ′′ are equal over the objects whose names occur in the gamma-
termoid 𝜏 , then 𝜏J𝑓 ′K𝛾 = 𝜏J𝑓 ′′K𝛾. Consequently, the homomorphisms J𝑓 ′K𝛾
and J𝑓 ′′K𝛾 � J𝑋 ′K𝛾 are identical over the algebraic carriers, hence according
to (12H2) they are identical. On the other hand, definition (R) trivially
implies that 𝜏J𝑓 ′′K𝛾 = 𝜏(J𝑓 ′′K𝛾 �J𝑋 ′K𝛾) for any 𝜏 ∈ |J𝑋 ′K|.

(5) The definition of gamma-semitermoids over 𝑋 (B) does not refer
to the elements of 𝑋Log, so J𝑋K𝛾 = J𝑋∘K𝛾. Gamma-termoids contain no
names of logical sort, hence immediately from definition (R) it follows that
J𝑓K𝛾 = J𝑓 ∘K𝛾.
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(6) and (7) follow from the definitions.
(8) follows from definition (Y).
(9) Given a Sort-indexed function 𝑓 : 𝑋 → 𝑌 , for any 𝜉 ∈ 𝑋∘ we

have (J𝑓K𝛾 ∘ Nam𝛾
𝑋)𝜉 = (Nam𝛾

𝑋 𝜉)J𝑓K𝛾 = p𝜉qJ𝑓K𝛾 = p𝑓𝜉q = p𝑓 ∘𝜉q =
Nam𝛾

𝑋 (𝑓 ∘𝜉) = (Nam𝛾
𝑋

∘ 𝑓 ∘)𝜉.

𝑋∘

𝑓∘

��

Nam𝛾
𝑋 // |J𝑋K𝛾|

J𝑓K𝛾

��

𝑌 ∘
Nam𝛾

𝑌 // |J𝑌 K𝛾|

(10) According to definition (U), Val𝛾 is a homomorphism, hence it also
is a quasimorphism.

(11) A simple induction can be used in order to prove that if the struc-
tures M and K are variants, then for any gamma-termoid 𝜏 its set of values
in M is equal to its set of values in K. Since M and 𝜕M are variants,
Val𝛾M 𝜏 = Val𝛾𝜕M 𝜏 for any gamma-termoid 𝜏 .

(12) Any gamma-termoid has an associated term (see E), so the value of
the associated term belongs to the set of the values of the gamma-termoid
(see J), hence the algebraic components of Val𝛾M map to non-empty sets, so
by (14E) all components of Val𝛾M map to non-empty sets.

In order to prove that Val𝛾[𝑋] maps to one-element sets, notice that
(P) implies that the algebraic components of this homomorphism map to
one-element sets, hence, due to (14F), all components of this homomorphism
map to one-element sets.

(13) Let ℎ : M → K be a homomorphism. From (T) it follows
that for any 𝜏 belonging to an algebraic carrier of J|M|K, (ℎP ∘ Val𝛾M)𝜏 ⊆
(Val𝛾K ∘JℎK𝛾)𝜏 , so from (14G) we obtain that the same also is true for 𝜏 be-
longing to the logical carrier of J|M|K.

J|M|K𝛾

≥JℎK𝛾

��

Val𝛾M // PM

ℎP

��

J|K|K𝛾
Val𝛾K // PK

(14) According to definition (V), Vals𝛾 is a homomorphism.
(15) Given a Sort-indexed set 𝑋, a structure K, a Sort-indexed func-

tion 𝑘 : 𝑋 → |J|K|K𝛾| and a Sort-indexed function 𝑓 : 𝑋 → |K|, suppose
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that 𝑓 ≪ Val𝛾K ∘ 𝑘.

𝑋

𝑓

��

𝑘 // |J|K|K𝛾|

Val𝛾K

��

|K| ∈ |PK|

Due to (14G), in order to prove that (Val𝛾K ∘ J𝑓K𝛾)𝜏 ⊆ (Val𝛾K ∘ Vals𝛾|K| ∘ J𝑘K𝛾)𝜏
for any 𝜏 ∈ |J𝑋K𝛾|, it is enough to consider only the algebraic carriers, i.e.
it is enough to consider only the case when 𝜏 is a gamma-termoid over 𝑋.

J𝑋K𝛾

≤
J𝑓K𝛾

$$H
HHHHHHHHHHHHHHHH

J𝑘K𝛾
// J|J|K|K𝛾|K𝛾

Vals𝛾|K|
// J|K|K𝛾

Val𝛾K

��

J|K|K𝛾
Val𝛾K // PK

We are going to prove by induction on 𝜏 that this is true not only when
𝜏 is a gamma-termoid, but when it also is a gamma-semitermoid over 𝑋.

If 𝜏 is a name, 𝜏 = p𝜉q for some 𝜉 ∈ 𝑋. Then (Val𝛾K ∘ J𝑓K𝛾)𝜏
= Val𝛾K(p𝜉qJ𝑓K𝛾) = Val𝛾K(p𝑓𝜉q) = {𝑓𝜉}. Since 𝑓 ≪ Val𝛾K ∘ 𝑘, this
set is a subset of (Val𝛾K ∘ 𝑘)𝜉 = Val𝛾K(𝑘𝜉) = Val𝛾K(Vals𝛾|K| p𝑘𝜉q) =
Val𝛾K(Vals𝛾|K|(p𝜉qJ𝑘K𝛾)) = (Val𝛾K ∘ Vals𝛾|K| ∘ J𝑘K𝛾)𝜏

If 𝜏 = △𝜅, then (Val𝛾K ∘ J𝑓K𝛾)𝜏 = Val𝛾K(△𝜅J𝑓K𝛾) = Val𝛾K△𝜅.
On the other hand (Val𝛾K ∘ Vals𝛾|K| ∘ J𝑘K𝛾)𝜏 = Val𝛾K(Vals𝛾|K|(△𝜅J𝑘K𝛾)) =
Val𝛾K(Vals𝛾|K| △𝜅) = Val𝛾K△𝜅.

If 𝜏 = f(𝜏1, . . . , 𝜏𝑛) for some functional symbol f and gamma-
semitermoids 𝜏1, . . . , 𝜏𝑛 of suitable sorts, then

(Val𝛾K ∘ J𝑓K𝛾)𝜏 = Val𝛾K(f(𝜏1, . . . , 𝜏𝑛)J𝑓K𝛾)
= Val𝛾K(f(𝜏1J𝑓K𝛾, . . . , 𝜏𝑛J𝑓K𝛾))

= Val𝛾K(fJ|K|K𝛾⟨𝜏1J𝑓K𝛾, . . . , 𝜏𝑛J𝑓K𝛾⟩)
= fPK⟨Val𝛾K(𝜏1J𝑓K𝛾), . . . ,Val𝛾K(𝜏𝑛J𝑓K𝛾)⟩
= fPK⟨(Val𝛾K ∘ J𝑓K𝛾)𝜏1, . . . , (Val𝛾K ∘ J𝑓K𝛾)𝜏𝑛⟩
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By induction hypothesis, the last set is a subset of

fPK⟨(Val𝛾K ∘ Vals𝛾|K| ∘ J𝑘K𝛾)𝜏1, . . . , (Val𝛾K ∘ Vals𝛾|K| ∘ J𝑘K𝛾)𝜏𝑛⟩ =

= fPK⟨(Val𝛾K ∘ Vals𝛾|K|)(𝜏1J𝑘K𝛾), . . . , (Val𝛾K ∘ Vals𝛾|K|)(𝜏𝑛J𝑘K𝛾)⟩

= (Val𝛾K ∘ Vals𝛾|K|)(f
J|J|K|K𝛾 |K𝛾⟨𝜏1J𝑘K𝛾, . . . , 𝜏𝑛J𝑘K𝛾⟩)

= (Val𝛾K ∘ Vals𝛾|K|)(f(𝜏1J𝑘K𝛾, . . . , 𝜏𝑛J𝑘K𝛾))

= (Val𝛾K ∘ Vals𝛾|K|)(f(𝜏1, . . . , 𝜏𝑛)J𝑘K𝛾)

= (Val𝛾K ∘ Vals𝛾|K| ∘ J𝑘K𝛾)𝜏

Lastly, let 𝜏 = f−1
𝑖 (𝜏 ′), where f is a functional symbol of type

⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩. Let g be the function, such that for any subset Π of K𝜆,
gΠ is the set of all 𝜇 ∈ K𝜅𝑖 , such that there exist 𝜇1 ∈ K𝜅1 , . . . , 𝜇𝑛 ∈ K𝜅𝑛 ,
such that fK⟨𝜇1, . . . , 𝜇𝑛⟩ ∈ Π and 𝜇 = 𝜇𝑖. Then

(Val𝛾K ∘ J𝑓K𝛾)𝜏 = Val𝛾K(f−1
𝑖 (𝜏 ′)J𝑓K𝛾)

= Val𝛾K(f−1
𝑖 (𝜏 ′J𝑓K𝛾))

= g(Val𝛾K(𝜏 ′J𝑓K𝛾))
= g((Val𝛾K ∘ J𝑓K𝛾)𝜏 ′)

By induction hypothesis, (Val𝛾K ∘ J𝑓K𝛾)𝜏 ′ ⊆ (Val𝛾K ∘ Vals𝛾|K| ∘J𝑘K𝛾)𝜏 , hence
the above set is a subset of

g((Val𝛾K ∘ Vals𝛾|K| ∘J𝑘K𝛾)𝜏
′) = g(Val𝛾K(Vals𝛾|K|(𝜏

′J𝑘K𝛾)))

= Val𝛾K(f−1
𝑖 (Vals𝛾|K|(𝜏

′J𝑘K𝛾)))

= Val𝛾K(Vals𝛾|K|(f
−1
𝑖 (𝜏 ′J𝑘K𝛾)))

= Val𝛾K(Vals𝛾|K|(f
−1
𝑖 (𝜏 ′)J𝑘K𝛾))

= (Val𝛾K ∘ Vals𝛾|K| ∘ J𝑘K𝛾)𝜏

(16) and (17) follow immediately from the definitions and (12H2).

J|J𝑋K𝛾|K𝛾

JJ𝑓K𝛾K𝛾

��

Vals𝛾𝑋 // J𝑋K𝛾

J𝑓K𝛾

��

J|J𝑌 K𝛾|K𝛾
Vals𝛾𝑌 // J𝑌 K𝛾

J𝑋K𝛾 = J𝑋∘K𝛾
JNam𝛾

𝑋K𝛾
//J|J𝑋K𝛾|K𝛾

Vals𝛾𝑋 //J𝑋K𝛾
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(18) follows immediately from the definitions.

|M|∘
Nam𝛾

|M|
// |J|M|K𝛾|

Val𝛾M //|PM|

�

§25. THE DELTA-TERMINATOR

A) In this section we are going to define the notion “delta-termoid”.
Delta-termoids are expressions like p1q+ f(g(c), p3q+ g(d), c). The mean-
ing of the numbers of delta-termoids is similar to their meaning in beta-
termoids, but the exact definition is more difficult to state.

Given a structure M, every gamma-termoid with 𝑛 free variables defines
a multivalued function t : |M|𝑛 → P |M|. Roughly speaking, 𝜇 is a value of
the delta-termoid 𝑛 + 𝜏 if 𝜇 ∈ t(𝜈, 𝜈1, 𝜈2, . . . , 𝜈𝑘) for some 𝜈, 𝜈1, 𝜈2, . . . , 𝜈𝑘,
such that 𝜈 is a value of 𝜏 and the multivalued function t is defined by
means of some gamma-termoid whose “height” is less than or equal to 𝑛.

B) Let + be a new symbol, different from all operation symbols, paren-
theses, comma, symbols of the form f−1

𝑖 and △𝜅, or any other formal symbol
we use.

When 𝑛 is a natural number, by p𝑛q we will denote the symbol
nam𝑋,Log 𝑛, where 𝑋 is the Sort-indexed set, such that 𝑋Log is the set
of the natural numbers and all other components of 𝑋 are empty sets.73

C)Definition. Let 𝑋 be an arbitrary Sort-indexed set. We define the
delta-semitermoids over 𝑋 inductively:

(1) If y ∈ 𝑋𝜅, then nam𝑋,𝜅(y) is delta-semitermoid of sort 𝜅 over 𝑋 for
any algebraic sort 𝜅.

(2) If there exists at least one term of sort 𝜅 over 𝑋, then △𝜅 is a
delta-semitermoid of sort 𝜅 over 𝑋.

(3) If f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and 𝜏1, . . . , 𝜏𝑛 are
delta-semitermoids over 𝑋 of sorts 𝜅1, . . . , 𝜅𝑛, respectively, then the string
f(𝜏1, . . . , 𝜏𝑛) is delta-semitermoid of sort 𝜆 over 𝑋.

(4) If f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and 𝜏 is a delta-
semitermoid over 𝑋 of sort 𝜆, then the string f−1

𝑖 (𝜏) is delta-semitermoid
of sort 𝜅𝑖 over 𝑋 for any 𝑖 ∈ {1, . . . , 𝑛}.

(5) If 𝜏 is a delta-semitermoid of sort 𝜅 and 𝑛 is a natural number,
then the string +(p𝑛q, 𝜏) also is a delta-semitermoid of sort 𝜅. In order to

73The choice of the sort Log here is completely arbitrary. What we need is a method
to encode the natural numbers with formal symbols. Any sort can be used instead of Log.
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improve the readability, we are going to use infix notation and write p𝑛q+𝜏
instead of +(p𝑛q, 𝜏).

D)Corollary. (1) If a delta-semitermoid over 𝑋 does not contain the
symbol +, then it is a gamma-semitermoid over 𝑋 of the same sort.

(2)Any gamma-semitermoid over 𝑋 is a delta-semitermoid over 𝑋 of
the same sort.

Proof. Compare definitions (C) and (24B). �

In order to define the semantics of the delta-semitermoids, in the follow-
ing definition we define the notion “embraces”. Then (in Q) we are going
to say that 𝜇 is a value of a delta-semitermoid 𝜏 if and only if 𝜇 is a value
of some embraced by 𝜏 gamma-semitermoid. In other words, intuitively we
can equate a delta-semitermoid with the set of all embraced by it gamma-
semitermoids. In future we are going to define also an alternative semantics
(see definition 27F).

E)Definition. By induction we define the relation “delta-
semitermoid 𝜏 embraces a gamma-semitermoid 𝜎”:

(1) Each gamma-semitermoid embraces itself.
(2) If 𝜎 is embraced by 𝜏 , then 𝜎 is embraced by p0q+ 𝜏 .
(3) If 𝜎 is embraced by p𝑛q+ 𝜏 , then 𝜎 is embraced by p𝑛+ 1q+ 𝜏 .
(4) If 𝜏𝑖 embraces 𝜎𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}, then f(𝜏1, . . . , 𝜏𝑛) em-

braces f(𝜎1, . . . , 𝜎𝑛).
(5) If 𝜏 ′ embraces 𝜎′, then f−1

𝑖 (𝜏 ′) embraces f−1
𝑖 (𝜎′).

(6) For any functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩, if the delta-
semitermoid p𝑛+ 1q + 𝜏 over 𝑋 of sort 𝜅𝑖 embraces 𝜎 and the delta-
semitermoid p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛) embraces 𝜎′, then

p𝑛+ 1q+ 𝜏 embraces f−1
𝑖 (𝜎′).

F)Lemma. A gamma-semitermoid embraces only itself.

Proof. By induction on definition (E). According to (E1), a gamma-
semitermoid embraces itself. Rules (E2), (E3) and (E6) are talking about
gamma-semitermoids embraced by a delta-semitermoid containing at least
one symbol +, i.e. a delta-semitermoid which is not a gamma-semitermoid.

If we apply (E4) in order to prove that f(𝜏1, . . . , 𝜏𝑛) em-
braces f(𝜎1, . . . , 𝜎𝑛) and f(𝜏1, . . . , 𝜏𝑛) is a gamma-semitermoid, then
𝜏1, . . . , 𝜏𝑛 are gamma-semitermoids, so by induction hypothesis, 𝜏𝑖 = 𝜎𝑖 for
any 𝑖 ∈ {1, . . . , 𝑛}, hence f(𝜏1, . . . , 𝜏𝑛) = f(𝜎1, . . . , 𝜎𝑛).

If we apply (E5) in order to prove that f−1
𝑖 (𝜏 ′) embraces f−1

𝑖 (𝜎′) and
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f−1
𝑖 (𝜏 ′) is a gamma-semitermoid, then 𝜏 ′ is a gamma-semitermoid, so by

induction hypothesis, 𝜏 ′ = 𝜎′, hence f−1
𝑖 (𝜏 ′) = f−1

𝑖 (𝜎′). �

G) For the purpose of the next two lemmas, if 𝜏 is a delta-semitermoid,
by g𝜏 we will denote the gamma-semitermoid which is obtained from 𝜏
by removing all subexpressions of the form “p𝑛q+”. For example,
g(f(a, p5q+ g(p3q+ c))) = f(a, g(c)).

H)Lemma. Every delta-semitermoid 𝜏 embraces g𝜏 .

Proof. By induction on 𝜏 .
If 𝜏 is a name or has the form △𝜅, then 𝜏 is gamma-semitermoid, hence

g𝜏 = 𝜏 and 𝜏 is embraced by 𝜏 .
If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then by induction hypothesis, g𝜏𝑖 is embraced by 𝜏𝑖

for any 𝑖 ∈ {1, . . . , 𝑛}, hence g𝜏 = f(g𝜏1, . . . , g𝜏𝑛) is embraced by 𝜏 .
If 𝜏 = f−1

𝑖 (𝜏 ′), then by induction hypothesis g𝜏 ′ is embraced by 𝜏 ′, hence
g𝜏 = f−1

𝑖 (g𝜏 ′) is embraced by 𝜏 .
If 𝜏 = p𝑛q + 𝜏 ′, then by induction hypothesis, g𝜏 ′ is embraced by 𝜏 ′,

hence by (E2) and (E3), g𝜏 ′ is embraced by p𝑛q+𝜏 ′, so g𝜏 = g𝜏 ′ is embraced
by p𝑛q+ 𝜏 ′ = 𝜏 . �

I)Lemma. If the delta-semitermoid 𝜏 embraces the gamma-
semitermoid 𝜎, then for any 𝜌, 𝜌 is an associated gamma-semitermoid of 𝜎
if and only if 𝜌 is an associated gamma-semitermoid of g𝜏 .

Proof. By induction on definition (E).
(1) If 𝜏 is a gamma-semitermoid, then g𝜏 = 𝜏 and because of (F), 𝜎 = 𝜏 ,

hence g𝜏 = 𝜎, so there is nothing to prove.
(2) 𝜎 is embraced by p0q+ 𝜏 , because 𝜎 is embraced by 𝜏 .
By induction hypothesis, 𝜌 is associated with 𝜎 if and only if 𝜌 is asso-

ciated with g𝜏 , if and only if 𝜌 is associated with g(p0q+ 𝜏) = g𝜏 .
(3) 𝜎 is embraced by p𝑛+ 1q+ 𝜏 , because 𝜎 is embraced by p𝑛q+ 𝜏 .
By induction hypothesis 𝜌 is associated with 𝜎 if and only if 𝜌 is asso-

ciated with g(p𝑛q+ 𝜏), if and only if 𝜌 is associated with g(p𝑛+ 1q+ 𝜏) =
g(p𝑛q+ 𝜏) = g𝜏 .

(4) f(𝜎1, . . . , 𝜎𝑚) is embraced by f(𝜏1, . . . , 𝜏𝑚) because 𝜎𝑖 is embraced
by 𝜏𝑖 for all 𝑖 ∈ {1, . . . ,𝑚}.

According to definition (24E3), 𝜌 is associated with f(𝜎𝑖, . . . , 𝜎𝑚) if and
only if 𝜌 = f(𝜌1, . . . , 𝜌𝑚) for some 𝜌1, . . . , 𝜌𝑚, such that 𝜌𝑖 is associated
with 𝜎𝑖 for all 𝑖 ∈ {1, . . . ,𝑚}. By induction hypothesis, this is so if and only
if 𝜌 = f(𝜌1, . . . , 𝜌𝑚) for some 𝜌1, . . . , 𝜌𝑚, such that 𝜌𝑖 is associated with g𝜏𝑖
for all 𝑖 ∈ {1, . . . ,𝑚}. According to definition (24E3), this is so if and only
if 𝜌 = f(𝜌1, . . . , 𝜌𝑚) is associated with f(g𝜏1, . . . , g𝜏𝑚) = g(f(𝜏1, . . . , 𝜏𝑚)).
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(5) f−1
𝑖 (𝜏 ′) embraces f−1

𝑖 (𝜎′) because 𝜏 ′ embraces 𝜎′.
According to definition (24E4), 𝜌 is associated with f−1

𝑖 (𝜎′) if and only
if 𝜎′ has associated gamma-semitermoid f(𝜌1, . . . , 𝜌𝑚), such that 𝜌 = 𝜌𝑖.
By induction hypothesis, this is so if and only if g𝜏 ′ has associated gamma-
semitermoid f(𝜌1, . . . , 𝜌𝑚), such that 𝜌 = 𝜌𝑖. According to definition (24E4),
this is so if and only if 𝜌 = 𝜌𝑖 is associated with f−1

𝑖 (g𝜏 ′) = g(f−1
𝑖 (𝜏 ′)).

(6) Given a functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩,
p𝑛+ 1q + 𝜏 embraces f−1

𝑖 (𝜎′) because p𝑛+ 1q + 𝜏 embraces 𝜎 and
p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛) embraces 𝜎′.

According to definition (24E4), 𝜌 is associated with f−1
𝑖 (𝜎′) if

and only if 𝜎′ has associated gamma-semitermoid f(𝜌1, . . . , 𝜌𝑚),
such that 𝜌 = 𝜌𝑖. By induction hypothesis,74 this is so if
and only if g(p𝑛q + f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛)) has as-

sociated gamma-semitermoid f(𝜌1, . . . , 𝜌𝑚), such that 𝜌 = 𝜌𝑖.
Considering that g(p𝑛q + f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛)) =

f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜎,△𝜅𝑖+1

, . . . ,△𝜅𝑛), according to definition (24E3), this is
so if and only if 𝜌 = 𝜌𝑖 is associated gamma-semitermoid of 𝜎. By induction
hypothesis,75 this is so if and only if 𝜌 is associated gamma-semitermoid
of g(p𝑛+ 1q+ 𝜏) = g𝜏 . �

J)Definition. 𝜏 is a delta-termoid over 𝑋 of sort 𝜅, if 𝜏 is a
delta-semitermoid over 𝑋 of sort 𝜅 and 𝜏 contains no symbol of the form
f−1
𝑖 or △𝜅.

K)Proposition. All embraced by a delta-termoid gamma-semitermoids
are gamma-termoids.

Proof. Suppose that the gamma-semitermoid 𝜎 is embraced by the delta-
termoid 𝜏 . Let 𝜏 ′ = g𝜏 , i.e. 𝜏 ′ is obtained from 𝜏 by removing all subex-
pressions of the form “p𝑛q+”. Then 𝜏 ′ contains no symbols of the form
f−1
𝑖 or △𝜅 (because 𝜏 is a delta-termoid) and no symbol “+” (because we

have removed the symbols “+” from 𝜏), so 𝜏 ′ is a term and, particularly,
a gamma-semitermoid. Therefore, 𝜏 ′ is the only embraced by 𝜏 ′ gamma-
semitermoid (see F) and 𝜏 ′ is the associated term of 𝜏 ′ (see 24G2). According
to (I), 𝜏 ′ is the associated term of 𝜎, hence 𝜎 is a gamma-termoid. �

L)Definition. For any Sort-indexed set 𝑋, let J𝑋K𝛿 be the algebra,
such that:

(1)The algebraic carrier of sort 𝜅 of J𝑋K𝛿 is the set of all delta-termoids
over 𝑋 of sort 𝜅.

74About p𝑛q+ f(△𝜅1
, . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛

) embraces 𝜎′.
75About p𝑛 + 1q+ 𝜏 embraces 𝜎.
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(2) For any functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and delta-
termoids 𝜏1, . . . , 𝜏𝑛 of sorts 𝜅1, . . . , 𝜅𝑛, respectively, let

fJ𝑋K𝛿⟨𝜏1, . . . , 𝜏𝑛⟩ = f(𝜏1, . . . , 𝜏𝑛)

where on the right side of the equality sign stays a formal expression.

This definition is correct because:
First, the elements of the algebraic carriers of J𝑋K𝛿 are exactly the delta-

termoids, hence f(𝜏1, . . . , 𝜏𝑛) belongs to the carrier of sort 𝜆 of J𝑋K𝛿.
Second, any algebra is uniquely determined by its algebraic carriers and

the interpretation of the functional symbols (see 12Q1).

M)Definition. Given Sort-indexed sets 𝑋 and 𝑌 and a Sort-indexed
function 𝑓 : 𝑋 → 𝑌 , let J𝑓K𝛿 : J𝑋K𝛿 → J𝑌 K𝛿 be the homomorphism,
who when applied to a delta-termoid 𝜏 , replaces all occurrences of names
nam𝑋,𝜆(z) in 𝜏 with nam𝑌,𝜆(𝑓𝜆z) (i.e. J𝑓K𝛿 replaces all occurrences of pzq
with p𝑓zq).

We are going to use postfix notation for this homomorphism. Thus 𝜏J𝑓K𝛿
means to apply J𝑓K𝛿 to 𝜏 . As an extension of the notation, we are going to
write 𝜏J𝑓K𝛿 even when 𝜏 is an arbitrary delta-semitermoid, i.e. not neces-
sarily a delta-termoid. Let 𝜏J𝑓K𝛿 be the expression which is obtained from 𝜏
by replacing all occurrences of names nam𝑋,𝜆(z) in 𝜏 with nam𝑌,𝜆(𝑓𝜆z) (i.e.
in 𝜏J𝑓K𝛿 all occurrences of pzq in 𝜏 are replaced with p𝑓zq).

The following proposition shows that the above definition is correct:

N)Proposition. Let 𝑓 : 𝑋 → 𝑌 be a Sort-indexed function. Then:
(1) If 𝜏 is a delta-semitermoid over 𝑋 of sort 𝜅, then 𝜏J𝑓K𝛿 is a delta-

semitermoid over 𝑌 of sort 𝜅.
(2) If 𝜏 is a delta-termoid over 𝑋 of sort 𝜅, then 𝜏J𝑓K𝛿 is a delta-termoid

over 𝑌 of sort 𝜅.
(3)There exists unique homomorphism from J𝑋K𝛿 to J𝑌 K𝛿, such that the

result of its application to any delta-termoid 𝜏 is equal to 𝜏J𝑓K𝛿.

Proof. (1) can be proved by a simple induction on definition (C).
(2) follows immediately from (1) and definitions (J) and (L).
(3) follows from (2) and (12Q2). We only have to notice that for

any functional symbol f and delta-termoids 𝜏1, . . . , 𝜏𝑛 of suitable sorts,
(fJ𝑋K𝛿⟨𝜏1, . . . , 𝜏𝑛⟩)J𝑓K𝛿 = (f(𝜏1, . . . , 𝜏𝑛))J𝑓K𝛿 = f(𝜏1J𝑓K𝛿, . . . , 𝜏𝑛J𝑓K𝛿) =
fJ𝑌 K𝛿⟨𝜏1J𝑓K𝛿, . . . , 𝜏𝑛J𝑓K𝛿⟩. �

O)Lemma. Given a Sort-indexed function 𝑓 : 𝑋 → 𝑌 , a gamma-
semitermoid 𝜎 over 𝑋 and a delta-semitermoid 𝜏 over 𝑋, if 𝜎 is embraced
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by 𝜏 , then 𝜎J𝑓K𝛾 is embraced by 𝜏J𝑓K𝛿.

Proof. By induction on definition (E).
(1) If 𝜏 = 𝜎 and both are gamma-semitermoids, then 𝜏J𝑓K𝛿 = 𝜎J𝑓K𝛾

and both are gamma-semitermoids, hence 𝜏J𝑓K𝛿 embraces 𝜎J𝑓K𝛾.
(2) If 𝜎 is embraced by p0q + 𝜏 because 𝜎 is embraced by 𝜏 , then by

induction hypothesis, 𝜎J𝑓K𝛾 is embraced by 𝜏J𝑓K𝛿, hence 𝜎J𝑓K𝛾 is embraced
by p0q+ 𝜏J𝑓K𝛿 = (p0q+ 𝜏)J𝑓K𝛿.

(3) If 𝜎 is embraced by p𝑛+ 1q+ 𝜏 because 𝜎 is embraced by p𝑛q+ 𝜏 ,
then by induction hypothesis, 𝜎 is embraced by (p𝑛q+𝜏)J𝑓K𝛿 = p𝑛q+𝜏J𝑓K𝛿,
hence 𝜎 is embraced by p𝑛+ 1q+ 𝜏J𝑓K𝛿 = (p𝑛+ 1q+ 𝜏)J𝑓K𝛿.

(4) If f(𝜎1, . . . , 𝜎𝑛) is embraced by f(𝜏1, . . . , 𝜏𝑛), because 𝜎𝑖 is
embraced by 𝜏𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}, then by induction hy-
pothesis, 𝜎𝑖J𝑓K𝛾 is embraced by 𝜏𝑖J𝑓K𝛿 for all 𝑖 ∈ {1, . . . , 𝑛},
hence f(𝜎1J𝑓K𝛾, . . . , 𝜎𝑛J𝑓K𝛾) = (f(𝜎1, . . . , 𝜎𝑛))J𝑓K𝛾 is embraced
by f(𝜏1J𝑓K𝛿, . . . , 𝜏𝑛J𝑓K𝛿) = (f(𝜏1, . . . , 𝜏𝑛))J𝑓K𝛿.

(5) If f−1
𝑖 (𝜎′) is embraced by f−1

𝑖 (𝜏 ′) because 𝜎′ is embraced by 𝜏 ′,
then by induction hypothesis, 𝜎′J𝑓K𝛾 is embraced by 𝜏 ′J𝑓K𝛿, hence
(f−1
𝑖 (𝜎′))J𝑓K𝛾 = f−1

𝑖 (𝜎′J𝑓K𝛾) is embraced by (f−1
𝑖 (𝜏 ′))J𝑓K𝛿 = f−1

𝑖 (𝜏 ′J𝑓K𝛿).
(6) Given a functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩, suppose

that p𝑛+ 1q + 𝜏 embraces f−1
𝑖 (𝜎′) because p𝑛+ 1q + 𝜏 embraces 𝜎 and

p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜎,△𝜅𝑖+1

, . . . ,△𝜅𝑛) embraces 𝜎′. By induction hy-
pothesis, (p𝑛+ 1q + 𝜏)J𝑓K𝛿 = p𝑛+ 1q + 𝜏J𝑓K𝛿 embraces 𝜎J𝑓K𝛾. Also by
induction hypothesis,

(p𝑛q+f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜎,△𝜅𝑖+1

, . . . ,△𝜅𝑛))J𝑓K𝛿 =

= p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜎J𝑓K𝛿,△𝜅𝑖+1

, . . . ,△𝜅𝑛)

= p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜎J𝑓K𝛾,△𝜅𝑖+1

, . . . ,△𝜅𝑛)

embraces 𝜎′J𝑓K𝛾. Consequently, p𝑛+ 1q + 𝜏J𝑓K𝛿 = (p𝑛+ 1q + 𝜏)J𝑓K𝛿 em-
braces f−1

𝑖 (𝜎′J𝑓K𝛾) = (f−1
𝑖 (𝜎′))J𝑓K𝛾. �

The following Lemma is close to the opposite direction of the previous
Lemma.

P)Lemma. Given a Sort-indexed function 𝑓 : 𝑋 → 𝑌 , a gamma-
semitermoid 𝜎 over 𝑌 and a delta-semitermoid 𝜏 over 𝑋, if 𝜎 is embraced
by 𝜏J𝑓K𝛿, then there exists a gamma-semitermoid 𝜌, such that 𝜌 is embraced
by 𝜏 and 𝜌J𝑓K𝛾 = 𝜎.

Proof. We are going to prove the following statement: for any gamma-
semitermoid 𝜎 and delta-semitermoid 𝜏%, both over 𝑌 , if 𝜎 is embraced
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by 𝜏%, then for any delta-semitermoid 𝜏 over 𝑋, if 𝜏J𝑓K𝛿 = 𝜏%, then there
exists a gamma-semitermoid 𝜌, such that 𝜌 is embraced by 𝜏 and 𝜌J𝑓K𝛾 = 𝜎.

We are going to prove this by induction on definition (E) regarding the
“embracement” of 𝜎 by 𝜏%. In order to simplify the presentation, we are
going to implicitly use that the homomorphisms J𝑓K𝛾 and J𝑓K𝛿 have several
“injective” properties, such as: if (p𝑚′q + 𝜌′)J𝑓K𝛿 = (p𝑚′′q + 𝜌′′)J𝑓K𝛿, then
𝑚′ = 𝑚′′ and 𝜌′J𝑓K𝛿 = 𝜌′′J𝑓K𝛿, if (f(𝜌′1, . . . , 𝜌

′
𝑛))J𝑓K𝛾 = (f(𝜌′′1, . . . , 𝜌

′′
𝑛))J𝑓K𝛾,

then 𝜌′𝑖J𝑓K𝛾 = 𝜌′𝑖J𝑓K𝛾 for any 𝑖 ∈ {1, . . . , 𝑛}, etc.
(1) If 𝜎 = 𝜏J𝑓K𝛿 and both are gamma-semitermoids, then 𝜏 is a gamma-

semitermoid, so 𝜏 is embraced by 𝜏 , hence we can take 𝜌 = 𝜏 .
(2) If 𝜎 is embraced by (p0q + 𝜏)J𝑓K𝛿 = p0q + 𝜏J𝑓K𝛿 because 𝜎 is

embraced by 𝜏J𝑓K𝛿, then by induction hypothesis, there exists an embraced
by 𝜏 gamma-semitermoid 𝜌, such that 𝜌J𝑓K𝛾 = 𝜎. It only remains to notice
that 𝜌 will be also embraced by p0q+ 𝜏 .

(3) If 𝜎 is embraced by (p𝑛+ 1q + 𝜏)J𝑓K𝛿 = p𝑛+ 1q + 𝜏J𝑓K𝛿 because
𝜎 is embraced by (p𝑛q + 𝜏)J𝑓K𝛿 = p𝑛q + 𝜏J𝑓K𝛿, then by induction hy-
pothesis, there exists an embraced by p𝑛q+ 𝜏 gamma-semitermoid 𝜌, such
that 𝜌J𝑓K𝛾 = 𝜎. It only remains to notice that 𝜌 will be also embraced
by p𝑛+ 1q+ 𝜏 .

(4) If f(𝜎1, . . . , 𝜎𝑛) is embraced by (f(𝜏1, . . . , 𝜏𝑛))J𝑓K𝛿 =
f(𝜏1J𝑓K𝛿, . . . , 𝜏𝑛J𝑓K𝛿), because 𝜎𝑖 is embraced by 𝜏𝑖J𝑓K𝛿 for all 𝑖 ∈ {1, . . . , 𝑛},
then by induction hypothesis, there exist gamma-semitermoids 𝜌1, . . . , 𝜌𝑛
embraced respectively by 𝜏1, . . . , 𝜏𝑛, such that 𝜌𝑖J𝑓K𝛾 = 𝜎𝑖 for all 𝑖 ∈
{1, . . . , 𝑛}. It only remains to notice that f(𝜌1, . . . , 𝜌𝑛) will be em-
braced by f(𝜏1, . . . , 𝜏𝑛) and (f(𝜌1, . . . , 𝜌𝑛))J𝑓K𝛾 = f(𝜌1J𝑓K𝛾, . . . , 𝜌𝑛J𝑓K𝛾) =
f(𝜎1, . . . , 𝜎𝑛).

(5) If f−1
𝑖 (𝜎′) is embraced by (f−1

𝑖 (𝜏 ′))J𝑓K𝛿 = f−1
𝑖 (𝜏 ′J𝑓K𝛿) because 𝜎′ is

embraced by 𝜏 ′J𝑓K𝛿, then by induction hypothesis, there exists an embraced
by 𝜏 ′ gamma-semitermoid 𝜌, such that 𝜌J𝑓K𝛾 = 𝜎′. It only remains to notice
that f−1

𝑖 (𝜌) will be embraced by f−1
𝑖 (𝜏 ′) and (f−1

𝑖 (𝜌))J𝑓K𝛾 = f−1
𝑖 (𝜌J𝑓K𝛾) =

f−1
𝑖 (𝜎′).

(6) Given a functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩, sup-
pose that (p𝑛+ 1q + 𝜏)J𝑓K𝛿 = p𝑛+ 1q + 𝜏J𝑓K𝛿 embraces f−1

𝑖 (𝜎′)
because (p𝑛+ 1q+ 𝜏)J𝑓K𝛿 = p𝑛+ 1q+ 𝜏J𝑓K𝛿 embraces 𝜎 and
p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛) embraces 𝜎′. By induction

hypothesis, there exists an embraced by p𝑛+ 1q+𝜏 gamma-semitermoid 𝜌,
such that 𝜌J𝑓K𝛾 = 𝜎.

Since 𝜌J𝑓K𝛾 = 𝜎, p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜌J𝑓K𝛾,△𝜅𝑖+1

, . . . ,△𝜅𝑛) em-
braces 𝜎′ and is equal to p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛). There-

fore, we are permitted to use the induction hypothesis again. We obtain
that there exists an embraced by p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜌,△𝜅𝑖+1
, . . . ,△𝜅𝑛)
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gamma-semitermoid 𝜌′, such that 𝜌′J𝑓K𝛾 = 𝜎′.
Since p𝑛+ 1q+𝜏 embraces 𝜌 and p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜌,△𝜅𝑖+1
, . . . ,△𝜅𝑛)

embraces 𝜌′, from (E6) we obtain that p𝑛+ 1q+𝜏 embraces 𝜌′. Now it only
remains to notice that 𝜌′J𝑓K𝛾 = 𝜎′ implies that (f−1

𝑖 (𝜌′))J𝑓K𝛾 = f−1
𝑖 (𝜎′). �

Q)Definition. Given a structure M, let Val𝛿M : J|M|K𝛿 → PM be the
only homomorphism, such that for any delta-termoid 𝜏 over |M|, Val𝛿M 𝜏 is
equal to the union of the sets of the values in M of all embraced by 𝜏
gamma-termoids.

As an extension of the notation, we are going to write Val𝛿M 𝜏 even when
𝜏 is an arbitrary delta-semitermoid over |M| (i.e. not necessarily a delta-
termoid). In this case too, let Val𝛿M 𝜏 be equal to the union of the sets of
the values in M of all embraced by 𝜏 gamma-semitermoids.

According to (12Q2), in order to prove that Val𝛿M is actually a homo-
morphism, we only have to prove that for any functional symbol f of type
⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and any termoids 𝜏1 . . . , 𝜏𝑛 of sorts 𝜅1, . . . , 𝜅𝑛, we have
Val𝛿M(fJ|M|K𝛿⟨𝜏1, . . . , 𝜏𝑛⟩) = fPM⟨Val𝛿M 𝜏1, . . . ,Val𝛿M 𝜏𝑛⟩.

For any delta-semitermoid 𝜏 , let Emb 𝜏 be the set of all embraced
by 𝜏 gamma-semitermoids. Notice that from definition (E) it follows that
Emb(f(𝜏1, . . . , 𝜏𝑛)) = {f(𝜎1, . . . , 𝜎𝑛) : 𝜎1 ∈ Emb 𝜏1, . . . , 𝜎𝑛 ∈ Emb 𝜏𝑛} and
that we already know that Val𝛾M is a homomorphism. Therefore:

Val𝛿M(fJ|M|K𝛿⟨𝜏1, . . . , 𝜏𝑛⟩) =

= Val𝛿M(f(𝜏1, . . . , 𝜏𝑛)) from (L2)
= ∪ {Val𝛾M 𝜎 : 𝜎 ∈ Emb(f(𝜏1, . . . , 𝜏𝑛))} from (Q)
= ∪ {Val𝛾M(f(𝜎1, . . . , 𝜎𝑛)) : 𝜎1 ∈ Emb 𝜏1, . . . , 𝜎𝑛 ∈ Emb 𝜏𝑛} from (E)

= ∪ {Val𝛾M(fJ|M|K𝛾⟨𝜎1, . . . , 𝜎𝑛⟩) : 𝜎1 ∈ Emb 𝜏1, . . . , 𝜎𝑛 ∈ Emb 𝜏𝑛}
= ∪ {fPM⟨Val𝛾M 𝜎1, . . . ,Val𝛾M 𝜎𝑛⟩ : 𝜎1 ∈ Emb 𝜏1, . . . , 𝜎𝑛 ∈ Emb 𝜏𝑛}
={fM⟨𝜇1, . . . , 𝜇𝑛⟩ : 𝜇1 ∈ Val𝛿M 𝜏1, . . . , 𝜇𝑛 ∈ Val𝛿M 𝜏𝑛} from (Q)

=fPM⟨Val𝛿M 𝜏1, . . . , 𝜇𝑛 ∈ Val𝛿M 𝜏𝑛⟩

R)Proposition. (1) Given a structure M and a delta-termoid 𝜏
over |M|, if the term 𝜎 is obtained from 𝜏 by removing all occurrences
of substrings of the form “p𝑛q+”, then 𝜎M ∈ Val𝛿M 𝜏 .

(2) In addition, if M is a structure of terms, then {𝜎M} = Val𝛿M 𝜏 .

Proof. (1) According to (H), 𝜎 is embraced by 𝜏 , so the required follows
from (24I2) and definition (Q).

(2) According to (H), 𝜎 is embraced by 𝜏 . According to (I), 𝜌 is as-
sociated gamma-semitermoid of 𝜏 if and only if 𝜌 is associated gamma-
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semitermoid of 𝜎. According to (24G2), this is so if and only if 𝜌 = 𝜎.
Consequently, 𝜌 is associated gamma-semitermoid of some embraced by 𝜏
gamma-semitermoid if and only if 𝜌 = 𝜎. According to (24P), 𝜎M is the
only value in M of any embraced by 𝜏 gamma-semitermoid. �

S)Definition. Given a Sort-indexed set 𝑋, let
Vals𝛿𝑋 : J|J𝑋K𝛿|K𝛿 → J𝑋K𝛿 be the only homomorphism, such that for any
delta-termoid 𝜏 over |J𝑋K𝛿|, Vals𝛿𝑋 𝜏 is the result of the replacement in 𝜏 of
all names nam|J𝑋K𝛿| 𝜎 with 𝜎.

As an extension of the notation, we are going to write Vals𝛿𝑋 𝜏 even when
𝜏 is only a delta-semitermoid over |J𝑋K𝛿|, not necessarily a delta-termoid.
In this case too, let Val𝛿𝑋 𝜏 be the result of the replacement in 𝜏 of all names
nam|J𝑋K𝛿| 𝜎 with 𝜎.

It is not difficult to see that when Vals𝛿𝑋 is applied to a delta-termoid
over |J𝑋K𝛿|, the result is a delta-termoid over 𝑋 of the same sort. Therefore,
according to (12Q2), in order to see that the above definition is correct, it
remains to notice that for any functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩
and any delta-termoids 𝜏1 . . . , 𝜏𝑛 over |J𝑋K𝛿| of sorts 𝜅1, . . . , 𝜅𝑛, we
have Vals𝛿𝑋(fJ|J𝑋K𝛿|K𝛿⟨𝜏1, . . . , 𝜏𝑛⟩) = fJ𝑋K𝛿⟨Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑛⟩. This
is so because anything Vals𝛿𝑋 replaces is a name and f is not
a name, hence Vals𝛿𝑋(fJ|J𝑋K𝛿|K𝛿⟨𝜏1, . . . , 𝜏𝑛⟩) = Vals𝛿𝑋(f(𝜏1, . . . , 𝜏𝑛)) =
f(Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑛) = fJ𝑋K𝛿⟨Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑛⟩.

T)Lemma. Let the Sort-indexed functions 𝑔 : 𝑋 → |J𝑌 K𝛾| and
𝑑 : 𝑋 → |J𝑌 K𝛿| be such that the gamma-termoid 𝑔𝜉 is embraced by the delta-
termoid 𝑑𝜉 for any 𝜉 belonging to an algebraic component of 𝑋. Then for
any gamma-semitermoid 𝜏 over 𝑋, the gamma-semitermoid Vals𝛾𝑋(𝜏J𝑔K𝛾) is
embraced by the delta-semitermoid Vals𝛿𝑋(𝜏J𝑑K𝛿).

Proof. By induction on 𝜏 .
If 𝜏 is a name, i.e. 𝜏 = p𝜉q for some 𝜉 ∈ 𝑋, then Vals𝛾𝑋(𝜏J𝑔K𝛾) =

Vals𝛾𝑋(p𝜉qJ𝑔K𝛾) = Vals𝛾𝑋(p𝑔𝜉q) = 𝑔𝜉, which is embraced by 𝑑𝜉 =
Vals𝛿𝑋(p𝑑𝜉q) = Vals𝛿𝑋(p𝜉qJ𝑑K𝛿) = Vals𝛿𝑋(𝜏J𝑑K𝛿).

If 𝜏 = △𝜅, then Vals𝛾𝑋(𝜏J𝑔K𝛾) = △𝜅 is embraced by Vals𝛿𝑋(𝜏J𝑑K𝛿) = △𝜅.
If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then Vals𝛾𝑋(𝜏J𝑔K𝛾) = Vals𝛾𝑋((f(𝜏1, . . . , 𝜏𝑛))J𝑔K𝛾) =

Vals𝛾𝑋(f(𝜏1J𝑔K𝛾, . . . , 𝜏𝑛J𝑔K𝛾)) = f(Vals𝛾𝑋(𝜏1J𝑔K𝛾), . . . ,Vals𝛾𝑋(𝜏𝑛J𝑔K𝛾)).
By induction hypothesis, Vals𝛾𝑋(𝜏𝑖J𝑔K𝛾) is embraced by Vals𝛿𝑋(𝜏𝑖J𝑑K𝛿)
for any 𝑖 ∈ {1, . . . , 𝑛}, so (E4) implies that the above gamma-
semitermoid is embraced by f(Vals𝛿𝑋(𝜏1J𝑑K𝛿), . . . ,Vals𝛿𝑋(𝜏𝑛J𝑑K𝛿)) =
Vals𝛿𝑋(f(𝜏1J𝑑K𝛿, . . . , 𝜏𝑛J𝑑K𝛿)) = Vals𝛿𝑋((f(𝜏1, . . . , 𝜏𝑛))J𝑑K𝛿) = Vals𝛿𝑋(𝜏J𝑑K𝛿).

If 𝜏 = f−1
𝑖 (𝜏 ′), then Vals𝛾𝑋(𝜏J𝑔K𝛾) = Vals𝛾𝑋((f−1

𝑖 (𝜏 ′))J𝑔K𝛾) =
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Vals𝛾𝑋(f−1
𝑖 (𝜏 ′J𝑔K𝛾)) = f−1

𝑖 (Vals𝛾𝑋(𝜏 ′J𝑔K𝛾)). By induction hypothe-
sis, Vals𝛾𝑋(𝜏 ′J𝑔K𝛾) is embraced by Vals𝛿𝑋(𝜏 ′J𝑑K𝛿), so (E5) implies that
the above gamma-semitermoid is embraced by f−1

𝑖 (Vals𝛿𝑋(𝜏 ′J𝑑K𝛿)) =
Vals𝛿𝑋(f−1

𝑖 (𝜏 ′J𝑑K𝛿)) = Vals𝛿𝑋((f−1
𝑖 (𝜏 ′))J𝑑K𝛿) = Vals𝛿𝑋(𝜏J𝑑K𝛿). �

U)Lemma. Let the Sort-indexed functions 𝑔 : 𝑋 → |J𝑌 K𝛾| and
𝑑 : 𝑋 → |J𝑌 K𝛿| be such that the gamma-termoid 𝑔𝜉 is embraced by the delta-
termoid 𝑑𝜉 for any 𝜉 belonging to an algebraic component of 𝑋. If 𝜎 is
a gamma-termoid over 𝑋 embraced by 𝜏 , a delta-termoid over 𝑋, then
Vals𝛾𝑋(𝜎J𝑔K𝛾) is embraced by Vals𝛿𝑋(𝜏J𝑑K𝛿).

Proof. By induction on definition (E) regarding the “embracement” of 𝜎
by 𝜏 .

(1) If 𝜏 = 𝜎 and both are gamma-termoids, then (T) implies that
Vals𝛾𝑋(𝜎J𝑔K𝛾) is embraced by Vals𝛿𝑋(𝜏J𝑑K𝛿).

(2) If 𝜎 is embraced by p0q + 𝜏 because 𝜎 is embraced by 𝜏 ,
then by induction hypothesis, Vals𝛾𝑋(𝜎J𝑔K𝛾) is embraced by Vals𝛿𝑋(𝜏J𝑑K𝛿),
hence (E2) implies that it is also embraced by p0q+ Vals𝛿𝑋(𝜏J𝑑K𝛿) =
Vals𝛿𝑋(p0q+ 𝜏J𝑑K𝛿) = Vals𝛿𝑋((p0q+ 𝜏)J𝑑K𝛿).

(3) If 𝜎 is embraced by p𝑛+ 1q + 𝜏 because 𝜎 is embraced
by p𝑛q + 𝜏 , then by induction hypothesis, Vals𝛾𝑋(𝜎J𝑔K𝛾) is embraced
by Vals𝛿𝑋((p𝑛q+ 𝜏)J𝑑K𝛿) = Vals𝛿𝑋(p𝑛q+ 𝜏J𝑑K𝛿) = p𝑛q+ Vals𝛿𝑋(𝜏J𝑑K𝛿),
hence (E3) implies that it is also embraced by p𝑛+ 1q+ Vals𝛿𝑋(𝜏J𝑑K𝛿) =
Vals𝛿𝑋(p𝑛+ 1q+ 𝜏J𝑑K𝛿) = Vals𝛿𝑋((p𝑛+ 1q+ 𝜏)J𝑑K𝛿).

(4) If f(𝜎1, . . . , 𝜎𝑛) is embraced by f(𝜏1, . . . , 𝜏𝑛) because 𝜎𝑖 is em-
braced by 𝜏𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}, then Vals𝛾𝑋((f(𝜎1, . . . , 𝜎𝑛))J𝑔K𝛾)
= Vals𝛾𝑋(f(𝜎1J𝑔K𝛾, . . . , 𝜎𝑛J𝑔K𝛾)) = f(Vals𝛾𝑋(𝜎1J𝑔K𝛾), . . . ,Vals𝛾𝑋(𝜎𝑛J𝑔K𝛾)).
By induction hypothesis, Vals𝛾𝑋(𝜎𝑖J𝑔K𝛾) is embraced by Vals𝛿𝑋(𝜏𝑖J𝑑K𝛿)
for all 𝑖 ∈ {1, . . . , 𝑛}, hence (E4) implies that the above gamma-
termoid is embraced by f(Vals𝛿𝑋(𝜏1J𝑑K𝛿), . . . ,Vals𝛿𝑋(𝜏𝑛J𝑑K𝛿)) =
Vals𝛿𝑋(f(𝜏1J𝑑K𝛿, . . . , 𝜏𝑛J𝑑K𝛿)) = Vals𝛿𝑋((f(𝜏1, . . . , 𝜏𝑛))J𝑑K𝛿).

(5) If f−1
𝑖 (𝜎′) is embraced by f−1

𝑖 (𝜏 ′) because 𝜎′ is embraced by 𝜏 ′,
then Vals𝛾𝑋((f−1

𝑖 (𝜎′))J𝑔K𝛾) = Vals𝛾𝑋(f−1
𝑖 (𝜎′J𝑔K𝛾)) = f−1

𝑖 (Vals𝛾𝑋(𝜎′J𝑔K𝛾)).
By induction hypothesis, Vals𝛾𝑋(𝜎′J𝑔K𝛾) is embraced by Vals𝛿𝑋(𝜏 ′J𝑑K𝛿),
hence (E5) implies that the above gamma-termoid is embraced by
f−1
𝑖 (Vals𝛿𝑋(𝜏 ′J𝑑K𝛿)) = Vals𝛿𝑋(f−1

𝑖 (𝜏 ′J𝑑K𝛿)) = Vals𝛿𝑋((f−1
𝑖 (𝜏 ′))J𝑑K𝛿).

(6) Given a functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩, suppose
that p𝑛+ 1q + 𝜏 embraces f−1

𝑖 (𝜎′) because p𝑛+ 1q + 𝜏 embraces 𝜎 and
p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛) embraces 𝜎′.

By induction hypothesis, Vals𝛾𝑋(𝜎′J𝑔K𝛾) is embraced
by Vals𝛿𝑋((p𝑛+ 1q+ 𝜏)J𝑑K𝛿) = Vals𝛿𝑋(p𝑛+ 1q+ 𝜏J𝑑K𝛿) =
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p𝑛+ 1q+ Vals𝛿𝑋(𝜏J𝑑K𝛿).
Also by induction hypothesis, Vals𝛾𝑋(𝜎′J𝑔K𝛾) is embraced by

Vals𝛿𝑋((p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜎,△𝜅𝑖+1

, . . . ,△𝜅𝑛))J𝑑K𝛿)

= Vals𝛿𝑋(p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜎J𝑑K𝛿,△𝜅𝑖+1

, . . . ,△𝜅𝑛))

=p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1
,Vals𝛿𝑋(𝜎J𝑑K)𝛿,△𝜅𝑖+1

, . . . ,△𝜅𝑛)

These two facts combined with (E6) imply that f−1
𝑖 (Vals𝛾𝑋(𝜎′J𝑔K𝛾))

= Vals𝛾𝑋(f−1
𝑖 (𝜎′J𝑔K𝛾)) = Vals𝛾𝑋((f−1

𝑖 (𝜎′))J𝑔K𝛾) is embraced by
p𝑛+ 1q+ Vals𝛿𝑋(𝜏J𝑑K𝛿) = Vals𝛿𝑋(p𝑛+ 1q+ 𝜏J𝑑K𝛿) = Vals𝛿𝑋((p𝑛+ 1q+ 𝜏)J𝑑K𝛿).

�

V)Definition. Given a Sort-indexed set 𝑋, let Nam𝛿
𝑋 : 𝑋∘ → |J𝑋K𝛿|

be the Sort-indexed function, such that for any x ∈ 𝑋∘

Nam𝛿
𝑋(x) = nam𝑋(x)

W)Definition. The quadruple ⟨J.K𝛿,Val𝛿,Vals𝛿,Nam𝛿⟩ is the delta-
terminator .

In order to avoid ambiguities, the termoidal expressions and the formu-
loids defined by this terminator will be called “delta-termoidal expressions”
and “delta-formuloids”. Because of (L), the notion of termoid correspond-
ing to this terminator (see definition 14J) is identical with the notion of
delta-termoid, as defined in (J).

We have to prove that the above definition is correct.
Proof. We are going to prove the requirements of definition (14I) one by

one.
(1) According to definition (L), J𝑋K𝛿 is an algebra.
(2) According to definition (M), J𝑓K𝛿 is a homomorphism from J𝑋K𝛿

to J𝑌 K𝛿 for any Sort-indexed function 𝑓 : 𝑋 → 𝑌 .
(3) A trivial induction on the definition of delta-semitermoid (C) can

be used to prove that if 𝜏 is a delta-semitermoid over 𝑋 and at the same
time a delta-semitermoid over 𝑌 , then 𝜏 is a delta-semitermoid over 𝑋 ∩𝑌
as well. From this and definition (J) we obtain that if 𝜏 is a delta-termoid
over 𝑋 and at the same time a delta-termoid over 𝑌 , then 𝜏 is a delta-
termoid over 𝑋 ∩ 𝑌 as well. Since any delta-termoid over 𝑋 ∩ 𝑌 is obvi-
ously a delta-termoid over 𝑋 and a delta-termoid over 𝑌 , we obtain that
the identity |J𝑋K𝛿| ∩ |J𝑌 K𝛿| = |J𝑋 ∩ 𝑌 K𝛿| is true with respect to the alge-
braic components of the Sort-indexed sets. According to definition (12C2),
the elements of the logical carrier of |J𝑋K𝛿| are exactly the relational for-
mulae over |J𝑋K𝛿|, the elements of the logical carrier of |J𝑌 K𝛿| are exactly
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the relational formulae over |J𝑌 K𝛿| and the elements of the logical carrier
of |J𝑋 ∩ 𝑌 K𝛿| are exactly the relational formulae over |J𝑋 ∩ 𝑌 K𝛿|. No for-
mula may contain names of logical sort, hence the mentioned identity is
true for the logical carrier as well.

(4) Definition (M) implies that if the values of 𝑓 ′ : 𝑋 ′ → 𝑌 ′ and
𝑓 ′′ : 𝑋 ′′ → 𝑌 ′′ are equal over the objects whose names occur in the delta-
termoid 𝜏 , then 𝜏J𝑓 ′K𝛿 = 𝜏J𝑓 ′′K𝛿. Consequently, the homomorphisms J𝑓 ′K𝛿
and J𝑓 ′′K𝛿 � J𝑋 ′K𝛿 map identically over the algebraic carriers, hence ac-
cording to (12H2) they map identically over all carriers. On the other
hand, definition (M) trivially implies that 𝜏J𝑓 ′′K𝛿 = 𝜏(J𝑓 ′′K𝛿 � J𝑋 ′K𝛿) for
any 𝜏 ∈ |J𝑋 ′K|. Consequently, the homomorphisms J𝑓 ′K𝛿 and J𝑓 ′′K𝛿 map
identically any element of |J𝑋 ′K𝛿|.

(5) The definition of delta-semitermoids over 𝑋 (C) does not refer to
the elements of 𝑋Log in any way, so J𝑋K𝛿 = J𝑋∘K𝛿. Delta-termoids contain
no names of logical sort, hence immediately from definition (M) it follows
that J𝑓K𝛿 = J𝑓 ∘K𝛿.

(6) and (7) follow from the definitions.
(8) follows from definition (V).
(9) Given a Sort-indexed function 𝑓 : 𝑋 → 𝑌 , for any 𝜉 ∈ 𝑋∘ we

have (J𝑓K𝛿 ∘ Nam𝛿
𝑋)𝜉 = (Nam𝛿

𝑋 𝜉)J𝑓K𝛿 = p𝜉qJ𝑓K𝛿 = p𝑓𝜉q = p𝑓 ∘𝜉q =
Nam𝛿

𝑋 (𝑓 ∘𝜉) = (Nam𝛿
𝑋

∘ 𝑓 ∘)𝜉.

𝑋∘

𝑓∘

��

Nam𝛿
𝑋 // |J𝑋K𝛿|

J𝑓K𝛿

��

𝑌 ∘ Nam𝛿
𝑌 // |J𝑌 K𝛿|

(10) According to definition (Q), Val𝛿 is a homomorphism, hence it also
is a quasimorphism.

(11) Definition (E) shows that the set of the embraced by a delta-
termoid 𝜏 gamma-semitermoids is independent on whether we regard 𝜏 as
a delta-termoid over |M|, or as a delta-termoid over |𝜕M|. On the other
hand, from (14I11) applied about the gamma-terminator it follows that the
set of the values of a gamma-termoid is independent on whether we regard
it as a gamma-termoid over |M|, or as a gamma-termoid over |𝜕M|. This
and definition (Q) imply that Val𝛿M 𝜏 = Val𝛿𝜕M 𝜏 for any delta-termoid 𝜏 .

(12) Due to (14E), we only have to prove that the algebraic compo-
nents of Val𝛿M map to non-empty sets. Let 𝜏 be an arbitrary delta-termoid
over |M|. Let 𝜏 ′ be obtained from 𝜏 by removing from 𝜏 all subexpressions
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of the form “p𝑛q+” (consult G). According to (H), 𝜏 ′ is embraced by 𝜏 .
Since 𝜏 , being a delta-termoid, does not contain symbols of the form f−1

𝑖

or △𝜅, 𝜏 ′ is a term. Therefore, 𝜏 ′ is associated term of 𝜏 ′. According to
(24I2), the value of the term 𝜏 ′ in M belongs to the set of the values of
the gamma-termoid 𝜏 ′ in M. On the other hand, according to (Q), the
set of the values of the embraced by 𝜏 gamma-semitermoid 𝜏 ′ is a subset
of Val𝛿M 𝜏 . Consequently, Val𝛿M 𝜏 is a non-empty set.

Due to (14F), we only have to prove that the algebraic components
of Val𝛿[𝑋] map to one-element sets. Let 𝜏 be an arbitrary delta-termoid
over |[𝑋]| and let 𝜏 ′ be defined as above. Since 𝜏 ′ is the associated term of 𝜏 ′
and the gamma-termoid 𝜏 ′ is embraced by 𝜏 , from (I) it follows that 𝜏 ′ is the
associated term of any embraced by 𝜏 gamma-termoid. Now (24P) implies
that the value of the term 𝜏 ′ in [𝑋] is the only element of the set of the values
of any embraced by 𝜏 gamma-termoid. Consequently, by definition (Q), the
value of the term 𝜏 ′ in [𝑋] is the only element of Val𝛿[𝑋] 𝜏 .

(13) Let ℎ : M → K be a homomorphism. Due to (14G), we only
have to prove that (ℎP ∘ Val𝛿M)𝜏 ⊆ (Val𝛿K ∘ JℎK𝛿)𝜏 for any delta-termoid 𝜏
over |M|.

Suppose that κ ∈ (ℎP ∘ Val𝛿M)𝜏 . Then there exists some 𝜇 ∈ |M|,
such that κ = ℎ𝜇 and 𝜇 belongs to the set of the values in M of some
embraced by 𝜏 gamma-termoid 𝜎. From (14I13) applied about the gamma-
terminator, it follows that ℎ𝜇 belongs to Val𝛾K(𝜎JℎK𝛾), i.e. ℎ𝜇 belongs to
the set of the values of 𝜎JℎK𝛾. On the other hand, from (O) it follows that
𝜎JℎK𝛾 is embraced by 𝜏JℎK𝛿. Consequently, κ = ℎ𝜇 belongs to Val𝛿K(𝜏JℎK𝛿),
i.e. κ ∈ (Val𝛿K ∘ JℎK𝛿)𝜏 .

J|M|K𝛿

≥JℎK𝛿

��

Val𝛿M // PM

ℎP

��

J|K|K𝛿
Val𝛿K // PK

(14) According to definition (S), Vals𝛿 is a homomorphism.
(15) Given a Sort-indexed set 𝑋, a structure K, a Sort-indexed func-

tion 𝑘 : 𝑋 → |J|K|K𝛿| and a Sort-indexed function 𝑓 : 𝑋 → |K|, suppose
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that 𝑓 ≪ Val𝛿K ∘ 𝑘.

𝑋

𝑓

��

𝑘 // |J|K|K𝛿|

Val𝛿K

��

|K| ∈ |PK|

Due to (14G), in order to prove that (Val𝛿K ∘ J𝑓K𝛿)𝜏 ⊆ (Val𝛿K ∘ Vals𝛿|K| ∘ J𝑘K𝛿)𝜏
for any 𝜏 ∈ |J𝑋K𝛿|, it is enough to consider only the algebraic carriers, i.e.
it is enough to consider only the case when 𝜏 is a delta-termoid over 𝑋.

J𝑋K𝛿

≤
J𝑓K𝛿

$$H
HHHHHHHHHHHHHHHH

J𝑘K𝛿
// J|J|K|K𝛿|K𝛿

Vals𝛿|K|
// J|K|K𝛿

Val𝛿K

��

J|K|K𝛿
Val𝛿K // PK

Suppose that κ ∈ (Val𝛿K ∘ J𝑓K𝛿)𝜏 = Val𝛿K(𝜏J𝑓K𝛿). According to (Q), there
exists some embraced by 𝜏J𝑓K𝛿 gamma-termoid 𝜎′, such that κ ∈ Val𝛾K 𝜎

′.
Since 𝜎′ is embraced by 𝜏J𝑓K𝛿, (P) implies that there exists an embraced
by 𝜏 gamma-termoid 𝜌, such that 𝜌J𝑓K𝛾 = 𝜎′. Hence κ ∈ Val𝛾K(𝜌J𝑓K𝛾) =
(Val𝛾K ∘ J𝑓K𝛾)𝜌.

Since the Sort-indexed function 𝑘 : 𝑋 → |J|K|K𝛿| is such that 𝑓𝜉 ∈
(Val𝛿K ∘ 𝑘)𝜉 = Val𝛿K(𝑘𝜉) for any 𝜉 ∈ 𝑋, definition (Q) implies that there
exists a Sort-indexed function 𝑘′ : 𝑋 → |J|K|K𝛾|, such that 𝑘′𝜉 is embraced
by 𝑘𝜉 for any 𝜉 ∈ 𝑋 and 𝑓𝜉 ∈ (Val𝛾K ∘ 𝑘′)𝜉 = Val𝛾K(𝑘′𝜉) for any 𝜉 ∈ 𝑋.
From this and (14I15) applied about the gamma-terminator we obtain that
(Val𝛾K ∘ J𝑓K𝛾)𝜌 ⊆ (Val𝛾K ∘ Vals𝛾|K| ∘ J𝑘′K𝛾)𝜌, so κ ∈ Val𝛾K(Vals𝛾|K|(𝜌J𝑘

′K𝛾)).
Since 𝑘′𝜉 is embraced by 𝑘𝜉 for any 𝜉 ∈ 𝑋 and 𝜌 is embraced by 𝜏 ,

from (U) it follows that Vals𝛾|K|(𝜌J𝑘
′K𝛾) is embraced by Vals𝛿|K|(𝜏J𝑘K𝛿).

But κ ∈ Val𝛾K(Vals𝛾|K|(𝜌J𝑘
′K𝛾)), so κ ∈ Val𝛿K(Vals𝛿|K|(𝜏J𝑘K𝛿)) =

(Val𝛿K ∘ Vals𝛿|K| ∘ J𝑘K𝛿)𝜏 .
(16) and (17) follow immediately from the definitions and (12H2).

J|J𝑋K𝛿|K𝛿

JJ𝑓K𝛿K𝛿

��

Vals𝛿𝑋 // J𝑋K𝛿

J𝑓K𝛿

��

J|J𝑌 K𝛿|K𝛿
Vals𝛿𝑌 // J𝑌 K𝛿
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J𝑋K𝛿 = J𝑋∘K𝛿
JNam𝛿

𝑋K𝛿
//J|J𝑋K𝛿|K𝛿

Vals𝛿𝑋 //J𝑋K𝛿

(18) Considering that Nam𝛿
|M| 𝜇 = Nam𝛾

|M| 𝜇 = nam|M| 𝜇, from (14I18)
applied for the gamma-terminator we obtain that Val𝛾M(Nam𝛿

|M| 𝜇) = {𝜇}.
On the other hand, from (F) it follows that Nam𝛿

|M| 𝜇 is the only embraced
by Nam𝛿

|M| 𝜇 gamma-semitermoid. Therefore, from this and definition (Q)
we obtain that Val𝛿M(Nam𝛿

|M| 𝜇) = {𝜇}.

|M|∘
Nam𝛿

|M|
// |J|M|K𝛿|

Val𝛿M //|PM|

�

X)Proposition. Given a delta-termoid 𝜏 over 𝑋, if the term 𝜎 is ob-
tained from 𝜏 by removing all occurrences of substrings of the form “p𝑛q+”,
then 𝜏Jnam𝑋K[𝑋]

𝛿 = 𝜎.

Proof. Since 𝜎[nam𝑋 ] is the result of the removal of all substrings of
the form “p𝑛q+” from 𝜏Jnam𝑋K𝛿, from (R2) applied about 𝜏Jnam𝑋K𝛿 we
can conclude that Valt𝛿[𝑋](𝜏Jnam𝑋K𝛿) = 𝜎[nam𝑋 ][𝑋], that is 𝜏Jnam𝑋K[𝑋]

𝛿 =

𝜎[nam𝑋 ][𝑋]. According to (11V1), the last expression is equal to 𝜎. �

§26. THE EPSILON-TERMINATOR

A)Definition. Given a Sort-indexed set 𝑋, we define by induction
the notion epsilon-regular delta-termoid over 𝑋:

(1) If y ∈ 𝑋𝜅, then p𝑛q + nam𝑋,𝜅 y is an epsilon-regular delta-termoid
for any natural number 𝑛.

(2) If f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩, 𝑘 ≥ 1 and
p𝑘q+ 𝜏1, . . . , p𝑘q+ 𝜏𝑛 are epsilon-regular delta-termoids over 𝑋 of sorts
𝜅1, . . . , 𝜅𝑛, respectively, then the string p𝑘 − 1q+ f(p𝑘q+ 𝜏1, . . . , p𝑘q+ 𝜏𝑛)
is an epsilon-regular delta-termoid of sort 𝜆 over 𝑋.

Obviously, any epsilon-regular delta-termoid is a delta-termoid.

B)Definition. If 𝑛 is a whole number and 𝜏 is an epsilon-regular
delta-termoid, by 𝑛 ⊕ 𝜏 we will denote the expression which is obtained
from 𝜏 by replacing each occurrence of p𝑘q in 𝜏 (for any natural number 𝑘)
with p𝑛+ 𝑘q.

C)Proposition. If 𝜏 is an epsilon-regular delta-termoid over 𝑋, then
for any natural number 𝑛, 𝑛 ⊕ 𝜏 also is an epsilon-regular delta-termoid
over 𝑋 of the same sort as the sort of 𝜏 .
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Proof. By induction on 𝜏 . If 𝜏 = p𝑘q+ p𝜉q, where 𝜉 ∈ 𝑋, then 𝑛⊕ 𝜏 =
p𝑘 + 𝑛q+ p𝜉q which is an epsilon-regular delta-termoid.

If 𝜏 = p𝑘 − 1q + f(p𝑘q + 𝜏1, . . . , p𝑘q + 𝜏𝑚), where p𝑘q + 𝜏𝑖 are
epsilon-regular delta-termoids for 𝑖 ∈ {1, . . . ,𝑚}, then 𝑛 ⊕ 𝜏 is equal to
p𝑛+ 𝑘 − 1q+ f(p𝑛+ 𝑘q+ (𝑛⊕ 𝜏1), . . . , p𝑛+ 𝑘q+ (𝑛⊕ 𝜏𝑚)), which is an
epsilon-regular delta-termoid, because, on one hand, p𝑛+ 𝑘q + (𝑛 ⊕ 𝜏𝑖) =
𝑛 ⊕ (p𝑘q + 𝜏𝑖) for any 𝑖 and on the other hand, by induction hypothesis,
𝑛⊕ (p𝑘q+ 𝜏𝑖) are epsilon-regular delta-termoids. �

D)Definition. For any delta-termoid 𝜏 over 𝑋, we define by induction
the minimal covering 𝜏 epsilon-regular delta-termoid, denoted c(𝜏):

(1) If 𝜏 = p𝜉q is a name, then c(𝜏) = p0q+ 𝜏 .
(2) If f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩, 𝜏1, . . . , 𝜏𝑛 are

delta-termoids of sorts 𝜅1, . . . , 𝜅𝑛, respectively, c(𝜏𝑖) = p𝑘1q + 𝜎𝑖 for any
𝑖 ∈ {1, . . . , 𝑛} and 𝑘 = max{1, 𝑘1, . . . , 𝑘𝑛}, then c(f(𝜏1, . . . , 𝜏𝑛)) is equal to
p𝑘 − 1q+ f((𝑘 − 𝑘1) ⊕ (p𝑘1q+ 𝜎1), . . . , (𝑘 − 𝑘𝑛) ⊕ (p𝑘𝑛q+ 𝜎𝑛)).76

(3) If c(𝜏) = p𝑛q + 𝜎 and 𝑚 = max{𝑛, 𝑘}, then c(p𝑘q+ 𝜏) =
(𝑚− 𝑛) ⊕ (p𝑛q+ 𝜎).

A simple induction can be used to prove that for any delta-termoid 𝜏 ,
c(𝜏) is an epsilon-regular delta-termoid.

E)Lemma. (1)The sort of c(𝜏) is the same as the sort of 𝜏 .
(2) c(𝜏) = 𝜏 for any epsilon-regular delta-termoid 𝜏 .
(3) c(c(𝜏)) = c(𝜏) for any delta-termoid 𝜏 .
(4) c(f(𝜏1, . . . , 𝜏𝑛)) = c(f(c(𝜏1), . . . , c(𝜏𝑛))) for any 𝑛-ary functional

symbol f and delta-termoids 𝜏1, . . . , 𝜏𝑛 of suitable sorts.
(5) c(𝑛+𝜏) = c(𝑛+c(𝜏)) for any natural number 𝑛 and delta-termoid 𝜏 .

Proof. (1) follows immediately from the definition.
(2) By induction on 𝜏 (according to A).
If 𝜏 = p𝑛q + p𝜉q, then c(𝜏) = c(p𝑛q + p𝜉q) = p𝑛q + p𝜉q because

c(p𝜉q) = p0q+ p𝜉q.
Let 𝜏 = p𝑛q + f(p𝑛+ 1q + 𝜏1, . . . , p𝑛+ 1q + 𝜏𝑚), where 𝑚 ̸= 0 and

p𝑛+ 1q + 𝜏𝑖 is an epsilon-regular delta-termoid for any 𝑖. By induction
hypothesis, c(p𝑛+ 1q+ 𝜏𝑖) = p𝑛+ 1q+ 𝜏𝑖, so

c(f(p𝑛+ 1q+ 𝜏1, . . . , p𝑛+ 1q+ 𝜏𝑚)) =

= p𝑛q+ f(0 ⊕ (p𝑛+ 1q+ 𝜏1), . . . , 0 ⊕ (p𝑛+ 1q+ 𝜏𝑚))

= p𝑛q+ f(p𝑛+ 1q+ 𝜏1, . . . , p𝑛+ 1q+ 𝜏𝑚)

76Notice that this definition is not ambiguous when 𝑛 = 0.
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hence

c(𝜏) = c(p𝑛q+ f(p𝑛+ 1q+ 𝜏1, . . . , p𝑛+ 1q+ 𝜏𝑚))

= 0 ⊕ (p𝑛q+ f(p𝑛+ 1q+ 𝜏1, . . . , p𝑛+ 1q+ 𝜏𝑚))

= p𝑛q+ f(p𝑛+ 1q+ 𝜏1, . . . , p𝑛+ 1q+ 𝜏𝑚)

= 𝜏

Finally, if 𝜏 = p𝑛q + f() where f is a nullary functional symbol, then
c(𝜏) = c(p𝑛q+ f()) = p𝑛q+ f() = 𝜏 , because c(f()) = p0q+ f().

(3) follows from (2) because c(𝜏) is epsilon-regular.
(4) Let c(𝜏𝑖) = p𝑘𝑖q + 𝜎𝑖 for all 𝑖 and 𝑘 = max{1, 𝑘1, . . . , 𝑘𝑛}.

Then according to definition (D2), c(f(𝜏1, . . . , 𝜏𝑛)) is equal to
p𝑘 − 1q+ f((𝑘 − 𝑘1) ⊕ (p𝑘1q+ 𝜎𝑖), . . . , (𝑘 − 𝑘1) ⊕ (p𝑘1q+ 𝜎𝑖)). On the
other hand, (3) implies that c(c(𝜏𝑖)) = c(𝜏𝑖) = p𝑘𝑖q+ 𝜎𝑖, hence according to
definition (D2), c(f(c(𝜏1), . . . , c(𝜏𝑛))) is equal to the same expression.

(5) Let c(𝜏) = p𝑘q + 𝜎. Then according to (D3), c(p𝑛q + 𝜏) =
max{𝑘, 𝑛} ⊕ (p𝑘q + 𝜎). On the other hand, (3) implies that c(c(𝜏)) =
c(𝜏) = p𝑘q + 𝜎, so (D3) implies that c(p𝑛q + c(𝜏)) is equal to the same
thing. �

F)Lemma. If the gamma-termoid 𝜎 is embraced by the delta-
termoid 𝜏 , then 𝜎 is embraced by c(𝜏).

Proof. Given a delta-semitermoid 𝜏 , we are going to say that the delta-
semitermoid 𝜏 ′ is a lifting of 𝜏 , if 𝜏 ′ can be obtained from 𝜏 by applying
modifications of the following two kinds:

1. Replace some occurrences of symbols of the form p𝑘q in 𝜏 with sym-
bols p𝑘′q, such that 𝑘′ > 𝑘.

2. Insert subexpressions of the form “p𝑘q+” in arbitrary places in 𝜏 .
Given a delta-semitermoid 𝜏 , a trivial lifting of 𝜏 is a delta-semitermoid

of the form p𝑘1q+ (p𝑘2q+ (· · · + (p𝑘𝑛q+ 𝜏))).
Notice that (25E2) and (25E3) imply that for any 𝜎 and 𝜏 if 𝜎 is em-

braced by 𝜏 , then 𝜎 is embraced by any trivial lifting of 𝜏 .
By induction on definition (25E) we are going to prove that if the

gamma-semitermoid 𝜎 is embraced by the delta-semitermoid 𝜏 , then 𝜎 is
embraced by any lifting 𝜏 ′ of 𝜏 . Since c(𝜏) is a lifting of 𝜏 , this will prove
the lemma.

(1) If 𝜎 = 𝜏 and both are gamma-semitermoids, then 𝜏 contains no
symbols of the form p𝑘q, so 𝜏 ′ is obtained from 𝜏 through inserting of
subexpressions of the form p𝑘q+, hence (25H) implies that 𝜎 = 𝜏 is em-
braced by 𝜏 ′.
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(2) If 𝜎 is embraced by p0q + 𝜏 because 𝜎 is embraced by 𝜏 , then any
lifting of p0q+𝜏 is a trivial lifting of a delta-semitermoid of the form p𝑘q+𝜏 ′,
where 𝜏 ′ is a lifting of 𝜏 . By induction hypothesis, 𝜎 is embraced by 𝜏 ′,
hence it is embraced by any trivial lifting of 𝜏 ′, and in particular by any
trivial lifting of p𝑘q+ 𝜏 ′.

(3) If 𝜎 is embraced by p𝑛+ 1q+ 𝜏 because 𝜎 is embraced by p𝑛q+ 𝜏 ,
then any lifting of p𝑛+ 1q + 𝜏 is a trivial lifting of a delta-semitermoid
of the form p𝑘 + 1q + 𝜏 ′, where 𝑘 ≥ 𝑛 and 𝜏 ′ is a lifting of 𝜏 . Therefore,
p𝑘q + 𝜏 ′ is a lifting of p𝑛q + 𝜏 , so by induction hypothesis, 𝜎 is embraced
by p𝑘q+ 𝜏 ′, hence it is embraced by p𝑘 + 1q+ 𝜏 ′ and by any trivial lifting
of p𝑘 + 1q+ 𝜏 ′.

(4) If f(𝜎1, . . . , 𝜎𝑛) is embraced by f(𝜏1, . . . , 𝜏𝑛) because 𝜎𝑖 is embraced
by 𝜏𝑖 for any 𝑖 ∈ {1, . . . , 𝑛}, then any lifting of f(𝜏1, . . . , 𝜏𝑛) is a trivial
lifting of delta-semitermoid of the form f(𝜏 ′1, . . . , 𝜏

′
𝑛), where 𝜏 ′𝑖 is a lifting

of 𝜏𝑖 for any 𝑖 ∈ {1, . . . , 𝑛}. By induction hypothesis, 𝜎𝑖 is embraced by 𝜏 ′𝑖
for any 𝑖 ∈ {1, . . . , 𝑛}, so f(𝜎1, . . . , 𝜎𝑛) is embraced by f(𝜏 ′1, . . . , 𝜏

′
𝑛) and any

trivial lifting of f(𝜏 ′1, . . . , 𝜏
′
𝑛).

(5) If f−1
𝑖 (𝜎) is embraced by f−1

𝑖 (𝜏) because 𝜎 is embraced by 𝜏 , then any
lifting of f−1

𝑖 (𝜏) is a trivial lifting of a delta-semitermoid of the form f−1
𝑖 (𝜏 ′),

where 𝜏 ′ is a lifting of 𝜏 . By induction hypothesis, 𝜎 is embraced by 𝜏 ′,
hence f−1

𝑖 (𝜎′) is embraced by f−1
𝑖 (𝜏 ′) and by any trivial lifting of f−1

𝑖 (𝜏 ′).
(6) Given a functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑙⟩, 𝜆⟩, suppose

that p𝑛+ 1q + 𝜏 embraces f−1
𝑖 (𝜎) because p𝑛+ 1q + 𝜏 embraces 𝜌 and

p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜌,△𝜅𝑖+1

, . . . ,△𝜅𝑙) embraces 𝜎.
Any lifting of p𝑛+ 1q+𝜏 is a trivial lifting of a delta-semitermoid of the

form p𝑚+ 1q+𝜏 ′, where 𝑚 ≥ 𝑛 and 𝜏 ′ is a lifting of 𝜏 . Since p𝑚+ 1q+𝜏 ′ is
a lifting of p𝑛+ 1q+ 𝜏 , by induction hypothesis, p𝑚+ 1q+ 𝜏 ′ embraces 𝜌.

Since p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1
, 𝜌,△𝜅𝑖+1

, . . . ,△𝜅𝑙) embraces 𝜎 and 𝑚 ≥ 𝑛,
from (25E3) we obtain that p𝑚q+ f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜌,△𝜅𝑖+1
, . . . ,△𝜅𝑙) em-

braces 𝜎. Now (25E6) implies that f−1
𝑖 (𝜎) is embraced by p𝑚+ 1q+ 𝜏 ′ and

by any trivial lifting of p𝑚+ 1q+ 𝜏 ′. �

G)Lemma. Given a structure M, for any delta-termoid 𝜏 over |M|,
Val𝛿M 𝜏 ⊆ Val𝛿M(c(𝜏)).

Proof. From (F) it follows that every embraced by 𝜏 gamma-termoid is
embraced by c(𝜏) too. �

H)Lemma. Given a structure M and 𝜇 belonging to an algebraic
carrier of M, Val𝛿Mp𝜇q = Val𝛿M(c(p𝜇q)).

Proof. A quick inspection of definition (25E) reveals that (25E2) is the

176



§26. The Epsilon-terminator

only item of this definition capable of deducing that a delta-semitermoid
of the form p0q + p𝜉q embraces a gamma-semitermoid. If we apply
(25E2) to p0q+ p𝜇q we will obtain that a gamma-semitermoid is embraced
by p0q+ p𝜇q if and only if it is embraced by p𝜇q. From this result and
definition (25Q) we obtain that Val𝛿M(p0q + p𝜇q) = Val𝛿Mp𝜇q. According
to definition (D1), Val𝛿M(c(p𝜇q)) = Val𝛿M(p0q + p𝜇q), so we obtain the re-
quired. �

I)Definition. (1)Two delta-termoids 𝜏 and 𝜎 are c-equivalent if
c(𝜏) = c(𝜎).

(2)Two epsilon-regular delta-termoids 𝜏 and 𝜎 are similar if there exists
a natural number 𝑛, such that 𝜏 = 𝑛⊕ 𝜎 or 𝜎 = 𝑛⊕ 𝜏 .

(3) If an epsilon-regular delta-termoid starts with “p𝑛q+”, the natural
number 𝑛 is its radius .

J)Lemma. (1)The relation “c-equivalent” is reflexive, symmetric and
transitive.

(2)Two epsilon-regular delta-termoids 𝜏 and 𝜎 are similar if and only if
there exists a whole number 𝑛, such that 𝜏 = 𝑛⊕ 𝜎.

(3)The relation “similar” is reflexive, symmetric and transitive.
(4)Any epsilon-regular delta-termoid has a radius.
(5) Given a functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑚⟩, 𝜆⟩, delta-termoids

𝜏1, . . . , 𝜏𝑚 of respective sorts 𝜅1, . . . , 𝜅𝑚 and delta-termoids 𝜎1, . . . , 𝜎𝑚 of the
same sorts, if 𝜏𝑖 is c-equivalent with 𝜎𝑖 for any 𝑖, then f(𝜏1, . . . , 𝜏𝑚) is c-
equivalent with f(𝜎1, . . . , 𝜎𝑚).

(6) If 𝜏 is c-equivalent with 𝜎, then p𝑘q+ 𝜏 is c-equivalent with p𝑘q+ 𝜎
for any natural number 𝑘.

(7) 𝜏 and p0q+ 𝜏 are c-equivalent.
(8)Two similar epsilon-regular delta-termoids with equal radii are equal.
(9)Given a functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑚⟩, 𝜆⟩, epsilon-regular

delta-termoids 𝜏1, . . . , 𝜏𝑚 of respective sorts 𝜅1, . . . , 𝜅𝑚 and epsilon-regular
delta-termoids 𝜎1, . . . , 𝜎𝑚 of the same sorts, if the termoids 𝜏1, . . . , 𝜏𝑚
are similar to 𝜎1, . . . , 𝜎𝑚, respectively, then c(f(𝜏1, . . . , 𝜏𝑚)) is similar to
c(f(𝜎1, . . . , 𝜎𝑚)).

(10) c(p𝑛q+ 𝜏) is similar to c(𝜏).
(11) c(𝑛⊕ 𝜏) is similar to c(𝜏).
(12)Given a Sort-indexed set 𝑋 and two epsilon-regular delta-termoids

𝜏 and 𝜎 over |J𝑋K𝛿|, if 𝜏 is similar to 𝜎, then c(Vals𝛿𝑋 𝜏) is similar
to c(Vals𝛿𝑋 𝜎).

(13) Given a functional symbol f and delta-termoids 𝜏1, . . . , 𝜏𝑛 of suit-
able sorts, if 𝑘1, . . . , 𝑘𝑛 are the respective radii of c(𝜏1), . . . , c(𝜏𝑛), then the
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radius of c(f(𝜏1, . . . , 𝜏𝑛)) is max{1, 𝑘1, . . . , 𝑘𝑛} − 1.
(14) Given a delta-termoid 𝜏 , if 𝑘 is the radius of c(𝜏), then the radius

of c(p𝑛q+ 𝜏) is max{𝑘, 𝑛}.
(15) If 𝜏 is an epsilon-regular delta-termoid with radius 𝑛, then the

radius of 𝑘 ⊕ 𝜏 is 𝑘 + 𝑛.
(16)Given a Sort-indexed set 𝑋 and delta-termoids 𝜏 and 𝜎 over |J𝑋K𝛿|,

if 𝜏 is c-equivalent with 𝜎, then c(Vals𝛿𝑋 𝜏) is similar to c(Vals𝛿𝑋 𝜎).
(17)Given a natural number 𝑛, a Sort-indexed set 𝑋 and a delta-

termoid 𝜏 over |J𝑋K𝛿|, if 𝑘′ is the radius of c(Vals𝛿𝑋 𝜏) and 𝑘′′ is the radius
of c(𝑛⊕ 𝜏), then the radius of c(Vals𝛿𝑋(𝑛⊕ 𝜏)) is max{𝑘′, 𝑘′′}.

(18)The radius of c(Vals𝛿𝑋 𝜏) is greater than or equal to the radius of c(𝜏)
for any delta-termoid 𝜏 .

(19)Given a Sort-indexed set 𝑋 and delta-termoids 𝜏 and 𝜎 over |J𝑋K𝛿|,
if 𝜏 is c-equivalent with 𝜎, then Vals𝛿𝑋 𝜏 is c-equivalent with Vals𝛿𝑋 𝜎.

(20) Given a Sort-indexed set 𝑋 and a delta-termoid 𝜏 over |J𝑋K𝛿|,
c(Vals𝛿𝑋 𝜏) = c(Vals𝛿𝑋 c(𝜏)).

(21) Given a Sort-indexed set 𝑋 and a delta-termoid 𝜏 over |J𝑋K𝛿|,
c(Vals𝛿𝑋 𝜏) = c(Vals𝛿𝑋(𝜏JcK𝛿)). Equivalently, (c ∘Vals𝛿𝑋)𝜏 = (c∘Vals𝛿𝑋 ∘JcK𝛿)𝜏 .

Proof. (1) is obvious, (2) is obvious and (3) obviously follows from (2).
(4) Definition (A) clearly shows that all epsilon-regular delta-termoids

have the form “p𝑛q + 𝜏 ” for some 𝑛 and 𝜏 . Therefore, any epsilon-regular
delta-termoid has a radius.

(5) c(f(𝜏1, . . . , 𝜏𝑛)) is equal to c(f(c(𝜏1), . . . , c(𝜏𝑛))) because of (E4),
which is equal to c(f(c(𝜎1), . . . , c(𝜎𝑛))) because 𝜏𝑖 and 𝜎𝑖 are c-equivalent,
which is equal to c(f(𝜎1, . . . , 𝜎𝑛)) because of (E4).

(6) Let 𝑛 be the radius of c(𝜏) = c(𝜎). Then according to defini-
tion (D3), c(p𝑘q+ 𝜏) = (max{𝑛, 𝑘}− 𝑘)⊕ c(𝜏) = (max{𝑛, 𝑘}− 𝑘)⊕ c(𝜎) =
c(p𝑘q+ 𝜎).

(7) Let 𝑛 be the radius of c(𝜏). Then according to definition (D3),
c(p0q+ 𝜏) = (max{0, 𝑛} − 𝑛) ⊕ c(𝜏) = 0 ⊕ c(𝜏) = c(𝜏).

(8) Suppose that p𝑘′q + 𝜏 ′ and p𝑘′′q + 𝜏 ′′ are similar and have equal
radii. Because of the similarity, there exists a whole number 𝑛, such that
p𝑘′q+ 𝜏 ′ = 𝑛⊕ (p𝑘′′q+ 𝜏 ′′), so 𝑘′ = 𝑘′′ + 𝑛. But the radii of these termoids
are equal, so 𝑘′ = 𝑘′′, hence 𝑛 = 0, so p𝑘′q+𝜏 ′ = 0⊕(p𝑘′′q+𝜏 ′′) = p𝑘′′q+𝜏 ′′.

(9) Because of the similarity of 𝜏1, . . . , 𝜏𝑚 and 𝜎1, . . . , 𝜎𝑚 there ex-
ist whole numbers 𝑛1, . . . , 𝑛𝑚, such that 𝜏𝑖 = 𝑛𝑖 ⊕ 𝜎𝑖 for any 𝑖 ∈
{1, . . . ,𝑚}. Let 𝑘1, . . . , 𝑘𝑚 be the respective raidii of 𝜎1, . . . , 𝜎𝑚. Then
𝑘1 + 𝑛1, . . . , 𝑘𝑚 + 𝑛𝑚 will be the respective radii of 𝜏1, . . . , 𝜏𝑚. Let 𝑙 =
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max{𝑘1 + 𝑛1, . . . , 𝑘𝑚 + 𝑛𝑚} and 𝑗 = max{𝑘1, . . . , 𝑘𝑚}. Then

c(f(𝜏1, . . . , 𝜏𝑚)) =

= p𝑙 − 1q+ f((𝑙 − (𝑘1 + 𝑛1)) ⊕ 𝜏1, . . . , (𝑙 − (𝑘𝑚 + 𝑛𝑚)) ⊕ 𝜏𝑚)
from (D2) and (E2)

= p𝑙 − 1q+ f((𝑙 − 𝑘1 − 𝑛1) ⊕ 𝑛1 ⊕ 𝜎1, . . . , (𝑙 − 𝑘𝑚 − 𝑛𝑚) ⊕ 𝑛𝑚 ⊕ 𝜎𝑚)

= p𝑙 − 1q+ f((𝑙 − 𝑘1) ⊕ 𝜎1, . . . , (𝑙 − 𝑘𝑚) ⊕ 𝜎𝑚)

= (𝑙 − 𝑗) ⊕ (p𝑗 − 1q+ f((𝑗 − 𝑘1) ⊕ 𝜎1, . . . , (𝑗 − 𝑘𝑚) ⊕ 𝜎𝑚))

= (𝑙 − 𝑗) ⊕ c(f(𝜎1, . . . , 𝜎𝑚)) from (D2) and (E2)

(10) Let 𝑘 be the radius of c(𝜏). Then according to (D3), c(p𝑛q+ 𝜏) =
(max{𝑘, 𝑛} − 𝑘) ⊕ c(𝜏).

(11) By induction on 𝜏 . If 𝜏 = p𝜉q is a name, then c(𝑛⊕𝜏) = c(𝑛⊕p𝜉q)
= c(p𝜉q) = c(𝜏).

If 𝜏 = f(𝜏1, . . . , 𝜏𝑘), then

c(𝑛⊕ 𝜏) = c(𝑛⊕ f(𝜏1, . . . , 𝜏𝑘))

= c(f(𝑛⊕ 𝜏1, . . . , 𝑛⊕ 𝜏𝑘))

= c(f(c(𝑛⊕ 𝜏1), . . . , c(𝑛⊕ 𝜏𝑘))) from (E4)

By induction hypothesis, c(𝑛⊕ 𝜏𝑖) is similar to c(𝜏𝑖) for any 𝑖 ∈ {1, . . . , 𝑘},
hence according to (9), the above expression is similar to

c(f(c(𝜏1), . . . , c(𝜏𝑘))) = c(f(𝜏1, . . . , 𝜏𝑘)) from (E4)
= c(𝜏)

If 𝜏 = p𝑘q+ 𝜎, then

c(𝑛⊕ 𝜏) = c(𝑛⊕ (p𝑘q+ 𝜎))

= c(p𝑛+ 𝑘q+ (𝑛⊕ 𝜎))

According to (10), this is similar to c(𝑛⊕𝜎), which by induction hypothesis
is similar to c(𝜎), which according to (10) is similar to c(p𝑘q+𝜎), i.e. to c(𝜏).

(12) By induction on the epsilon-regular delta-termoid 𝜏 over |J𝑋K𝛿|
we are going to prove that for any natural number 𝑛, c(Vals𝛿𝑋 𝜏) is similar
to c(Vals𝛿𝑋(𝑛⊕ 𝜏)).

If 𝜏 = p𝑘q+ p𝜎q, where 𝜎 is a delta-termoid over 𝑋 (i.e. an element an
algebraic carrier of J𝑋K𝛿), then c(Vals𝛿𝑋(𝑛⊕ 𝜏)) = c(Vals𝛿𝑋(p𝑛+ 𝑘q+ p𝜎q))
= c(p𝑛+ 𝑘q+𝜎). Because of (10), this is similar to c(𝜎), which, on its part,
is similar to c(p𝑘q+ 𝜎) = c(Vals𝛿𝑋 𝜏).
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Let 𝜏 = p𝑘q+ f(𝜏1, . . . , 𝜏𝑚). Then

c(Vals𝛿𝑋(𝑛⊕ 𝜏)) =

= c(Vals𝛿𝑋(𝑛⊕ (p𝑘q+ f(𝜏1, . . . , 𝜏𝑚))))

= c(Vals𝛿𝑋(p𝑛+ 𝑘q+ f(𝑛⊕ 𝜏1, . . . , 𝑛⊕ 𝜏𝑚)))

= c(p𝑛+ 𝑘q+ f(Vals𝛿𝑋(𝑛⊕ 𝜏1), . . . ,Vals𝛿𝑋(𝑛⊕ 𝜏𝑚)))

= c(p𝑛+ 𝑘q+ c(f(Vals𝛿𝑋(𝑛⊕ 𝜏1), . . . ,Vals𝛿𝑋(𝑛⊕ 𝜏𝑚))))
from (E5)

= c(p𝑛+ 𝑘q+ c(f(c(Vals𝛿𝑋(𝑛⊕ 𝜏1)), . . . , c(Vals𝛿𝑋(𝑛⊕ 𝜏𝑚)))))
from (E4)

By induction hypothesis, c(Vals𝛿𝑋(𝑛 ⊕ 𝜏𝑖)) is similar to c(Vals𝛿𝑋 𝜏𝑖) for
𝑖 ∈ {1, . . . ,𝑚}, hence (9) implies that c(f(c(Vals𝛿𝑋(𝑛⊕𝜏1)), . . . , c(Vals𝛿𝑋(𝑛⊕
𝜏𝑚)))) is similar to c(f(c(Vals𝛿𝑋 𝜏1), . . . , c(Vals𝛿𝑋 𝜏𝑚))), hence (10), (3)
and (E2) imply that the last expression in the above sequence of equali-
ties is similar to

c(p𝑘q+c(f(c(Vals𝛿𝑋 𝜏1), . . . , c(Vals𝛿𝑋 𝜏𝑚)))) =

=c(p𝑘q+ c(f(Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑚))) from (E4)

=c(p𝑘q+ f(Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑚)) from (E5)

=c(Vals𝛿𝑋(p𝑘q+ f(𝜏1, . . . , 𝜏𝑚)))

=c(Vals𝛿𝑋(𝜏))

(13) and (14) follow immediately from the definitions.
(15) Since the radius of 𝜏 is 𝑛, 𝜏 = p𝑛q + 𝜎 for some 𝜎. Therefore,

𝑘 ⊕ 𝜏 = 𝑘 ⊕ (p𝑛q+ 𝜎) = p𝑘 + 𝑛q+ (𝑘 ⊕ 𝜎), so the radius of 𝑘 ⊕ 𝜏 is equal
to 𝑘 + 𝑛.

(16) By induction on 𝜏 we are going to prove that c(Vals𝛿𝑋(c(𝜏))) is
similar to c(Vals𝛿𝑋 𝜏).

If 𝜏 = p𝜎q is a name, then

c(Vals𝛿𝑋(c(𝜏))) = c(Vals𝛿𝑋(c(p𝜎q)))

= c(Vals𝛿𝑋(p0q+ p𝜎q)) from (D1)
= c(p0q+ 𝜎) from (25S)
= c(𝜎) from (7)

= c(Vals𝛿𝑋p𝜎q) from (25S)

= c(Vals𝛿𝑋 𝜏)
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Let 𝜏 = f(𝜏1, . . . , 𝜏𝑛) and 𝑘1, . . . , 𝑘𝑛 be the respective radii of
c(𝜏1), . . . , c(𝜏𝑛). Let 𝑘 = max{1, 𝑘1, . . . , 𝑘𝑛}. Then

c(Vals𝛿𝑋(c(𝜏))) =

= c(Vals𝛿𝑋(c(f(𝜏1, . . . , 𝜏𝑛))))

= c(Vals𝛿𝑋(p𝑘 − 1q+ f((𝑘 − 𝑘1) ⊕ c(𝜏1), . . . , (𝑘 − 𝑘𝑛) ⊕ c(𝜏𝑛))))
from (D2)

= c(p𝑘 − 1q+ f(Vals𝛿𝑋((𝑘 − 𝑘1) ⊕ c(𝜏1)), . . . ,Vals𝛿𝑋((𝑘 − 𝑘𝑛) ⊕ c(𝜏𝑛))))

= c(p𝑘 − 1q+ c(f(Vals𝛿𝑋((𝑘 − 𝑘1) ⊕ c(𝜏1)), . . . ,Vals𝛿𝑋((𝑘 − 𝑘𝑛) ⊕ c(𝜏𝑛)))))
from (E5)

= c(p𝑘 − 1q+ c(f(c(Vals𝛿𝑋((𝑘 − 𝑘1) ⊕ c(𝜏1))), . . . , c(Vals𝛿𝑋((𝑘 − 𝑘𝑛) ⊕ c(𝜏𝑛))))))
from (E4)

According to (12), c(Vals𝛿𝑋((𝑘 − 𝑘𝑖) ⊕ c(𝜏𝑖))) is similar to c(Vals𝛿𝑋(c(𝜏𝑖))) for
any 𝑖 ∈ {1, . . . , 𝑛}, which, by induction hypothesis, is similar to c(Vals𝛿𝑋 𝜏𝑖).
Therefore, (10), (E2) and (9) imply that the last expression in the above
sequence of equalities is similar to

c(f(c(Vals𝛿𝑋 𝜏1), . . . , c(Vals𝛿𝑋 𝜏𝑛))) =

= c(f(Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑛)) from (E4)

= c(Vals𝛿𝑋(f(𝜏1, . . . , 𝜏𝑛)))

= c(Vals𝛿𝑋 𝜏)

Let 𝜏 = p𝑛q+ 𝜎 and 𝑘 be the radius of c(𝜎). Then

c(Vals𝛿𝑋(c(𝜏))) = c(Vals𝛿𝑋(c(p𝑛q+ 𝜎)))

= c(Vals𝛿𝑋((max{𝑛, 𝑘} − 𝑘) ⊕ c(𝜎))) from (D3)

According to (12), this is similar to c(Vals𝛿𝑋(c(𝜎))), which by induction
hypothesis, is similar to c(Vals𝛿𝑋 𝜎), which according to (10), is similar to
c(p𝑛q+ Vals𝛿𝑋 𝜎), which is equal to c(Vals𝛿𝑋(p𝑛q+ 𝜎)), i.e. to c(Vals𝛿𝑋 𝜏).

(17) For any epsilon-regular delta-termoid 𝜏 , by rad(𝜏) we will de-
note the radius of 𝜏 . By induction on 𝜏 we are going to prove
that for any natural number 𝑛, rad(c(Vals𝛿𝑋(𝑛 ⊕ 𝜏))) is equal to
max{rad(c(Vals𝛿𝑋 𝜏)), rad(c(𝑛⊕ 𝜏))}.

If 𝜏 = p𝜎q is a name, then

rad(c(𝑛⊕ 𝜏)) = rad(c(𝑛⊕ p𝜎q))
= rad(c(p𝜎q))

= rad(p0q+ p𝜎q)

= 0
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Consequently,

rad(c(Vals𝛿𝑋(𝑛⊕ 𝜏))) = rad(c(Vals𝛿𝑋(𝑛⊕ p𝜎q)))
= rad(c(Vals𝛿𝑋p𝜎q))

= rad(c(Vals𝛿𝑋 𝜏))

= max{rad(c(Vals𝛿𝑋 𝜏)), 0}
= max{rad(c(Vals𝛿𝑋 𝜏)), rad(c(𝑛⊕ 𝜏))}

Let 𝜏 = f(𝜏1, . . . , 𝜏𝑘). Then

c(Vals𝛿𝑋(𝑛⊕ 𝜏)) = c(Vals𝛿𝑋(𝑛⊕ f(𝜏1, . . . , 𝜏𝑘)))

= c(Vals𝛿𝑋(f(𝑛⊕ 𝜏1, . . . , 𝑛⊕ 𝜏𝑘)))

= c(f(Vals𝛿𝑋(𝑛⊕ 𝜏1), . . . ,Vals𝛿𝑋(𝑛⊕ 𝜏𝑘)))

= c(f(c(Vals𝛿𝑋(𝑛⊕ 𝜏1)), . . . , c(Vals𝛿𝑋(𝑛⊕ 𝜏𝑘)))) from (E4)

By induction hypothesis, for any 𝑖 ∈ {1, . . . , 𝑘} the radius of c(Vals𝛿𝑋(𝑛⊕𝜏𝑖))
is equal to max{rad(c(Vals𝛿𝑋 𝜏𝑖)), rad(c(𝑛⊕ 𝜏𝑖))}, hence according to (13),
the radius of the above expression is equal to

max{1,max{rad(c(Vals𝛿𝑋 𝜏1)), rad(c(𝑛⊕ 𝜏1))}, . . . ,
max{rad(c(Vals𝛿𝑋 𝜏𝑘)), rad(c(𝑛⊕ 𝜏𝑘))}} − 1 =

= max{1, rad(c(Vals𝛿𝑋 𝜏1)), . . . , rad(c(Vals𝛿𝑋 𝜏𝑘)),

rad(c(𝑛⊕ 𝜏1)), . . . , rad(c(𝑛⊕ 𝜏𝑘))} − 1

= max{max{1, rad(c(Vals𝛿𝑋 𝜏1)), . . . , rad(c(Vals𝛿𝑋 𝜏𝑘))} − 1,

max{1, rad(c(𝑛⊕ 𝜏1)), . . . , rad(c(𝑛⊕ 𝜏𝑘))} − 1}

Consequently, for the case when 𝜏 = f(𝜏1, . . . , 𝜏𝑘) it only
remains to see that the radius of c(Vals𝛿𝑋(𝜏)) is equal to
max{1, rad(c(Vals𝛿𝑋 𝜏1)), . . . , rad(c(Vals𝛿𝑋 𝜏𝑘))}−1 and the radius of c(𝑛⊕𝜏)
is equal to max{1, rad(c(𝑛⊕ 𝜏1)), . . . , rad(c(𝑛⊕ 𝜏𝑘))} − 1. This follows
from (13) and the following two sequences of equalities:

c(Vals𝛿𝑋(𝜏)) = c(Vals𝛿𝑋(f(𝜏1, . . . , 𝜏𝑘)))

= c(f(Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑘))

= c(f(c(Vals𝛿𝑋 𝜏1), . . . , c(Vals𝛿𝑋 𝜏𝑘))) from (E4)

and

c(𝑛⊕ 𝜏) = c(𝑛⊕ f(𝜏1, . . . , 𝜏𝑘))

= c(f(𝑛⊕ 𝜏1, . . . , 𝑛⊕ 𝜏𝑘))

= c(f(c(𝑛⊕ 𝜏1), . . . , c(𝑛⊕ 𝜏𝑘))) from (E4)
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Let 𝜏 = p𝑘q+ 𝜎. Then

c(Vals𝛿𝑋(𝑛⊕ 𝜏)) = c(Vals𝛿𝑋(𝑛⊕ (p𝑘q+ 𝜎)))

= c(Vals𝛿𝑋(p𝑛+ 𝑘q+ (𝑛⊕ 𝜎)))

= c(p𝑛+ 𝑘q+ Vals𝛿𝑋(𝑛⊕ 𝜎))

= c(p𝑛+ 𝑘q+ c(Vals𝛿𝑋(𝑛⊕ 𝜎))) from (E5)

By the induction hypothesis, the radius of c(Vals𝛿𝑋(𝑛 ⊕ 𝜎)) is equal to
max{rad(c(Vals𝛿𝑋 𝜎)), rad(c(𝑛⊕ 𝜎))}, hence according to (14), the radius
of the above expression is equal to

max{𝑛+ 𝑘,max{rad(c(Vals𝛿𝑋 𝜎)), rad(c(𝑛⊕ 𝜎))}} =

= max{𝑛+ 𝑘, rad(c(Vals𝛿𝑋 𝜎)), rad(c(𝑛⊕ 𝜎))}
= max{max{𝑘, rad(c(Vals𝛿𝑋 𝜎))},max{𝑛+ 𝑘, rad(c(𝑛⊕ 𝜎))}}

Consequently, for the case when 𝜏 = p𝑘q + 𝜎 it only remains to see that
the radius of c(Vals𝛿𝑋(𝜏)) is equal to max{𝑘, rad(c(Vals𝛿𝑋 𝜎))} and the radius
of c(𝑛 ⊕ 𝜏) is equal to max{𝑛+ 𝑘, rad(c(𝑛⊕ 𝜎))}. This follows from (13)
and the following two sequences of equalities:

c(Vals𝛿𝑋 𝜏) = c(Vals𝛿𝑋(p𝑘q+ 𝜎))

= c(p𝑘q+ Vals𝛿𝑋 𝜎)

= c(p𝑘q+ c(Vals𝛿𝑋 𝜎)) from (E5)

and

c(𝑛⊕ 𝜏) = c(𝑛⊕ (p𝑘q+ 𝜎))

= c(p𝑛+ 𝑘q+ (𝑛⊕ 𝜎))

= c(p𝑛+ 𝑘q+ c(𝑛⊕ 𝜎)) from (E5)

(18) can be proved by simple induction on 𝜏 . If 𝜏 = p𝜎q is a name,
then c(𝜏) = p0q+ p𝜎q, hence the radius of c(𝜏) is 0, so it has to be smaller
than or equal to the radius of c(Vals𝛿𝑋 𝜏).

If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then Vals𝛿𝑋 𝜏 = f(Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑛). By induc-
tion hypothesis, the radii of c(Vals𝛿𝑋 𝜏1), . . . , c(Vals𝛿𝑋 𝜏𝑛) are greater than or
equal to the radii of c(𝜏1), . . . , c(𝜏𝑛), respectively. From this and (13) we
obtain that the radius of c(Vals𝛿𝑋 𝜏) is greater than or equal to the radius
of c(𝜏).

If 𝜏 = p𝑛q+𝜎, then Vals𝛿𝑋 𝜏 = p𝑛q+ Vals𝛿𝑋 𝜎. By induction hypothesis,
the radius of c(Vals𝛿𝑋 𝜎) is greater than or equal to the radius of c(𝜎). From
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this and (14) we obtain that the radius of c(Vals𝛿𝑋 𝜏) is greater than or equal
to the radius of c(𝜏).

(19) Because of (16) and (8) it suffices to prove that the radii of
c(Vals𝛿𝑋 𝜏) and c(Vals𝛿𝑋 𝜎) are equal. In order to see that this is true, we are
going to prove by induction on 𝜏 that for any delta-termoid 𝜏 over |J𝑋K𝛿|,
the radii of c(Vals𝛿𝑋 c(𝜏)) and c(Vals𝛿𝑋 𝜏) are equal.

If 𝜏 = p𝜎q is a name, then c(Vals𝛿𝑋 c(𝜏)) = c(Vals𝛿𝑋 c(p𝜎q)) =
c(Vals𝛿𝑋(p0q+ p𝜎q)) = c(p0q+ 𝜎). Because of (7), this is equal to
c(𝜎) = c(Vals𝛿𝑋p𝜎q) = c(Vals𝛿𝑋 𝜏).

Let 𝜏 = f(𝜏1, . . . , 𝜏𝑘). Let 𝑘1, . . . , 𝑘𝑛 be the respective radii of
c(𝜏1), . . . , c(𝜏𝑛), 𝑘 = max{1, 𝑘1, . . . , 𝑘𝑛}, 𝑚1, . . . ,𝑚𝑛 be the respective radii
of c(Vals𝛿𝑋 𝜏1), . . . , c(Vals𝛿𝑋 𝜏𝑚) and 𝑚 = max{1,𝑚1, . . . ,𝑚𝑛}. Then

c(Vals𝛿𝑋 c(𝜏)) =

= c(Vals𝛿𝑋 c(f(𝜏1, . . . , 𝜏𝑛)))

= c(Vals𝛿𝑋(p𝑘 − 1q+ f((𝑘 − 𝑘1) ⊕ c(𝜏1), . . . , (𝑘 − 𝑘𝑛) ⊕ c(𝜏𝑛))))
from (D2)

= c(p𝑘 − 1q+ f(Vals𝛿𝑋((𝑘 − 𝑘1) ⊕ c(𝜏1)), . . . ,Vals𝛿𝑋((𝑘 − 𝑘𝑛) ⊕ c(𝜏𝑛))))

= c(p𝑘 − 1q+ c(f(Vals𝛿𝑋((𝑘 − 𝑘1) ⊕ c(𝜏1)), . . . ,Vals𝛿𝑋((𝑘 − 𝑘𝑛) ⊕ c(𝜏𝑛)))))
from (E5)

= c(p𝑘 − 1q+ c(f(c(Vals𝛿𝑋((𝑘 − 𝑘1) ⊕ c(𝜏1))), . . . , c(Vals𝛿𝑋((𝑘 − 𝑘𝑛) ⊕ c(𝜏𝑛))))))
from (E4)

According to (17), for any 𝑖 ∈ {1, . . . , 𝑛}, the radius of
c(Vals𝛿𝑋((𝑘 − 𝑘𝑖) ⊕ c(𝜏𝑖))) is equal to the greater number among the radius
of c(Vals𝛿𝑋(c(𝜏𝑖))) and the radius of c((𝑘 − 𝑘𝑖) ⊕ c(𝜏𝑖)). But according
to (15), the radius of c((𝑘 − 𝑘𝑖) ⊕ c(𝜏𝑖)) = (𝑘 − 𝑘𝑖) ⊕ c(𝜏𝑖) is equal
to (𝑘 − 𝑘𝑖) + 𝑘𝑖, i.e. to 𝑘. On the other hand, by induction hypothe-
sis, the radius of c(Vals𝛿𝑋(c(𝜏𝑖))) is equal to the radius of c(Vals𝛿𝑋 𝜏𝑖), i.e.
to 𝑚𝑖. Consequently, the radius of c(Vals𝛿𝑋((𝑘 − 𝑘𝑖) ⊕ c(𝜏𝑖))) is equal to
max{𝑘,𝑚𝑖}. From this and (13) and (14) we obtain that the radius of the
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last expression of the above sequence of equalities is equal to

max{𝑘 − 1,max{1,max{𝑘,𝑚1}, . . . ,max{𝑘,𝑚𝑛}} − 1} =

= max{𝑘,max{1,max{𝑘,𝑚1}, . . . ,max{𝑘,𝑚𝑛}}} − 1

= max{1, 𝑘,𝑚1, . . . ,𝑚𝑛} − 1

= max{1,max{1, 𝑘1, . . . , 𝑘𝑛},𝑚1, . . . ,𝑚𝑛} − 1

= max{1, 𝑘1, . . . , 𝑘𝑛,𝑚1, . . . ,𝑚𝑛} − 1

= max{1,𝑚1, . . . ,𝑚𝑛} − 1 from (18)
= 𝑚− 1

On the other hand,

c(Vals𝛿𝑋 𝜏) = c(Vals𝛿𝑋 f(𝜏1, . . . , 𝜏𝑛))

= c(f(Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑛))

= c(f(c(Vals𝛿𝑋 𝜏1), . . . , c(Vals𝛿𝑋 𝜏𝑛))) from (E4)

According to (13), the radius of the above expression is equal
to max{1,𝑚1, . . . ,𝑚𝑛} − 1, i.e. to 𝑚− 1.

Now, let 𝜏 = p𝑛q+ 𝜎. Let 𝑘 be the radius of c(𝜎) and 𝑚 be the radius
of c(Vals𝛿𝑋 𝜎). Then

c(Vals𝛿𝑋 c(𝜏)) = c(Vals𝛿𝑋 c(p𝑛q+ 𝜎))

= c(Vals𝛿𝑋 c(p𝑛q+ c(𝜎))) from (E5)

= c(Vals𝛿𝑋((max{𝑛, 𝑘} − 𝑘) ⊕ c(𝜎))) from (D3)

From (17) it follows that the radius of the above expression is equal to
the greater number among the radius of c(Vals𝛿𝑋(c(𝜎))) and the radius of
c((max{𝑛, 𝑘} − 𝑘) ⊕ c(𝜎)). By the induction hypothesis, the radius of
c(Vals𝛿𝑋(c(𝜎))) is equal to the radius of c(Vals𝛿𝑋 𝜎), i.e. to 𝑚. In addi-
tion, from (15) we obtain that the radius of c((max{𝑛, 𝑘} − 𝑘) ⊕ c(𝜎)) =
(max{𝑛, 𝑘} − 𝑘) ⊕ c(𝜎) is equal to max{𝑛, 𝑘}. Consequently, the radius
of c(Vals𝛿𝑋 c(𝜏)) is equal to max{𝑚,𝑛, 𝑘}, which is equal to max{𝑛,𝑚},
because (18) implies that 𝑚 ≥ 𝑘.

On the other hand,

c(Vals𝛿𝑋 𝜏) = c(Vals𝛿𝑋(p𝑛q+ 𝜎))

= c(p𝑛q+ Vals𝛿𝑋 𝜎)

= c(p𝑛q+ c(Vals𝛿𝑋 𝜎)) from (E5)

From (14) it follows that the radius of the above expression is equal
to max{𝑛,𝑚}
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(20) follows from (19).
(21) By induction on 𝜏 .
If 𝜏 = p𝜎q is a name, then c(Vals𝛿𝑋(𝜏JcK𝛿)) = c(Vals𝛿𝑋(p𝜎qJcK𝛿)) =

c(Vals𝛿𝑋(pc(𝜎)q)) = c(c(𝜎)) = c(𝜎) = c(Vals𝛿𝑋p𝜎q) = c(Vals𝛿𝑋 𝜏).
If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then c(Vals𝛿𝑋 𝜏) = c(Vals𝛿𝑋 f(𝜏1, . . . , 𝜏𝑛)) =

c(f(Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑛)). According to (E4), this is equal to
c(f(c(Vals𝛿𝑋 𝜏1), . . . , c(Vals𝛿𝑋 𝜏𝑛))), which, by the induction hypothesis,
is equal to c(f(c(Vals𝛿𝑋(𝜏1JcK𝛿)), . . . , c(Vals𝛿𝑋(𝜏𝑛JcK𝛿)))). Again, be-
cause of (E4), this is equal to c(f(Vals𝛿𝑋(𝜏1JcK𝛿), . . . ,Vals𝛿𝑋(𝜏𝑛JcK𝛿))) =
c(Vals𝛿𝑋 f(𝜏1JcK𝛿, . . . , 𝜏𝑛JcK𝛿)) = c(Vals𝛿𝑋(f(𝜏1, . . . , 𝜏𝑛)JcK𝛿)).

If 𝜏 = p𝑛q+𝜎, then c(Vals𝛿𝑋 𝜏) = c(Vals𝛿𝑋(p𝑛q+ 𝜎)) = c(p𝑛q+ Vals𝛿𝑋 𝜎).
Because of (E5), this is equal to c(p𝑛q+ c(Vals𝛿𝑋 𝜎)) which, by the in-
duction hypothesis, is equal to c(p𝑛q+ c(Vals𝛿𝑋(𝜎JcK𝛿))). Again, because
of (E5), this is equal to c(p𝑛q+ Vals𝛿𝑋(𝜎JcK𝛿)) = c(Vals𝛿𝑋(p𝑛q+ (𝜎JcK𝛿))) =
c(Vals𝛿𝑋((p𝑛q+ 𝜎)JcK𝛿)) �

K)Definition. Epsilon-termoid over 𝑋 of sort 𝜅 is an expression of
the form p𝑛q + 𝜏 , where 𝑛 is an arbitrary natural number and 𝜏 is a term
over 𝑋 of sort 𝜅.

Obviously any epsilon-termoid also is a delta-termoid. However, the
intended interpretation of the epsilon-termoids is different. If 𝜏 is an epsilon-
termoid, then, intuitively, we should thing of it as representing the delta-
termoid c(𝜏).

L)Notation. Let p𝑛q + 𝜏 be an epsilon-regular delta-termoid. Let
𝜏 ′ be obtained from 𝜏 by removing all subexpressions of the form “p𝑘q+”.
Since 𝜏 ′ is a term, p𝑛q + 𝜏 ′ is an epsilon-termoid. We are going to denote
this epsilon-termoid by c−1(p𝑛q+ 𝜏).

M)Lemma. (1)The sort of c−1(𝜏) is the same as the sort of 𝜏 .
(2) If 𝜏 is a term, then c(𝜏) has the form p0q+ 𝜎 for some 𝜎.
(3) If p𝑛q+𝜏 is an epsilon-termoid, then c(p𝑛q+𝜏) has the form p𝑛q+𝜎

for some 𝜎.
(4) If c(𝜏 ′) = c(𝜏 ′′) for some epsilon-termoids 𝜏 ′ and 𝜏 ′′, then 𝜏 ′ = 𝜏 ′′.
(5) c(c−1(𝜏)) = 𝜏 for any epsilon-regular delta-termoid 𝜏 .
(6) c(c−1(c(𝜏))) = c(𝜏) for any delta-termoid 𝜏 .
(7) c−1(c(𝜏)) = 𝜏 for any epsilon-termoid 𝜏 .
(8) c(p𝑛q+ 𝜏) = 𝑛⊕ c(𝜏) for any term 𝜏 .
(9) c(p0q+ 𝜏) = c(𝜏) for any term 𝜏 .

Proof. (1) can be considered obvious. Alternatively, one can prove it by
simple induction on 𝜏 .
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(2) can be proved by simple induction on 𝜏 as well.
If 𝜏 = p𝜉q is a name, then c(𝜏) = p0q+ p𝜉q.
If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then by induction hypothesis for any 𝑖, c(𝜏𝑖) =

p0q + 𝜎𝑖 for some 𝜎𝑖, hence by definition (D2), c(𝜏) = c(f(𝜏1, . . . , 𝜏𝑛)) =
p0q+ f(1 ⊕ c(𝜏1), . . . , 1 ⊕ c(𝜏𝑛)).

(3) Since p𝑛q+ 𝜏 is an epsilon-termoid, 𝜏 is a term, so (2) implies that
c(𝜏) = p0q + 𝜎 for some 𝜎, hence by (D3), c(p𝑛q + 𝜏) = 𝑛 ⊕ (p0q + 𝜎) =
p𝑛q+ (𝑛⊕ 𝜎).

(4) Definition (D) implies that for any 𝜏 , c(𝜏) is obtained from 𝜏 by
applying modifications of the following two kinds:

1. Replacing some occurrences of symbols of the form p𝑘q in 𝜏 with
symbols p𝑘′q, such that 𝑘′ > 𝑘.

2. Inserting subexpressions of the form “p𝑘q+” in arbitrary places in 𝜏 .
Consequently, for any 𝜏 , if we remove all occurrences of subexpressions of
the form “p𝑘q+” from both 𝜏 and c(𝜏), we will obtain one and the same
term.

In particular, since we know that c(𝜏 ′) = c(𝜏 ′′), this implies that if
remove all such symbols from 𝜏 ′ and 𝜏 ′′, we will obtain one and the same
term.

Both 𝜏 ′ and 𝜏 ′′ are epsilon-termoids, so 𝜏 ′ = p𝑛′q+𝜎 and 𝜏 ′′ = p𝑛′′q+𝜎
for some term 𝜎. In addition, (3) implies that 𝑛′ = 𝑛′′.

(5) Let for any 𝜏 , d(𝜏) be the term which is obtained from 𝜏 by removing
all subexpressions of the form “p𝑛q+”.

We are going to prove that c(c−1(𝜏)) = 𝜏 for any epsilon-regular delta-
termoid 𝜏 by induction on 𝜏 .

If 𝜏 = p𝑛q+ p𝜉q, then c(c−1(𝜏)) = c(c−1(p𝑛q+ p𝜉q)) = c(p𝑛q+ p𝜉q) =
p𝑛q+ p𝜉q = 𝜏 , because c(p𝜉q) = p0q+ p𝜉q.

Let 𝜏 = p𝑛q+ f(p𝑛+ 1q+ 𝜏1, . . . , p𝑛+ 1q+ 𝜏𝑚), where p𝑛+ 1q+ 𝜏𝑖 is
an epsilon-regular delta-termoid for any 𝑖. Then

c(c−1(𝜏)) = c(c−1(p𝑛q+ f(p𝑛+ 1q+ 𝜏1, . . . , p𝑛+ 1q+ 𝜏𝑚)))

= c(p𝑛q+ f(d(𝜏1), . . . , d(𝜏𝑚)))

Since f(d(𝜏1), . . . , d(𝜏𝑚))) is a term, (2) implies that c(f(d(𝜏1), . . . , d(𝜏𝑚)))
begins with p0q+, so the above expression is equal to
𝑛⊕ c(f(d(𝜏1), . . . , d(𝜏𝑚))). Since c(d(𝜏𝑖)) also begins with p0q+, this is
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equal to

𝑛⊕ (p0q+ f(1 ⊕ c(d(𝜏1)), . . . , 1 ⊕ c(d(𝜏𝑚)))) =

= p𝑛q+ f((𝑛+ 1) ⊕ c(d(𝜏1)), . . . , (𝑛+ 1) ⊕ c(d(𝜏𝑚)))

= p𝑛q+ f(c(p𝑛+ 1q+ d(𝜏1)), . . . , c(p𝑛+ 1q+ d(𝜏𝑚)))

= p𝑛q+ f(c(c−1(p𝑛+ 1q+ 𝜏1)), . . . , c(c
−1(p𝑛+ 1q+ 𝜏𝑚)))

By the induction hypothesis, the above expression is equal to
p𝑛q+ f(p𝑛+ 1q+ 𝜏1, . . . , p𝑛+ 1q+ 𝜏𝑚) = 𝜏 .

(6) follows from (5) since c(𝜏) is an epsilon-regular delta-termoid.
(7) From (6) it follows that c(c−1(c(𝜏))) = c(𝜏), hence from (4) we

obtain that c−1(c(𝜏)) = 𝜏 .
(8) According to (J10) and (J11), c(p𝑛q + 𝜏) is similar to 𝑛 ⊕ c(𝜏).

According to (3), the radius of c(p𝑛q+ 𝜏) is equal to 𝑛. According to (J15)
and (2), the radius of 𝑛⊕ c(𝜏) also is equal to 𝑛.

(9) follows from (8). �

N)Definition. For any Sort-indexed set 𝑋, let J𝑋K𝜀 be the algebra,
such that:

(1)The algebraic carrier of sort 𝜅 of J𝑋K𝜀 is the set of all epsilon-termoids
of sort 𝜅 over 𝑋.

(2) For any functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and epsilon-
termoids 𝜏1, . . . , 𝜏𝑛 of respective sorts 𝜅1, . . . , 𝜅𝑛, let

fJ𝑋K𝜀⟨𝜏1, . . . , 𝜏𝑛⟩ = c−1(c(f(𝜏1, . . . , 𝜏𝑛)))

This definition is correct because:
First, the elements of the algebraic carriers of J𝑋K𝜀 are exactly the

epsilon-termoids and c−1(c(f(𝜏1, . . . , 𝜏𝑛))) is an epsilon-termoid of sort 𝜆.
Second, any algebra is uniquely determined by its algebraic carriers and

the interpretation of the functional symbols (see 12Q1).

O)Definition. Given Sort-indexed sets 𝑋 and 𝑌 and a Sort-indexed
function 𝑓 : 𝑋 → 𝑌 , let J𝑓K𝜀 : J𝑋K𝜀 → J𝑌 K𝜀 be the homomorphism, who
when applied to an epsilon-termoid 𝜏 , replaces all occurrences of names
nam𝑋,𝜆(z) in 𝜏 with nam𝑌,𝜆(𝑓𝜆z) (i.e. J𝑓K𝜀 replaces all occurrences of pzq
with p𝑓zq).

We are going to use postfix notation for this homomorphism. Thus
𝜏J𝑓K𝜀 means to apply J𝑓K𝜀 to 𝜏 .

The following proposition shows that the above definition is correct:

P)Proposition. Let 𝑓 : 𝑋 → 𝑌 be a Sort-indexed function. Then:

188



§26. The Epsilon-terminator

(1) If 𝜏 is an epsilon-termoid of sort 𝜅 over 𝑋, then 𝜏J𝑓K𝜀 is an epsilon-
termoid of sort 𝜅 over 𝑌 .

(2) If 𝜏 is a delta-termoid over 𝑋, then c(𝜏J𝑓K𝛿) = (c(𝜏))J𝑓K𝛿. If 𝜏 is a
epsilon-termoid over 𝑋, then c(𝜏J𝑓K𝜀) = (c(𝜏))J𝑓K𝛿.

(3) If 𝜏 is an epsilon-regular delta-termoid over 𝑋, then 𝜏J𝑓K𝛿 is an
epsilon-regular delta-termoid over 𝑌 and c−1(𝜏J𝑓K𝛿) = (c−1(𝜏))J𝑓K𝛿.

(4)There exists unique homomorphism from J𝑋K𝜀 to J𝑌 K𝜀, such that the
result of its application to any epsilon-termoid 𝜏 is equal to 𝜏J𝑓K𝜀.

Proof. (1) Since 𝜏 is an epsilon-termoid over 𝑋 of sort 𝜅, 𝜏 = p𝑛q+ 𝜏 ′

for some natural number 𝑛 and term 𝜏 ′ over 𝑋 of sort 𝜅. Therefore, 𝜏J𝑓K𝜀 =
(p𝑛q+ 𝜏 ′)J𝑓K𝜀 = p𝑛q+ 𝜏 ′[𝑓 ]. Since 𝜏 ′[𝑓 ] is a term over 𝑌 , p𝑛q+ 𝜏 ′[𝑓 ] is an
epsilon-termoid over 𝑌 .

(2) We are going give a proof for the case of J.K𝛿. From this the case
of J.K𝜀 follows, because according to definitions (25M) and (O), 𝜏J𝑓K𝛿 =
𝜏J𝑓K𝜀 for any epsilon-termoid 𝜏 over 𝑋.

By induction of 𝜏 .
If 𝜏 = p𝜉q is a name, then c(𝜏J𝑓K𝛿) = c(p𝜉qJ𝑓K𝛿) = c(p𝑓𝜉q) = p0q+p𝑓𝜉q

= p0q+ p𝜉qJ𝑓K𝛿 = (p0q+ p𝜉q)J𝑓K𝛿 = (c(p𝜉q))J𝑓K𝛿 = (c(𝜏))J𝑓K𝛿.
If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), let c(𝜏𝑖) = p𝑘𝑖q + 𝜎𝑖 for any 𝑖 ∈ {1, . . . , 𝑛}

and 𝑚 = max{1, 𝑘1, . . . , 𝑘𝑛}. By induction hypothesis, c(𝜏𝑖J𝑓K𝛿) =
(c(𝜏𝑖))J𝑓K𝛿 = (p𝑘𝑖q + 𝜎𝑖)J𝑓K𝛿 = p𝑘𝑖q + 𝜎𝑖J𝑓K𝛿. There-
fore, c(𝜏J𝑓K𝛿) = c((f(𝜏1, . . . , 𝜏𝑛))J𝑓K𝛿) = c(f(𝜏1J𝑓K𝛿, . . . , 𝜏𝑛J𝑓K𝛿)) =
p𝑘 − 1q+ f((𝑘 − 𝑘1) ⊕ (p𝑘1q+ 𝜎1J𝑓K𝛿), . . . , (𝑘 − 𝑘𝑛) ⊕ (p𝑘𝑛q+ 𝜎𝑛J𝑓K𝛿))
= (p𝑘 − 1q+ f((𝑘 − 𝑘1) ⊕ (p𝑘1q+ 𝜎1), . . . , (𝑘 − 𝑘𝑛) ⊕ (p𝑘𝑛q+ 𝜎𝑛)))J𝑓K𝛿 =
(c(f(𝜏1, . . . , 𝜏𝑛)))J𝑓K𝛿 = (c(𝜏))J𝑓K𝛿.

If 𝜏 = p𝑘q + 𝜏 ′, let c(𝜏 ′) = p𝑛q + 𝜎 and 𝑚 = max{𝑛, 𝑘}. By induction
hypothesis, c(𝜏 ′J𝑓K𝛿) = (c(𝜏 ′))J𝑓K𝛿 = (p𝑛q+ 𝜎)J𝑓K𝛿 = p𝑛q+ 𝜎J𝑓K𝛿. There-
fore, c(𝜏J𝑓K𝛿) = c((p𝑘q+𝜏 ′)J𝑓K𝛿) = c(p𝑘q+𝜏 ′J𝑓K𝛿) = (𝑚−𝑛)⊕(p𝑛q+𝜎J𝑓K𝛿)
= ((𝑚− 𝑛) ⊕ (p𝑛q+ 𝜎))J𝑓K𝛿 = (c(p𝑘q+ 𝜏 ′))J𝑓K𝛿. = (c(𝜏))J𝑓K𝛿.

(3) (E2) implies that c(𝜏) = 𝜏 , so from (2) it follows that 𝜏J𝑓K𝛿 =
(c(𝜏))J𝑓K𝛿 = c(𝜏J𝑓K𝛿). Therefore, 𝜏J𝑓K𝛿 is an epsilon-regular delta-termoid.
It only remains to notice that the equality c−1(𝜏J𝑓K𝛿) = (c−1(𝜏))J𝑓K𝛿 follows
from the definitions.

(4) follows from (1) and (12Q2). It only remains to notice
that (2) and (3) imply that for any functional symbols f and
epsilon-termoids 𝜏1, . . . , 𝜏𝑛 of suitable sorts, (fJ𝑋K𝜀⟨𝜏1, . . . , 𝜏𝑛⟩)J𝑓K𝜀
= (c−1(c(f(𝜏1, . . . , 𝜏𝑛))))J𝑓K𝜀 = c−1(c((f(𝜏1, . . . , 𝜏𝑛))J𝑓K𝜀)) =
c−1(c(f(𝜏1J𝑓K𝜀, . . . , 𝜏𝑛J𝑓K𝜀))) = fJ𝑌 K𝜀⟨𝜏1J𝑓K𝜀, . . . , 𝜏𝑛J𝑓K𝜀⟩. �

Q)Definition. Given a Sort-indexed set 𝑋, let
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Vals𝜀𝑋 : J|J𝑋K𝜀|K𝜀 → J𝑋K𝜀, be the only homomorphism, such that for any
epsilon-termoid 𝜏 over |J𝑋K𝜀|, Vals𝜀𝑋 𝜏 = c−1(c(Vals𝛿𝑋 𝜏)).

If 𝜏 is an epsilon-termoid over |J𝑋K𝜀|, then 𝜏 also is a delta-termoid
over |J𝑋K𝛿|, hence Vals𝛿𝑋 𝜏 is a delta-termoid over 𝑋, so c(Vals𝛿𝑋 𝜏) is an
epsilon-regular delta-termoid over 𝑋, hence c−1(c(Vals𝛿𝑋 𝜏)) is an epsilon-
termoid over 𝑋. Therefore, according to (12Q2), in order to see that the
above definition is correct it only remains to notice that for any func-
tional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and any epsilon-termoids 𝜏1 . . . , 𝜏𝑛
over |J𝑋K𝜀| of sorts 𝜅1, . . . , 𝜅𝑛,

Vals𝜀𝑋(fJ|J𝑋K𝜀|K𝜀⟨𝜏1, . . . , 𝜏𝑛⟩) =

= c−1(c(Vals𝛿𝑋(fJ|J𝑋K𝜀|K𝜀⟨𝜏1, . . . , 𝜏𝑛⟩))) from (Q)

= c−1(c(Vals𝛿𝑋(c−1(c(f(𝜏1, . . . , 𝜏𝑛)))))) from (N2)

= c−1(c(Vals𝛿𝑋(c(c−1(c(f(𝜏1, . . . , 𝜏𝑛))))))) from (J20)

= c−1(c(Vals𝛿𝑋(c(f(𝜏1, . . . , 𝜏𝑛))))) from (M6)

= c−1(c(Vals𝛿𝑋(f(𝜏1, . . . , 𝜏𝑛)))) from (J20)

= c−1(c(f(Vals𝛿𝑋 𝜏1, . . . ,Vals𝛿𝑋 𝜏𝑛))) from (25S)

= c−1(c(f(c(Vals𝛿𝑋 𝜏1), . . . , c(Vals𝛿𝑋 𝜏𝑛)))) from (E4)

= c−1(c(f(c(c−1(c(Vals𝛿𝑋 𝜏1))), . . . , c(c
−1(c(Vals𝛿𝑋 𝜏𝑛))))))

from (M6)

= c−1(c(f(c−1(c(Vals𝛿𝑋 𝜏1)), . . . , c
−1(c(Vals𝛿𝑋 𝜏𝑛))))) from (E4)

= fJ𝑋K𝜀⟨c−1(c(Vals𝛿𝑋 𝜏1)), . . . , c
−1(c(Vals𝛿𝑋 𝜏𝑛))⟩ from (N2)

= fJ𝑋K𝜀⟨Vals𝜀𝑋 𝜏1, . . . ,Vals𝜀𝑋 𝜏𝑛⟩ from (Q)

R)Definition. Given a structure M, let Val𝜀M : J|M|K𝜀 → PM, be
the only quasimorphism, such that for any epsilon-termoid 𝜏 over |M|,
Val𝜀M 𝜏 = Val𝛿M c(𝜏).

In order to see that the above definition is correct, we have to prove
that there exists unique quasimorphism Val𝜀M with the specified property.

First, we are going to prove the uniqueness of Val𝜀M. Definition (R)
already specifies uniquely the value of Val𝜀M 𝜏 when 𝜏 belongs to an alge-
braic carrier of J|M|K𝜀, i.e. when 𝜏 is an epsilon-termoid. Let 𝜙 be an
arbitrary element of the logical carrier of J|M|K𝜀. According to (12C2), 𝜙 is
a relational formula over |J|M|K𝜀|.

If 𝜙 is an atomic formula, then 𝜙 = p(p𝜏1q, . . . , p𝜏𝑛q) for some
epsilon-termoids 𝜏1, . . . , 𝜏𝑛. Then according to (12C2) and (14C),
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Val𝜀M 𝜙 = Val𝜀M p(p𝜏1q, . . . , p𝜏𝑛q) = Val𝜀M(pJ|M|K𝜀⟨𝜏1, . . . , 𝜏𝑛⟩) =
pPM⟨Val𝜀M 𝜏1, . . . ,Val𝜀M 𝜏𝑛⟩, so the value of Val𝜀M 𝜙 is uniquely determined.
In addition, this definition of Val𝜀M 𝜙 ensures that

pPM⟨Val𝜀M 𝜏1, . . . ,Val𝜀M 𝜏𝑛⟩ = Val𝜀M(pJ|M|K𝜀⟨𝜏1, . . . , 𝜏𝑛⟩) (♯)

for any predicate symbol p.
If 𝜙 is not an atomic formula, then 𝜙 = d(𝜙1, . . . , 𝜙𝑛) for some elements

𝜙1, . . . , 𝜙𝑛 of the logical carrier of J|M|K𝜀. Then according to (12C2)
and (14C), Val𝜀M 𝜙 = Val𝜀M d(𝜙1, . . . , 𝜙𝑛) = Val𝜀M(dJ|M|K𝜀⟨𝜙1, . . . , 𝜙𝑛⟩) =
dPM⟨Val𝜀M 𝜙1, . . . ,Val𝜀M 𝜙𝑛⟩, so again, the value of Val𝜀M 𝜙 is uniquely de-
termined by recursion on 𝜙. In addition, this definition of Val𝜀M 𝜙 ensures
that

dPM⟨Val𝜀M 𝜙1, . . . ,Val𝜀M 𝜙𝑛⟩ = Val𝜀M(dJ|M|K𝜀⟨𝜙1, . . . , 𝜙𝑛⟩) (♭)

for any logical symbol d.
It remains to see that the uniquely determined Sort-indexed func-

tion Val𝜀M is indeed a quasimorphism. Because of (♯) and (♭), in order
to see this, it only remains to notice that for any functional symbol f of
type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and any epsilon-termoids 𝜏1 . . . , 𝜏𝑛 over |M| of sorts
𝜅1, . . . , 𝜅𝑛, we have

fPM⟨Val𝜀M 𝜏1, . . . ,Val𝜀M 𝜏𝑛⟩ =

= fPM⟨Val𝛿M c(𝜏1), . . . ,Val𝛿M c(𝜏𝑛)⟩ from (R)

= Val𝛿M(fJ|M|K𝛿⟨c(𝜏1), . . . , c(𝜏𝑛)⟩) homomorphism

= Val𝛿M f(c(𝜏1), . . . , c(𝜏𝑛)) from (25L2)

⊆ Val𝛿M c(f(c(𝜏1), . . . , c(𝜏𝑛))) from (G)

= Val𝛿M c(f(𝜏1, . . . , 𝜏𝑛)) from (E4)

= Val𝛿M c(c−1(c(f(𝜏1, . . . , 𝜏𝑛)))) from (M6)

= Val𝛿M c(fJ|M|K𝜀⟨𝜏1, . . . , 𝜏𝑛⟩) from (N2)

= Val𝜀M(fJ|M|K𝜀⟨𝜏1, . . . , 𝜏𝑛⟩) from (R)

S)Definition. Given a Sort-indexed set 𝑋, let Nam𝜀
𝑋 : 𝑋∘ → |J𝑋K𝜀|

be the Sort-indexed function, such that for any x ∈ 𝑋∘

Nam𝜀
𝑋(x) = c−1(c(nam𝑋(x)))

Equivalently,

Nam𝜀
𝑋(x) = c−1(c(pxq)) = c−1(p0q+ pxq) = p0q+ pxq

191



Gamma-, Delta- and Epsilon-terminators

Notice that while nam𝑋 , Nam𝛼
𝑋 , Nam𝛾

𝑋 and Nam𝛿
𝑋 are defined more or

less identically, Nam𝜀
𝑋 is defined differently. Because of this and in order to

avoid ambiguities we are never going to use the short notation p𝜉q in place
of Nam𝜀

𝑋 𝜉.

T)Definition. The quadruple ⟨J.K𝜀,Val𝜀,Vals𝜀,Nam𝜀⟩ is the epsilon-
terminator .

In order to avoid ambiguities, the termoidal expressions and the for-
muloids defined by this terminator will be called “epsilon-termoidal expres-
sions” and “epsilon-formuloids”. Because of (N), the notion of termoid corre-
sponding to this terminator (see definition 14J) is identical with the notion
of epsilon-termoid, as defined in (K).

We have to prove that the above definition is correct.
Proof. We are going to prove the requirements of definition (14I) one by

one.
(1) According to definition (N), J𝑋K𝜀 is an algebra.
(2) According to definition (O), J𝑓K𝜀 is a homomorphism from J𝑋K𝜀

to J𝑌 K𝜀 for any Sort-indexed function 𝑓 : 𝑋 → 𝑌 .
(3) Definitions (N) and (K) immediately imply that the identity

|J𝑋K𝜀| ∩ |J𝑌 K𝜀| = |J𝑋 ∩ 𝑌 K𝜀| is true with respect to the algebraic compo-
nents of the Sort-indexed sets. According to definition (12C2), the elements
of the logical carrier of |J𝑋K𝜀| are exactly the relational formulae over |J𝑋K𝜀|,
the elements of the logical carrier of |J𝑌 K𝜀| are exactly the relational for-
mulae over |J𝑌 K𝜀| and the elements of the logical carrier of |J𝑋 ∩ 𝑌 K𝜀| are
exactly the relational formulae over |J𝑋 ∩ 𝑌 K𝜀|. No formula may contain
names of logical sort, hence the mentioned identity is true for the logical
carrier as well.

(4) Definition (O) implies that if the values of 𝑓 ′ : 𝑋 ′ → 𝑌 ′ and
𝑓 ′′ : 𝑋 ′′ → 𝑌 ′′ are equal over the objects whose names occur in the epsilon-
termoid 𝜏 , then 𝜏J𝑓 ′K𝜀 = 𝜏J𝑓 ′′K𝜀. Consequently, the homomorphisms J𝑓 ′K𝜀
and J𝑓 ′′K𝜀 � J𝑋 ′K𝜀 map identically over the algebraic carriers, hence ac-
cording to (12H2) they map identically over all carriers. On the other
hand, definition (O) trivially implies that 𝜏J𝑓 ′′K𝜀 = 𝜏(J𝑓 ′′K𝜀 � J𝑋 ′K𝜀) for
any 𝜏 ∈ |J𝑋 ′K|. Consequently, the homomorphisms J𝑓 ′K𝜀 and J𝑓 ′′K𝜀 map
identically any element of |J𝑋 ′K𝜀|.

(5) Definition (K) does not refer to the elements of 𝑋Log in any way,
so J𝑋K𝜀 = J𝑋∘K𝜀. Epsilon-termoids contain no names of logical sort, hence
immediately from definition (O) it follows that J𝑓K𝜀 = J𝑓 ∘K𝜀.

(6) and (7) follow from the definitions.
(8) follows from definition (S).
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(9) Given a Sort-indexed function 𝑓 : 𝑋 → 𝑌 , for any 𝜉 ∈ 𝑋∘ we
have (J𝑓K𝜀 ∘ Nam𝜀

𝑋)𝜉 = (Nam𝜀
𝑋 𝜉)J𝑓K𝜀 = (p0q+ p𝜉q)J𝑓K𝜀 = p0q+ p𝜉qJ𝑓K𝜀 =

p0q+ p𝑓𝜉q = p0q+ p𝑓 ∘𝜉q = Nam𝜀
𝑋 (𝑓 ∘𝜉) = (Nam𝜀

𝑋
∘ 𝑓 ∘)𝜉.

𝑋∘

𝑓∘

��

Nam𝜀
𝑋 // |J𝑋K𝜀|

J𝑓K𝜀

��

𝑌 ∘ Nam𝜀
𝑌 // |J𝑌 K𝜀|

(10) According to definition (R), Val𝜀 is a quasimorphism.
(11) According to (14I11) applied for the delta-terminator,

Val𝛿M 𝜏 = Val𝛿𝜕M 𝜏 . Consequently, definition (R) immediately implies that
Val𝜀M 𝜏 = Val𝜀𝜕M 𝜏 .

(12) Due to (14E), we only have to prove that the algebraic compo-
nents of Val𝜀M map to non-empty sets. This follows immediately from
definition (R) and the fact that according to (14I12), applied for the delta-
terminator, Val𝛿M maps to non-empty sets.

Due to (14F), we only have to prove that the algebraic compo-
nents of Val𝜀[𝑋] map to one-element sets. This follows immediately from
definition (R) and the fact that according to (14I12), applied for the delta-
terminator, Val𝛿[𝑋] maps to one-element sets.

(13) Let ℎ : M → K be a homomorphism. Due to (14G), we only
have to prove that (ℎP ∘ Val𝜀M)𝜏 ⊆ (Val𝜀K ∘ JℎK𝜀)𝜏 for any epsilon-termoid 𝜏
over |M|. From (14I13), applied for the delta-terminator, it follows that
ℎP ∘ Val𝛿M ≤ Val𝛿K ∘ JℎK𝛿, so from (14B1) we obtain (ℎP ∘ Val𝛿M ∘ c)𝜏 ⊆
(Val𝛿K ∘ JℎK𝛿 ∘ c)𝜏 for any epsilon-termoid 𝜏 over |M|. According to (P2),
(JℎK𝛿 ∘ c)𝜏 = (c ∘ JℎK𝛿)𝜏 , so (ℎP ∘ Val𝛿M ∘ c)𝜏 ⊆ (Val𝛿K ∘ c ∘ JℎK𝛿)𝜏 . But
Val𝛿M ∘ c = Val𝜀M and Val𝛿K ∘ c = Val𝜀K, so we obtain the required.

J|M|K𝜀

≥JℎK𝜀

��

Val𝜀M // PM

ℎP

��

J|K|K𝜀
Val𝜀K // PK

(14) According to definition (Q), Vals𝜀 is a homomorphism.
(15) Given a Sort-indexed set 𝑋, a structure K, a Sort-indexed func-

tion 𝑘 : 𝑋 → |J|K|K𝜀| and a Sort-indexed function 𝑓 : 𝑋 → |K|, suppose
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that 𝑓 ≪ Val𝜀K ∘ 𝑘.

𝑋

𝑓

��

𝑘 // |J|K|K𝜀|

Val𝜀K

��

|K| ∈ |PK|

Due to (14G), in order to prove that (Val𝜀K ∘ J𝑓K𝜀)𝜏 ⊆ (Val𝜀K ∘ Vals𝜀|K| ∘ J𝑘K𝜀)𝜏
for any 𝜏 ∈ |J𝑋K𝜀|, it is enough to consider only the algebraic carriers, i.e.
it is enough to consider only the case when 𝜏 is a epsilon-termoid over 𝑋.

J𝑋K𝜀

≤
J𝑓K𝜀

$$H
HHHHHHHHHHHHHHHH

J𝑘K𝜀
// J|J|K|K𝜀|K𝜀

Vals𝜀|K|
// J|K|K𝜀

Val𝜀K

��

J|K|K𝜀
Val𝜀K // PK

First, notice that 𝑓 ≪ Val𝜀K ∘ 𝑘 and (R) imply that 𝑓 ≪ Val𝛿K ∘(c ∘ 𝑘).
Consequently,

(Val𝜀K ∘ J𝑓K𝜀)𝜏 = (Val𝛿K ∘ c ∘ J𝑓K𝜀)𝜏 from (Q)

= (Val𝛿K ∘J𝑓K𝜀 ∘ c)𝜏 from (P2)

= (Val𝛿K ∘J𝑓K𝜀)c(𝜏)

⊆ (Val𝛿K ∘ Vals𝛿|K| ∘ Jc ∘ 𝑘K𝛿)c(𝜏)

from (I15), applied for the delta-terminator

= (Val𝛿K ∘ Vals𝛿|K| ∘ JcK𝛿 ∘ J𝑘K𝛿 ∘ c)𝜏

⊆ (Val𝛿K ∘ c ∘ Vals𝛿|K| ∘ JcK𝛿 ∘ J𝑘K𝛿 ∘ c)𝜏 from (G)

= (Val𝛿K ∘ c ∘ Vals𝛿|K| ∘J𝑘K𝛿 ∘ c)𝜏 from (J21)

= (Val𝛿K ∘ c ∘ Vals𝛿|K| ∘ c ∘ J𝑘K𝛿)𝜏 from (P2)

= (Val𝛿K ∘ c ∘ Vals𝛿|K| ∘ J𝑘K𝛿)𝜏 from (J20)

= ((Val𝛿K ∘ c) ∘ (c−1 ∘ c ∘ Vals𝛿|K|) ∘ J𝑘K𝛿)𝜏 from (M6)

= (Val𝜀K ∘ Vals𝜀|K| ∘ J𝑘K𝜀)𝜏 from (R), (Q), (O) and (25M)

(16) According to (12H2), it is enough to see that for any epsilon-

194



§26. The Epsilon-terminator

termoid 𝜏 ,

(J𝑓K𝜀 ∘ Vals𝜀𝑋)𝜏 = (J𝑓K𝛿 ∘ Vals𝜀𝑋)𝜏 from (O) and (25M)

= (J𝑓K𝛿 ∘ c−1 ∘ c ∘ Vals𝛿𝑋)𝜏 from (Q)

= (c−1 ∘ J𝑓K𝛿 ∘ c ∘ Vals𝛿𝑋)𝜏 from (P3)

= (c−1 ∘ c ∘ J𝑓K𝛿 ∘ Vals𝛿𝑋)𝜏 from (P2)

= (c−1 ∘ c ∘ Vals𝛿𝑌 ∘JJ𝑓K𝛿K𝛿)𝜏
from (I16), applied for the delta-terminator

= (c−1 ∘ c ∘ Vals𝛿𝑌 ∘JJ𝑓K𝜀K𝜀)𝜏 from (O) and (25M)
= (Vals𝜀𝑌 ∘JJ𝑓K𝜀K𝜀)𝜏 from (Q)

J|J𝑋K𝜀|K𝜀

JJ𝑓K𝜀K𝜀

��

Vals𝜀𝑋 // J𝑋K𝜀

J𝑓K𝜀

��

J|J𝑌 K𝜀|K𝜀
Vals𝜀𝑌 // J𝑌 K𝜀

(17) According to (12H2), it is enough to see that for any epsilon-
termoid 𝜏 ,

(Vals𝜀𝑋 ∘ JNam𝜀
𝑋K𝜀)𝜏 =

= (c−1 ∘ c ∘ Vals𝛿𝑋 ∘ JNam𝜀
𝑋K𝜀)𝜏 from (Q)

= (c−1 ∘ c ∘ Vals𝛿𝑋 ∘ Jc−1 ∘ c ∘ Nam𝛿
𝑋K𝜀)𝜏 from (S) and (25V)

= (c−1 ∘ c ∘ Vals𝛿𝑋 ∘ Jc−1 ∘ c ∘ Nam𝛿
𝑋K𝛿)𝜏 from (O) and (25M)

= (c−1 ∘ c ∘ Vals𝛿𝑋 ∘ JcK𝛿 ∘ Jc−1 ∘ c ∘ Nam𝛿
𝑋K𝛿)𝜏 from (J21)

= (c−1 ∘ c ∘ Vals𝛿𝑋 ∘ Jc ∘ c−1 ∘ c ∘ Nam𝛿
𝑋K𝛿)𝜏

= (c−1 ∘ c ∘ Vals𝛿𝑋 ∘ Jc ∘ Nam𝛿
𝑋K𝛿)𝜏 from (M6)

= (c−1 ∘ c ∘ Vals𝛿𝑋 ∘ JcK𝛿 ∘ JNam𝛿
𝑋K𝛿)𝜏

= (c−1 ∘ c ∘ Vals𝛿𝑋 ∘JNam𝛿
𝑋K𝛿)𝜏 from (J21)

= (c−1 ∘ c ∘ idJ𝑋K𝛿)𝜏 from (I17), applied for the delta-terminator
= c−1(c(𝜏))

= 𝜏 from (M7)
= (idJ𝑋K𝜀)𝜏

J𝑋K𝜀 = J𝑋∘K𝜀
JNam𝜀

𝑋K𝜀
//J|J𝑋K𝜀|K𝜀

Vals𝜀𝑋 //J𝑋K𝜀
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(18) According to (12H2), it is enough to see that for any 𝜇 belonging
to an algebraic carrier of M,

(Val𝜀M ∘ Nam𝜀
|M|)𝜇 = (Val𝛿M ∘ c ∘ Nam𝜀

|M|)𝜇 from (R)

= (Val𝛿M ∘ c ∘ c−1 ∘ c ∘ Nam𝛿
|M|)𝜇 from (S) and (25V)

= (Val𝛿M ∘ c ∘ Nam𝛿
|M|)𝜇 from (M6)

= Val𝛿M(c(p𝜇q))

= Val𝛿M(p𝜇q) from (H)
= {𝜇} from (I18), applied for the delta-terminator

|M|∘
Nam𝜀

|M|
// |J|M|K𝜀|

Val𝜀M //|PM|
�

U)Proposition. For any epsilon-termoid p𝑛q + 𝜏 over 𝑋,
(p𝑛q+ 𝜏)Jnam𝑋K[𝑋]

𝜀 = 𝜏 .

Proof.

{(p𝑛q+ 𝜏)Jnam𝑋K[𝑋]
𝜀 } = Val𝜀[𝑋]((p𝑛q+ 𝜏)Jnam𝑋K𝜀) from (14N)

= Val𝜀[𝑋]((p𝑛q+ 𝜏)Jnam𝑋K𝛿) from (O) and (25M)

= Val𝛿[𝑋] c((p𝑛q+ 𝜏)Jnam𝑋K𝛿) from (R)

= Val𝛿[𝑋]((c(p𝑛q+ 𝜏))Jnam𝑋K𝛿) from (P2)

= {(c(p𝑛q+ 𝜏))Jnam𝑋K[𝑋]
𝛿 } from (14N)

= {𝜏} from (25X)

�

V)Lemma. For any 𝑛-ary functional symbol f and epsilon-termoids
p0q+ 𝜏1, p0q+ 𝜏2, . . . , p0q+ 𝜏𝑛 over 𝑋 of suitable sorts,

fJ𝑋K𝜀⟨p0q+ 𝜏1, . . . , p0q+ 𝜏𝑛⟩ = p0q+ f(𝜏1, . . . , 𝜏𝑛)

Proof.

c(fJ𝑋K𝜀⟨p0q+ 𝜏1, . . . , p0q+ 𝜏𝑛⟩) =

= c(c−1(c(f(p0q+ 𝜏1, . . . , p0q+ 𝜏𝑛)))) from (N2)
= c(f(p0q+ 𝜏1, . . . , p0q+ 𝜏𝑛)) from (M6)
= c(f(c(p0q+ 𝜏1), . . . , c(p0q+ 𝜏𝑛))) from (J5)
= c(f(c(𝜏1), . . . , c(𝜏𝑛))) from (M9)
= c(f(𝜏1, . . . , 𝜏𝑛)) from (J5)
= c(p0q+ f(𝜏1, . . . , 𝜏𝑛)) from (M9)
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Since both fJ𝑋K𝜀⟨p0q+ 𝜏1, . . . , p0q+ 𝜏𝑛⟩ and p0q + f(𝜏1, . . . , 𝜏𝑛) are
epsilon-termoids, we obtain the required from (M4). �

W)Proposition. For any term 𝜏 over 𝑋, 𝜏 [Nam𝜀
𝑋 ]J𝑋K𝜀 = p0q+ 𝜏 .

Proof. Consider the Sort-indexed function ℎ : |[𝑋]| → |J𝑋K𝜀|, such that
ℎ𝜏 = p0q + 𝜏 for any term 𝜏 and for any termal expression 𝜙 over 𝑋
of logical sort, ℎ𝜙 can be obtained from 𝜙 by replacing in 𝜙 all subex-
pressions of the form p(𝜏1, . . . , 𝜏𝑛) where p is a predicate symbol with
p(pp0q+ 𝜏1q, . . . , pp0q+ 𝜏𝑛q).

This function is a homomorphism from [𝑋] to J𝑋K𝜀. Indeed,
according to (V) and the definition of ℎ, for any functional sym-
bol f, ℎ(f[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩) = ℎ(f(𝜏1, . . . , 𝜏𝑛)) = p0q + f(𝜏1, . . . , 𝜏𝑛) =
fJ𝑋K𝜀⟨p0q+ 𝜏1, . . . , p0q+ 𝜏𝑛⟩ = fJ𝑋K𝜀⟨ℎ𝜏1, . . . , ℎ𝜏𝑛⟩. Moreover, for
any predicate symbol p, ℎ(p[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩) = ℎ(p(𝜏1, . . . , 𝜏𝑛)) =
p(pp0q+ 𝜏1q, . . . , pp0q+ 𝜏𝑛q) = p(pℎ𝜏1q, . . . , pℎ𝜏𝑛q). Since J𝑋K𝜀 is alge-
bra, this is equal to pJ𝑋K𝜀⟨ℎ𝜏1, . . . , ℎ𝜏𝑛⟩. Analogously, for any logical sym-
bol d, ℎ(d[𝑋]⟨𝜏1, . . . , 𝜏𝑛⟩) = ℎ(d(𝜏1, . . . , 𝜏𝑛)) = d(ℎ𝜏1, . . . , ℎ𝜏𝑛). Since J𝑋K𝜀 is
algebra, this is equal to dJ𝑋K𝜀⟨ℎ𝜏1, . . . , ℎ𝜏𝑛⟩.

According to definition (S), for any 𝜉 ∈ 𝑋 we have p𝜉q[Nam𝜀
𝑋 ]J𝑋K𝜀 =

(pp0q+ p𝜉qq)J𝑋K𝜀 . Because of (11V2), this is equal to p0q + p𝜉q = ℎp𝜉q.
Consequently, from (11P) we obtain that [Nam𝜀

𝑋 ]J𝑋K𝜀 = ℎ which gives us
the required. �

X)Proposition. (1) For any epsilon-formuloid 𝜙 over 𝑋,
𝜙Jnam𝑋K[𝑋]

𝜀 is obtained from 𝜙 by replacing each epsilon-termoid p𝑛q + 𝜏
of 𝜙 by 𝜏 .

(2) For any formula 𝜙 over 𝑋, 𝜙[Nam𝜀
𝑋 ]J𝑋K𝜀 is obtained from 𝜙 by

replacing each term 𝜏 of 𝜙 by p0q+ 𝜏 .

Proof. Since Jnam𝑋K[𝑋]
𝜀 is a quasimorphism, for any predicate or logical

symbol d,

(dJ𝑋K⟨𝛼1, . . . , 𝛼𝑛⟩)Jnam𝑋K[𝑋]
𝜀 = d[𝑋]⟨𝛼1Jnam𝑋K[𝑋]

𝜀 , . . . , 𝛼𝑛Jnam𝑋K[𝑋]
𝜀 ⟩

Therefore, (1) follows from (U) by induction on 𝜙.
Since [Nam𝜀

𝑋 ]J𝑋K𝜀 is a homomorphism, (2) follows analogously from (W).
�

§27. AN ALTERNATIVE SEMANTICS

A)Throughout this section we are going to fix a Sort-indexed set 𝑋
and a structure M, such that there exist at least one assignment function
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𝑓 : 𝑋 → |M|.

B)Definition. A functional symbol f of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ is ac-
cessible, if for any 𝑖 ∈ {1, . . . , 𝑛} there exist at least one term over 𝑋 of
sort 𝜅𝑖. Equivalently, f is accessible if there exists at least one term over 𝑋
containing f.

C)Definition. For any sort 𝜅 and natural number 𝑛 we are going to
define recursively on 𝑛 two binary relations 𝜅-sim∘

𝑛 and 𝜅-sim𝑛 over M𝜅:
(1) 𝜅-sim∘

0(𝜇
′, 𝜇′′) is true, if 𝜇′ = 𝜇′′.

(2) 𝜅-sim∘
𝑛+1(𝜇

′, 𝜇′′) is true, if 𝜅-sim𝑛(𝜇′, 𝜇′′) is true or there ex-
ists an accessible functional symbol f with type ⟨⟨𝜅1, . . . , 𝜅𝑚⟩, 𝜆⟩
and a natural number 𝑖 ∈ {1, . . . ,𝑚}, such that 𝜅 = 𝜅𝑖 and
for some 𝜈 ′1, . . . , 𝜈

′
𝑚, 𝜈

′′
1 , . . . , 𝜈

′′
𝑚 belonging to suitable carriers of M

𝜆-sim𝑛(fM⟨𝜈 ′1, . . . , 𝜈 ′𝑖−1, 𝜇
′, 𝜈 ′𝑖+1, . . . , 𝜈

′
𝑚⟩, fM⟨𝜈 ′′1 , . . . , 𝜈 ′′𝑖−1, 𝜇

′′, 𝜈 ′′𝑖+1, . . . , 𝜈
′′
𝑚⟩)

is true.
(3) 𝜅-sim𝑛(𝜇′, 𝜇′′) is the transitive closure of 𝜅-sim∘

𝑛(𝜇′, 𝜇′′) for any nat-
ural number 𝑛.

Since there will be no danger of ambiguity, we are going to write simply
sim∘

𝑛 and sim𝑛 instead of 𝜅-sim∘
𝑛 and 𝜅-sim𝑛.

D)Proposition. (1) If f be an accessible functional symbol of
type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩, then the carriers M𝜅1 , . . . ,M𝜅𝑛 and M𝜆 are non-
empty sets.

(2)For any natural number 𝑛, the relation sim∘
𝑛 is reflexive and sym-

metric, and the relation sim𝑛 is reflexive, symmetric and transitive.

Proof. (1) Let 𝑔 : 𝑋 → |M| be an arbitrary assignment function.
Let 𝜏1, . . . , 𝜏𝑛 be terms over 𝑋 of respective sorts 𝜅1, . . . , 𝜅𝑛. Then
𝜏1[𝑔], . . . , 𝜏𝑛[𝑔] will be terms over |M|, so their values in M belong to the
carriers M𝜅1 , . . . ,M𝜅𝑛 and fM⟨𝜏M1 , . . . , 𝜏M𝑛 ⟩ belongs to M𝜆.

(2) By induction on 𝑛. When 𝑛 = 0, there is nothing to prove.
Suppose that sim𝑛 is reflexive, symmetric and transitive.
Since sim𝑛(𝜇′, 𝜇′′) implies sim∘

𝑛+1(𝜇
′, 𝜇′′), the relation sim∘

𝑛+1 is reflexive.
Since sim∘

𝑛+1(𝜇
′, 𝜇′′) implies sim𝑛+1(𝜇

′, 𝜇′′), the relation sim𝑛+1 is reflexive
as well.

Because of the way the relation sim𝑛+1 is defined, from the symmetry
of sim𝑛(𝜇′, 𝜇′′) the symmetry of sim∘

𝑛+1(𝜇
′, 𝜇′′) follows. A transitive clo-

sure of a symmetric relation also is a symmetric relation, so the relation
relation sim𝑛+1 is symmetric as well.

sim𝑛+ is transitive by definition. �

E)Proposition. If M is a structure of terms, then sim𝑛(𝜇, 𝜈) is true
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if and only if 𝜇 = 𝜈.77

Proof. The “if” part follows from the reflexivity of the relation sim𝑛.
Since sim𝑛 is a transitive closure of sim∘

𝑛, it will be enough to prove that
sim∘

𝑛(𝜇, 𝜈) implies 𝜇 = 𝜈. We can do this by induction on 𝑛.
When 𝑛 = 0, this is so by definition (27C1). On the other hand, accord-

ing to definition (27C2), if sim𝑛+1(𝜇
′, 𝜈 ′) is true, then either sim∘

𝑛(𝜇′, 𝜈 ′) is
true, or sim𝑛(fM⟨𝜇1, . . . , 𝜇𝑚⟩, fM⟨𝜈1, . . . , 𝜈𝑚⟩) is true for some functional
symbol f, natural number 𝑖 and some 𝜇1, . . . , 𝜇𝑚 and 𝜈1, . . . , 𝜈𝑚 belong-
ing to suitable carriers of M, such that 𝜇′ = 𝜇𝑖 and 𝜈 ′ = 𝜈𝑖. In
the first case (when sim∘

𝑛(𝜇′, 𝜈 ′) is true), from the induction hypothe-
sis we immediately obtain that 𝜇′ = 𝜈 ′. In the other case, by induc-
tion hypothesis, from sim𝑛(fM⟨𝜇1, . . . , 𝜇𝑚⟩, fM⟨𝜈1, . . . , 𝜈𝑚⟩) we obtain that
fM⟨𝜇1, . . . , 𝜇𝑚⟩ = fM⟨𝜈1, . . . , 𝜈𝑚⟩. But M is a structure of terms, so
fM⟨𝜇1, . . . , 𝜇𝑛⟩ = f(𝜇1, . . . , 𝜇𝑛) and fM⟨𝜈1, . . . , 𝜈𝑛⟩ = f(𝜈1, . . . , 𝜈𝑛), hence
f(𝜇1, . . . , 𝜇𝑛) = f(𝜈1, . . . , 𝜈𝑛), so 𝜇′ = 𝜇𝑖 = 𝜈𝑖 = 𝜈 ′. �

F)Definition. For any delta-semitermoid 𝜏 over |M| we are going to
define a set v𝛿(𝜏), recursively on 𝜏 .

(1) For any 𝜇 ∈ |M|, v𝛿(p𝜇q) = {𝜇}.
(2) v𝛿(△𝜅) = M𝜅.
(3) If f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and

𝜏1, . . . , 𝜏𝑛 are delta-termoids over |M| of respective sorts 𝜅1, . . . , 𝜅𝑛, then
v𝛿(f(𝜏1, . . . , 𝜏𝑛)) = {fM⟨𝜇1, . . . , 𝜇𝑛⟩ : 𝜇1 ∈ v𝛿(𝜏1), . . . , 𝜇𝑛 ∈ v𝛿(𝜏𝑛)}.

(4) If f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and 𝜏 is a delta-
semitermoid over |M| of sort 𝜆, then v𝛿(f

−1
𝑖 (𝜏)) is the set of all 𝜇𝑖 ∈ M𝜅𝑖 ,

for which there exist 𝜇1, . . . , 𝜇𝑖−1, 𝜇𝑖+1, . . . , 𝜇𝑛 belonging to suitable carriers
of M, such that fM⟨𝜇1, . . . , 𝜇𝑛⟩ ∈ v𝛿(𝜏).

(5) If 𝑛 is a natural number and 𝜏 is a delta-termoid over |M|, then
v𝛿(p𝑛q+ 𝜏) = {𝜇 : there exists 𝜇′ ∈ v𝛿(𝜏) such that sim𝑛(𝜇, 𝜇′)}.

Our aim is to prove that v𝛿(𝜏) = 𝜏PM for any delta-termoid 𝜏 .

G)Lemma. v𝛿(p𝑛q + 𝜏) ⊆ v𝛿(p𝑛+ 1q + 𝜏) for any natural number 𝑛
and delta-semitermoid 𝜏 over |M|.

Proof. According to definition (C), sim𝑛(𝜇′, 𝜇′′) implies sim∘
𝑛+1(𝜇

′, 𝜇′′).
But sim𝑛+1 is a transitive closure of sim∘

𝑛+1, so sim𝑛(𝜇′, 𝜇′′) implies
sim𝑛+1(𝜇

′, 𝜇′′). After this observation, a quick inspection of definition (F5)
reveals that v𝛿(p𝑛q+ 𝜏) ⊆ v𝛿(p𝑛+ 1q+ 𝜏). �

H)Lemma. Val𝛿M 𝜏 = v𝛿(𝜏) for any gamma-semitermoid 𝜏 over |M|.
77See (14L) for the definition of the notion “structure of terms”.
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Proof. According to definition (25Q), Val𝛿M 𝜏 is equal to the union of
the sets of the values of all embraced by 𝜏 gamma-termoids. According
to (25F), 𝜏 is the only embraced by 𝜏 gamma-semitermoid. Consequently,
we have to prove that the set of the values of the gamma-semitermoid 𝜏
(according to definition 24H) is equal to v𝛿(𝜏). A simple comparison of
definition (24H) and definition (F) is enough to tell us that this is so because
the only significant difference between both definition is that (F) defines
interpretation of the “plus” sign and (24H) does not, but the “plus” sign
does not occur in gamma-semitermoids. �

I)Lemma. Val𝛿M 𝜏 ⊆ v𝛿(𝜏) for any delta-termoid 𝜏 over |M|.

Proof. According to definition (25Q), Val𝛿M 𝜏 is equal to the union of the
sets of the values of all embraced by 𝜏 gamma-termoids. Consequently, it
will be enough to prove that if a gamma-semitermoid 𝜎 is embraced by a
delta-semitermoid 𝜏 , then all elements of the set of the values of 𝜎 belong
to v𝛿(𝜏). We are going to do this by induction on definition (25E).

If 𝜏 is a gamma-semitermoid and 𝜎 = 𝜏 , then (H) tells us what we need.
If 𝜎 is embraced by p0q+𝜏 because 𝜎 is embraced by 𝜏 , then by induction

hypothesis all elements of the set of the values of 𝜎 in M belong to v𝛿(𝜏).
On the other hand, according to (C1) and (C3), sim0(𝜇

′, 𝜇′′) is equivalent
to 𝜇′ = 𝜇′′, so according to (F5), v𝛿(p0q+ 𝜏) = v𝛿(𝜏).

If 𝜎 is embraced by p𝑛+ 1q + 𝜏 because 𝜎 is embraced by p𝑛q + 𝜏 ,
then by induction hypothesis, all elements of the set of the values of 𝜎
in M belong to v𝛿(p𝑛q + 𝜏). On the other hand, according to (I),
v𝛿(p𝑛q+ 𝜏) ⊆ v𝛿(p𝑛+ 1q+ 𝜏).

Let f(𝜎1, . . . , 𝜎𝑛) be embraced by f(𝜏1, . . . , 𝜏𝑛) because 𝜎𝑖 is embraced
by 𝜏𝑖 for any 𝑖 ∈ {1, . . . , 𝑛}. Let 𝐴𝑖 be the set of the values of 𝜎𝑖 in M.
By induction hypothesis, 𝐴𝑖 ⊆ v𝛿(𝜏𝑖). According to definition (24H3),
the set of the values of f(𝜎1, . . . , 𝜎𝑛) in M is equal to {fM⟨𝜇1, . . . , 𝜇𝑛⟩ :
𝜇1 ∈ 𝐴1, . . . , 𝜇𝑛 ∈ 𝐴𝑛}. On the other hand, according to definition (F3),
v𝛿(f(𝜏1, . . . , 𝜏𝑛)) is equal to {fM⟨𝜇1, . . . , 𝜇𝑛⟩ : 𝜇1 ∈ v𝛿(𝜏1), . . . , 𝜇𝑛v𝛿(𝜏𝑛)}.

Let f−1
𝑖 (𝜎′) be embraced by f−1

𝑖 (𝜏 ′) because 𝜎′ is embraced
by 𝜏 ′. Let 𝐴 be the set of the values of 𝜎′ in M. By in-
duction hypothesis, 𝐴 ⊆ v𝛿(𝜏

′). According to definition (24H4),
the set of the values of f−1

𝑖 (𝜎′) in M is equal to {𝜇𝑖 :
there exist 𝜇1, . . . , 𝜇𝑖−1, 𝜇𝑖+1, . . . , 𝜇𝑛, such that fM⟨𝜇1, . . . , 𝜇𝑛⟩ ∈ 𝐴}. On
the other hand, according to definition (F3), v𝛿(f(𝜏1, . . . , 𝜏𝑛)) is equal to
the set of all 𝜇𝑖 for which there exist 𝜇1, . . . , 𝜇𝑖−1, 𝜇𝑖+1, . . . , 𝜇𝑛, such that
fM⟨𝜇1, . . . , 𝜇𝑛⟩ ∈ v𝛿(𝜏

′).
Let f be a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and let f−1

𝑖 (𝜎′) be
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embraced by p𝑛+ 1q + 𝜏 because 𝜎 is embraced by p𝑛+ 1q + 𝜏 and 𝜎′ is
embraced by p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛).

Suppose that 𝜇 belongs to the set of the values of f−1
𝑖 (𝜎′) in M. Ac-

cording to definition (24H4), there exist 𝜇1, . . . , 𝜇𝑛 belonging to suitable
carriers of M, such that 𝜇 = 𝜇𝑖 and fM⟨𝜇1, . . . , 𝜇𝑛⟩ belongs to the set
of the values of 𝜎′ in M. By induction hypothesis,78 fM⟨𝜇1, . . . , 𝜇𝑛⟩ be-
longs to v𝛿(p𝑛q + f(△𝜅1 , . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛)). According to def-

inition (F), there exist 𝜈1, . . . , 𝜈𝑛 belonging to suitable carriers of M, such
that 𝜈𝑖 ∈ v𝛿(𝜎) and sim𝑛(fM⟨𝜇1, . . . , 𝜇𝑛⟩, fM⟨𝜈1, . . . , 𝜈𝑛⟩) is true. Now, from
definition (C2) we obtain that sim𝑛+1(𝜇𝑖, 𝜈𝑖) is true, i.e. that sim𝑛+1(𝜇, 𝜈𝑖)
is true.

On the other hand, since 𝜎 is a gamma-semitermoid, from (H) we obtain
that 𝜈𝑖 belongs to the set of the values of 𝜎 in M. By induction hypothesis,79

𝜈𝑖 belongs to v𝛿(p𝑛+ 1q + 𝜏). According to definition (F5), there exists
𝜈 ∈ v𝛿(𝜏), such that sim𝑛+1(𝜈𝑖, 𝜈) is true. From sim𝑛+1(𝜇, 𝜈𝑖), sim𝑛+1(𝜈𝑖, 𝜈)
and the transitivity of the relation sim𝑛+1 we obtain that sim𝑛+1(𝜇, 𝜈) is
true. According to definition (F5), 𝜇 ∈ v𝛿(p𝑛+ 1q+ 𝜏). �

J)Lemma. Given a sort 𝜅 and 𝜇′, 𝜇′′ ∈ M𝜅:
(1) If sim∘

𝑛(𝜇′, 𝜇′′), then there exist 𝜇1, . . . , 𝜇𝑘 and natural numbers
𝑛1, . . . , 𝑛𝑘 ∈ {1, . . . , 𝑛}, such that 𝜇′ = 𝜇′

1, 𝜇′′ = 𝜇′′
𝑙 and for any

𝑖 ∈ {1, . . . , 𝑘 − 1}, sim∘
𝑛𝑖

(𝜇𝑖, 𝜇𝑖+1) is true and sim𝑛𝑖−1(𝜇𝑖, 𝜇𝑖+1) is not true.
(2) If sim𝑛(𝜇′, 𝜇′′), then there exist 𝜇1, . . . , 𝜇𝑘 and natural numbers

𝑛1, . . . , 𝑛𝑘 ∈ {1, . . . , 𝑛}, such that 𝜇′ = 𝜇′
1, 𝜇′′ = 𝜇′′

𝑙 and for any
𝑖 ∈ {1, . . . , 𝑘 − 1}, sim∘

𝑛𝑖
(𝜇𝑖, 𝜇𝑖+1) is true and sim𝑛𝑖−1(𝜇𝑖, 𝜇𝑖+1) is not true.

Proof. We are going to prove both conditions of the Lemma by induction
on 𝑛. It will be enough to prove only (1), because sim𝑛 is a transitive closure
of sim∘

𝑛, so (2) follows from (1) for any particular 𝑛.
When 𝑛 = 0, sim∘

𝑛(𝜇′, 𝜇′′) implies that 𝜇′ = 𝜇′′, so we can use 𝑘 = 1 and
𝜇1 = 𝜇′ = 𝜇′′.

Suppose the condition of the Lemma is true for 𝑛. We have to prove it
for 𝑛+ 1. If sim∘

𝑛(𝜇′, 𝜇′′) is true, we obtain the required from the induction
hypothesis. Otherwise, we can use 𝑘 = 2, 𝜇1 = 𝜇′, 𝜇2 = 𝜇′′ and 𝑛1 = 𝑛+1. �

K)Lemma. Given a natural number 𝑛 and gamma-semitermoid 𝜏
over |M|, if 𝜇′ ∈ v𝛿(𝜏) and sim𝑛(𝜇, 𝜇′) is true, then there exists an embraced
by p𝑛q+𝜏 gamma-semitermoid 𝜎, such that 𝜇 belongs to the set of the values
of 𝜎 in M.

78About 𝜎′ being embraced by p𝑛q+ f(△𝜅1
, . . . ,△𝜅𝑖−1

, 𝜎,△𝜅𝑖+1
, . . . ,△𝜅𝑛

).
79About 𝜎 being embraced by p𝑛 + 1q+ 𝜏 .
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Proof. According to (J2), whenever sim𝑛(𝜈 ′, 𝜈 ′′) is true, there exist some
𝜈1, . . . , 𝜈𝑚, such that 𝜈 ′ = 𝜈1, 𝜈 ′′ = 𝜈𝑚 and for any 𝑖 ∈ {1, . . . ,𝑚− 1}
there exists some 𝑘 ∈ {1, . . . , 𝑛}, such that sim∘

𝑘(𝜈𝑖, 𝜈𝑖+1) is true and
sim𝑘−1(𝜈𝑖, 𝜈𝑖+1) is not true. Let us call the smallest possible number 𝑚
𝑛-distance from 𝜈 ′ to 𝜈 ′′. Notice that when 𝑚 ≥ 1, sim𝑛(𝜈2, 𝜈𝑚) is true and
the 𝑛 distance from 𝜈2 to 𝜈𝑚 = 𝜈 ′′ is smaller than the 𝑛-distance from 𝜈 ′

to 𝜈 ′′.80

We are going to prove the Lemma by induction on 𝜔.𝑛+𝑚, where 𝑚 is
the 𝑛-distance from 𝜇 to 𝜇′ and 𝜔 is the smallest infinite ordinal.

When 𝑛 = 0, notice that sim𝑛(𝜇, 𝜇′) implies that 𝜇 = 𝜇′. On the other
hand, when the 𝑛-distance from 𝜇 to 𝜇′ is 0, then, again, 𝜇 = 𝜇′. In both
cases, from 𝜇 = 𝜇′ it follows that 𝜇 ∈ v𝛿(𝜏), so (H) implies that 𝜇 ∈ Val𝛿M 𝜏 ,
hence from definition (25Q) we obtain that there exists an embraced by 𝜏
gamma-semitermoid 𝜎, such that 𝜇 belongs to the set of the values of 𝜎
in M. According to definition (25E2), 𝜎 is embraced by p0q+ 𝜏 as well.

This completes the proof for the case when 𝑛 = 0 or the 𝑛-distance from
𝜇 to 𝜇′ is 0. In the following we will assume that both 𝑛 and the 𝑛-distance
from 𝜇 to 𝜇′ are greater than or equal to 1.

The definition of 𝑛-distance implies that there exists some 𝜇′′ and
a natural number 𝑘 ∈ {1, . . . , 𝑛}, such that sim∘

𝑘(𝜇, 𝜇
′′) is true,

sim𝑘−1(𝜇, 𝜇
′′) is not true, sim𝑛(𝜇′′, 𝜇) is true and the 𝑛-distance from 𝜇′′

to 𝜇′ is strictly smaller than the 𝑛-distance from 𝜇 to 𝜇′.
Since sim𝑛(𝜇′′, 𝜇) is true and the 𝑛-distance from 𝜇′′ to 𝜇′ is strictly

smaller than the 𝑛-distance from 𝜇 to 𝜇′, by induction hypothesis we obtain
an embraced by p𝑛q + 𝜏 gamma-semitermoid 𝜎′, such that 𝜇′′ belongs to
the set of the values of 𝜎′ in M. According to (25F), 𝜎′ is embraced by 𝜎′,
so 𝜇′′ ∈ Val𝛿M 𝜎′, hence from (H) it follows that 𝜇′′ ∈ v𝛿(𝜎

′).
Since sim∘

𝑘(𝜇, 𝜇
′′) is true but sim𝑘−1(𝜇, 𝜇

′′) is not true, defini-
tion (C2) implies that there exists an accessible functional sym-
bol f of type ⟨⟨𝜅1, . . . , 𝜅𝑚⟩, 𝜆⟩, a natural number 𝑗 and some
𝜇1, . . . , 𝜇𝑚 and 𝜇′′

1, . . . , 𝜇
′′
𝑚 belonging to suitable carriers of M, such

that 𝜇 = 𝜇𝑗, 𝜇′′ = 𝜇′′
𝑗 and sim𝑛−1(f

M⟨𝜇1, . . . , 𝜇𝑚⟩, fM⟨𝜇′′
1, . . . , 𝜇

′′
𝑚⟩) is

true. Since 𝜇′′ ∈ v𝛿(𝜎
′) and 𝜇′′ = 𝜇′′

𝑗 , fM⟨𝜇′′
1, . . . , 𝜇

′′
𝑚⟩ belongs to

v𝛿(f(△𝜅1 , . . . ,△𝜅𝑗−1
, 𝜎′,△𝜅𝑗+1

, . . . ,△𝜅𝑚)).81 By induction hypothesis, there
exists an embraced by p𝑛− 1q + f(△𝜅1 , . . . ,△𝜅𝑗−1

, 𝜎′,△𝜅𝑗+1
, . . . ,△𝜅𝑚)

gamma-semitermoid 𝜎′′, such that fM⟨𝜇1, . . . , 𝜇𝑚⟩ belongs to the set of
the values of 𝜎′′ in M.

80Indeed, sim∘
𝑘(𝜈𝑖, 𝜈𝑖+1) implies sim𝑘(𝜈𝑖, 𝜈𝑖+1), which implies sim∘

𝑘+1(𝜈𝑖, 𝜈𝑖+1), so also
sim𝑘+1(𝜈𝑖, 𝜈𝑖+1), and so on, hence sim∘

𝑛(𝜈𝑖, 𝜈𝑖+1).
81Since f is accessible, there exist terms of sorts 𝜅1, . . . , 𝜅𝑚, so we are permitted to

use the symbols △𝜅1 , . . . ,△𝜅𝑚 .
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Since 𝜎′ is embraced by p𝑛q + 𝜏 and 𝜎′′ is embraced by
p𝑛− 1q + f(△𝜅1 , . . . ,△𝜅𝑗−1

, 𝜎′,△𝜅𝑗+1
, . . . ,△𝜅𝑚), definition (25E6) implies

that f−1
𝑗 (𝜎′′) is embraced by p𝑛q + 𝜏 . It only remains to notice that 𝜇 be-

longs to the set of the values of f−1
𝑗 (𝜎′′). This is so because fM⟨𝜇1, . . . , 𝜇𝑚⟩

belongs to the set of the values of 𝜎′′ in M and 𝜇 = 𝜇𝑗. �

L)Lemma. If the gamma-semitermoid 𝜎 is embraced by 𝜏 and the
gamma-semitermoid 𝜌 is embraced by p𝑛q+𝜎, then 𝜌 is embraced by p𝑛q+𝜏 .

Proof. Suppose that 𝜎 is embraced by 𝜏 and 𝜌 is embraced by p𝑛q+𝜎. We
are going to prove by induction on definition (25E) the following statement:

If 𝜌′ is embraced by 𝜏 ′, then if 𝜏 ′ = p𝑚q + 𝜎 for some natural
number 𝑚, then 𝜌′ is embraced by p𝑚q+ 𝜏 .

From this we obtain the required taking 𝜌′ = 𝜌 and 𝜏 ′ = p𝑛q+ 𝜎.
Now we are going to consider cases regarding which item of defini-

tion (25E) has been used to prove that 𝜌′ is embraced by 𝜏 ′.
(1) In this case 𝜏 ′ is a gamma-semitermoid, so it can not be equal

to p𝑚q+ 𝜎.
(2) In this case 𝜏 ′ = p0q + 𝜎 and 𝜌′ is embraced by 𝜏 ′ because 𝜌′ is

embraced by 𝜎. But 𝜎 is a gamma-semitermoid, so according to (25F),
𝜌′ = 𝜎, hence 𝜌′ is embraced by 𝜏 , so by (25E2), 𝜌′ is embraced by p0q+ 𝜏 .

(3) In this case 𝜏 ′ = p𝑛+ 1q+ 𝜎 and 𝜌′ is embraced by 𝜏 ′ because 𝜌′ is
embraced by p𝑛q+ 𝜎. By induction hypothesis, 𝜌′ is embraced by p𝑛q+ 𝜏 ,
so by (25E3), 𝜌′ is embraced by p𝑛+ 1q+ 𝜏 .

(4) and (5) In these cases 𝜏 ′ can not be equal to p𝑚q+ 𝜎.
(6) In this case 𝜏 ′ = p𝑛+ 1q+𝜎 and 𝜌′ is embraced by 𝜏 ′ because there

exist gamma-semitermoids 𝜎′ and 𝜎′′, an accessible functional symbol f

and sorts 𝜅1, . . . , 𝜅𝑙, such that 𝜌′ = f−1
𝑗 (𝜎′′), 𝜎′ is embraced by p𝑛+ 1q+ 𝜎

and 𝜎′′ is embraced by p𝑛q + f(△𝜅1 , . . . ,△𝜅𝑗−1
, 𝜎′,△𝜅𝑗+1

, . . . ,△𝜅𝑙). In this
case, by induction hypothesis,82 𝜎′ is embraced by p𝑛+ 1q + 𝜏 . Since 𝜎′′

is embraced by p𝑛q+ f(△𝜅1 , . . . ,△𝜅𝑗−1
, 𝜎′,△𝜅𝑗+1

, . . . ,△𝜅𝑙), from (25E6) we
obtain that 𝜌′ = f−1

𝑗 (𝜎′′) is embraced by p𝑛+ 1q+ 𝜏 . �

M)Lemma. v𝛿(𝜏) ⊆ Val𝛿M 𝜏 for any delta-termoid 𝜏 over |M|.

Proof. According to definition (25Q), it will be enough to prove that for
any delta-semitermoid 𝜏 and for any 𝜇 ∈ v𝛿(𝜏), there exists an embraced
by 𝜏 gamma-semitermoid 𝜎, such that 𝜇 belongs to the set of the values
of 𝜎 in M. We are going to prove this by induction on 𝜏 .

82About 𝜎′ being embraced by p𝑛 + 1q+ 𝜎.
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We are going to consider cases with respect to the form of 𝜏 according
to definition (25C).

If 𝜏 = p𝜇q for some 𝜇 ∈ |M|, then 𝜏 is not just a delta-semitermoid
but also a gamma-semitermoid, so according to (25F), 𝜏 is embraced by 𝜏 .
According to (24H), the set of the values of the gamma-semitermoid p𝜇q
is {𝜇}. This set, however, is equal to v𝛿(p𝜇q) = v𝛿(𝜏).

If 𝜏 = △𝜅 for some sort 𝜅, then 𝜏 is not just a delta-semitermoid but also
a gamma-semitermoid, so according to (25F), 𝜏 is embraced by 𝜏 . According
to (24H), the set of the values of the gamma-semitermoid △𝜅 is M𝜅. This
set, however, is equal to v𝛿(△𝜅) = v𝛿(𝜏).

If 𝜏 = f(𝜏1, . . . , 𝜏𝑛) and 𝜇 ∈ v𝛿(𝜏), then 𝜇 = fM⟨𝜇1, . . . , 𝜇𝑛⟩ for
some 𝜇1, . . . , 𝜇𝑛, such that 𝜇𝑖 belongs to the set of the values of 𝜏𝑖 in M
for any 𝑖 ∈ {1, . . . , 𝑛}. By induction hypothesis, there exist gamma-
semitermoids 𝜎1, . . . , 𝜎𝑛, embraced, respectively, by 𝜏1, . . . , 𝜏𝑛, such that
𝜇𝑖 belongs to the set of the values of 𝜎𝑖 in M for any 𝑖 ∈ {1, . . . , 𝑛}. Let
𝜎 = f(𝜎1, . . . , 𝜎𝑛). According to (25E4), 𝜎 is embraced by 𝜏 and according
to (24H), 𝜇 = fM⟨𝜇1, . . . , 𝜇𝑛⟩ belongs to the set of the values of 𝜎.

If 𝜏 = f−1
𝑖 (𝜏 ′) for some 𝑛-ary functional symbol f and 𝜇 ∈ v𝛿(𝜏),

then there exist 𝜇1, . . . , 𝜇𝑛 belonging to suitable carriers of M, such that
𝜇 = 𝜇𝑖 and fM⟨𝜇1, . . . , 𝜇𝑛⟩ ∈ v𝛿(𝜏

′). By induction hypothesis, there exists a
gamma-semitermoid 𝜎′, embraced by 𝜏 ′, such that fM⟨𝜇1, . . . , 𝜇𝑛⟩ belongs
to the set of the values of 𝜎′ in M. Let 𝜎 = f−1

𝑖 (𝜎′). According to (25E5),
𝜎 is embraced by 𝜏 and according to (24H), 𝜇 = 𝜇𝑖 belongs to the set of
the values of 𝜎.

Let 𝜏 = p𝑛q+ 𝜏 ′. Then for any 𝜇 ∈ v𝛿(𝜏) there exists 𝜇′ ∈ v𝛿(𝜏
′), such

that sim𝑛(𝜇, 𝜇′) is true. By induction hypothesis, there is an embraced
by 𝜏 ′ gamma-semitermoid 𝜎′, such that 𝜇′ belongs to the set of the values
of 𝜎′ in M. According to definition (25Q), 𝜇′ ∈ Val𝛿M 𝜎′, so (25F) implies
that 𝜇′ ∈ v𝛿(𝜎

′), hence (K) implies that there is an embraced by p𝑛q + 𝜎′

gamma-semitermoid, such that 𝜇 belongs to the set of its values in M, so
(L) implies that there is an embraced by p𝑛q+ 𝜏 gamma-semitermoid, such
that 𝜇 belongs to the set of its values in M. �

N)Proposition. v𝛿(𝜏) = Val𝛿M 𝜏 for any delta-termoid 𝜏 over |M|.

Proof. See (I) and (M). �

O)Definition. For any epsilon-termoid p𝑛q+ 𝜏 over |M| we are going
to define a set v𝜀(p𝑛q+ 𝜏), recursively on 𝜏 .

(1) For any 𝜇 ∈ |M|, sort 𝜅 and 𝜇 ∈ M𝜅, v𝜀(p𝑛q+ p𝜇q) is the set of all
𝜈 ∈ M𝜅, such that sim𝑛(𝜈, 𝜇) is true.

(2) For any natural number 𝑛, functional symbol f of type
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⟨⟨𝜅1, . . . , 𝜅𝑚⟩, 𝜆⟩ and terms 𝜏1, . . . , 𝜏𝑚 over |M| of respective sorts
𝜅1, . . . , 𝜅𝑚, v𝜀(p𝑛q+f(𝜏1, . . . , 𝜏𝑚) is the set of all 𝜈 ∈ M𝜆, such that for some
𝜇1 ∈ v𝜀(p𝑛+ 1q + 𝜏1), 𝜇2 ∈ v𝜀(p𝑛+ 1q + 𝜏2), . . . , 𝜇𝑚 ∈ v𝜀(p𝑛+ 1q + 𝜏𝑚),
sim𝑛(𝜈, fM⟨𝜇1, . . . , 𝜇𝑚⟩) is true.

P)Proposition. v𝜀(p𝑛q+𝜏) = Val𝜀M(p𝑛q+𝜏) for any epsilon-termoid
p𝑛q+ 𝜏 over |M|.

Proof. According to (N) and definition (26R), we have to prove that
v𝜀(p𝑛q+ 𝜏) = v𝛿(c(p𝑛q+ 𝜏)). We are going to do this by induction on 𝜏 .

According to definitions (O1), (F1) and (26D1), when 𝜏 = p𝜇q for some
𝜇 ∈ |M|, then v𝜀(p𝑛q + 𝜏) = v𝜀(p𝑛q + p𝜇q) = {𝜈 : sim𝑛(𝜈, 𝜇)} = {𝜈 :
sim𝑛(𝜈, v𝛿(p𝜇q))} = v𝛿(p𝑛q+ p𝜇q) = v𝛿(c(p𝑛q+ p𝜇q)) = v𝛿(c(p𝑛q+ 𝜏)).

Now, consider the case when 𝜏 = f(𝜏1, . . . , 𝜏𝑚). According to (O2), the
induction hypothesis and (F),

v𝜀(p𝑛q+ 𝜏) =

= v𝜀(p𝑛q+ f(𝜏1, . . . , 𝜏𝑚))

= {𝜈 : sim𝑛(𝜈, fM⟨𝜇1, . . . , 𝜇𝑚⟩) for some
𝜇1 ∈ v𝜀(p𝑛+ 1q+ 𝜏1), . . . , 𝜇𝑚 ∈ v𝜀(p𝑛+ 1q+ 𝜏𝑚)}

= {𝜈 : sim𝑛(𝜈, fM⟨𝜇1, . . . , 𝜇𝑚⟩) for some
𝜇1 ∈ v𝛿(c(p𝑛+ 1q+ 𝜏1)), . . . , 𝜇𝑚 ∈ v𝛿(c(p𝑛+ 1q+ 𝜏𝑚))}

= v𝛿(p𝑛q+ f(c(p𝑛+ 1q+ 𝜏1), . . . , c(p𝑛+ 1q+ 𝜏𝑚)))

Since 𝜏1, . . . , 𝜏𝑚 are terms, according to (26M2), c(𝜏𝑖) has the
form p0q + 𝜎𝑖 for any 𝑖 ∈ {1, . . . ,𝑚}. Consequently, according
to (26D2), c(f(𝜏1, . . . , 𝜏𝑚)) = p0q + f(1 ⊕ c(𝜏1), . . . , 1 ⊕ c(𝜏𝑚)),
so according to (26D3), c(p𝑛q + 𝜏) = c(p𝑛q + f(𝜏1, . . . , 𝜏𝑚)) =
p𝑛q+ f((𝑛+ 1) ⊕ c(𝜏1), . . . , (𝑛+ 1) ⊕ c(𝜏𝑚)). According to (26M8), this
is equal to p𝑛q + f(c(p𝑛+ 1q + 𝜏1), . . . , c(p𝑛+ 1q + 𝜏𝑚)). Therefore,
the last expression in the above displayed sequence of equalities is equal
to v𝛿(c(p𝑛q+ 𝜏)). �

Q)Corollary. Given a term 𝜏 , if 𝜇 ∈ Val𝜀M(p𝑛q+ 𝜏) and sim𝑛(𝜈, 𝜇) is
true, then 𝜈 ∈ Val𝜀M(p𝑛q+ 𝜏).

Proof. If 𝜏 = p𝜇′q is a name, then according to (O1), sim𝑛(𝜇, 𝜇′) is true.
But sim𝑛 is a transitive relation, so sim𝑛(𝜈, 𝜇) is also true, hence again
by (O1), 𝜈 ∈ Val𝜀M(p𝑛q+ 𝜏).

If 𝜏 = f(𝜏1, . . . , 𝜏𝑚), then according to (O2), there exist some
𝜇1 ∈ Val𝜀M(p𝑛+ 1q+ 𝜏1), . . . , 𝜇𝑚 ∈ Val𝜀M(p𝑛+ 1q+ 𝜏𝑚), such that
sim𝑛(𝜇, fM⟨𝜇1, . . . , 𝜇𝑚⟩) is true. But sim𝑛 is a transitive rela-
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tion, so sim𝑛(𝜈, fM⟨𝜇1, . . . , 𝜇𝑚⟩) is also true, hence again by (O2),
𝜈 ∈ Val𝜀M(p𝑛q+ 𝜏). �

§28. STRONG REDUCTORS FOR DELTA- AND
EPSILON-TERMOIDS

A)Lemma. (1) For any structure of terms M, delta-termoid 𝜏 over |M|
and a natural number 𝑛, (p𝑛q+ 𝜏)M = 𝜏M.

(2) For any structure of terms M and an epsilon-termoid p𝑛q + 𝜏
over |M|, (p𝑛q+ 𝜏)M = 𝜏 .

Proof. (1) According to the alternative semantics (27F), (p𝑛q+ 𝜏)PM is
the set of all 𝜇, such that sim𝑛(𝜇, 𝜈) is true for some 𝜈 ∈ 𝜏PM. According
to (14N), 𝜏PM = {𝜏M}. Therefore, we only have to prove that sim𝑛(𝜇, 𝜈) is
true if and only if 𝜇 = 𝜈. This follows from (27E).

(2) By induction on 𝜏 . If 𝜏 = p𝜎q for some term 𝜎 ∈ |M|, then according
to the alternative semantics (27O1), (p𝑛q+ 𝜏)PM is the set of all 𝜌 ∈ |M|,
such that sim𝑛(𝜌, 𝜎) is true. According to (27E), sim𝑛(𝜌, 𝜎) is equivalent
to 𝜌 = 𝜎.

If 𝜏 = f(𝜏1, . . . , 𝜏𝑚), then according to the alternative seman-
tics (27O2), there exist 𝜎1, . . . , 𝜎𝑚 belonging to suitable algebraic carriers
of M, such that 𝜎1 ∈ Val𝜀M(p𝑛+ 1q+ 𝜏1), . . . , 𝜎𝑚 ∈ Val𝜀M(p𝑛+ 1q+ 𝜏𝑚)
and sim𝑛(𝜈, fM⟨𝜎1, . . . , 𝜎𝑚⟩) is true. By induction hypothesis,
𝜎1 = 𝜏1, . . . , 𝜎𝑚 = 𝜏𝑚 and according to (27E), sim𝑛(𝜈, fM⟨𝜎1, . . . , 𝜎𝑚⟩) is
equivalent to 𝜈 = fM⟨𝜎1, . . . , 𝜎𝑚⟩. Therefore, (p𝑛q + 𝜏)M =
fM⟨𝜏1, . . . , 𝜏𝑚⟩ = 𝜏 . �

B)Lemma. Provided we interpret the following identities as identities
between delta-termoidal expressions over a Sort-indexed set 𝑋:

(1) {d(𝜏1, . . . , 𝜏𝑛) ∼ d(𝜎1, . . . , 𝜎𝑛)} is reducible to {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛}
for any logical symbol d and delta-formuloids 𝜙1, . . . , 𝜙𝑛 and 𝜓1, . . . , 𝜓𝑛.

(2) The system {p(p𝜏1q, . . . , p𝜏𝑛q) ∼ p(p𝜎1q, . . . , p𝜎𝑛q)} is reducible
to {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛} for any predicate symbol p and delta-termoids
𝜏1, . . . , 𝜏𝑛 and 𝜎1, . . . , 𝜎𝑛 of suitable sorts.

(3) {𝜏 ∼ 𝜎} is reducible to {𝜏 ∼ p0q+ 𝜎}.
(4) {p𝑛q+ 𝜏 ∼ p𝑘q+ 𝜎} is reducible to {𝜏 ∼ pmax{𝑛, 𝑘}q+ 𝜎}.
(5)The system {f(𝜏1, . . . , 𝜏𝑛) ∼ p𝑘q+ f(𝜎1, . . . , 𝜎𝑛)} is reducible to

{𝜏1 ∼ p𝑘 + 1q+ 𝜎1, . . . , 𝜏𝑛 ∼ p𝑘 + 1q+ 𝜎𝑛} for any functional symbol f,
natural number 𝑘 and delta-termoids 𝜏1, . . . , 𝜏𝑛 and 𝜎1, . . . , 𝜎𝑛 of suitable
sorts.

(6) {𝜏 ∼ p𝑛q+ p𝜉q} is reducible to {p𝜉q ∼ p𝑛q+ 𝜏}.
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(7) {p𝜉q ∼ p𝑛q+ p𝜉q} is reducible to ∅.
(8)An identity of the form d′(𝜏1, . . . , 𝜏𝑛) ∼ d′′(𝜎1, . . . , 𝜎𝑚) where d′

and d′′ are different predicate or logical symbols has no solutions in any
algebra.

(9)An identity of the form f(𝜏1, . . . , 𝜏𝑛) ∼ p𝑘q + g(𝜎1, . . . , 𝜎𝑚) where f

and g are different functional symbols has no solutions in any structure of
terms.

(10)An identity of the form p𝜉q ∼ 𝜏 where p𝜉q occurs in 𝜏 and 𝜏 con-
tains at least one functional symbol has no solutions in any structure of
terms.

Proof. (1) Let A and 𝑣 : 𝑋 → |A| be some arbitrary algebra and an as-
signment function. Then (d(𝜙1, . . . , 𝜙𝑛))J𝑣KPA

𝛿 is the set of all d(𝛼1, . . . , 𝛼𝑛),
such that 𝛼1 ∈ 𝜙1J𝑣KPA

𝛿 , . . . , 𝛼𝑛 ∈ 𝜙𝑛J𝑣KPA
𝛿 and (d(𝜓1, . . . , 𝜓𝑛))J𝑣KPA

𝛿 is
the set of all d(𝛽1, . . . , 𝛽𝑛), such that 𝛽1 ∈ 𝜓1J𝑣KPA

𝛿 , . . . , 𝛽𝑛 ∈ 𝜓𝑛J𝑣KPA
𝛿 .

Since d(𝛼1, . . . , 𝛼𝑛) = d(𝛽1, . . . , 𝛽𝑛) if and only if 𝛼1, . . . , 𝛼𝑛 are re-
spectively equal to 𝛽1, . . . , 𝛽𝑛, 𝑣 is a solution in A of the identity
d(𝜙1, . . . , 𝜙𝑛) ∼ d(𝜓1, . . . , 𝜓𝑛) if and only if 𝑣 is a solution of all of the
identities 𝜙1 ∼ 𝜓1, . . . , 𝜙𝑛 ∼ 𝜓𝑛.

(2) Let A and 𝑣 : 𝑋 → |A| be some arbitrary algebra and an assignment
function. Then (d(p𝜏1q, . . . , p𝜏𝑛q))J𝑣KPA

𝛿 is the set of all d(p𝛼1q, . . . , p𝛼𝑛q),
such that 𝛼1 ∈ 𝜏1J𝑣KPA

𝛿 , . . . , 𝛼𝑛 ∈ 𝜏𝑛J𝑣KPA
𝛿 and (d(p𝜎1q, . . . , p𝜎𝑛q))J𝑣KPA

𝛿 is
the set of all d(p𝛽1q, . . . , p𝛽𝑛q), such that 𝛽1 ∈ 𝜎1J𝑣KPA

𝛿 , . . . , 𝛽𝑛 ∈ 𝜎𝑛J𝑣KPA
𝛿 .

Since d(p𝛼1q, . . . , p𝛼𝑛q) = d(p𝛽1q, . . . , p𝛽𝑛q) if and only if 𝛼1, . . . , 𝛼𝑛 are
respectively equal to 𝛽1, . . . , 𝛽𝑛, 𝑣 is a solution in A of the identity
d(p𝜏1q, . . . , p𝜏𝑛q) ∼ d(p𝜎1q, . . . , p𝜎𝑛q) if and only if 𝑣 is a solution of all
of the identities 𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛.

(3) Let M be an arbitrary structure. According to the alternative se-
mantics (27F), 𝜇 ∈ Val𝛿M(p0q + 𝜎) if and only if there exists 𝜈 ∈ Val𝛿M 𝜎,
such that sim0(𝜇, 𝜈) is true. But sim0(𝜇, 𝜈) is equivalent to 𝜇 = 𝜈, so
Val𝛿M(p0q+ 𝜎) = Val𝛿M 𝜎.

(4) Let A and 𝑣 : 𝑋 → |A| be some arbitrary algebra and an assignment
function. According to the alternative semantics of (27F), (p𝑛q+𝜏)J𝑣KPA

𝛿 is
the set of all 𝛼, such that sim𝑛(𝛼, 𝛼′) is true for some 𝛼′ ∈ 𝜏J𝑣KPA

𝛿 .
Also, (p𝑘q + 𝜎)J𝑣KPA

𝛿 is the set of all 𝛽, such that sim𝑛(𝛽, 𝛽′) is true for
some 𝛽′ ∈ 𝜎J𝑣KPA

𝛿 . Considering that sim𝑛 implies simmax{𝑛,𝑘}, sim𝑘 im-
plies simmax{𝑛,𝑘} and simmax{𝑛,𝑘} is a transitive relation, we can conclude
that if 𝑣 is a solution of the identity p𝑛q + 𝜏 ∼ p𝑘q + 𝜎, then there exist
𝛼 ∈ 𝜏J𝑣KPA

𝛿 and 𝛽 ∈ 𝜎J𝑣KPA
𝛿 , such that simmax{𝑛,𝑘}(𝛽, 𝛼) is true. Conse-

quently, 𝑣 is a solution of 𝜏 ∼ pmax{𝑛, 𝑘}q+ 𝜎.
(5) Let A and 𝑣 : 𝑋 → |A| be some arbitrary algebra of terms
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and an assignment function. According to (A1), 𝑣 is a solu-
tion in A of f(𝜏1, . . . , 𝜏𝑛) ∼ p𝑘q+ f(𝜎1, . . . , 𝜎𝑛) if and only if it
is a solution of f(𝜏1, . . . , 𝜏𝑛) ∼ f(𝜎1, . . . , 𝜎𝑛). But A is a struc-
ture of terms, so (f(𝜏1, . . . , 𝜏𝑛))J𝑣KA𝛿 = f(𝜏1J𝑣KA𝛿 , . . . , 𝜏𝑛J𝑣KA𝛿 ) and
(f(𝜎1, . . . , 𝜎𝑛))J𝑣KA𝛿 = f(𝜎1J𝑣KA𝛿 , . . . , 𝜎𝑛J𝑣KA𝛿 ), hence this is so if and
only if 𝜏1J𝑣KA𝛿 = 𝜎1J𝑣KA𝛿 , . . . , 𝜏1J𝑣KA𝛿 = 𝜎𝑛J𝑣KA𝛿 . According to (A1),
𝜎1J𝑣KA𝛿 = (p𝑘 + 1q + 𝜎1)J𝑣KA𝛿 , . . . , 𝜎𝑛J𝑣KA𝛿 = (p𝑘 + 1q + 𝜎𝑛)J𝑣KA𝛿 ,
hence this is so if and only if 𝑣 is a solution in A of the system
{𝜏1 ∼ p𝑘 + 1q+ 𝜎1, . . . , 𝜏1 ∼ p𝑘 + 1q+ 𝜎𝑛}.

It only remains to see that when A is an arbitrary algebra (not necessar-
ily algebra of terms), any solution of f(𝜏1, . . . , 𝜏𝑛) ∼ p𝑘q+ f(𝜎1, . . . , 𝜎𝑛) is a
solution also of {𝜏1 ∼ p𝑘 + 1q+ 𝜎1, . . . , 𝜏1 ∼ p𝑘 + 1q+ 𝜎𝑛}. Suppose that
𝑣 is a solution in A of f(𝜏1, . . . , 𝜏𝑛) ∼ p𝑘q+ f(𝜎1, . . . , 𝜎𝑛). Then there exist
some 𝜇 and 𝜈, such that 𝜇 ∈ (f(𝜏1, . . . , 𝜏𝑛))J𝑣KPA

𝛿 , 𝜈 ∈ (f(𝜎1, . . . , 𝜎𝑛))J𝑣KPA
𝛿

and sim𝑘(𝜇, 𝜈) is true. In any terminator J𝑣K𝛿 is a homomorphism and,
in the delta-terminator, Val𝛿A is a homomorphism as well (see 25Q). Con-
sequently, J𝑣KPA

𝛿 is a homomorphism. In addition, according to (25L2),
f(𝜏1, . . . , 𝜏𝑛) = fJ𝑋K𝛿⟨𝜏1, . . . , 𝜏𝑛⟩ and f(𝜎1, . . . , 𝜎𝑛) = fJ𝑋K𝛿⟨𝜎1, . . . , 𝜎𝑛⟩.
Therefore, there exist 𝜇1, . . . , 𝜇𝑛 and 𝜈1, . . . , 𝜈𝑛 belonging to suitable carriers
of A, such that 𝜇 = fA⟨𝜇1, . . . , 𝜇𝑛⟩, 𝜈 = fA⟨𝜈1, . . . , 𝜈𝑛⟩, 𝜇1 ∈ 𝜏1J𝑣KPA

𝛿 ,. . . ,
𝜇𝑛 ∈ 𝜏𝑛J𝑣KPA

𝛿 , 𝜈1 ∈ 𝜎1J𝑣KPA
𝛿 ,. . . , 𝜈1 ∈ 𝜎1J𝑣KPA

𝛿 .
Since sim𝑘(𝜇, 𝜈) is true, sim𝑘(f

A⟨𝜇1, . . . , 𝜇𝑛⟩, fA⟨𝜈1, . . . , 𝜈𝑛⟩) is true as
well. According to definition (27C2), sim𝑘+1(𝜇1, 𝜈1), . . . , sim𝑘+1(𝜇𝑛, 𝜈𝑛) are
true, so 𝑣 is a solution in A of {𝜏1 ∼ p𝑘 + 1q+ 𝜎1, . . . , 𝜏1 ∼ p𝑘 + 1q+ 𝜎𝑛}.

(6) Let M and 𝑣 : 𝑋 → |M| be an arbitrary structure and an assign-
ment function. According to the alternative semantics (27F), 𝑣 is a solution
of {𝜏 ∼ p𝑛q+ p𝜉q} if and only if there exists 𝜇, such that 𝜇 ∈ Val𝛿M 𝜏
and sim𝑛(𝜇, 𝑣𝜉) is true. This is so if and only if there exists 𝜇, such that
𝜇 ∈ Val𝛿M 𝜏 and sim𝑛(𝑣𝜉, 𝜇) is true. According to the alternative seman-
tics (27F), this is so if and only if 𝑣 is a solution of {p𝜉q ∼ p𝑛q+ 𝜏}.

(7) is valid because any assignment function 𝑣 : 𝑋 → |A| is a solution
of {p𝜉q ∼ p𝑛q+ p𝜉q}.

(8) Let A and 𝑣 : 𝑋 → |A| be some arbitrary algebra and an as-
signment function. According to (25Q) and (25M), J𝑣KPM

𝛿 is a homomor-
phism, so from (12C2) it follows that all elements of (d′(𝜏1, . . . , 𝜏𝑛))J𝑣KPM

𝛿

have the form d′(. . . ) and all elements of (d′′(𝜎1, . . . , 𝜎𝑛))J𝑣KPM
𝛿 have the

form d′′(. . . ).
(9) Let M and 𝑣 : 𝑋 → |M| be some arbitrary structure of terms

and an assignment function. According to (25Q) and (25M), J𝑣KPM
𝛿 is

a homomorphism, so f(𝜏1, . . . , 𝜏𝑛)J𝑣KM𝛿 = (fJ𝑋K𝛿⟨𝜏1, . . . , 𝜏𝑛⟩)J𝑣KM𝛿 =
fM⟨𝜏1J𝑣KM𝛿 , . . . , 𝜏𝑛J𝑣KM𝛿 ⟩ = f(𝜏1J𝑣KM𝛿 , . . . , 𝜏𝑛J𝑣KM𝛿 ), hence f(𝜏1, . . . , 𝜏𝑛)J𝑣KM𝛿
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has the form f(. . . ). Analogously, g(𝜎1, . . . , 𝜎𝑚)J𝑣KM𝛿 has the form g(. . . ),
hence, according to (A1), (p𝑘q+ g(𝜎1, . . . , 𝜎𝑚))J𝑣KM𝛿 has the form g(. . . ) as
well.

(10) Let M and 𝑣 : 𝑋 → |M| be an arbitrary structure of terms and
an assignment function. By induction on 𝜏 we are going to prove that
𝜏J𝑣KM𝛿 contains more symbols than p𝜉qJ𝑣KM𝛿 = 𝑣𝜉.

𝜏 can not be a name because it has to contain at least one functional
symbol.

If 𝜏 = p𝑘q+𝜎, then 𝜎 has to contain at least one functional symbol and
p𝜉q occurs in 𝜎. By induction hypothesis, 𝜎J𝑣KM𝛿 contains more symbols
than 𝑣𝜉. According to (A1), 𝜏J𝑣KM𝛿 = 𝜎J𝑣KM𝛿 .

If 𝜏 = f(𝜏1, . . . , 𝜏𝑛), then 𝜉 occurs in at least one of the termoids
𝜏1, . . . , 𝜏𝑖. Let 𝜉 occurs in 𝜏𝑖. If 𝜏𝑖 contains at least one functional
symbol, then, by induction hypothesis, 𝜏𝑖J𝑣KM𝛿 contains more symbols
than 𝑣𝜉. Otherwise, 𝜏𝑖 has the form p𝑘1q+ · · · + p𝑘𝑚q+ p𝜉q, so according
to (A1), 𝜏𝑖J𝑣KM𝛿 = p𝜉qJ𝑣KM𝛿 = 𝑣𝜉. In both cases 𝜏𝑖J𝑣KM𝛿 contains at
least as many symbols, as 𝑣𝜉. According to (25M), 𝜏J𝑣KM𝛿 is equal
to f(𝜏1J𝑣KM𝛿 , . . . , 𝜏𝑛J𝑣KM𝛿 ), so 𝜏J𝑣KM𝛿 contains more symbols than 𝑣𝜉. �

C) Let the partial function f𝛿 be defined according to the following rules:
1. If 𝜏 and 𝜎 are delta-termoidal expressions of logical sort, then 𝜏 has

the form d′(. . . ) and 𝜎 has the form d′′(. . . ) for some predicate or
logical symbols d′ and d′′. In this case:

• if d′ ̸= d′′, let f𝛿(𝜏 ∼ 𝜎) be undefined;
• if d′ = d′′, both are logical symbols, 𝜏 = d′(𝜏1, . . . , 𝜏𝑛) and
𝜎 = d′′(𝜎1, . . . , 𝜎𝑚), let f𝛿(𝜏 ∼ 𝜎) = {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛}.83

• if d′ = d′′, both are predicate symbols, 𝜏 = d′(p𝜏1q, . . . , p𝜏𝑛q) and
𝜎 = d′′(p𝜎1q, . . . , p𝜎𝑚q), let f𝛿(𝜏 ∼ 𝜎) = {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛}.

2. If 𝜏 and 𝜎 are delta-termoids and 𝜎 does not have the form p𝑘q + 𝜌,
let f𝛿(𝜏 ∼ 𝜎) = {𝜏 ∼ p0q+ 𝜎}.

3. Let f𝛿(f(𝜏1, . . . , 𝜏𝑛) ∼ p𝑘q+ f(𝜎1, . . . , 𝜎𝑛)) be equal to
{𝜏1 ∼ p𝑘 + 1q+ 𝜎1, . . . , 𝜏𝑛 ∼ p𝑘 + 1q+ 𝜎𝑛}.

4. f𝛿(f(𝜏1, . . . , 𝜏𝑛) ∼ p𝑘q + g(𝜎1, . . . , 𝜎𝑚)) is undefined, if f and g are
different functional symbols.

5. f𝛿(p𝑛q+ 𝜏 ∼ p𝑘q+ 𝜎) = {𝜏 ∼ pmax{𝑛, 𝑘}q+ 𝜎}
6. f𝛿(p𝜉q ∼ p𝑛q+ p𝜉q) = ∅.
7. f𝛿(𝜏 ∼ p𝑛q+ p𝜉q) = {p𝜉q ∼ p𝑛q+ 𝜏}, when 𝜏 is not a name.
83Notice that 𝑛 = 𝑚.
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8. f𝛿(p𝜉q ∼ p𝑛q+ 𝜎) is undefined, when 𝜎 ̸= p𝜉q.
Notice that whenever f𝛿(𝜏 ∼ 𝜎) is defined and 𝜏 ′ ∼ 𝜎′ ∈ f𝛿(𝜏 ∼ 𝜎), 𝜏 ′ con-
tains less symbols than 𝜏 except in the case when 𝜏 and 𝜎 are termoids
and 𝜎 does not have the form p𝑘q + 𝜌. In addition, if 𝜏 and 𝜎 are ter-
moids, then 𝜎′ has the form p𝑘q + 𝜌. Consequently, no infinite sequence
𝜏1 ∼ 𝜎1, 𝜏2 ∼ 𝜎2, 𝜏3 ∼ 𝜎3, . . . , such that 𝜏𝑖+1 ∼ 𝜎𝑖+1 ∈ f𝛿(𝜏𝑖 ∼ 𝜎𝑖) for any 𝑖, is
possible. Also, notice that any identity of the form p𝜉q ∼ 𝜏 , where p𝜉q does
not occur in 𝜏 , is solving. From this and from lemma (B) we can conclude
that f𝛿 is a strong reductor.

D)Definition. Let e𝛿 be the equaliser corresponding to the strong re-
ductor, defined in (C). According to (18Q), e𝛿 is termally sound, termally
complete and near-complete.

E)Lemma. Provided we interpret the following identities as identities
between epsilon-termoidal expressions over a Sort-indexed set 𝑋:

(1) {d(𝜏1, . . . , 𝜏𝑛) ∼ d(𝜎1, . . . , 𝜎𝑛)} is reducible to {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛}
for any logical symbol d and epsilon-formuloids 𝜙1, . . . , 𝜙𝑛 and 𝜓1, . . . , 𝜓𝑛.

(2)The system {p(p𝜏1q, . . . , p𝜏𝑛q) ∼ p(p𝜎1q, . . . , p𝜎𝑛q)} is reducible
to {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛} for any predicate symbol p and epsilon-termoids
𝜏1, . . . , 𝜏𝑛 and 𝜎1, . . . , 𝜎𝑛 of suitable sorts.

(3)The system {p𝑛q+ f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q+ f(𝜎1, . . . , 𝜎𝑚)} is reducible
to {p𝑙 + 1q+ 𝜏1 ∼ p𝑙 + 1q+ 𝜎1, . . . , p𝑙 + 1q+ 𝜏𝑚 ∼ p𝑙 + 1q+ 𝜎𝑚}, where
𝑙 = max{𝑛, 𝑘}, for any functional symbol f, natural numbers 𝑛 and 𝑘 and
terms 𝜏1, . . . , 𝜏𝑚 and 𝜎1, . . . , 𝜎𝑚 of suitable sorts.

(4)The system {p𝑛q+ p𝜉q ∼ p𝑘q+ f(𝜏1, . . . , 𝜏𝑚)} is reducible to
{p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ f(𝜏1, . . . , 𝜏𝑚)} for any functional symbol f,
natural numbers 𝑛 and 𝑘, terms 𝜏1, . . . , 𝜏𝑚 of suitable sorts and 𝜉 ∈ 𝑋.

(5)The system {p𝑛q+ f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q+ p𝜉q} is reducible to
{p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ f(𝜏1, . . . , 𝜏𝑚)} for any functional symbol f,
natural numbers 𝑛 and 𝑘, terms 𝜏1, . . . , 𝜏𝑚 of suitable sorts and 𝜉 ∈ 𝑋.

(6)The system {p𝑛q+ p𝜉q ∼ p𝑘q+ p𝜂q} is reducible to
{p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ p𝜂q} for any natural numbers 𝑛 and 𝑘 and
𝜉, 𝜂 ∈ 𝑋.

(7)The system {p𝑛q+ p𝜉q ∼ p𝑘q+ p𝜉q} is reducible to ∅ for any nat-
ural numbers 𝑛 and 𝑘 and 𝜉 ∈ 𝑋.

(8)An identity of the form d′(𝜏1, . . . , 𝜏𝑛) ∼ d′′(𝜎1, . . . , 𝜎𝑚) where d′

and d′′ are different predicate or logical symbols has no solutions in any
algebra.

(9)An identity of the form p𝑛q + f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q + g(𝜎1, . . . , 𝜎𝑙)
where f and g are different functional symbols has no solutions in any struc-
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ture of terms.
(10)An identity of the form p𝑛q + p𝜉q ∼ p𝑘q + 𝜏 , where p𝜉q occurs

in 𝜏 and 𝜏 contains at least one functional symbol, has no solutions in any
structure of terms.

(11)An identity of the form p𝑛q + 𝜏 ∼ p𝑘q + p𝜉q, where p𝜉q occurs
in 𝜏 and 𝜏 contains at least one functional symbol, has no solutions in any
structure of terms.

Proof. (1) Analogously to the proof of (B1).
(2) Analogously to the proof of (B2).
(3) Let A and 𝑣 : 𝑋 → |A| be some arbitrary algebra of

terms and an assignment function. According to (A2), 𝑣 is a
solution in A of p𝑛q+ f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q+ f(𝜎1, . . . , 𝜎𝑚) if and
only if f(𝜏1[𝑣], . . . , 𝜏𝑚[𝑣]) = f(𝜎1[𝑣], . . . , 𝜎𝑚[𝑣]), that is, if and
only if 𝜏1[𝑣] = 𝜎1[𝑣], . . . , 𝜏𝑚[𝑣] = 𝜎𝑚[𝑣]. Also, according to (A2),
this is so if and only if 𝑣 is a solution in A of the system
{p𝑙 + 1q+ 𝜏1 ∼ p𝑙 + 1q+ 𝜎1, . . . , p𝑙 + 1q+ 𝜏𝑚 ∼ p𝑙 + 1q+ 𝜎𝑚}.

This completes the proof of the termal equivalency of both
systems. It only remains to see that when A is an arbitrary
algebra (not necessarily an algebra of terms), any solution of
p𝑛q+ f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q+ f(𝜎1, . . . , 𝜎𝑚) is a solution also of the sys-
tem {p𝑛+ 1q+ 𝜏1 ∼ p𝑘 + 1q+ 𝜎1, . . . , p𝑛+ 1q+ 𝜏𝑚 ∼ p𝑘 + 1q+ 𝜎𝑚}.

Suppose that 𝑣 : 𝑋 → |A| is a solution in A of the identity
p𝑛q+ f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q+ f(𝜎1, . . . , 𝜎𝑚). Then there exists some 𝜆,
such that 𝜆 ∈ Val𝜀A(p𝑛q + f(𝜏1[𝑣], . . . , 𝜏𝑚[𝑣])) and 𝜆 ∈ Val𝜀A(p𝑘q +
f(𝜎1[𝑣], . . . , 𝜎𝑚[𝑣])). According to the alternative semantics (27O2),
there exist some 𝛼1, . . . , 𝛼𝑚 and 𝛽1, . . . , 𝛽𝑚 belonging to suitable carriers
of A, such that sim𝑛(𝜆, fA⟨𝛼1, . . . , 𝛼𝑚⟩) is true, sim𝑘(𝜆, f

A⟨𝛽1, . . . , 𝛽𝑚⟩) is
true, 𝛼1 ∈ Val𝜀A(p𝑛+ 1q+ 𝜏1[𝑣]), . . . , 𝛼𝑚 ∈ Val𝜀A(p𝑛+ 1q+ 𝜏𝑚[𝑣]), 𝛽1 ∈
Val𝜀A(p𝑘 + 1q+ 𝜎1[𝑣]), . . . , 𝛽𝑚 ∈ Val𝜀A(p𝑘 + 1q+ 𝜎𝑚[𝑣]).

Let 𝑙 = max{𝑛, 𝑘} and pick an arbitrary 𝑖 ∈ {1, . . . ,𝑚}. Then
sim𝑙(𝜆, f

A⟨𝛼1, . . . , 𝛼𝑚⟩) is true and sim𝑙(𝜆, f
A⟨𝛽1, . . . , 𝛽𝑚⟩) is true, so

sim𝑙(f
A⟨𝛼1, . . . , 𝛼𝑚⟩, fA⟨𝛽1, . . . , 𝛽𝑚⟩) is true, hence according to (27C2),

sim𝑙+1(𝛼𝑖, 𝛽𝑖) is true. In addition to this, from 𝛼𝑖 ∈ Val𝜀A(p𝑛+ 1q+ 𝜏𝑖[𝑣]) it
follows that 𝛼𝑖 ∈ Val𝜀A(p𝑙 + 1q+ 𝜏𝑖[𝑣]) and from 𝛽𝑖 ∈ Val𝜀A(p𝑘 + 1q+ 𝜎𝑖[𝑣])
it follows that 𝛽𝑖 ∈ Val𝜀A(p𝑙 + 1q+ 𝜎𝑖[𝑣]), so (27Q) and sim𝑘+1(𝛼𝑖, 𝛽𝑖) imply
that 𝛼𝑖 ∈ Val𝜀A(p𝑙 + 1q+ 𝜎𝑖[𝑣]). Since 𝛼𝑖 belongs both to Val𝜀A(p𝑙 + 1q +
𝜏𝑖[𝑣]) and Val𝜀A(p𝑙 + 1q+𝜎𝑖[𝑣]), 𝑣 is a solution of the identity p𝑙 + 1q+ 𝜏𝑖 ∼
p𝑙 + 1q+ 𝜎𝑖.

(4) Let A and 𝑣 : 𝑋 → |A| be some arbitrary algebra of terms and
an assignment function. According to (A2), 𝑣 is a solution in A of
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p𝑛q+ p𝜉q ∼ p𝑘q+ f(𝜏1, . . . , 𝜏𝑚) if and only if 𝑣𝜉 = f(𝜏1[𝑣], . . . , 𝜏𝑚[𝑣]).
Also, according to (A2), this is so if and only if 𝑣 is a solution in A of
the system p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ f(𝜏1, . . . , 𝜏𝑚).

This completes the proof of the termal equivalency of both sys-
tems. It only remains to see that when A is an arbitrary algebra
(not necessarily an algebra which is a structure of terms), any solu-
tion of p𝑛q+ p𝜉q ∼ p𝑘q+ f(𝜏1, . . . , 𝜏𝑚) is a solution also of the system
p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ f(𝜏1, . . . , 𝜏𝑚).

Suppose that 𝑣 : 𝑋 → |A| is a solution in A of the iden-
tity p𝑛q+ p𝜉q ∼ p𝑘q+ f(𝜏1, . . . , 𝜏𝑚). According to the al-
ternative semantics (27O1), there exists some 𝜆, such that
sim𝑛(𝜆, 𝑣𝜉) is true and 𝜆 ∈ Val𝜀A(p𝑘q + f(𝜏1[𝑣], . . . , 𝜏𝑚[𝑣])). Ac-
cording to (27O2), there exist some 𝛼1, . . . , 𝛼𝑚 belonging to suit-
able carriers of A, such that sim𝑘(𝜆, f

A⟨𝛼1, . . . , 𝛼𝑚⟩) is true,
𝛼1 ∈ Val𝜀A(p𝑘 + 1q+ 𝜏1[𝑣]), . . . , 𝛼𝑚 ∈ Val𝜀A(p𝑘 + 1q+ 𝜏𝑚[𝑣]).

Let 𝑙 = max{𝑛, 𝑘}. Then, sim𝑛(𝜆, 𝑣𝜉) implies sim𝑙(𝜆, 𝑣𝜉) and
sim𝑘(𝜆, f

A⟨𝛼1, . . . , 𝛼𝑚⟩) implies sim𝑙(𝜆, f
A⟨𝛼1, . . . , 𝛼𝑚⟩), hence because of

the transitivity of sim𝑙, sim𝑙(𝑣𝜉, f
A⟨𝛼1, . . . , 𝛼𝑚⟩) also is true. In addition

to this, 𝛼𝑖 ∈ Val𝜀A(p𝑘 + 1q+ 𝜏𝑖[𝑣]) implies that 𝛼𝑖 ∈ Val𝜀A(p𝑙 + 1q+ 𝜏𝑖[𝑣])
for any 𝑖 ∈ {1, . . . ,𝑚}. Consequently, from (27O2) we obtain that
𝑣𝜉 ∈ Val𝜀A(p𝑙q+ f(𝜏1[𝑣], . . . , 𝜏𝑚[𝑣])), so 𝑣 is a solution of the identity
p0q+ p𝜉q ∼ p𝑙q+ f(𝜏1, . . . , 𝜏𝑚).

(5) is analogous to (4).
(6) Let A and 𝑣 : 𝑋 → |A| be some arbitrary algebra of terms and

an assignment function. According to (A2), 𝑣 is a solution in A of
p𝑛q+ p𝜉q ∼ p𝑘q+ p𝜂q if and only if p𝑣𝜉q = p𝑣𝜂q. Also, according
to (A2), this is so if and only if 𝑣 is a solution in A of the system
p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ p𝜂q.

This completes the proof of the termal equivalency of both systems. It
only remains to see that when A is an arbitrary algebra (not necessarily an
algebra which is a structure terms), any solution of p𝑛q+ p𝜉q ∼ p𝑘q+ p𝜂q
is a solution also of the system p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ p𝜂q.

Suppose that 𝑣 : 𝑋 → |A| is a solution in A of the identity
p𝑛q+ p𝜉q ∼ p𝑘q+ p𝜂q. According to the alternative semantics (27O1),
there exists some 𝜆, such that sim𝑛(𝜆, 𝑣𝜉) is true and sim𝑘(𝜆, 𝑣𝜂) is true.
Let 𝑙 = max{𝑛, 𝑘}. Then, sim𝑛(𝜆, 𝑣𝜉) implies sim𝑙(𝜆, 𝑣𝜉) and sim𝑘(𝜆, 𝑣𝜂)
implies sim𝑙(𝜆, 𝑣𝜂),hence because of the transitivity of sim𝑙, sim𝑙(𝑣𝜉, 𝑣𝜂) also
is true. Consequently, from (27O1) we obtain that 𝑣𝜉 belongs both to
Val𝜀A(p0q+ p𝑣𝜉q) and Val𝜀A(p𝑙q+ p𝑣𝜂q), so 𝑣 is a solution of the identity
p0q+ p𝜉q ∼ p𝑙q+ p𝜂q.

(7) is valid because any assignment function 𝑣 : 𝑋 → |A| is a solution
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of {p𝑛q+ p𝜉q ∼ p𝑘q+ p𝜉q}.
(8) Let A and 𝑣 : 𝑋 → |A| be some arbitrary algebra and an as-

signment function. According to (26R), (26O) and (14D), J𝑣KPA
𝜀 is

a quasimorphism, so d′(𝜏1, . . . , 𝜏𝑛)J𝑣KPA
𝜀 = (d′J𝑋K𝜀⟨𝜏1, . . . , 𝜏𝑛⟩)J𝑣KPA

𝜀 =

d′
PA⟨𝜏1J𝑣KPA

𝜀 , . . . , 𝜏𝑛J𝑣KPA
𝜀 ⟩, hence all elements of d′(𝜏1, . . . , 𝜏𝑛)J𝑣KPA

𝜀 have
the form d′(. . . ). Analogously, all elements of d′′(𝜎1, . . . , 𝜎𝑚)J𝑣KPA

𝜀 have the
form d′′(. . . ).

(9) Let M and 𝑣 : 𝑋 → |M| be some arbitrary structure of terms and
an assignment function. According to (26O), (p𝑛q + f(𝜏1, . . . , 𝜏𝑚))J𝑣K𝜀 =
p𝑛q+ f(𝜏1[𝑣], . . . , 𝜏𝑚[𝑣]). According to (A2), (p𝑛q+ f(𝜏1[𝑣], . . . , 𝜏𝑚[𝑣]))M =
f(𝜏1[𝑣], . . . , 𝜏𝑚[𝑣]). Consequently, (p𝑛q + f(𝜏1, . . . , 𝜏𝑚))J𝑣KM𝜀 has the
form f(. . . ). Analogously, (p𝑘q+ g(𝜎1, . . . , 𝜎𝑙))J𝑣KM𝜀 has the form g(. . . ).

(10) Let M and 𝑣 : 𝑋 → |M| be some arbitrary structure of terms and
an assignment function. According to (26O) and (A2), (p𝑛q+ p𝜉q)J𝑣KM𝜀 =
(p𝑛q+p𝑣𝜉q)M = p𝑣𝜉q and (p𝑘q+𝜏)J𝑣KM𝜀 = (p𝑘q+𝜏 [𝑣])M = 𝜏 [𝑣]. Therefore,
𝑣 is a solution of the identity p𝑛q + p𝜉q ∼ p𝑘q + 𝜏 in M if and only if
p𝑣𝜉q = 𝜏 [𝑣]. This, however, is impossible because p𝑣𝜉q occurs in 𝜏 [𝑣] and,
in addition to this, 𝜏 [𝑣] contains at least one functional symbol.

(11) is analogous to (10). �

F) Let the partial function f𝜀 be defined according to the following rules:
1. If 𝜏 and 𝜎 are epsilon-termoidal expressions of logical sort, then 𝜏 has

the form d′(. . . ) and 𝜎 has the form d′′(. . . ) for some predicate or
logical symbols d′ and d′′. In this case:

• if d′ ̸= d′′, let f𝜀(𝜏 ∼ 𝜎) be undefined;
• if d′ = d′′, both are logical symbols, 𝜏 = d′(𝜏1, . . . , 𝜏𝑛) and
𝜎 = d′′(𝜎1, . . . , 𝜎𝑚), let f𝜀(𝜏 ∼ 𝜎) = {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛}.84

• if d′ = d′′, both are predicate symbols, 𝜏 = d′(p𝜏1q, . . . , p𝜏𝑛q) and
𝜎 = d′′(p𝜎1q, . . . , p𝜎𝑚q), let f𝜀(𝜏 ∼ 𝜎) = {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛}.

2. Let f𝜀(p𝑛q + f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q + f(𝜎1, . . . , 𝜎𝑚)) be equal
to {p𝑙 + 1q+ 𝜏1 ∼ p𝑙 + 1q+ 𝜎1, . . . , p𝑙 + 1q+ 𝜏𝑚 ∼ p𝑙 + 1q+ 𝜎𝑚},
where 𝑙 = max{𝑛, 𝑘}.

3. f𝜀(p𝑛q + f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q + g(𝜎1, . . . , 𝜎𝑙)) is undefined if f and g

are different functional symbols.
4. If 𝑛 ̸= 0, let f𝜀(p𝑛q + p𝜉q ∼ p𝑘q + f(𝜏1, . . . , 𝜏𝑚)) be equal to

{p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ f(𝜏1, . . . , 𝜏𝑚)}.
5. Let f𝜀(p𝑛q + f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q + p𝜉q) be equal to

{p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ f(𝜏1, . . . , 𝜏𝑚)}.
84Notice that 𝑛 = 𝑚.
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6. f𝜀(p𝑛q + p𝜉q ∼ p𝑘q + p𝜂q) = {p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ p𝜂q}, if
𝑛 ̸= 0 and 𝜉 ̸= 𝜂.

7. f𝜀(p𝑛q+ p𝜉q ∼ p𝑘q+ p𝜉q) = ∅
8. f𝜀(p0q+ p𝜉q ∼ p𝑘q+ 𝜏) is undefined if 𝜏 ̸= p𝜉q.

Notice that whenever f𝜀(𝜏 ∼ 𝜎) is defined and 𝜏 ′ ∼ 𝜎′ ∈ f𝜀(𝜏 ∼ 𝜎), 𝜏 ′ con-
tains less symbols than 𝜏 except in the case when 𝜏 has the form p𝑛q+ p𝜉q
for some 𝑛 ̸= 0, in which case, however, f𝜀(𝜏

′ ∼ 𝜎′) is undefined. Con-
sequently, no infinite sequence 𝜏1 ∼ 𝜎1, 𝜏2 ∼ 𝜎2, 𝜏3 ∼ 𝜎3, . . . , such that
𝜏𝑖+1 ∼ 𝜎𝑖+1 ∈ f𝜀(𝜏𝑖 ∼ 𝜎𝑖) for any 𝑖, is possible. Also, notice that
according to (26S), Nam𝜀

𝑋 𝜉 = p0q + p𝜉q, so any identity of the form
p0q + p𝜉q ∼ p𝑘q + 𝜏 , where p𝜉q does not occur in 𝜏 , is a solving one.
From this and from lemma (E) we can conclude that f𝜀 is a strong reductor.

G)Definition. Let e𝜀 be the equaliser corresponding to the strong
reductor, defined in (F). According to (18Q), e𝜀 is termally sound, termally
complete and near-complete.
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§29. “ALMOST-EVERYWHERE” IMPLIES “SOME FINITE”

A) In (23Q) we proved that if the positive hyperresolution with clausoids
saturates, then the initial set of clausoids is universally satisfiable in almost
any normal algebra. In this section we are going to prove that if a finite
set of clausoids is universally satisfiable in almost any algebra, then it is
universally satisfiable in some normal algebra with finite carriers.

We start by proving that any finite termal system, unsolvable in some
normal algebra, is unsolvable in a normal algebra with finite algebraic carri-
ers. This result has been proved by Gladstone (for the usual case of algebras
with only one sort) in [12].85 According to Gladstone, this result (in a differ-
ent form) is asserted for first time by Herbrand in [15]. However, Herbrand
offered no proof. In a footnote on p. 161 in [17], Hilbert and Bernays re-
mark that this result has deceptive plausibility and quote Schutte as having
shown that the proof is by no means obvious.

In (C) I am going to present my version of this result with somewhat
shorter proof (published in [32]). Afterwards, in (L) and (M), I am going to
prove that the same is true for any finite delta- or epsilon-termoidal system.

B)Lemma. Let 𝜏 be a term over X and 𝜉 ∈ X be such that 𝜏 ̸= p𝜉q
and p𝜉q occurs in 𝜏 . Then there exists a normal algebra with finite algebraic
carriers, such that none of the identities p𝜉q ∼ 𝜏 and 𝜏 ∼ p𝜉q is solvable
in it.

85The result of Gladstone is not for finite termal systems, but for for one termal
identity. This is not a significant limitation. Suppose the system {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛}
has no solutions in a normal algebra A. Let f be some new 𝑛-ary functional symbol.
Then the identity f(𝜏1, . . . , 𝜏𝑛) ∼ f(𝜎1, . . . , 𝜎𝑛) is unsolvable in [|A|]. Therefore, from
the result of Gladstone we can conclude that this identity is unsolvable in some algebra
with finite carrier. Obviously, in the same finite algebra, the system is unsolvable as well.
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Proof. Since the term 𝜏 is not a name, it has the form f(𝜏1, . . . , 𝜏𝑛)
for some functional symbol f and terms 𝜏1, . . . , 𝜏𝑛. There exists some
𝑘 ∈ {1, . . . , 𝑛}, such that p𝜉q occurs in 𝜏𝑘.

We have to define an algebra A with finite algebraic carriers, such that
the identities p𝜉q ∼ 𝜏 and 𝜏 ∼ p𝜉q have no solution in A.

Let 𝑇 = {𝑇𝜅}𝜅∈Sort be the Sort-indexed set of all subterms of 𝜏 in which
the name p𝜉q occurs, so that 𝑇𝜅 contains the terms of sort 𝜅. If 𝑇𝜅 ̸= ∅, let
𝑇𝜅 be the carrier of sort 𝜅 of A. Otherwise, let the carrier of sort 𝜅 be an
arbitrary finite set. For any functional symbol g of type ⟨⟨𝜅1, . . . , 𝜅𝑚⟩, 𝜆⟩,
define gA⟨𝛼1, . . . , 𝛼𝑚⟩86 arbitrarily if 𝑇𝜆 = ∅. Otherwise, let gA⟨𝛼1, . . . , 𝛼𝑚⟩
be equal to the set

{g(𝜎1, . . . , 𝜎𝑚) ∈ 𝑇𝜆 : ∀𝑖 ∈ {1, . . . ,𝑚}(𝜎𝑖 ∈ 𝑇𝜅𝑖 ⇒ 𝜎𝑖 ∈ 𝛼𝑖)} ∪ ∆

where

∆ =

{︃
{p𝜉q} if g = f and 𝜏𝑘 /∈ 𝛼𝑘,

∅ if g ̸= f or 𝜏𝑘 ∈ 𝛼𝑘.

Let 𝑣 : X → |A| be an arbitrary assignment function. By induction on the
complexity of the term 𝜎 we are going to prove that if 𝜎 ∈ 𝑇 then

𝜎 ∈ 𝜎[𝑣]A ⇐⇒ p𝜉q ∈ 𝑣𝜉 (♯)

If 𝜎 is a name and 𝜎 ∈ 𝑇 , then 𝜎 = p𝜉q, so in this case (♯) is obvious.
Otherwise, 𝜎 has the form g(𝜎1, . . . , 𝜎𝑚) for some functional symbol g of

type ⟨⟨𝜅1, . . . , 𝜅𝑚⟩, 𝜆⟩ and terms 𝜎1, . . . , 𝜎𝑚 of respective sorts 𝜅1, . . . , 𝜅𝑚.
If 𝜎 ∈ 𝑇 , according to the definition of the interpretation of A,

𝜎 ∈ 𝜎[𝑣]A ⇐⇒ ∀𝑖 ∈ {1, . . . ,𝑚}(𝜎𝑖 ∈ 𝑇𝜅𝑖 ⇒ 𝜎𝑖 ∈ 𝜎𝑖[𝑣]A)

By the induction hypothesis, if 𝜎𝑖 ∈ 𝑇𝜅𝑖 , then 𝜎𝑖 ∈ 𝜎𝑖[𝑣]A ⇐⇒ p𝜉q ∈ 𝑣𝜉 for
any 𝑖 ∈ {1, . . . ,𝑚}. Therefore,

𝜎 ∈ 𝜎[𝑣]A ⇐⇒ ∀𝑖 ∈ {1, . . . ,𝑚}(𝜎𝑖 ∈ 𝑇𝜅𝑖 ⇒ p𝜉q ∈ 𝑣𝜉)

If 𝜎 ∈ 𝑇 , then there exists at least one 𝑖, such that 𝜎𝑖 ∈ 𝑇𝜅𝑖 , so this
completes the proof of (♯).

Since 𝜏𝑘 ∈ 𝑇 , from (♯) it follows that 𝜏𝑘 ∈ 𝜏𝑘[𝑣]A is equivalent to
p𝜉q ∈ 𝑣𝜉. But 𝑣𝜉 = p𝜉q[𝑣]A, so 𝜏𝑘 ∈ 𝜏𝑘[𝑣]A is equivalent to p𝜉q ∈ p𝜉q[𝑣]A.

On the other hand, from the definition of the interpretation of A it
follows that p𝜉q ∈ 𝜏 [𝑣]A if and only if 𝜏𝑘 /∈ 𝜏𝑘[𝑣]A.

86Notice that 𝛼𝑖 is a subset of 𝑇𝜅𝑖
.
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Consequently, p𝜉q[𝑣]A ̸= 𝜏 [𝑣]A. �

C)Theorem. Any finite termal system over X unsolvable in some nor-
mal algebra is unsolvable in a normal algebra with finite algebraic carriers.

Proof. Denote by 𝑘4 the number of the identities in the system, by 𝑘1 the
number of the names in the system, by 𝑘2 the depth of the most complex
termal expression in the system if 𝑘4 ̸= 0 and 𝑘2 = 0 if 𝑘4 = 0. By 𝑘3
denote the number of the identities containing a termal expression with
depth 𝑘2. We are going to prove the theorem by induction on the ordinal
𝑘1𝜔

3 + 𝑘2𝜔
2 + 𝑘3𝜔 + 𝑘4.

Case 0. The system contains no identities (i.e. it is the empty set). In
this case the theorem is trivially true because in any algebra any assignment
function is solution of the empty system.

Case 1. Among the identities containing a termal expression with com-
plexity 𝑘2, some identity has the form p𝜉q ∼ p𝜉q for some 𝜉 ∈ X. In this
case, remove this identity from the system and use the induction hypothesis
for the resulting system.

Case 2. Among the identities containing termal expression with com-
plexity 𝑘2, some identity has the form p𝜉q ∼ 𝜏 or 𝜏 ∼ p𝜉q where p𝜉q is a
name occurring in the termal expression 𝜏 and 𝜏 ̸= p𝜉q. According to (B),
there exist a normal algebra with finite carriers, where this identity is un-
solvable, hence the whole system is unsolvable in this algebra.

Case 3. Among the identities containing termal expression with com-
plexity 𝑘2, some identity has the form p𝜉q ∼ 𝜏 or 𝜏 ∼ p𝜉q and the name p𝜉q
does not occur in the termal expression 𝜏 . In this case, make a new system
containing the other identities replacing everywhere in them the name p𝜉q
by the termal expression 𝜏 . Obviously, if 𝑣 is a solution of the new system
in some algebra A, then 𝑣′ will be solution of the former system in A, where

𝑣′𝜂 =

{︃
𝑣𝜂 if 𝜂 ̸= 𝜉,

𝜏 [𝑣]A if 𝜂 = 𝜉.

Since the original system is unsolvable in some algebra, the new system is
unsolvable in the same algebra. By induction hypothesis, there exists an
algebra B with finite carriers where the new system has no solutions.

Obviously, if 𝑣 is a solution of the original system in some algebra, then
𝑣 is a solution of the new system in the same algebra. Since the new system
is unsolvable in B, the original system is unsolvable in B.

Case 4. Among the identities containing termal expression with com-
plexity 𝑘2, some identity has the form f(𝜏1, . . . , 𝜏𝑛) ∼ g(𝜎1, . . . , 𝜎𝑚)
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where f and g are different functional symbols with types ⟨⟨𝜅′1, . . . , 𝜅′𝑛⟩, 𝜆⟩
and ⟨⟨𝜅′′1, . . . , 𝜅′′𝑚⟩, 𝜆⟩, respectively.

In this case, define the algebra A, so that A𝜆 = {0, 1} and the
other algebraic carriers of A are arbitrary non-empty finite sets. Let
fA⟨𝛼1, . . . , 𝛼𝑛⟩ = 0 and gA⟨𝛽1, . . . , 𝛽𝑚⟩ = 1 for arbitrary 𝛼1, . . . , 𝛼𝑛 and
𝛽1, . . . , 𝛽𝑚 belonging to suitable carriers of A.

In this way, the identity f(𝜏1, . . . , 𝜏𝑛) ∼ g(𝜎1, . . . , 𝜎𝑚) will be unsolvable
in A, so the system will be unsolvable in A too.

Case 5. Among the identities containing termal expression with com-
plexity 𝑘2, some identity has the form f(𝜏1, . . . , 𝜏𝑛) ∼ f(𝜎1, . . . , 𝜎𝑛) where
f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩. In this case make a new
system by replacing this identity with the identities 𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛.
Obviously, any solution of the new system in some algebra is a solution
also of the original system in the same algebra. Since the original system is
unsolvable in some algebra, the new system is unsolvable there as well. By
induction hypothesis, there exists an algebra A with finite algebraic carri-
ers, such that the new system has no solution in A. Define a new algebra B,
such that B𝜆 = A𝜆×A𝜅1 × . . .A𝜅𝑛 and all other algebraic carriers of B are
the same as the corresponding carrier of A.

Let ℎ : |B| → |A| be a Sort-indexed function defined as follows. Let
ℎ𝜅 be identity function for 𝜅 ̸= 𝜆 and let ℎ𝜆 : A𝜆×A𝜅1 × . . .A𝜅𝑛 → A𝜆 be
the projection on the first element of the 𝑛+ 1-tuple.

If g is a functional symbol whose result sort is not 𝜆, let

gB⟨𝛼1, . . . , 𝛼𝑚⟩ = gA⟨ℎ𝛼1, . . . , ℎ𝛼𝑚⟩

If the result sort of g is 𝜆 but g ̸= f, then let

gB⟨𝛼1, . . . , 𝛼𝑚⟩ = ⟨fA⟨ℎ𝛼1, . . . , ℎ𝛼𝑚⟩, 𝛽1, . . . , 𝛽𝑛⟩

where 𝛽1 . . . , 𝛽𝑛 are some arbitrary elements of A𝜅1 , . . . ,A𝜅𝑛 , respectively.
Finally, let

fB⟨𝛼1, . . . , 𝛼𝑛⟩ = ⟨fA⟨ℎ𝛼1, . . . , ℎ𝛼𝑛⟩, ℎ𝛼1, . . . , ℎ𝛼𝑛⟩

A direct inspection shows that the Sort-indexed function ℎ is actually
a homomorphism from B to A. Suppose that 𝑣 is a solution of the original
system in B. Then (11Q1) implies that ℎ∘𝑣 will be a solution of the original
system in A. Moreover, from

f(𝜏1, . . . , 𝜏𝑛)[𝑣]B = f(𝜎1, . . . , 𝜎𝑛)[𝑣]B
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it follows that

⟨fA⟨ℎ(𝜏1[𝑣]B), . . . , ℎ(𝜏𝑛[𝑣]B)⟩, ℎ(𝜏1[𝑣]B), . . . , ℎ(𝜏𝑛[𝑣]B)⟩ =

= ⟨fA⟨ℎ(𝜎1[𝑣]B), . . . , ℎ(𝜎𝑛[𝑣]B)⟩, ℎ(𝜎1[𝑣]B), . . . , ℎ(𝜎𝑛[𝑣]B)⟩

hence ℎ(𝜏𝑖[𝑣]B) = ℎ(𝜎𝑖[𝑣]B) for any 𝑖 ∈ {1, . . . , 𝑛}, which according
to (11Q1) implies that 𝜏𝑖[ℎ ∘ 𝑣]A = 𝜎𝑖[ℎ ∘ 𝑣]A. Consequently, ℎ ∘ 𝑣 turns
out to be a solution of the new system in A, which is a contradiction.

Case 6. Among the identities containing termal expression with com-
plexity 𝑘2, some identity has the form d′(𝜏1, . . . , 𝜏𝑛) ∼ d′′(𝜎1, . . . , 𝜎𝑚) where
d′ and d′′ are different predicate or logical symbols. In this case the theorem
is trivially true since such an identity has no solutions in any algebra.

Case 7. Among the identities containing termal expression with com-
plexity 𝑘2, some identity has the form d(𝜏1, . . . , 𝜏𝑛) ∼ d(𝜎1, . . . , 𝜎𝑛) where
d is a predicate or a logical symbol. In this case make a new system by
replacing this identity with the identities 𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛. In any alge-
bra, an assignment function is a solution of the original system if and only
if it is a solution of the new system. Therefore, by applying the induction
hypothesis to the new system we obtain the required. �

D)Definition. For any natural number 𝑛 we define inductively the
notion 𝑛-term over a Sort-indexed set 𝑌 :

(1) If 𝜉 ∈ 𝑌𝜅, then p𝜉q is an 𝑛-term over 𝑌 of sort 𝜅 (for any 𝑛).
(2) If f is a functional symbol of type ⟨⟨𝜅1, . . . , 𝜅𝑛⟩, 𝜆⟩ and 𝜏1, . . . , 𝜏𝑛

are 𝑛-terms over 𝑌 of sorts 𝜅1, . . . , 𝜅𝑛, respectively, then f(𝜏1, . . . , 𝜏𝑛) is an
(𝑛+ 1)-term over 𝑌 of sort 𝜆.

Alternatively, we can say that 𝜏 is an 𝑛-term over 𝑌 of sort 𝜅 if 𝜏 is a
term over 𝑌 of sort 𝜅 whose depth is less than or equal to 𝑛.

E)Definition. Given a structure M, for any term 𝜏 over |M| and
natural number 𝑛 we define the 𝑛-simplification of 𝜏 , written 𝜏 �

M
𝑛, recur-

sively.
(1) p𝜇q�

M
𝑛 = p𝜇q for any 𝜇 ∈ |M| and 𝑛.

(2) f(𝜏1, . . . , 𝜏𝑚)�
M

0 = p(f(𝜏1, . . . , 𝜏𝑚))Mq.
(3) f(𝜏1, . . . , 𝜏𝑚)�

M
(𝑛+ 1) = f(𝜏1 �M𝑛, . . . , 𝜏1 �M𝑛).

F)Proposition. (1) 𝜏 �
M
𝑛 is an 𝑛-term over |M| for any natural num-

ber 𝑛 and term 𝜏 over |M|.
(2) (𝜏 �

M
𝑛)M = 𝜏M for any natural number 𝑛 and term 𝜏 over |M|.

(3) (𝜏 �
M
𝑛)�

M
𝑚 = 𝜏 �

M
min{𝑛,𝑚} for any term 𝜏 over |M| and natural

numbers 𝑛 and 𝑚.

Proof. (1) By induction on 𝑛. If 𝜏 = p𝜇q for some 𝜇 ∈ |M|, then
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𝜏 �
M
𝑛 = p𝜇q which is an 𝑛-term over |M|. Otherwise, 𝜏 = f(𝜏1, . . . , 𝜏𝑚) for

some 𝑚 and 𝜏1, . . . , 𝜏𝑚. If 𝑛 = 0, then 𝜏 �
M
𝑛 = p𝜏Mq, which is an 𝑛-term

over |M|. If 𝑛 > 0, then 𝜏 �
M
𝑛 = f(𝜏1 �M(𝑛− 1), . . . , 𝜏𝑚 �M(𝑛− 1)), which is

an 𝑛-term because by induction hypothesis, 𝜏𝑖 �M(𝑛− 1) is an (𝑛− 1)-term
for any 𝑖.

(2) By simple induction on 𝜏 . The cases when 𝜏 = p𝜇q for some 𝜇 ∈ |M|
or 𝑛 = 0 follow immediately from definition (E). The case when 𝑛 > 0 and
𝜏 = f(𝜏1, . . . , 𝜏𝑘) follows from the definition and the induction hypothesis
as well.

(3) By induction on 𝜏 . If 𝜏 = p𝜇q for some 𝜇 ∈ |M|, then
(𝜏 �

M
𝑛)�

M
𝑚 = p𝜇q = 𝜏 �

M
min{𝑛,𝑚}.

If 𝑛 = 0, then (𝜏 �
M
𝑛)�

M
𝑚 = p𝜏Mq�

M
𝑚 = p𝜏Mq.

If 𝑚 = 0, then from (2) it follows that (𝜏 �
M
𝑛) �

M
𝑚 = p(𝜏 �

M
𝑛)Mq =

p𝜏Mq.
If 𝑛 > 0, 𝑚 > 0 and 𝜏 = f(𝜏1, . . . , 𝜏𝑘), then (𝜏 �

M
𝑛)�

M
𝑚

= (f(𝜏1, . . . , 𝜏𝑘)�M𝑛)�
M
𝑚 = (f(𝜏1 �M(𝑛− 1), . . . , 𝜏𝑘 �M(𝑛− 1)))�

M
𝑚 =

f((𝜏1 �M(𝑛− 1))�
M

(𝑚− 1), . . . , (𝜏𝑘 �M(𝑛− 1))�
M

(𝑚− 1)) which, by the in-
duction hypothesis, is equal to

f(𝜏1 �M min{𝑛− 1,𝑚− 1}, . . . , 𝜏𝑘 �M min{𝑛− 1,𝑚− 1})

= f(𝜏1 �M(min{𝑛,𝑚} − 1), . . . , 𝜏𝑘 �M(min{𝑛,𝑚} − 1))

= f(𝜏1, . . . , 𝜏𝑘)�M min{𝑛,𝑚}
= 𝜏 �

M
min{𝑛,𝑚}

�

G)Definition. Given an algebra A and a natural number 𝑛, let A�𝑛
be the algebra, such that:

(1) For any algebraic sort 𝜅, the carrier of sort 𝜅 of A�𝑛 is the set of all
𝑛-terms over |A| of sort 𝜅.

(2) For any 𝑚-ary functional symbol f and 𝜏1, . . . , 𝜏𝑚 belonging to suit-
able carriers of A�𝑛, let fA�𝑛⟨𝜏1, . . . , 𝜏𝑚⟩ = (f(𝜏1, . . . , 𝜏𝑚))�

A
𝑛.

H)Proposition. Let A be an algebra and 𝑛 ≥ 1. For any
𝑚 ∈ {0, 1, . . . , 𝑛}, if 𝜏 and 𝜎 belong to an algebraic carrier of A � 𝑛, then
sim𝑚(𝜏, 𝜎) implies 𝜏 �

A
(𝑛−𝑚) = 𝜎 �

A
(𝑛−𝑚).

(The relation sim𝑚 is defined according to (27C) for A�𝑛.)

Proof. By induction on 𝑚. If 𝑚 = 0, then sim𝑚(𝜏, 𝜎) implies 𝜏 = 𝜎
(see 27C1), so 𝜏 �

A
(𝑛−𝑚) = 𝜎 �

A
(𝑛−𝑚).

Suppose that 𝑚 < 𝑛 and sim𝑚(𝜏, 𝜎) implies 𝜏 �
A

(𝑛−𝑚) = 𝜎 �
A

(𝑛−𝑚).
We are going to prove that sim𝑚+1(𝜏, 𝜎) implies 𝜏 �

A
(𝑛−𝑚− 1) =
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𝜎 �
A

(𝑛−𝑚− 1).
According to (27C2), there are two cases to consider. The first case

is when sim𝑚(𝜏, 𝜎) is true. In this case the induction hypothesis implies
𝜏 �

A
(𝑛−𝑚) = 𝜎 �

A
(𝑛−𝑚), so from (F3) we obtain that 𝜏 �

A
(𝑛−𝑚− 1) =

𝜏 �
A

(𝑛−𝑚)�
A

(𝑛−𝑚− 1) = 𝜎 �
A

(𝑛−𝑚)�
A

(𝑛−𝑚− 1) = 𝜎 �
A

(𝑛−𝑚).
The second case is when there exists a functional symbol f of type

⟨⟨𝜅1, . . . , 𝜅𝑘⟩, 𝜆⟩ and 𝜏1, . . . , 𝜏𝑘 and 𝜎1, . . . , 𝜎𝑘 belonging to suitable carriers
of A�𝑛, such that:

• 𝜏𝑗 = 𝜏 and 𝜎𝑗 = 𝜎 for some 𝑗;
• sim𝑚(fA�𝑛⟨𝜏1, . . . , 𝜏𝑘⟩, fA�𝑛⟨𝜎1, . . . , 𝜎𝑘⟩) is true.
By induction hypothesis,

(fA�𝑛⟨𝜏1, . . . , 𝜏𝑘⟩)�A(𝑛−𝑚) = (fA�𝑛⟨𝜎1, . . . , 𝜎𝑘⟩)�A(𝑛−𝑚)

Therefore,

f(𝜏1 �A(𝑛−𝑚− 1), . . . , 𝜏𝑘 �A(𝑛−𝑚− 1)) =

= f(𝜏1, . . . , 𝜏𝑘)�A(𝑛−𝑚) from (E3)
= (f(𝜏1, . . . , 𝜏𝑘)�A𝑛)�

A
(𝑛−𝑚) from (F3)

= (fA�𝑛⟨𝜏1, . . . , 𝜏𝑘⟩)�A(𝑛−𝑚) from (G2)
= (fA�𝑛⟨𝜎1, . . . , 𝜎𝑘⟩)�A(𝑛−𝑚)

= (f(𝜎1, . . . , 𝜎𝑘)�A𝑛)�
A

(𝑛−𝑚) from (G2)
= f(𝜏1, . . . , 𝜏𝑘)�A(𝑛−𝑚) from (F3)
= f(𝜎1 �A(𝑛−𝑚− 1), . . . , 𝜎𝑘 �A(𝑛−𝑚− 1))

Consequently, 𝜏 �
A

(𝑛−𝑚− 1) = 𝜏𝑗 �A(𝑛−𝑚− 1) = 𝜎𝑗 �A(𝑛−𝑚− 1) =
𝜎 �

A
(𝑛−𝑚− 1). �

I)Corollary. Let A be an algebra and 𝑛 ≥ 1. For any
𝑚 ∈ {0, 1, . . . , 𝑛}, if 𝜏 and 𝜎 belong to an algebraic carrier of A � 𝑛, then
sim𝑚(𝜏, 𝜎) implies 𝜏A = 𝜎A.

(The relation sim𝑚 is defined according to (27C) for A�𝑛.)

Proof. Follows immediately from the previous proposition and (F2). �

J)Proposition. Let A be an algebra, 𝑛 be a natural number and
𝜏 be a delta-termoid over |A�𝑛| such that 𝜏 contains no subexpressions of
the form “p𝑚q+” with 𝑚 > 𝑛. Let ℎ : |A�𝑛| → |A| be the Sort-indexed
function, such that for any 𝜎 ∈ |A�𝑛|, ℎ𝜎 = 𝜎A. If the term 𝜌 is obtained
from 𝜏 by removing all subexpressions of the form “p𝑙q+” and 𝜎 ∈ 𝜏P (A�𝑛),
then 𝜎A = 𝜌[ℎ]A.
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Proof. By induction on 𝜏 . If 𝜏 = p𝜎q for some 𝜎 ∈ |A�𝑛|, then
𝜏P (A�𝑛) = {𝜎}. Also, 𝜌 = 𝜏 , so 𝜌[ℎ]A = p𝜎q[ℎ]A = p𝜎AqA = 𝜎A.

Let 𝜏 = f(𝜏1, . . . , 𝜏𝑘) and 𝜌1, . . . , 𝜌𝑘 be respectively obtained from
𝜏1, . . . , 𝜏𝑘 by removing all subexpressions of the form “p𝑙q+”. Suppose that
𝜎 ∈ 𝜏P (A�𝑛) = f(𝜏1, . . . , 𝜏𝑘)

P (A�𝑛) = fP (A�𝑛)⟨𝜏P (A�𝑛)
1 , . . . , 𝜏

P (A�𝑛)
𝑘 ⟩. Then there

exist some 𝜎1, . . . , 𝜎𝑘, such that 𝜎 = fA�𝑛⟨𝜎1, . . . , 𝜎𝑘⟩ and 𝜎𝑖 ∈ 𝜏
P (A�𝑛)
𝑖 for

𝑖 ∈ {1, . . . , 𝑘}. Consequently,

𝜎A = (fA�𝑛⟨𝜎1, . . . , 𝜎𝑘⟩)A

= (f(𝜎1, . . . , 𝜎𝑘)�A𝑛)A from (G2)
= f(𝜎1, . . . , 𝜎𝑘)

A from (F2)
= fA⟨𝜎A

1 , . . . , 𝜎
A
𝑘 ⟩

= fA⟨𝜌1[ℎ]A, . . . , 𝜌𝑘[ℎ]A⟩ by induction hypothesis
= f(𝜌1[ℎ], . . . , 𝜌𝑘[ℎ])A

= f(𝜌1, . . . , 𝜌𝑘)[ℎ]A = 𝜌[ℎ]A

Let 𝜏 = p𝑚q + 𝜏 ′. Notice that if we remove from 𝜏 ′ all subex-
pressions of the form “p𝑙q+”, the result will be 𝜌. Suppose that
𝜎 ∈ 𝜏P (A�𝑛) = (p𝑚q+ 𝜏 ′)P (A�𝑛). Then there exists some 𝜎′ ∈ (𝜏 ′)P (A�𝑛), such
that sim𝑚(𝜎, 𝜎′). According to (I), 𝜎A = (𝜎′)A and by induction hypothesis
(𝜎′)A = 𝜌[ℎ]A. �

K)Proposition. Given a Sort-indexed set 𝑌 and a delta-termoid 𝜏
over 𝑌 , if the term 𝜌 is obtained from 𝜏 by removing all subexpressions of
the form “p𝑙q+”, then 𝜌 = 𝜏Jnam𝑌 K[𝑌 ]

𝛿 .

Proof. If we remove from 𝜏Jnam𝑌 K𝛿 all subexpressions of the form
“p𝑙q+”, the result will be 𝜌[nam𝑌 ]. According to (25R2), 𝜏Jnam𝑌 K[𝑌 ]

𝛿 =
𝜌[nam𝑌 ][𝑌 ] which, according to (11V1), is equal to 𝜌. �

L)Theorem. If a finite delta-termoidal system over X is unsolvable in
some normal algebra of terms, then it is unsolvable in some normal algebra
with finite algebraic carriers.

Proof. Let Θ be a delta-termoidal system over X which has no so-
lutions in the normal algebra of terms A. Let Θ′ is obtained from Θ
by replacing each termoidal identity 𝜏 ∼ 𝜎 with the termal identity
𝜏JnamXK[X]𝛿 ∼ 𝜎JnamXK[X]𝛿 .

First, we are going to prove that Θ′ has no solutions in A. Suppose that
𝑣 : X → |A| is a solution of Θ′ in A. Then for any identity 𝜏 ∼ 𝜎 of Θ,

𝜏JnamXK[X]𝛿 [𝑣]A = 𝜎JnamXK[X]𝛿 [𝑣]A (♯)
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hence

𝜏J𝑣KA = (𝜏J𝑣KJnam|A|K
[|A|]
𝛿 )A from (16I)

= 𝜏JnamXK[X]𝛿 [𝑣]A from (16D2)

= 𝜎JnamXK[X]𝛿 [𝑣]A from (♯)

= (𝜎J𝑣KJnam|A|K
[|A|]
𝛿 )A from (16D2)

= 𝜏J𝑣KA from (16I)

so 𝑣 is a solution of Θ′ in A which is a contradiction.
According to (C), there exists a normal algebra B with finite algebraic

carriers, such that Θ′ is unsolvable in B. Let 𝑛 be such that no delta-
termoid of Θ contains a subexpression of the form “p𝑙q+” with 𝑙 > 𝑛. Since
the algebra B�𝑛 is normal and has finite algebraic carriers, it will be enough
to prove that Θ has no solution in B�𝑛.

Suppose that 𝑤 : X → |B�𝑛| is a solution of Θ in B � 𝑛. Then
for any identity 𝜏 ∼ 𝜎 of Θ, there exists some 𝜌 ∈ |B�𝑛|, such that
𝜌 ∈ 𝜏J𝑤KP (B�𝑛)

𝛿 ∩ 𝜎J𝑤KP (B�𝑛)
𝛿 .

Let ℎ : |B�𝑛| → |B| be the Sort-indexed function, such that for any
𝜄 ∈ |B�𝑛|, ℎ𝜄 = 𝜄B. Since 𝜌 ∈ 𝜏J𝑤KP (B�𝑛)

𝛿 , from (K) and (J) it follows that
𝜌B = 𝜏J𝑤K𝛿JnamXK[X]𝛿 [ℎ]B. Therefore,

𝜌B = 𝜏J𝑤K𝛿JnamXK[X]𝛿 [ℎ]B

= 𝜏JnamXK[X]𝛿 [𝑤][ℎ]B from (16D2)

= 𝜏JnamXK[X]𝛿 [ℎ ∘ 𝑤]B from (11H)

and analogously, 𝜌B = 𝜎JnamXK[X]𝛿 [ℎ ∘𝑤]B. Consequently, ℎ ∘𝑤 is a solution
of Θ′ in B, which is a contradiction. �

M)Theorem. If a finite epsilon-termoidal system over X is unsolvable
in some normal algebra of terms, then it is unsolvable in some normal
algebra with finite algebraic carriers.

Proof. Let Θ be an epsilon-termoidal system over X which has no so-
lutions in the normal algebra of terms A. Let Θ′ is obtained from Θ by
replacing each epsilon-termoidal identity 𝜏 ∼ 𝜎 with the delta-termoidal
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identity c(𝜏) ∼ c(𝜎). Then for any Sort-indexed function 𝑣 : X → |A|,

𝜏J𝑣KPA
𝜀 = (Val𝜀A ∘ J𝑣K𝜀)𝜏

= (Val𝜀A ∘ J𝑣K𝛿)𝜏 compare (26O) with (25M)

= (Val𝛿A ∘ c ∘ J𝑣K𝛿)𝜏 from (26R)

= (Val𝛿A ∘ J𝑣K𝛿 ∘ c)𝜏 from (26P2)

= c(𝜏)J𝑣KPA
𝛿

Consequently, 𝑣 is a solution of Θ in A if and only if it is a solution of Θ′

in A. In result, from (L) we obtain the required. �

N)An analogous theorem for gamma-termoidal systems can be proved
as a corollary from (L). This is so because for any gamma-termoid 𝜏 there
exists a delta-termoid 𝜎, such that for any structure M and assignment
function 𝑣 : X → |M|, 𝜏J𝑣KPM

𝛾 ⊆ 𝜎J𝑣KPM
𝛿 . Therefore, for any finite gamma-

termoidal system Θ′ we can obtain a finite delta-termoidal system Θ′′ with
the following two properties:

• any solution of Θ′ in any structure is a solution of Θ′′;
• any solution of Θ′′ in an algebra which is a structure of terms is a

solution of Θ′.

§30. THE CLASS VED

A) For convenience, in this section I am going to make use of (20Y) and
occasionally write x instead of pxq when x ∈ X.

B) In (23Q) we proved that if the positive hyperresolution with clausoids
saturates, then the initial set of clausoids is universally satisfiable in almost
any normal algebra. According to (29L) and (29M), this means that if
the positive hyperresolution with clausoids saturates, then the initial set of
clausoids is universally satisfiable in a normal algebra with finite carriers.
This result can be used in order to prove that classes of predicate formulae
are finite satisfiable. The plan is as follows:

• For any predicate formula 𝜙 from the class in the consideration, we
can obtain a set Γ of clauses, such that 𝜙 is satisfiable if and only if
Γ is universally satisfiable and 𝜙 has a finite model if and only if Γ is
universally satisfiable in an algebra with finite carriers.

• Using the homomorphism [NamX]JXK, the set of clauses can be con-
verted to a set Γ′ of clausoids.

224



§30. The Class VED

• We prove that the resolution saturates for Γ′ after generating finitely
many resolvents.

Of course, only the last item in this plan is non-trivial.
If the resolution with clausoids saturates for a set of clausoids, then

the resolution with clauses is going to saturate for the corresponding set of
clauses.87 Therefore, in order to have a chance to implement this plan, we
have to find a class of formulae which is decided by the usual, the clausal
resolution. In this section we are going to see that positive hyperresolution
with clausoids can be used in order to prove that the class VED has the
finite model property.

C)Lemma. Given a term 𝜎 over X and a delta-termoidal substitution
𝑠 : X → JXK𝛿, the radius of c(𝜎J𝑠KJXK𝛿

𝛿 ) is equal to the maximal element of
the set

{0} ∪ {rad(c(𝑠𝜉)) − 𝑛 : 𝑛 is depth of some occurrence of 𝜉 ∈ X in 𝜎}

where by rad(c(𝑠𝜉)) we have denoted the radius of c(𝑠𝜉).

Proof. By induction on 𝜎.
If 𝜎 is a name, then 𝜎 = pxq for some x ∈ X and we have to prove

that the radius of c(𝜎J𝑠KJXK𝛿
𝛿 ) is equal to max{0, rad(c(𝑠x)) − 0}. This is so

because

c(𝜎J𝑠KJXK𝛿
𝛿 ) = c(pxqJ𝑠KJXK𝛿

𝛿 )

= c(p𝑠xqJXK𝛿) from (14I9)
= c(𝑠x) from (25S)

If 𝜎 is not a name, then 𝜎 = f(𝜎1, . . . , 𝜎𝑘) for some terms 𝜎1, . . . , 𝜎𝑘 of
suitable sorts. From (25M) and (25S) it follows that 𝜎J𝑠KJXK𝛿

𝛿 is equal to
f(𝜎1J𝑠K

JXK𝛿
𝛿 , . . . , 𝜎𝑘J𝑠K

JXK𝛿
𝛿 ), so according to (26J13), the radius of c(𝜎J𝑠K𝛿) is

equal to max{1, rad(c(𝜎1J𝑠K
JXK𝛿
𝛿 )), . . . , rad(c(𝜎𝑘J𝑠K

JXK𝛿
𝛿 ))}− 1. From this and

the induction hypothesis we obtain the required. �

D)Lemma. Given an epsilon-termoidal expression p𝑟q + 𝜎
over X and a delta-termoidal substitution 𝑠 : X → JXK𝛿, the radius of
c((p𝑟q+ 𝜎)J𝑠KJXK𝛿

𝛿 ) is equal to the maximal element of the set

{𝑟} ∪ {rad(c(𝑠𝜉)) − 𝑛 : 𝑛 is depth of some occurrence of 𝜉 ∈ X in 𝜎}
87The opposite is not true. Recall the subsection “The Example by Baaz, Revisited”

in the introductory chapter of this thesis.
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where by rad(c(𝑠𝜉)) we have denoted the radius of c(𝑠𝜉).

Proof. According to definitions (25M) and (25Q), c((p𝑟q + 𝜎)J𝑠KJXK𝛿
𝛿 ) =

c(p𝑟q+𝜎J𝑠KJXK𝛿
𝛿 ), so according to (26J14), the radius being in consideration

is equal to max{𝑟, 𝑘} where 𝑘 is the radius of c(𝜎J𝑠KJXK𝛿
𝛿 )). According to (C),

𝑘 is equal to

{0} ∪ {rad(c(𝑠𝜉)) − 𝑛 : 𝑛 is depth of some occurrence of 𝜉 ∈ X in 𝜎}

�

E)Definition. (1) An occurrence of x ∈ X in an epsilon-termoid
p𝑛q + 𝜏 over X is at depth 𝑘 if this occurrence is at depth 𝑙 in the term 𝜏
and 𝑘 = 𝑛+ 𝑙.

(2) An occurrence of x ∈ X in an epsilon-formuloid over X is at depth 𝑘
if this occurrence is at depth 𝑘 in the termoid containing it.

Notice that according to this definition, the predicate and the logical
symbols do not count when determining the depth of an occurrence of a
name in a formuloid.

F)Example. Consider the clausoid88

¬p(pp1q+ pyqq, pp2q+ f(pxq)q) ∨ q(pp1q+ f(f(pxq))q, pp0q+ f(pyq)q)

All occurrences of x in it are at depth 3 and all occurrences of y are at
depth 1;

G)Definition. Given a Sort-indexed function 𝑑 : X → NSort,
(1) an epsilon-termoid or epsilon-formuloid 𝜏 over X is compatible with 𝑑

if for any 𝜉 ∈ X, all occurrences of 𝜉 in 𝜏 are at depth 𝑑𝜉;
(2) an epsilon-termoidal identity p0q + p𝜉q ∼ p𝑚q + 𝜎 is compatible

with 𝑑, if 𝑑𝜉 = 𝑚 and p𝑚q+ 𝜎 is compatible with 𝑑;
(3) an epsilon-termoidal identity p𝑛q + 𝜏 ∼ p𝑚q + 𝜎 whose left side

does not have the form p0q + p𝜉q is compatible with 𝑑, if 𝑛 = 𝑚 and both
p𝑛q+ 𝜏 and p𝑚q+ 𝜎 are compatible with 𝑑;

(4) an epsilon-termoidal identity 𝜏 ∼ 𝜎, where both 𝜏 and 𝜎 are of
logical sort, is compatible with 𝑑, if all epsilon-termoids occurring in 𝜏 and 𝜎
are compatible with 𝑑 and they all have radii equal to 0.

(5) an epsilon-termoidal substitution 𝑠 : X → JXK𝜀 is compatible with 𝑑,
if for any 𝜉 ∈ X either 𝑠𝜉 = Nam𝜀

X 𝜉,89 or 𝑠𝜉 is a compatible with 𝑑 epsilon-
termoid whose radius is 𝑑𝜉.

88This clausoid will become much more readable if we omit the symbols p and q:
¬p(1 + y, 2 + f(x)) ∨ q(1 + f(f(x)), 0 + f(y)).

89Remember that, according to (26S), Nam𝜀
X 𝜉 = p0q+ p𝜉q.
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H)Example. (1) Let 𝑑′ : X → NSort be such that 𝑑′x = 3 and 𝑑′y = 1.
Then the clausoid from example (F) will be compatible with 𝑑′.

(2)The identity p0q + pxq ∼ p2q + f(pxq, pxq) is compatible with any
Sort-indexed function 𝑑′′ : X → NSort, such that 𝑑′′x = 3. This is so because
the left side is an epsilon-name and all occurrences of x in the right side are
at depth 3.

I)Lemma. If 𝑑 : X → NSort is a Sort-indexed function, such that
both the epsilon-termoid 𝜏 and the substitution 𝑠 : X → JXK𝜀 are compatible
with 𝑑, then the epsilon-termoid 𝜏J𝑠KJXK𝜀

𝜀 also is compatible with 𝑑 and has
the same radius as the radius of 𝜏 .

Proof. Let 𝜏 = p𝑘q + 𝜎 and 𝑠′ = JnamXK[X]𝜀 ∘ 𝑠. According to (26U), for
any 𝜉, 𝑚 and 𝜌, if 𝑠𝜉 = p𝑚q+ 𝜌, then 𝑠′𝜉 = 𝜌.

According to definitions (26O) and (26Q), 𝜏J𝑠KJXK𝜀
𝜀 = 𝜏J𝑠KJXK𝜀

𝛿 =
c−1(c(𝜏J𝑠KJXK𝛿

𝛿 )).
For any delta-termoid 𝜌, denote by g(𝜌) the result of the removal from 𝜌

of all subexpressions of the form p𝑛q+. According to definitions (26D)
and (26L), g(c−1(c(𝜏J𝑠KJXK𝛿

𝛿 ))) = g(c(𝜏J𝑠KJXK𝛿
𝛿 )) = g(𝜏J𝑠KJXK𝛿

𝛿 ). This, accord-
ing to definitions (25M) and (25S), is equal to 𝜎[𝑠′][X].

Therefore, 𝜏J𝑠KJXK𝜀
𝜀 is equal to p𝑙q + 𝜎[𝑠′][X], where 𝑙 is the radius

of c(𝜏J𝑠KJXK𝛿
𝛿 ). According to (D), the radius 𝑙 is equal to the maximal element

of the set

{𝑘} ∪ {rad(c(𝑠𝜉)) − 𝑛 : 𝑛 is depth of some occurrence of 𝜉 ∈ X in 𝜎}

Since 𝜏 = p𝑘q+ 𝜎 is compatible with 𝑑, the depth of any occurrence of p𝜉q
in 𝜎 is 𝑑𝜉 − 𝑘. Since 𝑠 is compatible with 𝑑 as well, the radius of c(𝑠𝜉) is
equal to either 0, or 𝑑𝜉, hence rad(c(𝑠𝜉))− 𝑛 is equal to either 𝑘− 𝑑𝜉, or 𝑘.
This implies that 𝑙 = 𝑘, so 𝜏J𝑠KJXK𝜀

𝜀 = p𝑘q+ 𝜎[𝑠′][X].
It only remains to see that the depth of any occurrence of p𝜂q in 𝜎[𝑠′][X]

is equal to 𝑑𝜂−𝑘 as this will imply that the depth of any occurrence of p𝜂q
in 𝜏J𝑠KJXK𝜀

𝜀 = p𝑘q+ 𝜎[𝑠′][X] is equal to 𝑑𝜂.
For any occurrence of p𝜂q in 𝜎[𝑠′][X], either it already occurs in 𝜎, or it

is part of 𝑠′𝜉 replacing some occurrence of 𝜉 in 𝜎. In the first case the depth
of 𝜂 is the same as it is in 𝜎, so it is equal to 𝑑𝜂 − 𝑘.

Suppose that an occurrence of p𝜂q in 𝜎[𝑠′][X] is part of 𝑠′𝜉 replacing some
occurrence of 𝜉 in 𝜎. Since 𝑠 is compatible with 𝑑, according to (G5), we
have to consider two cases. If 𝑠𝜉 = Nam𝜀

X 𝜉 = p0q+ p𝜉q, then 𝑠′𝜉 = p𝜉q, so
𝜉 = 𝜂, hence in this case an occurrence of p𝜂q in 𝜎 is replaced with p𝜂q, so
its depth remains unchanged and equal to 𝑑𝜂 − 𝑘 as well.
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Otherwise, 𝑠𝜉 is a compatible with 𝑑 epsilon-termoid whose radius is
equal to 𝑑𝜉, so 𝑠𝜉 = p𝑑𝜉q + 𝑠′𝜉. Since 𝑠𝜉 is compatible with 𝑑, the depth
of p𝜂q in 𝑠′𝜉 is equal to 𝑑𝜂 − 𝑑𝜉. Therefore we are replacing an occurrence
of p𝜉q in 𝜎 (which is at depth 𝑑𝜉 − 𝑘) with a term in which p𝜂q occcurs
at depth 𝑑𝜂 − 𝑑𝜉. Consequently, the occurrence of p𝜂q in 𝜎[𝑠′][X] is at
depth (𝑑𝜉 − 𝑘) + (𝑑𝜂 − 𝑑𝜉) = 𝑑𝜂 − 𝑘. �

J)Lemma. Given a formuloid 𝜙 and a termoidal substitution 𝑠, if we
replace each each termoid 𝜎 occurring in 𝜙 with 𝜎J𝑠KJXK𝜀

𝜀 , the result will be
equal to 𝜙J𝑠KJXK𝜀

𝜀 .

Proof. By induction on 𝜙 (recall that any formuloid is a special kind of
formula).

If 𝜙 = p(p𝜎q1, . . . , p𝜎q𝑘) for some predicate symbol p and termoids
𝜎1, . . . , 𝜎𝑘, then from (♯) of definition (14C) it follows that 𝜙J𝑠KJXK𝜀

𝜀 =
p(p𝜎q1, . . . , p𝜎q𝑘)J𝑠K

JXK𝜀
𝜀 is equal to p(p𝜎q1J𝑠K

JXK𝜀
𝜀 , . . . , p𝜎q𝑘J𝑠K

JXK𝜀
𝜀 ).

Analogously, if 𝜙 = d(𝜓1, . . . , 𝜓𝑘) for some operation sym-
bol d and formuloids 𝜓1, . . . , 𝜓𝑘, then again from (♯) of defini-
tion (14C) it follows that 𝜙J𝑠KJXK𝜀

𝜀 = d(p𝜓q1, . . . , p𝜓q𝑘)J𝑠K
JXK𝜀
𝜀 is equal to

d(p𝜓q1J𝑠K
JXK𝜀
𝜀 , . . . , p𝜓q𝑘J𝑠K

JXK𝜀
𝜀 ), so from the induction hypothesis we obtain

the required. �

K)Lemma. If 𝑑 : X → NSort is a Sort-indexed function, such that both
the epsilon-formuloid 𝜙 and the substitution 𝑠 : X → JXK𝜀 are compatible
with 𝑑, then the epsilon-formuloid 𝜙J𝑠KJXK𝜀

𝜀 also is compatible with 𝑑.

Proof. Follows immediately from (I), (J) and the definition of “compati-
ble”. �

L)Lemma. Let 𝑑 : X → NSort be a Sort-indexed function, both the
epsilon-termoid p𝑛q + 𝜏 and the identity 𝜏 ′ ∼ 𝜏 ′′ be compatible with 𝑑,
x ∈ X be such that 𝑑x = 𝑛 and 𝑠 : X → JXK𝜀 be the substitution

𝑠𝜉 =

{︃
Nam𝜀

X 𝜉 if 𝜉 ̸= x,

p𝑛q+ 𝜏 if 𝜉 = x.

Then the identity 𝜏 ′J𝑠KJXK𝜀
𝜀 ∼ 𝜏 ′′J𝑠KJXK𝜀

𝜀 is compatible with 𝑑.

Proof. First, notice that the substitution 𝑠 is compatible with 𝑑.
We have to consider three cases.
First case. 𝜏 ′ = p0q+ pyq and 𝜏 ′′ = p𝑘′′q+ 𝜎′′ for some y, 𝑘′′, 𝜎′′.
Since the identity p0q+ pyq ∼ p𝑘′′q+ 𝜎′′ is compatible with 𝑑, (G2) im-

plies that 𝑑y = 𝑘′′. From (I) it follows that (p𝑘′′q+ 𝜎′′)J𝑠KJXK𝜀
𝜀 is compatible
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with 𝑑 and its radius is 𝑘′′.
If y ̸= x, then 𝜏 ′J𝑠KJXK𝜀

𝜀 = (p0q+ pyq)J𝑠KJXK𝜀
𝜀 = p0q+ pyq, so from defi-

nition (G2) we can conclude that the identity 𝜏 ′J𝑠KJXK𝜀
𝜀 ∼ 𝜏 ′′J𝑠KJXK𝜀

𝜀 is com-
patible with 𝑑.

If x = y, then 𝜏 ′J𝑠KJXK𝜀
𝜀 = (p0q+ pxq)J𝑠KJXK𝜀

𝜀 = (p0q+ pp𝑛q+ 𝜏q)JXK𝜀 =
(Val𝜀X ∘ Nam𝜀

X)(p𝑛q+ 𝜏)) = p𝑛q+ 𝜏 which is a compatible with 𝑑 epsilon-
termoid. Since we already saw that the epsilon-termoid on the other side
of the identity (p𝑘′q+ 𝜎′)J𝑠KJXK𝜀

𝜀 ∼ (p𝑘′′q+ 𝜎′′)J𝑠KJXK𝜀
𝜀 is compatible with 𝑑,

from (G2) it follows that this identity is compatible with 𝑑 when 𝑛 = 0 and
from (G3) it follows that the same is true when 𝑛 ̸= 0.

Second case. 𝜏 ′ = p𝑘′q + 𝜎′ and 𝜏 ′′ = p𝑘′′q + 𝜎′′ for some 𝑘′, 𝑘′′, 𝜎′, 𝜎′′,
such that 𝑘′ ̸= 0 or 𝜎′ is not a name.

In this case, according to (G3), 𝑘′ = 𝑘′′, so we can write 𝑘 instead
of 𝑘′ or 𝑘′′. Both p𝑘q + 𝜎′ and p𝑘q + 𝜎′′ are compatible with 𝑑 and
from (I) it follows that both (p𝑘′q + 𝜎′)J𝑠KJXK𝜀

𝜀 and (p𝑘′′q + 𝜎′′)J𝑠KJXK𝜀
𝜀 are

compatible with 𝑑 and their radii are equal to 𝑘. Therefore, the identity
(p𝑘′q+ 𝜎′)J𝑠KJXK𝜀

𝜀 ∼ (p𝑘′′q+ 𝜎′′)J𝑠KJXK𝜀
𝜀 is compatible with 𝑑.

Third case. 𝜏 ′ and 𝜏 ′′ are of logical sort. In this case we obtain the
required from (I) and (J). �

M)Lemma. Given a Sort-indexed function 𝑑 : X → NSort, if the par-
tial function f𝜀 is defined as in (28F), 𝜏 ∼ 𝜎 is compatible with 𝑑 and
f𝜀(𝜏 ∼ 𝜎) is defined, then all elements of f𝜀(𝜏 ∼ 𝜎) are compatible with 𝑑.

Proof. A simple inspection of (28F) suffices to prove this Lemma.
1. If 𝜏 and 𝜎 are epsilon-termoidal expressions of logical sort, then 𝜏 has

the form d′(. . . ) and 𝜎 has the form d′′(. . . ) for some predicate or
logical symbols d′ and d′′. In this case:

• if d′ ̸= d′′, then f𝜀(𝜏 ∼ 𝜎) is undefined, so there is nothing to
prove;

• if d′ = d′′, both are logical symbols, 𝜏 = d′(𝜏1, . . . , 𝜏𝑛) and
𝜎 = d′′(𝜎1, . . . , 𝜎𝑛), then f𝜀(𝜏 ∼ 𝜎) = {𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛}.
According to definition (E2), the logical symbols do not count
when measuring the depth, so the depth of all occurrences of
any 𝜉 ∈ X in 𝜏1, . . . , 𝜏𝑛, 𝜎1, . . . , 𝜎𝑛 is the same as the depth in 𝜏
and 𝜎, namely 𝑑𝜉. Moreover, the radii of the epsilon-termoids in
𝜏1, . . . , 𝜏𝑛, 𝜎1, . . . , 𝜎𝑛 are equal to 0.

• if d′ = d′′, both are predicate symbols, 𝜏 = d′(Nam𝜀
X 𝜏1, . . . ,Nam𝜀

X 𝜏𝑛)
and 𝜎 = d′′(Nam𝜀

X 𝜎1, . . . ,Nam𝜀
X 𝜎𝑛), then f𝜀(𝜏 ∼ 𝜎) is equal to

{𝜏1 ∼ 𝜎1, . . . , 𝜏𝑛 ∼ 𝜎𝑛}. According to definition (E2), the pred-
icate symbols do not count when measuring the depth, so the
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depth of all occurrences of any 𝜉 ∈ X in 𝜏1, . . . , 𝜏𝑛, 𝜎1, . . . , 𝜎𝑛 is
the same as the depth in 𝜏 and 𝜎, namely 𝑑𝜉.

2. f𝜀(p𝑛q + f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q + f(𝜎1, . . . , 𝜎𝑚)) is equal to
{p𝑙 + 1q+ 𝜏1 ∼ p𝑙 + 1q+ 𝜎1, . . . , p𝑙 + 1q+ 𝜏𝑚 ∼ p𝑙 + 1q+ 𝜎𝑚},
where 𝑙 = max{𝑛, 𝑘}. If the argument of f𝜀 is compatible with 𝑑,
then 𝑛 = 𝑘, so 𝑙 = 𝑛 = 𝑘, hence the elements of the value of f𝜀 are
compatible with 𝑑.

3. f𝜀(p𝑛q + f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q + g(𝜎1, . . . , 𝜎𝑙)) is undefined if f and g

are different functional symbols, so there is nothing to prove.
4. If 𝑛 ̸= 0, then f𝜀(p𝑛q + p𝜉q ∼ p𝑘q + f(𝜏1, . . . , 𝜏𝑚)) is equal to

{p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ f(𝜏1, . . . , 𝜏𝑚)}. If the argument of f𝜀 is
compatible with 𝑑, then 𝑛 = 𝑘, so max{𝑛, 𝑘} = 𝑘. According to (G2),
the element of the value of f𝜀 is compatible with 𝑑.

5. f𝜀(p𝑛q + f(𝜏1, . . . , 𝜏𝑚) ∼ p𝑘q + p𝜉q) is equal to
{p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ f(𝜏1, . . . , 𝜏𝑚)}. If the argument of f𝜀
is compatible with 𝑑, then 𝑛 = 𝑘. According to (G2), the element of
the value of f𝜀 is compatible with 𝑑.

6. f𝜀(p𝑛q + p𝜉q ∼ p𝑘q + p𝜂q) = {p0q+ p𝜉q ∼ pmax{𝑛, 𝑘}q+ p𝜂q}, if
𝑛 ̸= 0 and 𝜉 ̸= 𝜂. Since 𝑛 ̸= 0 and the argument of f𝜀 is compatible
with 𝑑, 𝑛 = 𝑘. Therefore, max{𝑛, 𝑘} = 𝑘. According to (G2), the
element of the value of f𝜀 is compatible with 𝑑.

7. f𝜀(p𝑛q+ p𝜉q ∼ p𝑘q+ p𝜉q) = ∅ so there is nothing to prove.
8. f𝜀(p0q + p𝜉q ∼ p𝑘q + 𝜏) is undefined if 𝜏 ̸= p𝜉q, so there is nothing

to prove.

�

N)Lemma. Given a Sort-indexed function 𝑑 : X → NSort, if all
identities of the system Θ are compatible with 𝑑 and we apply to Θ some
special solving transformation90 using f𝜀, the result will be a system whose
elements are compatible with 𝑑.

Proof. If we apply the first special solving transformation, this follows
from (M). If we apply the second special solving transformation, it follows
from (L). �

O)Lemma. Given a Sort-indexed function 𝑑 : X → NSort and a
system Θ of compatible with 𝑑 identities, if e𝜀 is defined as in (28G), then
all substitutions belonging to e𝜀(Θ) are compatible with 𝑑.

90See definition (18H).
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Proof. According to (N), if we apply successively special solving trans-
formations to Θ, the results will be systems compatible with 𝑑. Therefore,
from (18O) we can conclude that if 𝑠 ∈ e𝜀(Θ), then 𝑠 is obtained as described
in (18D) from a compatible with 𝑑 solved system. Namely, for any 𝜉 ∈ X,
either 𝑠𝜉 = Nam𝜀

X 𝜉, or 𝑠𝜉 is a compatible with 𝑑 epsilon-termoid whose
radius is equal to 𝑑𝜉. �

P)Definition. (1)A clause 𝛿 over X belongs to the class VED , if 𝛿 is a
Horn clause and for any x ∈ X, all occurrences of x in 𝛿 are at equal depth.

(2)An epsilon-clausoid 𝛿 over X belongs to the class VED , if 𝛿 is a Horn
clausoid, for any x ∈ X, all occurrences of x in 𝛿 are at equal depth and the
radii of all epsilon-termoids occurring in 𝛿 are equal to 0.

Q)Lemma. Given a Sort-indexed function 𝑑 : X → NSort, any posi-
tive e𝜀-resolvent of compatible with 𝑑 epsilon-clausoids over X is compatible
with 𝑑 as well.

Proof. Let 𝛿 be a compatible with 𝑑 epsilon-clausoid over X with se-
quence ⟨𝜆1, . . . , 𝜆𝑛⟩. Let 𝜀 be a compatible with 𝑑 positive epsilon-clausoid
over X. Then, according to definition (23C1), any positive e𝜀-resolvent of 𝛿
and 𝜀 can be obtained in the following way:

Let Γ be a non-empty set of literaloids occurring in 𝜀 and 𝜆𝑖 be the nega-
tive literaloid, such that there are no negative literaloids among 𝜆1, . . . , 𝜆𝑖−1.
Let

𝑠 ∈ e𝜀({𝜆𝑖 ∼ 𝜇 : 𝜇 ∈ Γ}).

Then the epsilon-clausoid whose sequence is obtained from the sequence
of 𝛿J𝑠KJXK by replacing the literaloid corresponding to 𝜆𝑖 with the sequence
of (𝜀 ∖ Γ)J𝑠KJXK is positive e-resolvent of 𝛿 and 𝜀.

Since 𝛿 and 𝜀 are compatible with 𝑑, their literaloids are compatible
with 𝑑 as well, hence all identities belonging to {𝜆𝑖 ∼ 𝜇 : 𝜇 ∈ Γ} are com-
patible with 𝑑, so according to (O) the substitution 𝑠 is compatible with 𝑑,
hence according to (K) the literaloids of 𝛿J𝑠KJXK and (𝜀 ∖ Γ)J𝑠KJXK are com-
patible with 𝑑, so the positive e𝜀-resolvent of 𝛿 and 𝜀 is compatible with 𝑑. �

R)Lemma. If 𝛿′ and 𝛿′′ are epsilon-clausoids having disjoint depen-
dency and belonging to the class VED, then any positive e𝜀-resolvent of 𝛿′
and 𝛿′′ belongs to the class VED.

Proof. Since 𝛿′ and 𝛿′′ belong to VED, there exist Sort-indexed functions
𝑑′, 𝑑′′ : X → NSort, such that 𝛿′ is compatible with 𝑑′ and 𝛿′′ is compatible
with 𝑑′′. Let the Sort-indexed function 𝑑 : X → NSort be such that 𝑑𝜉 = 𝑑′𝜉
if the name p𝜉q occurs in 𝛿′, 𝑑𝜉 = 𝑑′′𝜉 if the name p𝜉q occurs in 𝛿′′, and 𝑑𝜉 be
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defined arbitraryly, otherwise. Then 𝛿′J𝑑K = 𝛿′J𝑑′K and 𝛿′′J𝑑K = 𝛿′′J𝑑′′K, so
both 𝛿′ and 𝛿′′ are compatible with 𝑑. According to (Q), any positive e𝜀-
resolvent of 𝛿′ and 𝛿′′ is compatible with 𝑑, hence all such resolvents belong
to VED. �

S)Proposition. Given a condensing function f, if ⟨𝛿, 𝜀0, . . . , 𝜀𝑛⟩ is a
clash sequence of epsilon-clausoids belonging to the class VED, then all
positive e𝜀f-hyperresolvents defined by this clash sequence belong to the
class VED.

Proof. Follows immediately from (R) and definition (23C2). �

T)Lemma. Suppose the clauses 𝛿′ and 𝜀′ have disjoint dependency,
both belong to the class VED and e is a termally sound and termally com-
plete equaliser, such that e(Θ) contains no more than one element for any
system Θ. If the epsilon-clausoids 𝛿 and 𝜀 are such that 𝛿 and 𝜀 have disjoint
dependency, both belong to the class VED, 𝛿′ is a variant of 𝛿JnamXK[X],
𝜀′ is a variant of 𝜀JnamXK[X] and 𝛿 and 𝜀 have a positive e𝜀-resolvent 𝜁,
then 𝛿′ and 𝜀′ have a positive mgu-resolvent 𝜁 ′, such that 𝜁 ′ is a variant
of 𝜁JnamXK[X].

Proof. Let ⟨𝜆1, . . . , 𝜆𝑙⟩ be the sequence of 𝛿, ⟨𝜆′1, . . . , 𝜆′𝑙⟩ be the sequence
of 𝛿′, ⟨𝜇0, 𝜇1, . . . , 𝜇𝑚⟩ be the sequence of 𝜀 and ⟨𝜇′

0, 𝜇
′
1, . . . , 𝜇

′
𝑚⟩ be the se-

quence of 𝜀′. Let 𝜆𝑗 be a positive literaloid, such that there are no positive
literaloids among 𝜆1, . . . , 𝜆𝑗−1. According to (20L), this means that 𝜆′𝑗 is a
positive literal, such that there are no positive literals among 𝜆′1, . . . , 𝜆′𝑗−1.
Let 𝑠 and Γ be the substitution and the set used to derive 𝜁 from 𝛿 and 𝜀.
Namely, the sequence of 𝜁 can be obtained from the sequence of 𝛿J𝑠KJXK by
replacing the literaloid corresponding to 𝜆𝑗 with the sequence of (𝜀∖Γ)J𝑠KJXK.

Let ∆ = {𝜆JnamXK[X] : 𝜆 ∈ Γ}. Since all clausoids and literaloids belong
to the class VED, from (26X) we can conclude that (𝜀 ∖ Γ)JnamXK[X] =
𝜀JnamXK[X] ∖ ∆.

Let 𝑠 = JnamXK[X] ∘ 𝑠. According to (16M), the sequence of 𝜁JnamXK[X]
can be obtained from the sequence of 𝛿JnamXK[X][𝑠][X] by replacing the literal
corresponding to 𝜆𝑗 with the sequence of (𝜀JnamXK[X] ∖ ∆)J𝑠K[X].

Since 𝛿′ is a variant of 𝛿JnamXK[X] and 𝜀′ is a variant of 𝜀JnamXK[X], there
exists Sort-indexed functions 𝑓, 𝑔 : X → X, such that 𝛿JnamXK[X] = 𝛿′[𝑓 ]
and 𝜀JnamXK[X] = 𝜀′[𝑔]. Since 𝛿 and 𝜀 have disjoint dependency, according
to (17I2), 𝛿JnamXK[X] and 𝜀JnamXK[X] have disjoint dependency, as well. But
𝛿′ and 𝜀′ also have disjoint dependency, so without loss of generality we may
assume that 𝑓 and 𝑔 are bijective and 𝑓 = 𝑔. Therefore, 𝜀JnamXK[X] = 𝜀′[𝑓 ],
so the sequence of 𝜁JnamXK[X] can be obtained from the sequence of 𝛿′[𝑓 ][𝑠][X]
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by replacing the literal corresponding to 𝜆𝑗 (that is, 𝜆′𝑗) with the sequence
of (𝜀′ ∖ ∆′)J𝑠K[X] where ∆′ = {𝜇[𝑓−1] : 𝜇 ∈ ∆}.

Since 𝑠 ∈ e𝜀({𝜆𝑗 ∼ 𝜇 : 𝜇 ∈ Γ}) and e(Θ) contains no more than one
element for any system Θ, from (18U) we can conclude that 𝑠 is a most
general unifier of {𝜆𝑗JnamXK[X]} ∪ {𝜇 : 𝜇 ∈ ∆}. Therefore, 𝑠 ∘ 𝑓 is a most
general unifier of {𝜆′𝑗} ∪ {𝜇′ : 𝜇′ ∈ ∆′}. Consequently, there exists a sub-
stitution 𝑠′ ∈ mgu({𝜆′𝑗 ∼ 𝜇′ : 𝜇′ ∈ ∆′}), which is a most general unifier of
{𝜆′𝑗} ∪ {𝜇′ : 𝜇′ ∈ ∆′}. Since both 𝑠 ∘ 𝑓 and 𝑠′ are most general unifiers of
{𝜆′𝑗} ∪ {𝜇′ : 𝜇′ ∈ ∆′}, we can conclude that these substitutions are vari-
ants. Therefore, 𝜁JnamXK[X] is a variant of the clause whose sequence can
be obtained from the sequence of 𝛿′[𝑠′][X] by replacing the literal 𝜆′𝑗 with
the sequence of (𝜀′ ∖ ∆′)Jsim′K[X]. According to definition (B3), the clause
having this sequence is a positive mgu-resolvent of 𝛿′ and 𝜀′. �

U)Proposition. Let the condensing functions f and f′ be such that
for any epsilon-clausoid 𝜁 belonging to VED and clause 𝜁 ′ over X be-
longing to VED, if 𝜁 ′ is a variant of 𝜁JnamXK[X], then f′(𝜁 ′) is a variant
of f(𝜁)JnamXK[X].

Let ⟨𝛿0, 𝛿1, . . . , 𝛿𝑛⟩ be a clash sequence of epsilon-clausoids over X be-
longing to VED and ⟨𝛿′0, 𝛿′1, . . . , 𝛿′𝑛⟩ be a clash sequence of clauses over X
belonging to VED, such that 𝛿′𝑖 is a variant of 𝛿𝑖JnamXK[X] for any 𝑖.

If 𝜀 is a positive e𝜀f-hyperresolvent defined by the clash se-
quence ⟨𝛿0, 𝛿1, . . . , 𝛿𝑛⟩, then 𝜀JnamXK[X] is a variant of some positive
mgu, f′-hyperresolvent defined by the clash sequence ⟨𝛿′0, 𝛿′1, . . . , 𝛿′𝑛⟩.

Proof. Follows immediately from (T) and the definitions. �

V)Proposition. Let the condensing functions f and f′ be such that
for any epsilon-clausoid 𝜁 belonging to VED and clause 𝜁 ′ over X be-
longing to VED, if 𝜁 ′ is a variant of 𝜁JnamXK[X], then f′(𝜁 ′) is a variant
of f(𝜁)JnamXK[X].

If 𝜀 is a positive e𝜀f-hyperresolvent defined by the clash sequence
⟨𝛿0, 𝛿1, . . . , 𝛿𝑛⟩, where 𝛿0, . . . , 𝛿𝑛 belong to VED, then the the maximal depth
of the termoids in 𝜀 is not greater than the maximal depth of the termoids
in 𝛿0, . . . , 𝛿𝑛.

Proof. Let 𝛿′𝑖 = 𝛿𝑖JnamXK[X] for 𝑖 ∈ {0, . . . , 𝑛}. From (U) it follows
that there is a positive mgu, f′-hyperresolvent 𝜀′ defined by the clash se-
quence ⟨𝛿′0, 𝛿′1, . . . , 𝛿′𝑛⟩, such that 𝜀′ is a variant of 𝜀JnamXK[X]. Since each
termoid occurring in a VED clausoid has the form p0q+ 𝜏 , from (26X) we
can conclude that the maximal depth of the termoids in 𝜀 is not greater
than the maximal depth of the terms in 𝜀′. According to Lemma 3.15 on
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page 50 in [8], this depth is not greater than the maximal depth of the
terms in 𝛿′0, 𝛿

′
1, . . . , 𝛿

′
𝑛, so, again from (26X), we can conclude that it is not

greater than the maximal depth of the termoids in 𝛿0, 𝛿1, . . . , 𝛿𝑛. �

W)Theorem. The class VED has the finite model property.

Proof. Let f and f′ be condensing functions, such that:
• for any epsilon-clausoid 𝜁 over X, f(𝜁) is a condensation of 𝜁;
• for any clause 𝜁 ′ over X, f′(𝜁 ′) is a condensation of 𝜁 ′ and
• if 𝜁 ′ is a variant of 𝜁JnamXK[X] and 𝜁 belongs to VED, then f′(𝜁 ′) is a

variant of f(𝜁)JnamXK[X].
Let g be an arbitrary reducing function.91

Let Γ′ be an arbitrary universally satisfiable finite set of clauses over X
belonging to VED. Let Γ = {𝛿[NamX]JXK : 𝛿 ∈ Γ′}. From (26X2) it follows
that Γ is a finite set of epsilon-clausoids belonging to VED.

Since no reducing function may increase the maximal depth of the ter-
moids, from (V) we can conclude that the maximal depth of any termoid
occurring in a clausoid belonging to res*(e𝜀, f, g; Γ) does not exceed the max-
imal depth of the termoids of the clausoids in Γ. Up to renaming of the
names, there are only finitely many literaloids with limited depth of the
termoids. But all hyperresolvents of Horn clausoids are clausoids with only
one literaloid, hence the set res*(e𝜀, f, g; Γ) is essentially finite.92 From (23Q)
it follows that the set Γ is universally satisfiable in almost any algebra, so
from (29M) we can conclude that Γ (and so, Γ′ as well) is universally sat-
isfiable in an algebra with finite carriers. �

91See (4P) for the definition of “reducing function”.
92See (23P) for the definition of “essentially finite”.
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§31. CONCLUSION

Method of resolutions is well-known method which is refutationally
sound and complete. If a set of clauses is satisfiable, no contradiction is
derivable. And, if a set of clauses is not satisfiable, it is possible to derive
a contradiction by resolution.

Unification is an important component of method of resolution. The
usual algorithm for unification of terms is sound and complete only for
Herbrand structures. Therefore, the usual resolution is complete only with
respect to satisfiability in such structures. Since Herbrand structures are
almost never finite, it is difficult to use resolution in order to build finite
models or to prove finite satisfiability. That’s why in this work the notion
“satisfiable in algebra” has been introduced and resolutive modifications
which are complete with respect to satisfiability in algebras different from
the Herbrand algebra have been studied.

The most important contribution of this work is the introduction of
the notion “termoid” (14J). The unification of many kinds of termoids is
complete with respect to very large class of algebras, including some finite
algebras. Thus, it becomes possible to use resolution with termoids in order
to prove the main results of this work about the validity of the finite model
property.

Most of the existing results about finite model property have the follow-
ing form: if the elements of some satisfiable set of formulae or clauses satisfy
some syntactic conditions, then the set has a finite model. A new, algorith-
mic approach for study of the finite model property has been proposed in
this work. If a special algorithm, applied to a set of formulae or clauses,
gives a particular result, then the set has a finite model. More specifically,
it has been proved that if the algorithm of the resolution with termoids
stops after finite number of steps and it has not found a contradiction, then
the set of clauses has a finite model.

As an application of the developed theory, we obtain the following im-
portant result: if Prolog fails to prove that a goal 𝜙 follows from a program Γ
of Horn clauses and during the process does not go into an infinite loop,
then there exists a finite model of Γ ∪ {¬𝜙}.

The strength of the algorithmic approach to the finite model property
has been demonstrated for a certain syntactically defined class of formulae,
namely the class VED (universally closed Horn formulae in which that all
occurrences of every variable are at equal depth). We proved that the class
VED has the finite model property.

An axiomatic theory of termoids is developed in §14 and §16. The
axioms for termoids are incorporated in the definition of the notion “ter-
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minator”. Several particular types of termoids are defined: alpha-termoids
in §15, beta-termoids in §7 (informally), gamma-termoids in §24, delta-
termoids in §25, epsilon-termoids in §26.

A rather general unification procedure for termoids is specified in §17
and §18.

Theory for the resolution with termoids is developed. Two versions of
the resolution have been studied in details: the SLD-resolution (§21) and
the positive hyperresolution (§22 and §23).

One characteristic feature of the resolution with termoids is that it pre-
serves the satisfiability but generally it is not sound with respect to logical
consequence. In other words, if we add new resolvents to a set, the result-
ing set is not necessarily equivalent with the initial set. Nevertheless, the
termoidal resolution is sound with respect to satisfiability — if a set is satis-
fiable and we add resolvents to it, the resulting set is going to be satisfiable
as well.

In mathematical logic we customarily consider the completeness a de-
sirable property of a deductive system and the soundness — a necessary
property. Nevertheless, the resolution with termoids is complete but not
sound with respect to logical consequence. As far as I know this is the first
time deductive systems with this property are proposed and used.

All proofs in this work about the existence of finite structures are con-
structive. Therefore, it should be possible to extract practical algorithms
from the proofs. Of course many things should be topic for future research.
For example we have to estimate the complexity of these algorithms and
the size of the constructed models. We have to investigate the problem of
building smaller models than what is suggested by the proofs in this work.

The algorithms we can extract from the proofs in this work tell us only
what the universe of the model is and the interpretation of the functional
symbols. Therefore, in order to build a complete model, we will need also an
efficient method to find a suitable interpretation for the predicate symbols.
Since there are only finitely many such interpretations, from theoretical
point of view we can test all of them in order to find a working one. Obvi-
ously, it is impractical to run such algorithm on computer, but it seems very
likely that we will be able to find a more efficient algorithm if we find a way
to use the information contained in the clauses generated by the resolution.
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Göteborg, 1992.

[29] Christoph Weidenbach. Combining superposition, sorts and splitting.
In John Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning, pages 1965–2013. Elsevier and MIT Press, 2001.

[30] Jian Zhang. Constructing finite algebras with FALCON. J. Autom.
Reasoning, 17(1):1–22, 1996.

[31] Jian Zhang and Hantao Zhang. SEM: a system for enumerating models.
In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August
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