
С О Ф И Й С К И У Н И В Е Р С И Т Е Т

“СВ. К Л И М Е Н Т О Х Р И Д С К И”

Ф А К У Л Т Е Т П О М А Т Е М А Т И К А И И Н Ф О Р М А Т И К А

Стефан Владимиров Герджиков

ЕФЕКТИВЕН АЛГОРИТЪМ ЗА ПРИБЛИЖЕНО
ТЪРСЕНЕ В РЕГУЛЯРНИ МНОЖЕСТВА

ДИСЕРТАЦИЯ

за придобиване на образователната и научна степен “доктор”

в професионално направление 4.5 “Математика”

по научната специалност 01.01.01 “Математическа логика”

Научен ръководител
доцент д-р Стоян Михов

СОФИЯ, септември 2013

Резюме
В настоящия труд разглеждаме проблема за ефективно намиране на думи-
те от даден (регулярен) език, които са близки до дадена дума. Близостта
в това изследване е ортографска близост, тоест всяко отклонение в после-
дователността или вида на буквите от оригинала се наказва с цена, която е
цяло положително число. Конкретните ортографски замени могат да бъдат
произволни, стига техният брой да е краен и те, както и техните цени да са
предварително зададени. Проблемът е да се намерят всички думи в даден
регулярен език, които са близки до дадена дума, V , с цена, ненадхвърляща
q|V |, където q ∈ (0; 1) е рационално число, а |V | е дължината на думата V .

В настоящия труд е изложено ефективно алгоритмично решение на пос-
тавения по-горе проблем. В своята същност то представлява метод от класа
разделяй и владей като първоначалната заявка, думата V , се разделя на
по-къси поддуми, които от своя страна определят заявки от същия вид.
По-късите заявки се оказват по-лесни за разрешаване, а след това могат да
се комбинират, така че да дадат решение и на първоначалната задача.

С цел осъществяването на тази идея, в настоящата работа е разрабо-
тен прост алгебричен апарат, който позволява изследването на свойствата
на дадено ортографско разстояние и как то се отразява при търсенето на
близки до дадена дума думи от даден език. Резултатите от този подход са
основата за разработването на скицирания по-горе алгоритъм. Те позволя-
ват оптималното решение на всяка от възникващите подзадачи в случая
на краен език. Това означава, че времето за изпълнението на алгоритъма
е пропорционално на резултатите, които той трябва да генерира. В общия
случай, когато езикът е произволен регулярен, алгоритъмът е почти оп-
тимален. Излишеството се състои в това, че в края на решаването на оп-
ределена подзадача, думите генерирани в това решение, трябва да бъдат
прочетени още веднъж.

Ефективността на изложения алгоритъм е обоснована при известни пред-
положения за регулярния език, ортографското разстояние и рационалния
параметър q. За получаването на такъв резултат се използва комбинаторно-
вероятностен подход, който използва метода на пораждащите функции. Той
дава оценка отгоре за очакваната сложност на получения алгоритъм, която
е линейна функция относно дължината на заявката с параметри, зависещи
от структурата на езика, ортографското разстояние и параметъра q. Въпре-
ки че при определени ситуации тези параметри може да не са състоятелни,
тоест да бъдат +∞, показани са достатъчни условия, които осигуряват съ-
ществуването на тези параметри и тяхната крайност.

В последната глава на настоящата работа предлагаме нов подход за оп-
ределяне на близост между думи. Неговата основна идея е да се отчетат
типичните операции, определящи разликите между търсената и дадената
дума, според структурата на думите в цялост и тяхната контекстна зависи-
мост. Предложена е практическа реализация на такъв метод, която позво-
лява ефективно търсене на най-близката до дадена дума и адекватността
на тази реализиция е потвърдена експериментално.

Резюме на получените резултати и декларация
за оригиналност на труда
Авторът смята, че основни приноси на дисертационния труд са следните
резултати:

1. Общ апарат за изучаване на свойствата на подравнявания
от думи и ефективното генериране на кандидати за корек-
ция. Този апарат, основаващ се на концепцията за множествата от
подравнявания и списъци от разстояния, е разработен в Глава 4.

2. Нов алгоритъм за приближено търсене в произволно регу-
лярно множество от думи. Това е алгоритъмът по схемата разде-
ляй и владей, който е представен подробно в Глава 5.

3. Нов алгоритъм за приближено търсене за произволно ор-
тографско разстояние. Това е алгоритъмът представен в Глава 6,
който използва схемата разделяй и владей и решава проблема за приб-
лижено търсене за произволно ортографско разстояние.

4. Практическа ефективност на предложените алгоритми.Пред-
ложеният алгоритъм има свойството, че постепенно увеличава допус-
тимото разстояние. По този начин броят на генерираните кандидати
се поддържа разумно малък. Допълнителен аргумент за практическа-
та ефективност на алгоритъма са и резултатите от Твърдения 5.3.6 и
5.3.15, които казват, че всеки кандидат за корекция в този алгоритъм
се генерира веднъж, по-точно O(1) пъти.

5. Теоретична ефективност на предложения алгоритъм. Предло-
жен е вероятностен подход, който теоретично аргументира ефектив-
ността на алгоритъма, Твърдение 7.2.2 и 7.2.7.

6. Нов подход за дефинирине на близост между думи. Глава 8
представя нов подход за дефиниране на близост между думи, който
отчита цялостната структура на езика, а също и контекстната инфор-
мация в рамките на самите думи. Концептуалните предимства на този
подход са потвърдени експериментално, а ефективността на разрабо-
тения алгоритъм е оценена в Твърдение 8.2.9.

Идеята, която стои зад Резлутатите 1–5 развива предишни идеи на Myers, [47],
Baeza-Yates и Navarro, [49], Mihov и Schulz, [42]. За нейната реализация са
използвани класически резултати от теорията на крайните автомати и час-
тично предишни резултати на Blumer et al., [11, 12], Ko и Aluru, [34]. За
постигането на Резултат 5 е използван алгебричен подход, предложен от
Eilenberg, [17], класически резултати от линейната алгебра, теория на гра-
фите, теория на крайните автомати.

Резултат 6 е следствие от оригинална математическа интерпретация на
структурата, предложена от Blumer et al., [12]. За нейната алгоритмична

4

реализация са приложени идеи на Aho и Corasick, [7], а също и общ метод,
предложен от Hart et al., [24, 25], от който новият подход съумява да се
възползва.

Резултатите 1–6 са отразени в една самостоятелна и няколко статии в
съавторство със Стоян Михов, Петър Митанкин, Klaus Schulz и Владислав
Ненчев:

1. Some algebraic properties of alignments of words, S. Gerdjikov,
Comptes rendu de l’Academie bulgare des Sciences, 65(10):1311–
1319, 2012,

Тази статия е самостоятелна. Тя представя основните стъпки, които
водят до Резултати 1 и 5. По-точно, тази статия въвежда и описва
основните свойства на списъците от разстояния и множества от под-
равнявания, които са в основата на Твърдения 5.3.6 и 5.3.15. Тя също
представя Лема 7.1.6, къято се използва съществено при доказателс-
твото Твърдения 7.2.2 и 7.2.7.

2. WallBreaker - overcoming the wall effect in similarity search,
S. Gerdjikov, S. Mihov, P. Mitankin, and K. U. Schulz, ACM
Proceedings of the 2013 Joint EDBT/ICDT Workshops, 2013,

и нейната пълна версия:

Good parts first - a new algorithm for approximate search in
lexica and string databases, S. Gerdjikov, S. Mihov, P. Mitankin,
and K. U. Schulz, ArXiv, 2013
e-prints:http://adsabs.harvard.edu/abs/2013arXiv1301.0722G.

Тези две статии са в съавторство със Петър Митанкин, Стоян Михов,
и Klaus Schulz. Алгоритъмът за приближено търсене, описан в ста-
тиите, е резултат, постигнат в рамките на семинара, воден от Стоян
Михов, където Петър Митанкин и авторът едновременно работеха и
представяха своите идеи за решаването на този проблем. Така, заедно,
те достигнаха до две еквивалентни решения в случая на Левенщайн
разстояние. Различията бяха в линейните структури от данни, които
се използваха за представянето на множеството от думи.

Понататъшните изследвания на Петър Митанкин доведоха до окон-
чателния вариант, представен в тези статии, в който се използва още
по-компактна структура, именно тази от [12, 29].

В същото време дисертантът обобщи метода за произволно ортограф-
ско разстояние, Резултат 3.

Тези части от статиите [20] и [21] представляват основата за пости-
гането на Резултати 2, 3 и 4, а експерименталните резултати в [20]
и независимото оценяване по време на форума Workshop on Scalable
Similarity Search Strings/Join, Genoa, 2013, емпирично потвърждават
Резултат 4.

5

3. Extraction of spelling variations for noisy text correction. S. Gerdjikov,
S. Mihov, and V. Nenchev, In Proceedings of 12th International
Conference on Documents Analysis and Recognition 2013, 2013,
p.324–328.

Тази статия е в съавторство със Стоян Михов и Владислав Ненчев.
В нея авторът има основен принос при създаването, разработването
и конкретната реализация на описания в статията подход, който е
всъщност Резлутат 6.

Някои от тези резултати бяха представени на международни форуми:

• WallBreaker - overcoming the wall effect in similarity search,
S. Gerdjikov, S. Mihov, P. Mitankin, and K. U. Schulz, on the
EDBT/ICDTWorkshop for Scalable String Similarity Search/Join,
Genoa, Italy, 2013. (презентация на С. Герджиков)

При тази изява авторът представи основните идеи от статиите [21]
и [20] с акцент върху Резултата 4 – практическата ефективност на
алгоритъма за приближено търсене.

• Extraction of spelling variations for noisy text correction. S. Gerdjikov,
S. Mihov, and V. Nenchev on the 12th International Conference
on Documents Analysis and Recognition, Washington, DC, USA,
2013. (постер, представен от С. Герджиков)

С този постер авторът илюстрира резултатите от [22]. В дискусиите
с експерти, с научни интереси в обработката на исторически текстове
и OCR-корекция, авторът представи Резултата 6 от различни гледни
точки, като по този начин мотивира неговата широка приложимост.

• OnModernisation of Historical Texts. S. Gerdjikov, Computability
in Europe 2012, Cambridge, UK, 2012. (презентация С. Герджи-
ков)

В тази презентация авторът представи Резултат 6 в контекста на нор-
мализация на английски текстове от 17 век.

Съществени части от Резултати 5 и 6 бяха представени на Пролетните
сесии на Факултета по математика и информатика на Софийския Универ-
ситет:

• Доколко са регулярни правописните промени в българския
език от 19 век до днес? С. Герджиков, Пролетна сесия на
Факултета по математика и информатика на Софийския Уни-
верситет, 2012 (презентация пред катедра Математическа логика и
приложенията и́)

В тази презентация авторът представи Резултат 6 върху конкретната
задача за нормализация на български език от 19 век.

6

• Комбинаторен етюд: "Подравнявания на думи"С. Герджи-
ков, Пролетна сесия на Факултета по математика и инфор-
матика на Софийския Университет, 2011 (презентация пред ка-
тедра Математическа логика и приложенията и́)

В тази презентация авторът представи комбинаторния резултат от
Lemma 7.1.6, който води до Резултат 5.

7

Въз основа на предишните параграфи, авторът заявява, че настоящата
дисертация е оригинален научен труд. Употребата на предишни резултати
е отразена по честен начин като съответните източници са цитирани според
условията на авторските права на техните автори, и/или издатели и/или
други притежатели на конкретните авторски права.

S O F I A U N I V E R S I T Y

“St. K L I M E N T O H R I D S K I”

F A C U L T Y F O R M A T H E M A T I C S A N D I N F O R M A T I C S

Stefan Vladimirov Gerdjikov

EFFICIENT ALGORITHM FOR THE APPROXIMATE

SEARCH PROBLEM IN REGULAR SETS

DISSERTATION
in partial fulfilment of the requirements of the degree

Doctor of Philosophy in Mathematics

Supervisor
Dr. Stoyan Mihov

Sofia, September 2013

Contents

Introduction v

1 Preliminaries 1
1.1 Words and Languages . 1
1.2 Finite State Automata . 3
1.3 Operations and Edit-distance . 4
1.4 Dynamic Programming Algorithms 5
1.5 Generalised Levenshtein Automata 8
1.6 Approximate Search Problem . 10
1.7 Norm of Matrices . 11
1.8 FSAs Algebraically . 11

2 Bidirectional Infix Structures for Finite Sets 17
2.1 Blumers’ Construction . 17
2.2 Blumer et Blumer for finite set of words, S 23
2.3 Suffix Arrays . 28

3 Example 29

4 Alignments and Edit-Distance Lists 33
4.1 Some Basic Properties of the Alignments 33
4.2 Sets of Alignments . 35
4.3 Edit-Distance Lists . 39
4.4 Reversing Alignments . 43

5 Approximate Search in Regular Sets, ρ(Op) = 1 47
5.1 Algorithm Overview . 47
5.2 Initialisation Step . 49
5.3 Extension Steps . 51

5.3.1 Edit-Distance Lists Represented as Tries 51
5.3.2 Deg-lex Order of Edit-distance Lists. Faster Technique

for Finite Languages . 71
5.4 Reporting the Answers . 81

i

ii CONTENTS

6 Approximate Search in the General Case, ρ(Op) ≥ 1 83
6.1 Decomposition Techniques for ρ(Op) ≥ 1 84
6.2 Approximate Search Algorithm, ρ(Op) ≥ 1 91

6.2.1 Organisation of the Query Tree T (V). Initialisation . . . 91
6.2.2 Extension Steps . 96
6.2.3 Reporting the Answers . 107
6.2.4 Memory Bookkeeping . 109

7 Running Time of the Generalised Myers’ Algorithm 113
7.1 Average Number of Generated Candidates during the Extension

Steps . 113
7.2 Average Time Complexity of the Extension Steps 126
7.3 Sufficient Convergency Conditions 132

8 Learning the Edit-Distance 139
8.1 Extraction of Operations . 140

8.1.1 Canonical and Candidate Trees of a Word 140
8.1.2 Retrieval of Operations and their Probabilities 144

8.2 Searching Dictionary Candidates 149
8.2.1 Approximate Canonical Trees 150
8.2.2 Alignment Graphs. Searching of Candidates 153

8.3 Evaluation . 161
8.3.1 TCD 1641 . 161
8.3.2 IMPACT BG . 162
8.3.3 ICAMET . 163
8.3.4 TREC-5 . 163

A Bookkeeping 165

Conclusion 171

Bibliography 176

List of Figures

2.1 The Blumer et Blumer automaton for the word ababb 20
2.2 The tree structure of the representatives of the word ababb. . . . 21
2.3 A linear size structure allowing the interchanging left and right

traversal of the infixes of ababb. 22
2.4 A linear size automaton recognising exactly the suffixes of {ababb, acbbb}. 24
2.5 A linear size tree structure for the representatives induced by the

set {ababb, acbbb}. 25
2.6 A linear size structure allowing the interchanging left and right

traversal of the infixes of the set {ababb, acbbb}. 26

3.1 The search tree we build for the query word V = dread. 30
3.2 Solving the queries induced by V = dread in a bottom-up fashion. 31

5.1 The structure of a searching tree in the case when V is split into
4 subwords. 48

5.2 The representation of the edit-distance lists Lr(abb, 1) that L-
represents (A≤0(ab) ◦ A(b)))≤1. 54

5.3 Merging left and right extension lists. 66

6.1 The representation of edit-distance lists. 108

8.1 On the left is the canonical tree, TN (V), for the noisy word V =
knoweth w.r.t. the set of noisy words, N . On the right is the
canonical tree TD(U) of its dictionary original word U = knows. . 142

8.2 Different candidate trees for R = knows. One of them is TD(U). . 144
8.3 On the left, the candidate tree of U = knows which is best

ranked w.r.t. V = knoweth. On the right, the noisy variant
knoweth → knows is propagated to the subtrees to obtain new
(shorter) operations. 145

8.4 The tree T̃N (N) constructed for the query wordN = traiterouslie.
The dashed nodes are infixes which are not N -distinxes, the solid
nodes are infixes which are N -distinxes. 150

8.5 The alignment graph GN (V) for V = traiterouslie. 154
8.6 The precomputed lists L(ν) for ν = slie. 156

iii

iv LIST OF FIGURES

Introduction

The Levenshtein edit-distance originally arose in the context of information
transmission in noisy channels and coding theory where its combinatoric prop-
erties were studied by Sellers, [56], Levenshtein, [37], etc. In this model a se-
quence of characters, i.e. a word, should be sequentially transmitted through a
channel. However, due to noise, the resulting word can differ from the original
one in several ways: (i) some of the original characters may have been substi-
tuted with a different character, (ii) some of the original characters may have
been deleted, (iii) new characters may have been inserted by the channel. In this
scenario, the noisy channel is considered as a ”black box” so we do not know
which processes have taken place during the transmission and we can observe
only the resulting word as a whole. The general problem is to reconstruct the
original word from the corrupted one that we see.

Stated in this way the problem is too general to get a reasonable answer. In
order to become more sensible it requires some further specification.

Firstly, it is natural to assume that the original word is not an arbitrary one
but rather belongs to some domain, D. In different application areas this may
mean different things. For instance, in the natural languages processing, it is
often the case that the word is a single word in a specific language or a sentence
in some language. Thus, the original word is not simply a jumble of characters
but a sequence of characters that forms a word in a dictionary, or a sequence
of such words. The noisy channel then arises in a natural way by identifying
it for example with an OCR-engine, that strives to recognise optical characters
and partially fails. In the bioinformatics, the original word can be a sequence
of nucleotide bases that originates from a specific genome, or a sequence of
alpha-amino-acids that represent a certain protein from a collection of proteins.
In this scenario the biological mutations can be modelled as a noisy channel.
Other applications may ask for different domains and different models of a noisy
channel.

Secondly, it seems highly improbable that the noisy channel would corrupt
the entire word. Or, more correctly, we would be extremely powerless to re-
construct the original word given that the noisy channel may have corrupted it
completely. Hence, the second reasonable assumption is that the noise intro-
duced by the channel is bounded by some threshold, say b. Now we can restate
our original problem as follows. Given the domain of the original word D, the
corrupted word, V , and the (noise-)threshold, b, which are the possible original

v

vi INTRODUCTION

words?
On a very high level, this is the approximate search problem. Still, it rises

some questions. What does ”given the domain” mean? What is the appropriate
value for the (noise-)threshold? Finally, ”the possible original words” is not
quite the same as ”the reconstructed word”, one would expect to obtain. With
this last remark we cannot argue and in the general framework described above
it is hardly manageable to do better than list all the possible original words and
then verify them by some other means to obtain the one.

”Given the domain” assumes a finite representation of the domain, D. One
possibility is that D is simply a finite set of words, i.e. a single word, [60], a set
of infixes of a long text,[47, 9, 49, 15], finite set of words,[16]. An alternative
is that D is given as a finite state automaton, [50, 36, 55, 42, 52]. This second
case clearly extends the class of finite set of words.

The choice of the threshold, b, also varies and different scenarios are con-
sidered. Some models assume that b is a general predetermined constant,
[16, 15, 13]. On the other extremity, b can be considered as specific for the
resulting word, [50, 36, 55, 42], and thus it can be arbitrary. A compromise be-
tween these two scenarios is to determine the threshold b as a fixed ratio, q, of
the length of the resulting word, which can vary, [47, 9, 49]. Since the threshold
b essentially determines the number of the possible original words, the bigger
b the more possible candidates must be verified afterwards. This suggests that
b should not be too big for practical needs. However, fixing b might be also a
bad choice, since this constraint might be vulnerable to miss the original word
we are looking for. Thus, the middle way, where b depends on a parameter,
q ∈ (0, 1) and the length of the corrupted word, seems to achieve a favourable
trade-off.

With respect to this variety of approximate search problems arising from
different assumptions for the domain, D, and the threshold, b, we focus on
the following which we call approximate search problems in regular sets. It
is specified by a domain (or regular language) D represented as finite state
automaton and a threshold b that is determined as q|V | where q ∈ (0; 1) is fixed
and V is the resulting corrupted word. The problem is to retrieve all the words
U ∈ D that are possible original words for the corrupted word, V .

Although the approximate search problem is easier than the problem of
reconstruction of the original word based on the corrupted word, it is not a
simple one. Though, some special instances of this problem have an efficient
solution. The case when D is a singleton can be solved in time O(b|V |) and space
O(b) via a standard programming algorithm, [60]. The case when D is the set of
infixes of a long text, T , and b ≤ 1 can be solved O(|V |+ occ+ log|T |loglog|T |)
and space O(|T |) by an algorithm of Chan et al., [15], where occ stays for the
number of the possible original words.

However, in general, when the threshold b is not given in advance or the set
of words is big or even arbitrary regular set such favourable results and efficient
solutions are not described yet. In the sequel we shall summarise some of the
approaches developed in order to solve the problem in practice. Although our
aim is only to give the essence of these algorithms and avoid the technical details,

vii

we shall need some terms, like finite state automata, alignment, (generalised and
Levenshtein) edit-distance, Ukkonen’s algorithm, that are formally introduced in
Chapter 1.

Forward Algorithm

In [50], Offlazer considers the following version of the approximate search prob-
lem, that is also similar to [33, 36] and [67]. Given a finite set of words D and
a query word V which are all the words U ∈ D which are similar to V . The
formal restatement of the problem is rather straightforward:

Given:D a finite set of words
Input: V ∈ Σ∗, b ∈ N
Output: {U ∈ D | dL(U, V) ≤ b}.
Here dL stays for the Levenshtein edit-distance. Note, that in this framework
we distinguish between given and input. The reason is that D is interpreted
as a dictionary of some language which is known in advance. The query then
consists in recognising the input word V in the context of this language. For
these reasons the set D is regarded as something stable which is rarely updated,
whereas there is freedom for the query word, V , and the threshold, b.

Oflazer represents the dictionary D as a deterministic finite state automaton
A = 〈Q,Σ, s, δ, F 〉. To answer the query, his algorithm combines the ideas of
Ukkonen’s algorithm, [60], and the straightforward left to right traversal of the
automaton. The traversal of the automaton essentially generates the words of
D. The Ukkonen’s algorithm is used during the traversal in order to cut the
prefixes of words which are too far away from any prefix of V .

Flag(d, b)
@1 return d ≤ b

DFSearch(A, q, U, j, V , d, b)
@ 1 if q ∈ F and j = |V | then
@ 2 return U
@ 3 for ∀ σ ∈ Σ !δ(q, σ) do
@ 4 p = δ(q, σ)
@ 5 if σ = Vj+1 then
@ 6 DFSearch(A, p, U ◦ σ, j + 1, V , d, b)
@ 7 else
@ 8 if Flag(d, b) then
@ 9 DFSearch(A, p, U ◦ σ, j + 1, V , d+ 1, b)
@ 10 if Flag(d, b) then
@ 11 DFSearch(A, p, U ◦ σ, j, V , d+ 1, b)
@ 12 if Flag(d, b) then
@ 13 DFSearch(q, U, j + 1, V , d+ 1, b)

Search(A, V , b)
@ 1 DFSearch(A, s, ε, 0, V , 0, b)

viii INTRODUCTION

Note that in lines 3 to 9 the algorithm handles possible substitutions, in line 10
it considers the possible insertions and in line 12 it checks for deletions.

Having the more general concept of what an operation is, one can easily
describe all these cases homogeneously and also reflect the possibility of different
costs. This can be done by introducing a single loop on the admissible operations
and checking which of them are compatible with the query word and with the
threshold.

GeneralDFSearch(A, q, U, j, V , d, b)
@ 2 if q ∈ F and j = |V | then
@ 3 return U
@ 4 for ∀ op ∈ Op do
@ 5 if r(op) = V [j + 1..j + |r(op)|]) and Flag(d+ c(op), b) then
@ 6 p = δ∗(q, l(op))
@ 7 if p is defined then
@ 8 GeneralDFSearch(A, p, U ◦ l(op), j + |r(op)|, d+ c(op), b)
@ 9 fi
@ 10 fi
@ 11 done

GeneralSearch(A, V , b)
@ 1 GeneralDFSearch(A, s, ε, 0, V , 0, b)

Observe that the algorithm will always terminate, because the recursion is in-
voked with d ≤ b and j ≤ |V |. On the other hand since each operation with
r(op) 6= ε is of positive cost (c(op) ≥ 1) each successive invocation has either a
greater parameter j, or the parameter d strictly increases. Hence no viciousness
will take place and the algorithm halts.

Depth first search is only one possibility for generating the entries of the
dictionary. One can equally well profit from the breadth first search. It provides
a better semantics of the algorithm but it suffers from greater space requirements
for its implementation in practice. In this specific context we shall see that
whereas the depth first search will report one and the same word several times,
the breadth first search suppresses this effect. More importantly, it allows us
to relate its efficiency with the number of alignments determined by the query
word V and the successful candidates in D.

In [52], Reffle describes how a breadth first search can be realised in order
to solve the approximate search problem for generalised edit-distance. Except
the search strategy, Reffle also describes a nice application of the Aho-Corasick
algorithm [7] that allows him to efficiently select the operation applicable at
each step of the algorithm. The idea is essentially to keep track of the longest
suffix of the currently processed word that is also a prefix of a right hand side of
an operation. This fits nicely in the Aho-Corasick tree-structure and following
the ’links’ one deduces in constant time per operation all the operations that
match the suffix of the currently processed word.

ix

Forward-backward algorithm

The bottleneck in the Oflazer’s algorithm, regardless of its implementation, is
that it generates all prefixes Ui of words in the dictionary (or regular language)
which are at edit-distance less than or equal to the threshold b to some prefix Vj
of the query V . Provided that there are a lot of different prefixes Ui represented
in the automaton A and that the edit-operations Op allow the flexibility of a
large scope of alignments as it is in the Levenshtein edit-operations, the number
of generated strings Ui increases exponentially with b. On the other hand, even
if b is big, the size of the output, i.e. the number of words U ∈ D that are close
to the query word V can be small.

This feature of the approximate search problem is known as the wall-effect.
This is one of the main differences between the problem considered by Ukkonen
and that addressed by Oflazer. The wall-effect is not experienced for small
sets, since their size is a more favourable upper bound than the mere exponent
predicted by b. Once the dictionary D and the exponent exp(b) are comparable
the initial blow-up caused by unnecessary generated prefixes becomes inevitable.

In order to deal with this problem, different approaches were considered.
Some of them rely on a precomputed index. The algorithms of Cole et al., [16],
and of Chan et al., [15], are tailored as to reduce the total size of D during the
search phase. The idea is to represent each word not by a single path as it is in
the deterministic automaton but by several paths which branch at certain points.
In this way wild-cards, i.e. characters which can be substituted or deleted, are
explicitly encoded in the branching points. Hence, each path encodes rather
a class of alignments compatible with the word it reads and all possible other
words compatible with this sample. This keying is then used in order to reduce
the number of paths which are considered during the search. As a result the
algorithm of Cole et al., [16], achieves worst-case bounds O(3b(logN)b) where
N = |V | is the length of the query word, b is a fixed threshold, and it requires
O((log |D|)b) additional storage space. Similar approaches were described by
Mor and Fraenkel [46] and Boytsov [13]. Unfortunately, these approaches are
sensitive to the threshold b as the space requirements indicate. Since storage
space is dependent on the size of the set D, they cannot be applied for infinite
sets.

An alternative approach was suggested by Mihov and Schulz, [55, 42]. They
explore the following idea. If there are b errors distributed on the entire word
V , then either a prefix of V contains less than b

2 errors or its complementary
suffix obeys this property. This observation allows to suppress the initial wall-
effect caused by the error-tolerance b to the wall-effect induced by b

2 . However
this case distinction requires to traverse the dictionary twice. Once, as in the
forward-method which corresponds to first align the prefixes, and once again,
but this time traversing the dictionary and the query word backwards in reverse
manner, this time considering the suffixes’ alignments first. As we explained
earlier the wall-effect depends exponentially on b, thus replacing b by b

2 reduces
its magnitude significantly and the disadvantage to traverse the dictionary twice
is ignorable.

x INTRODUCTION

Since the contribution of this work generalises on this method we give some
more details about it in the special case of Levenshtein edit-distance. Assume
that ω is an alignment of U against V with cost c(ω) ≤ b. Suppose also that
V = V0 ◦ V1 where V0 and V1 are of (almost) equal lengths. Because each
operation, substitution, deletion or insertion concerns at most one character
of V , we can decompose ω = ω0 ◦ ω1 such that r(ωi) = Vi. On the other
hand c(ω) = c(ω0) + c(ω1) and therefore c(ωi) ≤ b

2 either for i = 0 or for
i = 1. Now it should be clear that U = l(ω0) ◦ l(ω1). These considerations
suggest the following modification of Oflazer’s algorithm. If j ≤ |V |

2 , then d

must be less than or equal to b
2 . After the first run of the modified algorithm

we apply it once again for Drev and V rev, but instead of U , which this time
belongs to Drev, one has to report Urev. Again the dictionaries D and Drev
are represented via deterministic finite state automata, A = 〈Σ, Q, s, δ, F 〉 and
Arev = 〈Σ, Qrev, srev, δrev, F rev〉, respectively.

DFSearch2(A, q, U, j, V , d, b)
@ 1 if q ∈ F and j = |V | then
@ 2 return U
@ 3 for ∀ σ ∈ Σ !δ(q, σ) do
@ 4 p = δ(q, σ)
@ 5 if σ = Vj+1 then
@ 6 DFSearch(p, U ◦ σ, j + 1, V , d, b)
@ 7 else
@ 8 if Flag(d, b) and (Flag(d, b2) or j + 1 > |V |

2) then
@ 9 DFSearch(p, U ◦ σ, j + 1, V , d+ 1, b)
@ 10 if Flag(d, b) and (Flag(d, b2) or j > |V |

2) then
@ 11 DFSearch(p, U ◦ σ, j, V , d+ 1, b)
@ 12 if Flag(d, b) and (Flag(d, b2) or j + 1 > |V |

2) then
@ 13 DFSearch(q, U, j + 1, V , d+ 1, b)

Search2(A,Arev, V , b)
@ 1 DFSearch2(A, s, ε, 0, V , 0, b)
@ 2 DFSearch2(Arev, srev, ε, 0, V , 0, b)

One can easily transform the depth first search into a breadth first search
as we already clarified this issue for Oflazer’s algorithm. It is also not difficult
to overcome the constraint of Levenshtein edit-distance. We shall have the
opportunity to highlight the details which this generalisation entails further on.

Myers’s Algorithm

Mihov and Schulz were not the first to apply the divide and conquer strategy
for an approximate search problem. The same idea was already utilised by
Myers [47] for the following particular case of the approximate search problem:

Given: T ∈ Σ∗, q ∈ (0; 1)

xi

Input: V ∈ Σ∗

Output: {U | U ∈ Inf(T) & dL(U, V) ≤ q|V |}

The approximate search problem considered by Myers can be restated in
terms of the Oflazer’s model by setting:

D = Inf(T)
b = q|V |.

To solve a single query, Myers makes the following observation which is very
similar to that of Hirschberg [26]. Imagine that the input V is decomposed into
a prefix V0 and a suffix V1, such that V = V0 ◦ V1. Assume that some word
U ∈ L can be obtained from V with no more than q|V | insertions, deletions
and (proper) substitutions. Then either no more than q|V0| operations concern
the prefix V0, or no more than q|V1| operations concern the suffix V1. But this
means that U can be decomposed into U = U0 ◦ U1 such that the sum of edit-
operations to transform Vi into Ui does not exceed q|V | and fewer than q|Vi|
operations are needed to transform Ui into Vi either for i = 0, or for i = 1.

Formally this can be stated as (compare with the Lemma on page 3 in [47]):

Lemma 0.0.1 If V = V0◦V1 is a decomposition of the query word V and U ∈ L
with:

dL(U, V) ≤ q|V |,
then there exists a decomposition U = U0 ◦ U1 such that:

dL(U0, V0) + dL(U1, V1) = dL(U, V) and
dL(U0, V0) ≤ q|V0| or dL(U1, V1) ≤ q|V1|,

where dL is the Levenshtein edit-distance induced by (OpL, cL) (see Remark 1.3.3.)

In case when L is the set of all infixes of a word (text) T , as it is in the
problem of interest for Myers, U0, U1 ∈ L whatever the decomposition of U ∈ L
might be. This suggests a straightforward divide and conquer approach to pro-
cess the query. Namely one splits the initial query V into two smaller determined
by V0 and V1. After having computed the solutions for both of them recursively,
we try to extend the solutions U0 for V0 to the right so that they find their ap-
propriate suffixes U1, and we extend the solutions U1 generated by V1 to the left
so that they match with appropriate prefixes U0. In this way the threshold for
the recursive invocation is q|Vi| and the original threshold q|V | comes into play
at the very last stage when only fewer candidates need to be explicitly verified.

Myers implements this idea in an algorithm that runs on average inO(q|V ||T |ε(q) log |T |)
time where ε(q) < 1 is a convex function with ε(0) = 0. This means that if the
text is a result of a sequence of independent Bernoulli trials and the query V
of length |V | > log2 |T | is fixed, the expected value for the running time of the
algorithm grows sublinearly w.r.t. the length of the text T .

To achieve this result Myers’ algorithm uses two more ingredients besides
Lemma 0.0.1. Schematically it computes an appropriate index for shorter words.

xii INTRODUCTION

Then, instead of applying Lemma 0.0.1 recursively, it goes in a bottom-up fash-
ion. At the extension steps, it processes subqueries simultaneously by the means
of a dynamic programming similar to the Ukonnen’s algorithm, [60].

In more details, the Myers’ algorithm precomputes for each word V of length
dlog |T |e all the hits in the text T . Essentially, a hit for V is (a representation
of) an infix of T that is at edit-distance ≤ q|V | from V . This sort of indexing
the text T allows an immediate access to all the candidates for short words.
The result of this index applied at the first step becomes a basis for the rest of
the search which successively applies Lemma 0.0.1 in a bottom-up fashion.

Thus, given a query word, it is split into subwords of length approximately
dlog |T |e and the hits for these subwords are retrieved. The subsequent steps of
the algorithm correspond to the extension-merge phases of the recursive algo-
rithm we looked at above. It unifies the candidates sharing common positions
in the text together and uses dynamic programming technique, [60], to verify
which of the candidates can be successfully extended.

The core difference between the Myers’ algorithm and the other algorithms,
e.g. the forward or forward-backward method, is the following. The latter
algorithms use a fixed number of values for a threshold of the magnitude of
the original bound b. Commonly the filter is either the Ukkonen’s dynamic
programming scheme, [60], or a universal Levenschtein automaton, [42], and this
imposes that insertions, deletions and substitutions of number O(b) are allowed
at each stage of the algorithm. This results in the wall-effect. Contrary to this
concept, Myers applies a system of filters for subwords, Vα, of V . Crucially,
the threshold for the filter is a ratio |Vα||V | of the original bound b. Hence, the
shorter the query Vα less number of errors are allowed in the candidates U . The
original filter that allows q|V | errors is therefore postponed for the very last
stage of the algorithm when the candidates U have already restricted the size
of the searching space within the text T .

There are several problems which hinder the immediate application of Myers’
algorithm in case of arbitrary regular language, L. Firstly, L should not be
closed under infixes. Hence, the homogeneity of the subproblems would be lost.
To overcome this obstacle we shall rather use an automaton-based representation
for the set of infixes of L which encodes in terms of terminal states those infixes
which are actually words of L. Secondly, the capacity to extend an infix into
either direction (left or right) is crucial for the Myers’ algorithm. Note, that we
mean not an arbitrary extension of an infix but only such an extension which
results into an infix of the language L. In case when T is a text and L constitutes
of the infixes of T , this is easily achievable by considering T as an array and each
infix as a subarray T [j..k]. Hence, extending T [j..k] to the left means simply
look at position T [j−1] into T and extending to the right means to have a look
at position T [k + 1]. In case of an arbitrary regular language L this is no more
the case, since the common way to think of L is as an automaton and it does
not provide information about the extensions to the left. Finally, and probably
this is the most essential problem, the index required by the Myers’ algorithm
grows with the size of the text T . Hence, it is inapplicable for infinite languages.

xiii

Another practical issue concerning the efficiency of the Myers’ algorithm, is
the naive representation of the generated candidates. Infixes spelling the same
word but occurring at distinct positions in the text are generated. To overcome
this problem, Baeza-Yates and Navarro, [9, 49], propose an algorithm that uses
suffix trees, [23, 61]. Thus, different occurrences of the same infix are already
represented uniformly. Unfortunately, the divide and conquer algorithm suffers
from the usage of this data structure. Actually, it is only in the first step that
one can start with an exact match or a reasonable error threshold. Immediately
after the detection of the initial matches, the algorithm switches to the maximal
threshold allowed by the query. Thus, it loses the nice feature of the Myers’
algorithm to increase the threshold smoothly with the increase of the length of
the candidates. Nevertheless, the same authors, Baeza-Yates and Navarro, show
in [49] that using an appropriate index and under significant constraints on the
threshold bounds, the proposed algorithm has a good theoretical complexity on
average.

xiv INTRODUCTION

In the next chapters we are going to consider the approximate search problem
in regular sets and generalising the ideas from [55, 42] and [47, 49] we shall
describe an efficient algorithm for its solution.

Chapter 1 and Chapter 2 have preliminary character.
In Chapter 1, we give some basic definitions and formally state the approx-

imate search problem in regular sets.
In Chapter 2, we shall present linear size representations of the infixes of

finite sets of words.
In Chapter 3, we illustrate the basic concept of our approach on a small ex-

ample. The main contributions of the current work are presented in Chapters 4
to 8.

In Chapter 4, we develop a formal framework of alignments sets and edit-
distance lists. These notions allow us to formalise our approach. Intuitively,
the alignments sets naively represent all possible ways the noisy channel may
have processed the original word in order to obtain the corrupted word. They
do not account for the specificity of the domain and may or may not reflect the
threshold requirements. Thus they are impractical but mathematically conve-
nient. The edit-distance lists represent alignment sets with respect to a specific
domain (language). They take into account the domain and eliminate the redun-
dancies introduced by the alignment sets reducing them only to the information
that is relevant for the search.

In Chapter 5, we present our algorithm in a special case that extends the
Levenshtein edit-distance, and estimate its complexity with respect to the num-
ber of generated candidates, including the false ones. We also provide a faster
solution for the case of finite set of words that based on the data structures in
Chapter 2 requires linear space. In the general case the space requirement is
the space needed for the representation of the infixes of the given language (and
not the language itself).

In Chapter 6, we generalise the approach described in Chapter 4, so that it
captures the case of general edit-distance. This allows us to extend the algorithm
developed in Chapter 4 and prove that it has similar characteristics as the basic
one. Yet, the extended algorithm may require some additional bookkeeping.

In Chapter 7 we investigate a general framework that allows us to argue
the efficiency of our algorithm. The assumption that it relies on is that the
corrupted word is a result of a sequence of independent Bernoulli trials. We
prove a combinatorial Lemma that relates the expected number of generated
candidates with the structure of the original language. Using the analysis of
the running time of the algorithm from Chapter 5 and Chapter 6 this allows
us to conclude linear running time on average under certain constraints for the
given language. Finally, we give sufficient conditions of quite a general kind
that assert the consistency of our result.

Finally, in Chapter 8 we address the challenging problem to reconstruct
the original word from an observed noisy word. It uses a finite (multi)set of
examples saying that a particular noisy word stays for a particular original
word, and a dictionary describing the set of original words. Based on these data
we develop general approach that explores the structure of the examples and

xv

the structure of the dictionary in order extract the operations typical for the
source of noise, from the structure of a finite set. In a quite standard way we
define the likeliness for a particular noisy word to stay for a particular original
word. As a result we arrive at a practical algorithm that generates a ranked
list of correction candidates for an arbitrary noisy word. The adequacy of this
approach is defended empirically.

In the Appendix we add a further note to the additional index structure that
may be needed in a specific case of the algorithm’s parameters.

The results from Chapter 4, Chapter 6 and Chapter 7 were published in [19]
and the algorithm from Chapter 5 was essentially described in [20, 21]. The
approach in Chapter 8 was published in [22].

xvi INTRODUCTION

I am grateful to Stoyan Mihov for the proposed research topic and for the
leadership of a great seminar in Natural Language Processing. I express my
acknowledgement to the participants in this seminar for prolific discussions, for
the opportunity they give me to informally expose new ideas and for sharing
their experience. Most of the results presented in the current work are due to
preparation for the sessions of this seminar or to discussions held during these
sessions. Other results obtained in the same fruitful academic atmosphere found
other appropriate venues. Yet, the most interesting sessions remain those that
do not yield any particular result, but conclude with another question; question
that motivates further research, conjectures and consideration – a good reason
for anticipating the next seminar session and its discussions.

Chapter 1

Preliminaries

In this Chapter we introduce the basic notions for regular languages, alignments
and some basic linear algebra notions. We also formally state the approximate
search problem in Section 1.6 that we shall consider in more details in the next
Chapters.

1.1 Words and Languages

An alphabet Σ is a finite set whose elements are called characters. We denote
with Σ∗ the set of all finite sequences of characters of Σ. Hence a word W over
Σ is simply W ∈ Σ∗. We use U, V,W, . . . to denote words over the alphabet Σ.
For a word U the length of U is determined as the number of characters in U .
We denote the length of U with |U |. There is a unique word of length 0 over an
alphabet Σ which is called the empty word. We denote the empty word with ε.

The concatenation of words U = u1u2 . . . um and V = v1v2 . . . vn is the word
U ◦ V = u1u2 . . . umv1v2 . . . vn. A word U is a prefix of a word V if there exists
a word W with V = U ◦W . Dually, U is a suffix of a word V if there exists
a word W with V = W ◦ U . We say that U is an infix of a word V if there
are words W1,W2 with V = W1 ◦ U ◦W2. We denote the infix of V starting at
position i and terminating at position j with Iji (V), i.e.:

Iji (V) = vi ◦ vi+1 . . . vj .

Assuming that Σ = {σ1, . . . , σ|Σ|} is an alphabet which induces the natural
order on its characters σ1 < σ2 < · · · < σ|Σ|, we say that a word U = u1 . . . um
is lexicographically smaller than a word V = v1 . . . vn if and only if:

U = Im1 (V) and m < n or ∃(k < m,n)[Ik1 (U) = Ik1 (V) and uk+1 < vk+1].

In this case we shall write U ≺lex V . We use U �lex V as a short hand for:

U = V or U ≺lex V.
It should be clear that � is a linear ordering on words.

1

2 CHAPTER 1. PRELIMINARIES

Definition 1.1.1 Given an alphabet Σ, a language over Σ is an arbitrary set
L ⊆ Σ∗.

Next we list some basic operations on languages.

Definition 1.1.2 Let L1 and L2 be languages over an alphabet Σ, then:

1. union of L1 and L2 is the language L∪ = L1 ∪ L2.

2. concatenation of L1 with L2 is the language:

L◦ = L1 ◦ L2 = {U1 ◦ U2 |U1 ∈ L1, and U2 ∈ L2}.

3. for an integer number n ∈ N the power Ln1 is defined recursively as:

L0
1 = {ε}

Ln+1
1 = Ln1 ◦ L1.

4. the iteration of the language L1 is the language L∗ defined as:

L∗ = L∗1 = ∪∞n=0Ln1 .

With this definition it is easy to see that Σn is the set of all words U ∈ Σ∗

with |U | = n. For a word U = u1u2 . . . un with uj ∈ Σ, the reverse of U is
Urev = un . . . u2u1.

The focus of our research is the class of regular languages. There are different
ways to introduce them [27, 17]. One of them is the following:

Definition 1.1.3 Given an alphabet Σ, the set of regular languages Reg(Σ) is
the least set of languages over Σ which is closed under union, concatenation and
iteration and such that:

∅ ∈ Reg(Σ) and ∀σ ∈ Σ[{σ} ∈ Reg(Σ)].

Definition 1.1.4 Let L be a language, then we define:

1. the set of prefixes of L as:

Pref(L) = {U ∈ Σ∗ | ∃V [U ◦ V ∈ L]}

2. the set of suffixes of L as:

Suf(L) = {V ∈ Σ∗ | ∃U [U ◦ V ∈ L]}

3. the set of infixes of L as:

Inf(L) = {W ∈ Σ∗ | ∃U, V [U ◦W ◦ V ∈ L]}

4. the reverse language of L as:

Lrev = {Urev |U ∈ L}.

In the particular case when L = {W} is a singleton, we shall use Pref(W),
Inf(W) and Suf(W) instead of Pref({W}), Inf({W}) and Suf({W}), re-
spectively.

1.2. FINITE STATE AUTOMATA 3

1.2 Finite State Automata

The finite state automata are syntactic devices which provide a finite represen-
tation of regular languages [17, 27, 32]. In this section we refresh some of the
basic definitions which are necessary for their understanding.

Definition 1.2.1 A finite state automaton is A = 〈Σ, Q, I,∆, T 〉 where Σ is an
alphabet, Q is a finite set of states, I ⊆ Q and T ⊆ Q are initial and terminal
states and ∆ ⊆ Q× Σ×Q is the transition relation of A. A is deterministic if
|I| = 1 and ∆ is the graph of a partial function δ : Q× Σ→ Q.

Definition 1.2.2 Let A = 〈Σ, Q, I,∆, T 〉. For a transition t = 〈p′, a, p′′〉 ∈ ∆
we denote with ι(t) = p′ the initial state of the transition, with τ(t) = p′′ the
terminal state of the transition and with λ(t) = a the label of the transition. A
path π in an automaton A = 〈Σ, Q, I,∆, T 〉 is a finite sequence of transitions
π = t1t2 . . . tn where tk ∈ ∆ and τ(tk) = ι(tk+1) for each 1 ≤ k < n. We denote
with |π| = n the length of the path and we use the notions:

ι(π) = ι(t1), τ(π) = τ(tn),
λ(π) = λ(t1) ◦ λ(t2) ◦ · · · ◦ λ(tn)

for the initial and terminal state of π and the label of π, respectively. We denote
the set of all paths in the automaton A with Π(A).

Definition 1.2.3 A path π in an automaton A = 〈Σ, Q, I,∆, T 〉 is called ac-
cepting if and only if ι(π) ∈ I and τ(π) ∈ T . We denote with Acc(A) the set of
the accepting paths in A. The language L(A) of the automaton A is thus the
set of labels of all accepting paths in A.:

L(A) = {λ(π) |π ∈ Acc(A)}

Kleene’s characterisation, [32], of the class of regular languages states that
this is the class of languages recognisable with finite state automata:

Theorem 1.2.4 If Σ is an alphabet, a language L is regular over Σ if and only
if there is an automaton A over Σ with L(A) = L.

Using this characterisation it is not difficult [27] to constructively prove that
for each regular language L ∈ Reg(Σ), the languages Pref(L), Suf(L), Inf(L)
and Lrev are regular. In particular we have the following results:

Lemma 1.2.5 Let A = 〈Σ, Q, I,∆, T 〉 be a finite state automaton, then AI =
〈Σ, Q,Q,∆, Q〉 is a finite state automaton with L(AI) = Inf(L(A)).

Lemma 1.2.6 Let A = 〈Σ, Q, I,∆, T 〉 be a finite state automaton, then Arev =
〈Σ, Q, T,∆rev, I〉 where ∆rev = {〈q, a, p〉 | 〈p, a, q〉 ∈ ∆} is a finite state automa-
ton with L(Arev) = Lrev(A).

4 CHAPTER 1. PRELIMINARIES

It is also a well known fact, [17, 27], that for each finite state automaton
there is a finite state deterministic automaton recognising the same language:

Lemma 1.2.7 Let A = 〈Σ, Q, I,∆, T 〉 be a finite state automaton, then there
is a deterministic automaton AD = 〈Σ, QD, I, δ, TD〉 where QD ⊆ 2Q and δ is
a graph of a function.

A special case of deterministic automata are tries for a finite set of words
D ⊆ Σ∗. They will be useful for the representation of the finite subsets of the
original language L which we shall be investigating:

Definition 1.2.8 Let D be a finite language over Σ. A trie for D is an automa-
ton TD = 〈QD,Σ, ID,∆D, TD〉 where:

QD = {pW |W ∈ Pref(D)} ∪ {pε}
ID = {pε}

∆D = {〈pW , σ, pW◦σ〉 |σ ∈ Σ and W ◦ σ ∈ Pref(D)}
TD = {pW |W ∈ D}.

It follows from the definition that TD is a deterministic automaton and fur-
thermore it recognises the language L(TD) = D. To keep the notion simpler in
this case we shall denote the trie for D, TD = 〈QD,Σ, sD, δD, TD〉 where sD = pε
and δD is the function with graph #δD = ∆D.

1.3 Operations and Edit-distance

Let Σ be an alphabet. The identity set (of operations) Id ⊆ Σ∗ × Σ∗ is:

Id = {(σ, σ) |σ ∈ Σ}

Definition 1.3.1 A set of operations1 Op is a finite subset of Σ∗ × Σ∗ of the
form:

Op = Id ∪ U

where there is no operation (X,Y) ∈ U with X = Y .

Given a set of operation Op and an operation op = (X,Y) in Op the left
(right) side of op is X (Y , respectively). We use the notations l(op) = X and
r(op) = Y to denote the left and right side of an operation, respectively.

1Although the general terms alphabet, character and word, properly describe the terms
the set of operations, operation and alignment, respectively, we prefer the latter in order to
better reflect the specificity of the problem of interest.

1.4. DYNAMIC PROGRAMMING ALGORITHMS 5

Definition 1.3.2 A generalised (Levenshtein) edit-distance is a pair (Op, c)
where Op is a set of operations and c : Op→ N is a function with the property:

∀op ∈ Op[c(op) = 0 ⇐⇒ op ∈ Id].

Remark 1.3.3 In the particular case when OpL = (Σ ∪ {ε})2 \ {(ε, ε)} we
obtain the Levenshtein operations, that is the insertions – the operations of the
form (ε, σi) with σi ∈ Σ; the deletions – the operations of the form(σi, ε) with
σi ∈ Σ; and the substitutions – the operations of the form (σi, σj) ∈ Σ × Σ.
Supplying OpL with the cost function cL : OpL → N defined with:

cL(op) =

{
0, if op ∈ Id
1, otherwise.

we appear the usual Levenshtein edit-distance (OpL, cL).

Definition 1.3.4 Given a generalised edit-distance (Op, c), an alignment is
an arbitrary word of operations, ω ∈ Op∗ and cost of the alignment ω =
op1op2 . . . opn is the sum of individual costs of the operations constituting the
alignment, i.e.:

c(ω) =
n∑
k=1

c(opk).

The left and right sides of ω are defined canonically as:

l(ω) = l(op1) ◦ l(op2) ◦ · · · ◦ l(opn)
r(ω) = r(op1) ◦ r(op2) ◦ · · · ◦ r(opn).

We say that ω aligns a word U against a word V , or equivalently ω is an
alignment of U against V if:

l(ω) = U and r(ω) = V.

We should stress that the empty alignment contains no operations. Still it
aligns the empty word with the empty word and is the unique alignment with
this property. It should be also clear that its cost is 0.

Definition 1.3.5 An edit-distance (on words) induced by the generalised edit-
distance (Op, c) is the mapping d : Σ∗ × Σ∗ → N ∪ {∞} which maps every pair
of words U, V ∈ Σ∗ to the cost of a cheapest alignment of U and V induced by
Op, i.e.:

d(U, V) = min
ω∈Op∗

{c(ω) | l(ω) = U & r(ω) = V }.

1.4 Dynamic Programming Algorithms

Although the edit-distance between two words is defined in a quite unintuitive
way, it can be computed in an efficient way via a standard dynamic programming

6 CHAPTER 1. PRELIMINARIES

scheme, [23]. In this Section we are going to consider the problems of computing
d(U, V) and verifying d(U, V) ≤ b for a given threshold b.

We start with the problem of computing the Levenshtein edit-distance be-
tween two words, U, V ∈ Σ∗. That is to find the minimal number of substitu-
tions, deletions, insertions which transform the word U into the word V :

Given: U, V ∈ Σ∗

Output: dL(U, V).

Assume that U = u1 ◦u2 . . . um and V = v1 ◦ v2 · · · ◦ vn are the input words.
The idea which stays behind the Levenshtein’s solution of this problem is to
compute the edit distance between each pair of prefixes of U and V . Formally,
let us set Ui = u1 ◦ u2 · · · ◦ ui and Vj = v1 ◦ v2 . . . vj . Here U0 = V0 = ε. The
objective is to determine the values:

Di,j = dL(Ui, Vj).

Since U = Um and V = Vn the answer of the query will be Dm,n = d(Um, Vn).
Some of the values of the matrix D can be easily filled in. Namely, there is a
unique alignment ω with l(ω) = ε and r(ω) = Vj and similarly there is a unique
alignment ω with l(ω) = Ui and r(ω) = ε. Thus it becomes apparent that:

Di,0 = i and D0,j = j

for all i ≤ m and j ≤ n.
In order to compute the remaining values of the matrix D, let us consider

an arbitrary alignment ω of Ui and Vj for i > 0 and j > 0. Let ν be the last
operation of ω, i.e. ω = ω′ ◦ ν. Due to the specific type of operations, there are
three cases for ν:

• substituition, ν = (x, y). Since ω aligns Ui against Vj we deduce that
ui = x and vj = y. Therefore c(ω) = c(ω′) + c((ui, vj)) and ω′ is an
alignment of Ui−1 against Vj−1.

• deletion, ν = (x, ε). In this case ν = (ui, ε) and consequently c(ω) =
c(ω′) + c((ui, ε)) and ω′ aligns Ui−1 against Vj .

• insertion, ν = (ε, y). Hence y = vj and ω′ aligns Ui against Vj−1 and
c(ω) = c(ω′) + c((ε, vj)).

Note that c(ν) = 1 unless ν = (ui, vj) and ui = vj when c(ν) = 0. This
observation allows us to derive the following recurrence.

Di,j = min


Di−1,j−1 + if (ui = vj) then 0 else 1
Di−1,j + 1
Di,j−1 + 1

Since the values Di′,j′ required in order to define Di,j satisfy i′ + j′ < i + j,
we can compute the values Di,j in increasing order of i + j. Since we need

1.4. DYNAMIC PROGRAMMING ALGORITHMS 7

O(1) operations to determine Di,j based on the previously determined values
the total time of the algorithm is O(mn).

One can easily generalise this approach for arbitrary set of operations Op.
Specifically consider the problem:

Given: U, V ∈ Σ∗

Output: d(U, V)

where d = (Op, c). Now we can define Di,j in the same way as above:

Di,j = d(Ui, Vj).

Clearly D0,0 = 0. Next let i+ j > 0 and consider an alignment ω of Ui against
Vj . Since |ω| > 0 it can be decomposed as ω = ω′ ◦ ν where ν ∈ Op. We can
further constrain ν to the set of those operations with l(ν) being a suffix of Ui
and r(ν) – suffix of Vj . Consequently c(ω) = c(ω′) + c(ν) which let us conclude
that:

Di,j = min{Di−|l(ν)|,j−|r(ν)|+c(ν) | ν ∈ Op and l(ν) is a suffix of Ui and r(ν) is a suffix of Vj}.

Again, since |l(ν)| + |r(ν)| > 0 we have that the values Di′,j′ involved in the
computation of the minimum satisfy i′ + j′ < i + j. Finally for a fixed pair
(i, j) we investigate each operation ν ∈ Op and exhaustively verify whether
l(ν) is a suffix of Ui and r(ν) is a suffix of Vj . This can be performed in time∑
ν∈Op(|l(ν)|+ |r(ν)|) which is considered to be constant in the sense that it is

fixed and known in advance and does not depend in any way on the input U
and V .

Hence we can compute the edit distance d(U, V) = Dm,n in time O(mn).
Furthermore one does not need to store the entire table D in order to compute
the edit-distance d(U, V). Actually, in the computation of Di,j only values from
the rows i− |l(ν)| are involved. Thus, it suffices to store only the last few rows
i− ρ, i− ρ+ 1, . . . , i before the current row i where ρ is the maximum over all
possible lengths |l(ν)|.

The Ukkonen’s problem slightly differs from the original Levenshtein’s con-
cept:

Given: U, V ∈ Σ∗, b ∈ N
Output: Yes if dL(U, V) ≤ b and No otherwise.

The idea of this model is to consider the edit-distance as a characteristic of
similarity rather than as a distance. Any two words U and V determine a
quantity dL(U, V) but it does not mean nothing more than a single integer. The
idea of Ukkonen encoded in the threshold b is the concept of similarity. Namely
it exploits the comparison of dL(U, V) with b as an indicator which postulates
that U and V are similar, i.e. if someone has typed V and dL(U, V) ≤ b, then
indeed (s)he might have intended to write U , instead. But if dL(U, V) > b, then
definitely it is not reasonable to assume that V is meant to stay for U .

Beyond this novel viewpoint on the Levenshtein edit-distance, the Ukkonen’s
problem has not contributed for a new approach towards its solution. Actually

8 CHAPTER 1. PRELIMINARIES

it still uses the same dynamic programming scheme and computes the table Di,j

as before. The additional feature of the problem, one can benefit of is that there
is no need to compute the entire table in order to answer the query. Indeed, it
is a simple observation that:

Di,j ≥ |j − i|
and additionally if the value Di,j is involved in someway with the estimation of
Dk,l, then Dk,l ≥ Di,j . This two remarks show that there is no need to compute
any of the entries Di,j with |j − i| > b since they do not influence the result of
the query. Hence the recurrence of D can be modified to:

D′i,0 = D′0,i =

{
i if i ≤ b
¬! otherwise

D′i,j = ¬! if |i− j| > b

and if |i− j| ≤ b and min(i, j) > 0

D′i,j = min


D′i−1,j−1 + if (ui = vj)0 else 1
D′i−1,j + 1
D′i,j−1 + 1

where the minimum operation extends only on the defined values and ignores
the undefined ones.

Since no time is spent in filling in values in the cells with |i − j| > b, and
we spare O(1) for each of the remaining cells, we deduce that the running
time of this procedure is O(bmin(|U |, |V |)). Hence, if b << max(|U |, |V |) the
time-complexity O(bmin(|U |, |V |)) outperforms the straightforward application
of the Levenshtein’s algorithm with a linear factor.

1.5 Generalised Levenshtein Automata

In the dynamic programming schemes considered in the previous Section no
attempt is made to avoid applying incompatible operations. At each possible
pair of positions 〈i, j〉 the entire set of operations Op is exhaustively checked
without taking into account that only few of them will be compatible with the
left contexts of U [i] and V [j]. The framework of the finite state automata allows
to encode these features in the states and to control how they progress in time
by appropriately defined transitions. We give the flavour of this approach in
the sequel.

The general idea is to use the states of the automaton in order to encode the
edit-distance between the currently processed strings as well an appropriate left
context in order to control the search. With this remark, it is easy to devise a
nondeterministic automaton that achieves this goal. Each of the states stays for
a particular edit-distance d which does not exceed a predetermined threshold b.
The transitions of the automaton are labelled with operations in a way that a
state number i is connected with a transition labelled op to a state numbered

1.5. GENERALISED LEVENSHTEIN AUTOMATA 9

i + c(op). In this way the paths in this automaton reflect alignments and the
cost of a particular alignment is given as the difference between the terminal
and initial state of the path. Formally we have:

Definition 1.5.1 Let (Op, c) be an edit-distance and b ∈ N be a threshold. A
generalised Levenshtein automaton is:

A = 〈Qb, Op, {0},∆Op, Qb〉

where:

Qb = {0, 1, . . . , b}
∆Op = {〈j, op, j + c(op)〉 | j, j + c(op) ∈ Qb, and op ∈ Op}.

From the above discussion it should be clear that the Levenshtein automata
have the following property:

Lemma 1.5.2 Let (Op, c) be an edit-distance and b ∈ N be a threshold. The
generalised Levenshtein automaton A = 〈Qb, Op, {0},∆Op, Qb〉 has language
L(A) = {ω ∈ Op∗ | c(ω) ≤ b}. Furthermore for arbitrary word V ∈ Σ∗ it holds:

d(U, V) ≤ b⇒ d(U, V) = arg min{δ∗(0, ω) | l(ω) = U, r(ω)V }.

Unfortunately this automaton, though being deterministic with respect to
the operations, is in general nondeterministic with respect to (Σ × Σ)∗. That
is for one and the same pair of words, 〈U, V 〉 there may be more than one path
that corresponds to an alignments between U and V .

In order to deal with this problem one has to determinise the automaton.
Although the general subset construction is applicable in theory it results in a lot
of redundancies which prohibitively increase the size of the resulting automaton
in practice. In [55] Mihov and Schulz describe how this undesired effect can
be reduced. Their construction achieves also the interesting property that the
automaton and its size do not depend explicitly on the specific alphabet, Σ,
rather only on the threshold, b, and the sample structure of the operations, Op.
Using bit vectors of appropriate length (O(b)) one can encode which operations
are locally applicable on a particular position, say of the word U . The states of
the automaton reflect both the edit distance of the currently processed words
and the sufficient left and right context that allows to proceed the traversal
deterministically. It is in preprocessing step that the pair of words 〈U, V 〉 is
mapped to a sequence of bit vectors of length max(|U |, |V |). Afterwards the
search can be executed in time O(max(|U |, |V |)). Although the preprocessing
step requires O(bmax(|U |, |V |)), the universal Levenshtein automata achieve a
factor gain of several times over the Ukkonen’s algorithm. However the space
requirements of the universal Levenshtein automata still grows exponentially
with the increase of the threshold b.

In [43] Mitankin, Mihov and Schulz extend this approach and present nec-
essary and sufficient conditions for the structure of the operations and their

10 CHAPTER 1. PRELIMINARIES

costs (that do not need to be integers any more but can belong to an arbitrary
semiring) that enables the construction of such kind of automata. In the same
paper they also present the synchronised Levenshtein automata that achieve
faster running time in order to decide d(U, V) ≤ b for fixed b. The core idea is
to transcribe the bit vectors from the Universal Levenshtein automata to pairs
of characters from Σ×Σ. This results in a deterministic (two-tape) automaton
over Σ×Σ which tests whether d(U, V) ≤ b in time O(|U |+|V |) which is a factor
of b faster than the algorithms described in the previous paragraphs. However
the size of these automata increases exponentially with b and the size of the
alphabet, Σ.

1.6 Approximate Search Problem

The approximate search problem can be described in the following way. One
disposes on a finite representation of a language L and on a generalised edit-
distance (Op, c). The task is to answer queries which have as an input a single
word V ∈ Σ∗ and a natural number b ∈ N. The output is the set of all words
U ∈ L which are at edit-distance d less than or equal to b from V .

Formally this can be stated as:

Given: L ⊆ Σ∗, (Op, c)
Input: V ∈ Σ∗, b ∈ N
Output:{U ∈ L | d(U, V) ≤ b}.

Typically L is assumed to be a finite set of words, e.g. a single word [60], the
set of infixes of a long text [47], a dictionary [50]. We generalise this concept by
allowing L to be an arbitrary regular language which is represented by a finite
state automaton.

Next there are different scenarios for the ways the threshold b is determined.
One possible way is to assume that b is known in advance and thus it is constant
for all queries [16, 15, 55]. Hence the problem has rather the structure:

Given: L ⊆ Σ∗, (Op, c), b ∈ N
Input: V ∈ Σ∗

Output: {U ∈ L | d(U, V) ≤ b}.

Since b is considered to be a constant one can precompute some appropriate
information (an index) which can be used to speed-up the processing of the
query.

On the other extreme b can be given as an input parameter, i.e. b constitutes
an essential part of the query [60, 50]. The first approach is clearly very restric-
tive when considering words of arbitrary length. The second one is too flexible
and may also turn to be irrelevant, e.g. if b is too big, the list of words satisfying
the query would be enormous and thus it would be of not much worth if one
should analyse it afterwards. A compromise between these two extremities is to

1.7. NORM OF MATRICES 11

model b as a ratio q ∈ (0, 1) of the length of the input word V [47]. The ratio q
is assumed to be given in advance and thus the query is entirely specified by the
input word V . Nevertheless the threshold b varies with the length of the input.

In our research we use the latter approach to model the approximate search
problem.

Definition 1.6.1 Given a regular language L, a generalised edit-distance (Op, c)
and a rational number q ∈ (0; 1), one has to process queries of the form:

Input: V ∈ Σ∗

Output: {U ∈ L | d(U, V) ≤ q|V |}.

1.7 Norm of Matrices

LetMn,n(R) be the algebra of real valued matrices. We recall the definition [28]
for a norm on matrices:

Definition 1.7.1 A norm on the algebra of real-valued matrices Mn,n(R) is
an operator ||.|| :Mn,n(R)→ R which satisfies the following conditions:

||A|| ≥ 0 with ||A|| = 0 ⇐⇒ A = O

||νA|| = |ν|||A|| for each ν ∈ R
||A+B|| ≤ ||A||+ ||B||
||AB|| ≤ ||A||||B||

for arbitrary matrices A,B ∈Mn,n(R).

In our considerations we shall use the ||.||∞:

||A||∞ = max
j

n∑
k=1

|aj,k|

which defines a norm [28] on Mn,n(R).

1.8 FSAs Algebraically

The finite state automata represent languages, i.e. sets of words. An interesting
question is how to measure the size of a language, L, represented by a finite
state automaton A = 〈Σ, Q, I,∆, T 〉. Of course, the answer of these question
seems obvious in the case when L is finite. In this case we can use |L| as such a
measure. However this approach is impractical if we have to deal with infinite
languages.

A general approach to formalise this notion is presented by Eilenberg in [17].
Here we shall only summarise those results that are of interest for our research

12 CHAPTER 1. PRELIMINARIES

and we present them in a way that is convenient for our purposes thus deviating
from the formal concepts in [17].

Let Σ be an alphabet with characters σ1, σ2, . . . , σ|Σ|. Next notion defines
the number of characters σi in a word U ∈ Σ∗.

Definition 1.8.1 For a word U ∈ Σ∗ with U = u1u2 . . . un where uj ∈ Σ we
determine the i-type of U , ||U ||i as:

||U ||i = |{j |uj = σi}|.

And we set the type of the word U to be the vector ||U || ∈ N|Σ| defined as:

||U || = (||U ||1, ||U ||2, . . . , ||U |||Σ|).

Thus ||U || encodes the quantitative information about the characters in-
volved in a word U and discards their specific order. The measure that we shall
define for a regular language L will account for the types of the words and not
for the words themselves. Essentially for each possible type we shall count the
number of words U ∈ L of this type.

Definition 1.8.2 Let L be a language and u ∈ N|Σ| be a vector of natural
numbers. We denote with L(u) = |{U ∈ L | ||U || = u}| the number of words in
L of type u.

Next we turn our attention to the finite state automata and associate with
each transition 〈p, σi, q〉 a variable xi. This allows us to consider each fi-
nite state automaton as an adjacency matrix whose entries are polynomials
of x1, x2, . . . , x|Σ| and more precisely these would be polynomials of degree one
(or −∞) and coefficients zeroes and ones.

For notational convenience till the end of this Section we assume that the
set of states, Q, of a finite state automaton is Q = {1, 2, . . . , |Q|}. The general
case can be easily reduced to this one by simply renaming the states Q.

Definition 1.8.3 Let A = 〈Σ, Q, I,∆, T 〉 be a finite state automaton. We
introduce the |Q| × |Q| matrix, MA(x), whose entries are determined by:

MA(k, l; x) =
∑

i:〈k,σi,l〉∈∆

xi

for every two states k, l ∈ Q and x is |Σ|-dimensional vector.

Lemma 1.8.4 Let A = 〈Σ, Q, I,∆, T 〉 be a finite state automaton and n ∈ N
be a natural number. Then for every two states k, l ∈ Q the following equality
holds:

Mn
A(k, l; x) =

∑
π∈Π(A):|π|=n,ι(π)=k,τ(π)=l

x||λ(π)||

where x = (x1, x2, . . . , x|Σ|), x||U || =
∏|Σ|
i=1 x

||U ||i
i and Mn

A(k, l; x) is the (k, l)-
entry of the n-th power of the matrix MA(x), .

1.8. FSAS ALGEBRAICALLY 13

Proof. Let 1 and 0 be the polynomials that identically equal to 1 and 0,
respectively. The proof proceeds by induction on n. For n = 0 we have that
M0
A(x) = I where I is the matrix with entries 1 along the main diagonal and

0 outside it. For each k ∈ Q there is a unique path π of length 0 and ι(π) = k,
namely the trivial path π = (k). Its label is clearly λ(π) = ε and since the type
of ε is ||ε|| = (0, 0, . . . , 0) we conclude that:

∑
π∈Π(A):|π|=n,
ι(π)=k,τ(π)=l

x||U || =

{
x||ε|| = 1, if k = l

0, if k 6= l

which implies that the claim of the Lemma is valid for n = 0.
Let us assume that the claim of the Lemma holds for some n ∈ N. We prove

that in this case it is also true for n+ 1. For k, l ∈ Q we have :

Mn+1
A (k, l; x) =

|Q|∑
j=1

Mn
A(k, j; x)MA(j, l; x)

(by the definition of MA(x)) =
|Q|∑
j=1

Mn
A(k, j; x)

∑
i:〈j,σi,l〉∈∆

xi

(by the induction hypothesis) =
|Q|∑
j=1

∑
π∈Π(A)

|π|=nι(π)=k,τ(π)=j

x||λ(π)|| ∑
i:〈j,σi,l〉∈∆

xi

=
|Q|∑
j=1

∑
π∈Π(A)

|π|=n,ι(π)=k,τ(π)=j

∑
i:〈j,σi,l〉∈∆

x||λ(π)||xi

=
|Q|∑
j=1

∑
π∈Π(A)

|π|=n,ι(π)=k,τ(π)=j

∑
i:〈j,σi,l〉∈∆

x||λ(π〈j,σi,l〉)||

=
∑

π∈Π(A)
|π|=n+1,ι(π)=k,τ(π)=l

x||λ(π)||.

The last equality follows by the observation that each path of length n + 1
starting at k and terminating at l can be considered as path of length n starting
at k and terminating at some state j followed by a single transition from j to l,
and vice versa.

In the particular case when the finite state automaton A is deterministic,
we have a one-to-one correspondence between the words U ∈ L(A) and the
successful paths in A, i.e. those that start at the initial state and terminate at
a terminal state. Hence we get the following result.

14 CHAPTER 1. PRELIMINARIES

Corollary 1.8.5 Let A = 〈Σ, Q, {s},∆, T 〉 be a deterministic automaton with
language L = L(A). Let u ∈ N|Σ| be a vector of integers and n =

∑|Σ|
i=1 ui.

Then it holds:
L(u) = [xu]

∑
f∈T

Mn
A(s, f ; x)

where [xu] means the coefficient of the polynomial before the term xu.

In the general case when A should not be deterministic there is a one-to-
many correspondence between the words U ∈ L(A) and the successful paths in
A. Hence we cannot claim equality but rather inequality:

Corollary 1.8.6 Let A = 〈Σ, Q, I,∆, T 〉 be a finite state automaton with lan-
guage L = L(A). Let u ∈ N|Σ| be a vector of integers and n =

∑|Σ|
i=1 ui. Then

it holds:
L(u) ≤ [xu]

∑
s∈I,f∈T

Mn
A(s, f ; x)

where [xu] means the coefficient of the polynomial before the term xu.

With respect to Corollary 1.8.6 and taking into account a standard construc-
tion of an infix automaton, see Lemma 1.2.5, we get:

Corollary 1.8.7 Let A = 〈Σ, Q, I,∆, T 〉 be a finite state automaton with lan-
guage L = L(A) and let InfL = Inf(L). Then for every type u ∈ N|Σ| with
n =

∑|Σ|
i=1 ui it holds:

InfL(u) ≤ [xu]
∑
k,l∈Q

Mn
A(k, l; x).

Since the performance of our algorithm depends on the characteristics of the
Inf(L) rather than the original language, L, we define a ”measure” of a finite
state automaton with respect to Corollary 1.8.7:

Definition 1.8.8 Let A = 〈Σ, Q, I,∆, T 〉 be a finite state automaton, then a
generating function gA(x) is the power series:

gA(x) =
∑

π∈Π(A)

x||λ(π)||.

By Lemma 1.8.4 we can equivalently define gA as:

gA(x) =
∞∑
n=0

∑
k,l∈Q

Mn
A(k, l; x).

The function gA reflects all the infixes in the language L(A). In some cases
we shall be interested only in the long enough infixes. For this reason for a
rational number n1 ∈ Q we also introduce the generating function gA,n1 :

1.8. FSAS ALGEBRAICALLY 15

Definition 1.8.9 Let A = 〈Σ, Q, I,∆, T 〉 and n1 ∈ Q be a finite state automa-
ton, then a generating function gA,n1(x) is the power series:

gA,n1(x) =
∑

π∈Π(A):|π|≥n1

x||λ(π)||.

By Lemma 1.8.4 we can equivalently define gA,n1 as:

gA,n1(x) =
∑
n≥n1

∑
k,l∈Q

Mn
A(k, l; x).

We point out that in the particular case when the vector x is interpreted as
a real-valued vector t = (t1, t2, . . . , t|Σ|) we get the power series:

gA(t) =
∞∑
n=0

∑
k,l∈Q

Mn
A(k, l; t)

and also:
gA,n1(t) =

∑
n≥n1

∑
k,l∈Q

Mn
A(k, l; t)

The resulting power series may converge, may not converge, this is a matter
that depends on the properties of the matrix MA.

16 CHAPTER 1. PRELIMINARIES

Chapter 2

Bidirectional Infix
Structures for Finite Sets

In this chapter we recall some classical data structures which can be used in
order to represent the set of infixes of a finite set of words.

Suffix trees [66, 40, 61], affix trees [57, 39, 58], directed word acyclic graphs
(DWAG) [11, 12, 44] and compressed directed word acyclic graphs (CDWAG) [29,
30] are only part of the data structures developed in order to compactly rep-
resent the set of infixes of large set of words or a single long text. They were
conceived in relation with the pattern matching problem:

Given: text T
Input: pattern P ∈ Σ∗

Question: P ∈ Inf(T) ?

Driven by this identity-based query problem the research in this area has
attained to different ingenious structures which allow to answer the query in
time O(|P |) after an O(|S|) preprocessing and require O(|S|) storage.

Our purpose is to highlight a property of some of these data structures
which plays a crucial role for the Myers’ algorithm and will be of interest for
our generalised algorithm. Namely one can use DWAGs and CDWAGs not only
to process a word from left to right as usually but also to extend a word in
either direction left or right, arbitrary.

This point is of no significant interest for the pattern matching problem
where it does not influence neither the result nor the time complexity of the
algorithm. However it is exactly this feature which yields the efficiency of the
approximate search.

2.1 Blumers’ Construction

If we want to construct a minimal DFA for a language L, the Myhill-Nerode
Theorem [17, 27] for L states that we have to determine the equivalence classes

17

18CHAPTER 2. BIDIRECTIONAL INFIX STRUCTURES FOR FINITE SETS

of the relation:

X ∼L Y ⇐⇒ ∀U ∈ Σ∗(X ◦ U ∈ L ⇐⇒ Y ◦ U ∈ L).

Put in this way, it seems inevitable to consider all the infixes of S in order
to determine the equivalence classes. So this would require quadratic time.
However a rather straightforward observation made by Blumer et al. gives a
way around. The idea is to consider not infixes but suffixes, instead. That is to
say, we consider the relation:

X ∼Suf(S) Y ⇐⇒ ∀U ∈ Σ∗(X ◦ U ∈ Suf(S) ⇐⇒ Y ◦ U ∈ Suf(S)).

It is rather easy to show that ∼Suf(S) refines the relation ∼Inf(S) for every
(finite) set of words S. Indeed the assumption that X ∼Suf(S) Y implies that
for every word U :

X ◦ U ∈ Suf(S) ⇐⇒ Y ◦ U ∈ Suf(S).

Now for every word, say V , the word X ◦ V ∈ Inf(S) is an infix of S if and
only if we can find a word Z such that X ◦ V ◦ Z ∈ Suf(S). Since X and
Y are equivalent with respect to the suffixes of the set S, we conclude that
Y ◦ V ◦ Z ∈ Suf(S). But this implies that Y ◦ V is an infix in the set S.
Substituting X with Y and vice versa in the above argument we also obtain
that: each time Y ◦ V is an infix S, X ◦ V is also an infix in S. Thus we have
establish the following property:

Lemma 2.1.1 For arbitrary words X and Y and a set S, it holds:

X ∼Suf(S) Y ⇒ X ∼Inf(S) Y.

This idea was in the origin for Blumer et al. [11, 12, 44] DAWG’s algorithm for
a single word W . In [11] the authors define the mapping end−posW for a word
W = w1 ◦ w2 . . . wN for each word X ∈ Σ∗ as:

end−posW (X) = {i |wi−|X|+1 ◦ wi−|X|+2 · · · ◦ wi = X}.

Next they introduce X ≡W Y if and only if end−posW (X) = end−posW (Y).
However one can easily recognise that end−posW (X) = end−posW (Y) is equiv-
alent to X ∼Suf(W) Y . The reason for this is that each position, say i, in W
encodes a suffix wi+1 ◦ · · · ◦ wN . Since suffixes starting at different positions in
W being of different length are distinct, we have that end−posW (X) encodes
the set of distinct suffixes of W that can follow X in a unique way. This is the
reason for ≡W being the same relation as ∼Suf(W).

The case when S = {W} is a singleton allows us to give the nice characteri-
sation of the equivalence classes of ∼Suf(W). Namely for arbitrary words X and
Y , the sets end−posW (X) and end−posW (Y) are either disjoint or one of them
is a subset of the other. Indeed if i is a common element for end−posW (X)
and end−posW (Y), then both X and Y have an occurrence in W terminating

2.1. BLUMERS’ CONSTRUCTION 19

at position i. Thus one of them, say Y , is a suffix of the other, say X. Now
at every position, j, where X terminates will witness that Y also terminates
at position j. Therefore end−posW (X) ⊆ end−posW (Y). This consideration
shows that not only end−posW (X) form a laminar family, but also whenever Y
is a suffix of X, end−posW (X) ⊆ end−posW (Y). Thus we have the following
result, [11]:

Lemma 2.1.2 For every word W ∈ Σ∗ and X,Y inΣ∗ we have:

end−posW (X) ⊆ end−posW (Y) or end−posW (Y) ⊆ end−posW (X)
or end−posW (X) ∩ end−posW (Y) = ∅

Further end−posW (X) ∩ end−posW (Y) 6= ∅ and |X| < |Y | implies that X is a
suffix of Y and if X is a suffix of Y , then end−posW (Y) ⊆ end−posW (Y).

These properties of the mapping end−pos yield a nice characterisation of
the equivalence classes of ∼Suf(W). It turns out that the important infixes of
W that determine the relation ∼Suf(W) are those that are either prefixes of W
or occur in two different immediate left contexts, a ∈ Σ and b ∈ Σ with a 6= b.
To realise this, Blumer et al. define the representative of a equivalence class
[X]≡W with end−posW (X) 6= ∅ to be the longest word X0 ∈ [X]≡W . There
are two possible cases:(i) either X0 is a prefix of W or (ii) X0 is not a prefix of
W . Let us consider case (ii). Since X0 is an infix of W but not a prefix of W ,
then there is some character, say a ∈ Σ, such that a ◦X0 is also an infix in W .
Now we use that X0 is the longest word in the equivalence class [X0]≡W . In
particular a◦X0 6∈ [X0]≡W and since X0 is a suffix of a◦X0 by Lemma 2.1.2 we
conclude that end−posW (a ◦X0) (end−posW (X0). This implies that there is
a position i ∈ end−posW (X0) \ end−posW (a ◦X0). Since X0 is not a prefix of
W X does not span the first |X0| characters of W which shows that i > |X0|.
Now since wi−|X0|+1 ◦ · · · ◦ wi = X0 but i 6∈ end−posW (a ◦X0) we obtain that
wi−|X0| 6= a. Now a ◦X0 and wi−|X0| ◦X0 are both infixes of W and therefore
X0 occurs in two different immediate left contexts. With these remarks we can
easily establish that the representatives of ≡W are exactly the prefixes of W
and those infixes of W that occur in (at least) two different left contexts, [11]:

Lemma 2.1.3 An infix X of W is a representative for ≡W if and only if one
of the following two conditions hold:

1. X0 is a prefix of W .

2. there exist distinct characters a 6= b such that both a ◦X0 and b ◦X0 are
infixes of W .

Proof. If X0 is a representative w.r.t. ≡W and X0 is not a prefix of W , then
there is a character a such that a ◦ X0 is an infix of W . Form the discussion
above we deduce that there is another character b 6= a such that b ◦ X0 is an
infix of W .

Conversely, if X0 is a prefix of W , then end−posW (X0) contains position
i = |X0|. It should be clear that no word, Y , longer than X0 could have the

20CHAPTER 2. BIDIRECTIONAL INFIX STRUCTURES FOR FINITE SETS

[ε]

[b]

[a]

[aba] [abab] [ababb]

[ab]

ab

b

a

b

a

b

b

b

Figure 2.1: The Blumer et Blumer automaton for the word ababb

property that i ∈ end−posW (Y). Finally if X0 satisfies the second condition and
a 6= b are such that a ◦X0 occurs at position i and b ◦X0 occurs at position j in
W , then there could not be word Y longer than X0 such that it has occurrences
in W terminating at positions i and j, respectively. This is to say that if such
a word, Y , existed, then wi−|X0| = a and wj−|X0| = b must have been equal to
the last but |X0|-th character of Y which is impossible for a 6= b.

This characterisation already allows to bound the size of the minimal de-
terministic automaton corresponding to ≡W=∼Suf(S). Actually following the
Myhill-Nerode Theorem, we can determine the minimal automaton for Suf(W),
see Figure 2.1:

AW = 〈QW ,Σ, [ε]≡W , δW , TW 〉,
with states the equivalence classes of ≡W induced by an infix of W . The initial
state is the class corresponding to the empty word, and the transitions are
determined as:

δW ([X]≡W , a) =

{
[X ◦ a]≡W if X ◦ a ∈ Inf(W)
¬! otherwise.

With this notion it is clear that the language recognised by the automaton AW
is exactly the set:

L(AW) = ∪TW .
Thus if we set TW = {[X]≡W |X ∈ Suf(W)} we obtain an automaton recog-
nising the suffixes of W , and if we set TW = QW we obtain an automaton
recognising the set of infixes of W .

The automaton AW allows to traverse the infixes of W from left to right.
In order to achieve the traversal from right to left we take advantage from the
tree structure of the representatives of the relation ≡W , see Figure 2.2. That is
we define the tree TW = 〈QW , EW 〉 where the edges are defined as:

〈[X]≡W , [P]≡W 〉 ∈ EW ⇐⇒ end−posW (X) ⊂ end−posW (P)&
6 ∃Y (end−posW (X) ⊂ end−posW (Y) ⊂ end−posW (P))

or equivalently if the representative, P0, of [P]≡W is the longest suffix of X that
is not equivalent to X.

2.1. BLUMERS’ CONSTRUCTION 21

[ε]

[b][a]

[aba]

[abab]

[ababb][ab]

a b

b a

b

b

Figure 2.2: The tree structure of the representatives of the word ababb.

Introducing the tree TW essentially answers the question what the asymp-
totic size of QW is,[11]:

Lemma 2.1.4 The number of equivalence classes QW is bounded by 2|W | − 1
for |W | > 2.

Proof. We consider the case when W contains at least two different characters.
We associate to each equivalence class [X]≡W its representative X0 and we
bound the number of representatives rather the number of equivalence classes.
Let L0 be the set of leaves of TW , L1 be the set of nodes of TW with exactly one
child and L≥2 be the set of all other nodes. Since TW is a tree we have that:

|L0|+ |L1|+ |L≥2| = |QW | = |EW |+ 1.

On the other hand the number of edges, EW , can be regarded as the set of pairs,
node and its child. Hence each node of type L0 is charged with no edges, each
node of type L1 is responsible for exactly one edge, and each node of type L≥2

is associated with at least two edges. Therefore:

|L0|+ |L1|+ |L≥2| = |EW |+ 1 ≥ |L1|+ 2|L≥2|+ 1.

This implies that |L≥2| ≤ |L0| − 1. From the characterisation of the represen-
tatives we that only non-prefix representatives have at least two children, thus
they are of type L≥2. Thus the nodes of type L0 ∪ L1 are at most the num-
ber of prefixes in W . The empty word also belongs to the set L≥2. Therefore
|L0 ∪ L1| = |L0|+ |L1| ≤ |W |. Now a straightforward computation shows that:

|QW | = |L0|+ |L1|+ |L≥2| ≤ |L0|+ |L1|+ |L0|−1 ≤ 2(|L0|+ |L1|)−1 = 2|W |−1.

This proves the Lemma in the general case. Finally if W = aN for some
a ∈ Σ and N ≥ 2, then the number of different infixes is clearly N + 1 ≤ 2N −1
for N ≥ 2.

22CHAPTER 2. BIDIRECTIONAL INFIX STRUCTURES FOR FINITE SETS

pos = 0
a b

b a

b

b

ab

b

a

b

a

b

b

b

a|b|a|b|b
1|2|3|4|5

len = 0

pos = 1
len = 1

pos = 2
len = 1

pos = 5
len = 5

pos = 2
len = 2

pos = 3
len = 3

pos = 4
len = 4

pos = 5
len = 5

pos = 4
len = 4

pos = 3
len = 3

pos = 2
len = 2

pos = 2
len = 1

pos = 1
len = 1

pos = 0
len = 0

Figure 2.3: A linear size structure allowing the interchanging left and right
traversal of the infixes of ababb.

Now in order to incorporate the left traversal of infixes of W , we supply the
tree TW with the following information, see Figure 2.3. First we keep the word
W as an array. Next for each node [X]W of TW we store:

1. a position pos = min end−posW (X).

2. the length len of the representative X0 of [X]≡W .

Finally we label each edge 〈[X]≡W , [P]≡W 〉 ∈ EW with a character, a ∈ Σ such
that aP0 ≡W X where P0 is the representative of [P]≡W . This data structure
can be stored in O(|W |) space since |TW | = O(|W |) and we store constant
number of data per node and per edge.

We point out that this structure can be considered as CDWAG but it is not
an automaton in general. Therefore the traversal of this structure requires some
care. Imagine that we have already successfully processed an infix, say X, of
W . Thus we have reached the node [X]W in the tree TW . We also assume that
we know the length of X, say l. The left extension of X with a character a can
be carried out as follows:

1. Check whether l < len where len is the length stored in [X]≡W .

2.2. BLUMER ET BLUMER FOR FINITE SET OF WORDS, S 23

2. If yes, then check whether W [pos− l] = a where pos is the position stored
in [X]≡W . If the answer is yes, then a ◦X ≡W X and its length l′ = l+ 1.

3. if l 6< len, then since X ≡W X0 we have actually that X = X0. We check
whether there is an edge labelled a from X0 to some of its children. If
there is one, then it is unique, say C, and a ◦ X ≡W C. In this case we
set l′ = l + 1. If there is no such child, then a ◦X is not an infix of W .

The point of this case distinction is the following. Either X is a proper suffix of
its representative, X0, in which case X can be uniquely extended to the left as
to remain an infix of W , or X = X0 in which case the feasible left extensions
are encoded in the labels of the edges of TW that outgo from X0.

In [11] the authors describe an O(|W |) on-line algorithm which constructs
AW and TW . The additional data required for the left traversals can be easily
incorporated in the algorithm or be inserted at a later stage.

2.2 Blumer et Blumer for finite set of words, S
In order to represent the infixes of a finite set of words, S so that left and right
extensions are accessible in constant time and linear space, we build on the ob-
servations from the previous Section. The crucial point was the characterisation
of the representatives

Thus for a finite set of words, S, we define:

X ≡S Y ⇐⇒ ∀W ∈ S(X ≡W Y).

At this point we should stress that this equivalence relation is a refinement of
∼Suf(S). Indeed if X ≡S Y and X ◦ U ∈ Suf(S), then there is a word W ∈ S
with W = V ◦X ◦ U for an appropriate word V . Now since X ≡W Y we know
that W = V1 ◦ Y ◦ U and therefore Y ◦ U ∈ Suf(S). Repeating this argument
with X and Y playing the reverse roles, we deduce that ≡S is a refinement of
∼S . It is also straightforward that ≡S is right invariant. Thus knowing the
equivalence classes of ≡S we can define a finite state automaton recognising
Suf(S) or Inf(S) as desired.

Again, the important notion, is the one of a representative of an equivalence
class [X]≡S . And for X ∈ Inf(S) this is the longest member, X0, of the
equivalence class. We have similar characterisation of the representatives as in
the case of a single word. Namely, a representative is an infix X ∈ Inf(S) that
is either a prefix of a word in S, or there are distinct characters a 6= b such that
both a ◦ X and b ◦ X are infixes of S. The following result from [12] can be
proven analogously as Lemma 2.1.3

Lemma 2.2.1 An infix X ∈ Inf(S) is a representative for ≡S if and only if
one of the following conditions is satisfied:

1. X is a prefix of S,

2. there exist distinct characters, a 6= b such that both a ◦X, b ◦X ∈ Inf(S).

24CHAPTER 2. BIDIRECTIONAL INFIX STRUCTURES FOR FINITE SETS

[ε]

[ac]

[a] [aba]

[acbbb]

[acbb]

a

b

b

a

b

b

[bb]

[acb]

[ab]

[b]

[abab] [ababb]

a

b

c

c

b

b

b

b

Figure 2.4: A linear size automaton recognising exactly the suffixes of
{ababb, acbbb}.

Furthermore since each of equivalence relations ≡W is right invariant, we
deduce that equivalence relation ≡S is also right invariant. This implies that
we can use the equivalence classes, or equivalently the representatives, in order
to construct a deterministic finite state automaton recognising the set of infixes
Inf(S) or the set of suffixes, Suf(S), see Figure 2.4. To this end we set:

QS = {[X]≡S |X ∈ Inf(S)}
and define the transition function δS : QS × Σ→ QS as:

δS([X]≡S , a) =

{
[X ◦ a]≡S if X ◦ a ∈ Inf(S)
¬! otherwise.

Thus the automaton AS = 〈QS ,Σ, [ε]≡S , δS , QS〉 recognises the set of infixes,
Inf(S), of the set S.

Now the right extensions of the infixes of the set S can be easily processed
in constant time. Indeed, as in the case where S was a singleton containing a
single word, given the state [X]≡S of an infixes X ∈ Inf(S) and a character
a ∈ Σ, the question: Is X ◦ a an infixes of Inf(S? can be answered with a
single look-up in the transition function:

δS([X]≡S , a).

Thus the answer is positive if and only if the transition function is defined for
[X]≡S and the character a ∈ Σ. Furthermore in this case it also provides the
representation, [X ◦ a]≡S of X ◦ a. Thus this process can be iterated as long as
required.

The left extensions are realised by the means of a tree structure similar to
that of TW considered in the previous Section, see Figure 2.5. Namely, we define
the tree TS = 〈QS , ES〉 with edges:

〈[X]≡S , [P]≡S 〉 ∈ ES ⇐⇒ P0 ∈ Suf(X0) and ∀Y ∈ Suf(X0)[|Y | > |P0| ⇒ Y ≡S X0].

This means that we set edges between distinct equivalence classes, [X]≡S and
[P]≡S , such that the representative P0 of the equivalence class [P]≡S is the
longest suffixes of the representative, X0, of [X]≡S that is not equivalent to X0.

2.2. BLUMER ET BLUMER FOR FINITE SET OF WORDS, S 25

[ε]

[ac][a]

[aba]

[acbbb] [acbb]

a b

b a

b

b

[bb] [acb][ab]

[b]

[abab] [ababb]

a b

c

c

c

Figure 2.5: A linear size tree structure for the representatives induced by the
set {ababb, acbbb}.

Put in this way the definition is the same as the definition of the edges in TW .
However the equivalence relations are different.

Now the characterisation of the representatives of ≡S renders similar results
as the results for ≡W and the tree TW we derived in the previous Section.
Namely from the characterisation of the representatives of ≡S we have that
each representative X0 that is not a prefix of none of the words W ∈ S occurs
in at least two distinct left contexts, a 6= b, s.t. a ◦X0, b ◦X0 ∈ Inf(S). Hence
the equivalence classes [a ◦X0]≡S and [b ◦X0]≡S will be children of [X0]≡S in
TS . Therefore each node of TS can be associated with a prefix in S or has at
least two children in TS . Thus the same arguments we used for the proof of
Lemma 2.1.4 yield that:

Lemma 2.2.2 The number of equivalence classes QS is bounded by:

|QS | ≤ 2|Pref(S)| − 1 ≤ 2
∑
W∈S

|W | − 1.

Lemma 2.2.2 asserts that the space requirements for the representation of the
automaton AS and the tree structure TS are linear in terms of the size of the
input, that is the total size of the words contained in S.

In order achieve the left extensions of infixes in S we proceed as in the case
of a single word, see Figure 2.6. First we concatenate all the words W ∈ S in a
single word WS of length:

|WS | =
∑
W∈S

|W |.

26CHAPTER 2. BIDIRECTIONAL INFIX STRUCTURES FOR FINITE SETS

a b

b a

b

b

a b

c

c

c

a

b

b

a

b

b

a

b

c

c

b

b

b

b

a|b|a|b|b|a|c|b|b|b

1|2|3|4|5|6|7|8|9|10

pos = 0
len = 0

pos = 7
len = 2

pos = 2
len = 1

pos = 1
len = 1

pos = 3
len = 3

pos = 2
len = 2

pos = 5
len = 2

pos = 8
len = 3

pos = 9
len = 4

pos = 10
len = 5

pos = 4
len = 4

pos = 5
len = 5

pos = 0
len = 0

pos = 1
len = 1

pos = 7
len = 2

pos = 2
len = 1

pos = 2
len = 2

pos = 3
len = 3

pos = 8
len = 3

pos = 5
len = 2

pos = 4
len = 4

pos = 9
len = 4

pos = 10
len = 5

pos = 5
len = 5

Figure 2.6: A linear size structure allowing the interchanging left and right
traversal of the infixes of the set {ababb, acbbb}.

2.2. BLUMER ET BLUMER FOR FINITE SET OF WORDS, S 27

We store WS as an array so that we have a constant-time access to an arbitrary
character to each character in WS . Next each node in TS stores a constant
amount of information that encodes the representative associated with this node.
Specifically for a node [X]≡S with representative X0 we store:

1. a position pos in WS where X0 terminates.

2. len = |X0|, the length of the representative.

Finally with each edge, 〈[X]≡S , [P]≡S 〉, is labelled with the unique character
a ∈ Σ such that [X]≡S = [a ◦ P0]≡S where P0 is the representative of [P]≡S .

Clearly this representation of TS amounts to O(|QS |) space, thus linear in
terms of the size of the input S. With this data structure at hand and given
an infix X ′ ∈ Inf(S) of length l and knowing that X ′ ∈ [X]≡S we can easily
decide whether a ◦X ′ is an infix of S in constant time and arbitrary character
a ∈ Σ.

Indeed we can proceed as follows:

1. If l′ < len(= |X0|), then a ◦ X ′ is an infix of S if and only if a ◦ X ′ is
a suffix of X0. Knowing that X ′ is a suffix of X0 this reduces to check
whether a = WS [pos− l′] where i = min end−posWS (X0). Since we have
an immediate access to pos and to each entry of WS we can test for
this property in constant time. If the answer is positive, we have that
a ◦X ′ ≡S X0 does occur as an infix in S and its length is l′+ 1, otherwise
it does not.

2. If l′ = len(= |X0|), thus X ′ = X0. Then a ◦X ′ is an infix in S if and only
if [a◦X0]≡S is a child of [X0]≡S and we can check if this is the case with a
single look up in the edges outgoing from [X0]≡S . If there is such a child,
say [C]≡S , then a ◦ X0 ≡S C and the length of a ◦ X0 is determined as
l′ + 1. Otherwise a ◦X0 does not occur in Inf(S).

It is important to stress that we not only decide whether a ◦X ′ is an infix of S
or not, but in case that it is we also obtain the node [a ◦X ′]≡S that represents
a◦X ′ in the tree TS and its length |a◦X ′| = 1+l′. Therefore we can successively
extend to the left each infix of S until we hit a word that is not an infix in S or
no further extensions to the left are needed.

The automaton AS and the tree structure TS can be constructed on-line in
time O(

∑
W∈S |W |) by the means of the algorithm described in [12], [44]. The

additional amendments of the tree structure TS can be easily incorporated in
this algorithm without deteriorating its efficiency or they can be performed on
a second preprocessing stage.

Remark 2.2.3 Another linear space representation of the set of infixes of a sin-
gle word and a finite set of words was proposed by Inenaga, [29, 30]. Essentially
the ideas used [29, 30] naturally extend the ideas of Blumer et al. and in general
achieve better compression than the structure of Blumer et Blumer. In [29, 30]
Inenaga provides linear on-line algorithms that construct this structure that can

28CHAPTER 2. BIDIRECTIONAL INFIX STRUCTURES FOR FINITE SETS

be adapted for the left/right extensions essentially in the same way as described
above. For the purposes of our research it suffices that such a structure can be
efficiently constructed and stored.

2.3 Suffix Arrays

We conclude this Chapter with a data structure which is tightly related with
the representation of suffixes and infixes of a single word, W . Whereas the
automata techniques we considered in the previous Sections provide an efficient
traversal of infixes of a finite set of words, S, the suffix arrays can be used to
provide the lexicographical order of these infixes. The definition of a suffix array
is the following:

Definition 2.3.1 For a word W = a1 ◦ a2 ◦ · · · ◦ aN , we denote with Wi =
ai ◦ . . . aN the suffix starting at position i. A suffix array, AW for the word W is
an array of size of N that presents a permutation of the numbers {1, 2, . . . , N}
and has the following property:

WAW [i] ≺lex WAW [i+1] for all i < N.

Suffix array of a word W of length N can be computed in time O(N), using
a suffix tree [61], or directly [31, 34]. For a taxonomy of various algorithms
constructing a suffix array for a given word we refer the reader to [51].

An important observation that we shall use in our algorithm is the following.
Assume that W = WS is the concatenation of all words in S. We shall refer to
the i-th character of WS as WS,i. Next let A be a suffix array for WS . Then
if two distinct infixes U, V ∈ Inf(S) are of equal lengths, U starts at position i
and V starts at position j in WS , then:

U ≺lex V ⇐⇒ WS,i ≺lex WS,j .

This follows by the fact that U 6= V . Thus, since U and V are of equal lengths,
there is a first position, say k, where U and V are distinct. This would be also
the first position where WS,i and WS,j are distinct and therefore U ≺lex V will
be equivalent to WS,i ≺lex WS,j .

Therefore if we compute the function f such that:

A[f(i)] = i for i ∈ {1, 2 . . . |WS |}

we can easily check whether WS,i ≺lex WS,j by simply comparing the values
f(i) and f(j). Indeed f(i) < f(j) if and only if the value i occurs before j in
the array A which according to the definition of the suffix array is equivalent to
WS,i ≺lex WS,j .

Chapter 3

Example

This chapter is an informal presentation of our algorithm. Its main purpose is
to give the flavour of what we desire to obtain. Along the intuitive approach,
we shall come across questions we are going to discuss in details in the next
chapters.

Let us consider the following simple example. Assume that we are given the
language L = {read, lead, ear}. We would like to process misspelled words V
and suggest their corrected variants V from the list L. The errors that we allow
are insertion, deletion and proper substitution of a single character. It should
be clear that using these operations we can correct an arbitrary word V to each
of the words U ∈ L. However our intuition opposes to the fact that each word
can be considered as a misspelling of read, lead and ear. In order to suppress
this degenerated case, we impose a constraint on the number of unit corrections
that can be done. For instance we can require that this number should not
exceed 40% of the length of the query word V .

Let us see how this framework applies if the query word is V = dread. The
length of V is |V | = 5 and hence we are allowed to perform at most 2 = 40%.5
unit corrections. It is clear that if we delete the d in the beginning we shall obtain
read. Thus read is a misspelling variant of dread under these assumptions. If
we further substitute the r with l we also obtain lead. Hence lead is also a
misspelling variant of dread. However ear is not a correction variant of dread.
Indeed since dread is of length 5 and ear is of length 3, we need at least 2
deletions for such a correction. So the characters of ear should not be involved
in any correction and thus they have to occur in the same order in dread. This
is obviously not the case.

The above naive approach is clearly inefficient since it requires to consider all
the words in the language L before answering the query. Let us have a second
glance at the problem. Think of V = dread as a word which contains at most
2 = 40%.5 errors (which subsequently require a unit correction). Now if we split
V into V0 = dre and V1 = ad, then at least in one of this words the number of
errors is at most 40% of the length of the corresponding word. Indeed otherwise
if the number of errors in V0 was greater than 40%.3 and the number of errors

29

30 CHAPTER 3. EXAMPLE

0

0

1

1

dread

addre

edr

Figure 3.1: The search tree we build for the query word V = dread.

in V1 was greater than 40%.2, then the total number of errors in V would be
more than 40%(2 + 3) = 40%.5 which is a contradiction. Now the length of V0

is |V0| = 3 and the length of V1 is |V1| = 2. Assume that the first case applies,
that is V0 = dre contains at most 40%.3 = 1.2 errors. We iterate our procedure
and split V0 into two V00 = dr and V01 = e. As above we see that either in V00

there are at most 40%.2 errors or in V01 there are at most 40%.1 of errors, see
Figure 3.1

At this stage we are at a situation where we know that either V00 = dr
or V01 = e or V1 = ad contains at most 40% of its length errors. However
40%.1 < 40%.2 < 1 and this means some of the subwords V00 = dr, V01 = e or
V1 = ad contains no errors at all. Now we look at our language L in order to
see which of these three cases is consistent. Obviously, the combination dr does
not occur in the words read, lead, ear, thus we abandon this possibility. The two
other words V01 = e and V1 = ad occur as subwords in L, so they are possible
candidates which we have to consider in the further steps. It is crucial that at
this step we do not need to consider all the words in the language L but only
the infixes of the query word V . Using a suitable infix structure, see Chapter 2,
this step can be handled in an efficient way.

We proceed with the hypothesis about V0 = dre, see Figure 3.2. Could it
contain fewer than 40%.3 < 2 errors? Looking at V00 and V01 we recognise, that
the only possibility is the result e for V01 which occurs in the words of L. In
order to verify this hypothesis, we search for an extension of e to the left in the
words read, lead, ear, so that at most 1 error is induced to dre. There are three
possibilities: (i) we extend e to re (read); (ii) we extend e to le (lead); (iii) we
extend e with blank (ear). In case (i) re is a correction of dre with 1 operation
(deletion of d), the two other cases (ii) and (iii) are not consistent since they
require at least 2 operations. To facilitate these steps it makes sense to use an
appropriate filter which is able to prune the false extensions as soon as possible.

31

0

0

1

1

∅ {e}

{ad}{re}

{rea,real,ead,lead}

Figure 3.2: Solving the queries induced by V = dread in a bottom-up fashion.

Finally we turn our attention to our query word V = dread. Can it contain
at most 40%.5 = 2 errors? As in the previous situation, the answer of this
question is reduced to V0 = dre and V1 = ad.

First, we look at V0 = dre. It permits a unique correction to re with 1 error.
Hence we look for right extensions of re in the set of words, read, lead, ear which
provoke at most 1 more error in the part V1 = ad of V . Clearly, we can extend
re to: (i) re; (ii) rea; or (iii) read. The first case (i) forces deletion of ad so it
causes 2 more errors to V and thus is rejected. The two other possibilities are
legible. Case (ii) causes a deletion of the last d in V1 and case (iii) requires no
edition.

Next, we consider V1 = ad. It permits unique correction to ad with 0 errors.
Hence we look for left extensions of ad in the set of words read, lead, ear with
credit of 2 errors in the part V0 = dre. Here we obtain four cases: (i) ad; (ii)
ead; (iii) read; (iv) lead. Clearly, all but the first one are valid corrections with
at most 2 errors.

In this way we obtain that V = dread can be corrected with at most 2
operations to one of the following: (i) rea; (ii) read; (iii) ead;(iv) lead. This is
still not the answer of our original query, for it may contain subwords of L which
are not words in L themselves. So we need to filter those which are among read,
lead and ear and we obtain that only candidates (ii) and (iv) are valid words
L. Thus we report read and lead, the same as our naive approach suggested to
be true.

In the next chapters we are going to formalise the intuitive concept described
in Chapter 3. First, we shall consider the case when all the operations have
right side of length at most 1. This includes the Levenshtein type operations
but also extends to operations like (ab, c), or (abcd, ε). However transpositions
like (ab, ba) or split operations like (a, ab) do not belong to this class, since ba
in the first case and ab in the second case are both of length 2.

32 CHAPTER 3. EXAMPLE

In order to distinguish between the class of operation of Levenshtein type
and those that contain operations like transpositions or split operations, we
introduce the following characteristic of operation sets.

Definition 3.0.2 Let Op be a set of operation, then ρ = ρ(Op) is defined as:

ρ = max{|r(op)| | op ∈ Op}.

Hence, the Levenshtein operations, OpL, have characteristic ρ(OpL) = 1. In the
sequel we shall consider sets of operations, Op, with ρ(Op) ≥ 1.

For sake of completeness, we should point out that the case ρ(Op) = 0 is a
degenerated one where nothing interesting happens. Indeed, ρ(Op) = 0 means
that the right side of each operation op ∈ Op is r(op) = ε and hence each
alignment ω ∈ Op∗ has right side r(ω) = ε. Therefore only an input V = ε may
cause a nontrivial output. However if V = ε, then for every q ∈ (0; 1) we have
q|V | = 0. Hence only the empty word U = ε satisfies dOp(U, V) ≤ q|V |. This
shows that the case ρ(Op) = 0 is indeed a trivial one. Unless V = ε we return
the empty set. Otherwise if the empty word is in the (regular) language L we
return the set {ε} and else the empty set.

Hence, ρ(Op) = 1, is the next natural candidate to consider. Although
restrictive it might appear, this case is quite representative and will allow us to
present the essence of our approach. Once we have seen the formal solution in
this basic case, it will be easy to realise how it can be adjusted for the general
situation, ρ(Op) ≥ 1. In large extent this will reduce to rather technical details
that we postpone to Chapter 6.

Chapter 4

Alignments and
Edit-Distance Lists

The purpose of this chapter is to improve our understanding about the align-
ments and their influence on the searching process in a language L. This will
help us to formalise the idea we presented in the previous chapter and to turn
it into an efficient algorithm. To this end we describe some simple atomic oper-
ations on sets of alignments which reveal how an alignment set evolves in time.
In certain sense these constructions illustrate how to generate alignments, i.e.
sequences of operations, in a systematic stepwise manner. In addition the al-
gebraic approach to the alignments allows us to formally specify and generalise
the divide and conquer technique we introduced in Chapter 3.

The simplicity of the atomic operations on alignments sets allows transmit-
ting them in a straightforward way to the searching process in a language L.
Since many distinct alignments may have the same impact on the search, one
has to be careful in order to suppress the repetitive computations. In the second
part of this chapter we tailor the edit-distance lists in a way that achieves this
goal while preserving the necessary information which guarantees the correct-
ness of the output. They generate each intermediate result only once and in this
sense they are optimal. However they crucially rely on an efficient representation
of the language L which determines their applicability in practice.

The approach outlined in this chapter is based on [19].

4.1 Some Basic Properties of the Alignments

Let us consider the following alignment of lead and dread over the Levenshtein
operations,

ω = (ε, d)(l, r)(e, e)(a, a)(d, d)

33

34 CHAPTER 4. ALIGNMENTS AND EDIT-DISTANCE LISTS

of total cost c(ω) = 2. Clearly we can consider this alignment as a concatenation
of the alignments:

ω0 = (ε, d)(l, r)(e, e) and ω1 = (a, a)(d, d)

and thus as an alignments of le and dre, and ad and ad, respectively. This was
the fact we utilised in our Example in Chapter 3 to argue that we can split the
query dread into dre and ad. Each alignment of the former word can be viewed
as a concatenation of alignments of the two shorter words.

Lemma 4.1.1 Let Op be a set of operations with ρ(Op) = 1. If V = V0 ◦ V1 is
a word and ω ∈ Op∗ is an alignment with right side r(ω) = V , then there exist
alignments ω0 and ω1 such that:

ω = ω0 ◦ ω1 and r(ωi) = Vi, for i = 0, 1.

Proof. Let ω = ω = op1◦op2◦· · ·◦opN . We define ω(m) = opm◦opm+1◦· · ·◦opN
for 1 ≤ m ≤ N . We set ω(N+1) = ε. Since each operation opm has right side
r(opm) of length at most one it follows that |r(ω(m+1))| + 1 ≥ |r(ω(m))|. Now
|r(ω(1)| = |r(ω)| = |V | and |r(ω(N+1)| = |ε| = 0 and since 0 ≤ |V1| ≤ |V |
we deduce that for some m we must have an equality |r(ω(m))| = |V1|. Let
m0 be an instance of such an m that |r(ω(m))| = |V1|. We set ω1 = ω(m0)

and ω0 = op1 ◦ op2 ◦ · · · ◦ opm0−1. It is now straightforward to complete the
proof. Both r(ω1) and V1 are suffixes of V , and they are of equal lengths thus
r(ω1) = V1. Similarly, r(ω0) and V0 are prefixes of V and an easy computation
shows that they are of equal lengths:

|r(ω0)| = |r(ω)| − |r(ω1)| = |V | − |V1| = |V0|.
Thus r(ω0) = V0. Finally, by the definition of ω0 and ω1 we see that ω0 is
constituted of the first m − 1 and ω1 by the last N −m + 1 operations of ω.
Thus ω = ω0 ◦ ω1.

Intuitively, Lemma 4.1.1 tells us that we can express the alignments of a
word V = V0 ◦ V1 as a concatenation of alignments of the words V0 and V1.
Here the point is that V0 and V1 are determined in advance and refer to all the
alignments of V . Our next step is to relate these decomposition with appropriate
cost-bounds of the alignments. This can be achieved by a simple application of
the Pigeonhole Principle. We sketched it in Chapter 3, but it is useful to revisit
it at this stage once again. Let V = dread, V0 = dre and V1 = ad. We consider
the alignment:

ω = (ε, d)(l, r)(e, e)(a, a)(d, d)

of total cost c(ω) = 2. Now we can argue by Lemma 6.1.1 that

ω0 = (ε, d)(l, r)(e, e) and ω1 = (a, a)(d, d)

exist and we have c(ω) = c(ω0) + c(ω1). Since c(ω) ≤ 2 it is impossible that
c(ω0) > 1 and c(ω1) > 1 simultaneously. Thus either c(ω0) ≤ 1 or c(ω1) ≤ 1.

This being the general idea we present it formally in the sequel. We start
with a variant of the lemma on page 3 in [47].

4.2. SETS OF ALIGNMENTS 35

Corollary 4.1.2 Let b0, b1 be nonnegative rational numbers and b = b0 + b1.
Let Op be a set of operations with ρ(Op) = 1 and V = V0 ◦ V1 be a word. Then
an alignment ω ∈ Op∗ with right side r(ω) = V is of cost c(ω) ≤ b only if there
exist alignments ω0, ω1 such that ω = ω0 ◦ ω1, r(ωi) = Vi for i = 0, 1 and:

1. either c(ω0) ≤ b0,

2. or c(ω1) ≤ b1.

Proof. Let ω with r(ω) = V be of cost r(ω) ≤ b. We consider the alignments ω0

and ω1 determined by Lemma 4.1.1. Then clearly ω0 ◦ ω1 = ω and r(ωi) = Vi
for i = 0, 1. For the sake of contradiction assume that c(ωi) > bi for both i = 0
and i = 1. Then c(ω) = c(ω0) + c(ω1) > b0 + b1 = b. This is a contradiction.
Thus either c(ω0) ≤ b0 or c(ω1) ≤ b1 as required.

In our algorithm we are going to apply Corollary 4.1.2 for b = q|V |, b0 = q|V0|
and b1 = q|V1|. Then since |V | = |V0| + |V1| we obtain that b = b0 + b1 and
the assumptions of the Corollary 4.1.2 hold. We need only very little to reverse
the implication of this statement. However we postpone these details until later
and we move our attention from single alignments to sets of alignments.

4.2 Sets of Alignments

Our example from Chapter 3 suggests that we follow many candidates at a time.
This is why we need a formal framework that allows to deal with all of them
simultaneously in a homogeneous way. In order to feel what sort of primitives
would be suitable for our purposes, we start our analysis with considerations
about set of alignments.

The presence of threshold b ∈ Q+ suggests in a natural way the following
definition for a set of alignments:

Definition 4.2.1 Let A ⊆ Op∗ be a set of alignments and b ∈ Q+. Then:

A≤b = {ω ∈ A | c(ω) ≤ b}
The second notion that we introduce is closely related with the way we generate
candidates. The problem arises with the operations from the set Op which can
be applied in different order without changing the right side of the alignment.
Formally, we define:

Definition 4.2.2 For a set of operations Op, Λ = Λ(Op) is defined as:

Λ = {op ∈ Op | r(op) = ε}.
From practical point of view it might be that it is not that important how

exactly the operations Λ would be applied (simulated). However, this does
matter in order to study the efficiency of our algorithm.

Very generally and superficially, our idea is to generate shorter candidates
first and than longer. We are going to be much more explicit in the next chapters
and provide the necessary mathematical arguments.

At the current stage we simply give the following definition:

36 CHAPTER 4. ALIGNMENTS AND EDIT-DISTANCE LISTS

Definition 4.2.3 Let A ⊆ Op∗ be a set of alignments and j ∈ N be an integer,
then:

A[j] = {ω ∈ A | |l(ω)| = j}.
In the sequel we summarise some simple properties of these two notions.

First of all we remark that for every set of alignments A we have the equality:

A = ∪∞j=0A[j].

The reason for this is that every alignment ω ∈ A has a particular left side
length, |l(ω)|, which uniquely determines a j = |l(ω)| such that ω ∈ A[j]. The
reverse inclusion is straightforward since each of the sets A[j] is a subset of A
by definition.

Next lemma gives a recursive definition of the set A ◦ Λ∗:

Lemma 4.2.4 Let A be a set of alignments, b ∈ Q+ be a nonnegative rational
number. If B = A ◦ Λ∗, then for each j ∈ N it holds:

B[j] = A[j] ∪⋃op∈Λ B[j − |l(op)|] ◦ op
B≤b[j] = A≤b[j] ∪⋃op∈Λ

(
B≤b[j − |l(op)|] ◦ op

)≤b
.

Proof. It should be clear that B = A ∪ AΛ+ = A ∪ B ◦ Λ. Now the first
equality can be verified as follows. An alignment ω ∈ B[j] is an alignment
ω ∈ B with |l(ω)| = j. Therefore ω ∈ A or ω ∈ B ◦ Λ. In the former case
we have ω ∈ A[j]. In the latter one ω = ω′ ◦ op with op ∈ Λ and ω′ ∈ B.
Since |l(ω)| = |l(ω′)| + |l(op)| we deduce that |l(ω′)| = j − |l(op)|. Therefore
ω′ ∈ B[j − |l(op)|]. Hence ω ∈ A[j] ∪⋃op∈Λ B[j − |l(op)|] ◦ op.

Conversely each alignment ω ∈ A[j]∪⋃op∈Λ B[j− |l(op)|] ◦ op has the prop-
erties |l(ω)| = j and ω ∈ A ∪B ◦ Λ. Thus ω ∈ B and |l(ω)| = j which shows
ω ∈ B[j].

The second part of the lemma can be derived from the first. Namely we
have:

B≤b[j] =

A[j] ∪
⋃
op∈Λ

B[j − |l(op)|] ◦ op

≤b .
And since every alignment of cost less than or equal to b has only subalignments
which fulfil this constraint too it follows that

B≤b[j] =

A[j] ∪
⋃
op∈Λ

B[j − |l(op)|] ◦ op

≤b

= A≤b[j] ∪
⋃
op∈Λ

(
B≤b[j − |l(op)|] ◦ op

)≤b
.

A special case of alignments which naturally arise in the context of our
problem is the set of alignments with fixed right side.

4.2. SETS OF ALIGNMENTS 37

Definition 4.2.5 Let V be a word, Op be a set of operations, then:

AOp(V) = A(V) = {ω ∈ Op∗ | r(ω) = V }.

It is now clear that the answer of a query induced by a word V is closely
related with the structure of the alignment set (A(V))≤b with b = q|V |.

In the sequel we shall consider the set A(V) and derive some simple still
useful facts about them. In this section we shall consider the simple case when
ρ(Op) = 1, i.e. each operation has right side of length at most 1. The general
case will be described in Chapter 6.

At a first step we shall obtain the set A(V) as a result of an atomic operation
applied on a simpler set. Next lemma gives such a characterisation:

Lemma 4.2.6 Let Op be a set of operations with ρ(Op) = 1, V = V ′ ◦ σ be a
word and σ ∈ Σ be a single character. Then:

A(V) =

 ⋃
op=(U,σ)∈Op

A(V ′) ◦ op

 ◦ Λ∗.

Proof. Let us first consider an alignment ω ∈ A(V). This means that r(ω) =
V = V ′ ◦ σ. Let op ∈ Op be the last operation in ω that has a nonempty right
side, i.e. r(op) 6= ε. Thus ω = ω′ ◦ op ◦ ωε where all of the operations involved
in ωε have empty right side. Hence ωε ∈ Λ∗ or equivalently r(ωε) = ε. Now we
have:

V ′ ◦ σ = V = r(ω) = r(ω′) ◦ r(op) ◦ (ωε) = r(ω′) ◦ r(op).
Since |r(op)| ≤ 1 and |r(op)| 6= 0 we obtain that |r(op)| = 1 and therefore
r(op) = σ. Thus op is of the form (U, σ) ∈ Op for an appropriate word U . It is
also straightforward that r(ω′) = V ′ and hence ω′ ∈ A(V ′). This readily shows
that:

ω = ω′ ◦ op ◦ ωε ∈

 ⋃
op=(U,σ)∈Op

A(V ′) ◦ op

 ◦ Λ∗.

The inclusion from right to left is straightforward. Concatenating an align-
ment with right side V ′ with an operation with right side x clearly results in
an alignment, ω, with right side V ′ ◦ σ = V . Concatenating ω with operations
op ∈ Λ does not change the right side of ω, since r(op) = ε.

Next lemma generalises the result from Corollary 4.1.2 to alignment sets and
provides the missing reverse inclusion part:

Lemma 4.2.7 Let Op be a set of operations with ρ(Op) = 1 and V = V0 ◦ V1

for some nonempty words V0, V1 ∈ Σ∗ with lengths n0 and n1, respectively. Let
b = b0 + b1 be rational numbers b0, b1 ∈ Q+. Then:

A≤b(V) =
(
A≤b0(V0) ◦ A(V1)

)≤b ∪ (A(V0) ◦ A≤b1(V1)
)≤b

38 CHAPTER 4. ALIGNMENTS AND EDIT-DISTANCE LISTS

Proof. We first prove the inclusion from left to right. To this end we consider
an arbitrary alignment ω ∈ A≤b(V). By Lemma 4.1.2, ω = ω0 ◦ ω1 with ωi ∈
A(Vi) for i = 0, 1 and:

c(ω0) ≤ b0 or c(ω1) ≤ b1.
In the former case we have that ω0 ∈ A≤b0(V0) and since ω1 ∈ A(V1) we get:

ω ∈
(
A≤b0(V0) ◦ A(V1)

)≤b
.

Symmetrically, in the latter case we have that ω1 ∈ A≤b1(V1) and using that
ω0 ∈ A(V0) we get:

ω ∈
(
A(V0) ◦ A≤b1(V1)

)≤b
.

The inclusion from right to left is straightforward. Each alignment ω ∈
A(V0) ◦ A(V1) clearly satisfies r(ω) = V0 ◦ V1 = V and thus ω ∈ A(V). The
constraint ≤b on the out most level then guarantees that ω ∈ A≤b(V).

With respect to the result of the previous lemma we introduce the following
notion.

Definition 4.2.8 Let V = V0 ◦ V1 be words and b0, b1 ∈ Q+ be nonnegative
rational numbers with sum b = b0 + b1. Then we introduce the alignment sets
A(V0, b0 → V, b) and A(V, b← V1, b1) as:

A(V0, b0 → V, b) =
(
A≤b0(V0) ◦ A(V1)

)≤b
.

A(V, b← V1, b1) =
(
A(V0) ◦ A≤b1(V1)

)≤b
Now, using Lemma 4.2.6 we can derive an iterative description of the set:

A(V0, b0 → V, b).

Since similar result can be dually obtained, see Section 4.4, for the set:

A(V, b← V1, b1)

we actually get a constructive description of A≤b(V) in the terms of the simpler
A≤bi(Vi) for i = 0, 1.

Lemma 4.2.9 Let Op be a set of operations with ρ(Op) = 1 and V = V0 ◦ V1

be a word such that |Vi| = ni ≥ 1 and let b = b0 + b1 be nonnegative rational
numbers. Let

−→
A j be the alignment sets:

−→
A j = A(V0, b0 → V0 ◦ Ij1(V1), b) =

(
A≤b0(V0) ◦ A(Ij1(V1))

)≤b
.

Then the following recurrence holds:
−→
A 0 =

(
A≤b0(V0) ◦ Λ∗

)≤b
−→
A j+1 =


 ⋃
op=(U,Ij+1

j+1 (V1))∈Op

(
−→
A j ◦ op)≤b

 ◦ Λ∗


≤b

4.3. EDIT-DISTANCE LISTS 39

for j < n1.

Proof. For j = 0 we have that I0
1 (V1) = ε and therefore:

A(I0
1 (V1)) = A(ε) = Λ∗.

This clearly implies the desired equality.

A0 =
(
A≤b0(V0) ◦ A(I0

1 (V1))
)≤b

=
(
A≤b0(V0) ◦ Λ∗

)≤b
Next we use Lemma 4.2.6 in order to express A(Ij+1

1 (V)) in terms of A(Ij1(V)).
Let σj+1 be the (j + 1)-st character of V1 then we deduce that: Ij+1

1 (V1) =
Ij1(V1) ◦ σj+1. Applying Lemma 4.2.6 we obtain:

A(Ij+1
1 (V1)) =

⋃
op=(U,σj+1)∈Op

A(Ij1(V1)) ◦ op ◦ Λ∗.

Concatenating both sides with A≤b0(V0) and using the distributive law of the
union over the concatenation we get:

A≤b0(V0) ◦ A(Ij+1
1 (V1)) =

⋃
op=(U,σj+1)∈Op

A≤b0(V0) ◦ A(Ij1(V1)) ◦ op ◦ Λ∗.

Finally, introducing the constraint ≤b for all the alignments we obtain the result:

−→
A j+1 =


 ⋃
op=(U,Ij+1

j+1 (V1))∈Op

((A≤b0(V0) ◦ A(Ij1(V1)))≤b ◦ op)≤b
 ◦ Λ∗


≤b

=

 ⋃
op=(U,σj+1)∈Op

(
−→
A j ◦ op)≤b

 ◦ Λ∗

≤b .

4.3 Edit-Distance Lists

The notion of alignment is only a tool which defines the edit-distance between
words. In this sense many different alignments may witness for a particular edit-
distance. For instance along with the alignment ω′ = (l, d)(ε, r)(e, e)(a, a)(d, d)
we also have the alignment ω′′ = (ε, d)(l, r)(e, e)(a, a)(d, d) which has the same
cost as ω′, c(ω′′) = c(ω′) = 2. In practice we are ignorant about the concrete
alignments as far as they witness for the edit-distance of the words. In our case
we are interested that d(lead, dread) = 2 and we care little about ω′ and ω′′.

Furthermore, the alignment (l, d)(ε, r)(e, ε)(ε, e)(a, a)(d, d) which is of cost 3
is redundant since it is a negative witness for the edit-distance d(lead, dread) =
2.

40 CHAPTER 4. ALIGNMENTS AND EDIT-DISTANCE LISTS

These three and many other alignments would be elements of A≤3(dread). In
this section we consider a model which removes these redundancies but preserves
the expressiveness of the alignment sets with respect to unions and concatena-
tions with a single operation.

Our idea is to compactly represent the answers of the following kind of
queries:

Given:regular language L, q ∈ (0; 1)
Query:V ∈ Σ∗, b = q|V |
Answer:{l(ω) ∈ Inf(L)| ω ∈ A≤b(V)}

In the special case when L = Σ∗, the answer of the query would correspond
to the removal of the redundancies in A≤b(V). In the other extreme, when L, is
the particular (regular) language of interest for the approximate search problem,
the solution of this query can be easily filtered so that we obtain the answer of
the approximate search problem.

We formally define the edit-distance lists as (partial) functions which map
words to integers:

Definition 4.3.1 An edit-distance list is a partial function L : Σ∗ → N.

In general the edit-distance lists have little to do with alignments operations.
However, in view of the above query, every language and every alignment set
define a unique edit-distance list. Exactly these edit-distance lists will be in the
focus of this section and will play an important part in our algorithm.

Definition 4.3.2 Let L be a language, A be a set of alignments. We say that
the edit-distance list L : Σ∗ → N L-represents A if and only if:

Dom(L) = Inf(L) ∩ {l(ω) |ω ∈ A}
L(U) = min{c(ω) |ω ∈ A and l(ω) = U}.

In the special case when A = A≤b(V) the edit-distance list L which L-represents
A gives the precise answer of the query defined above and additionally provides
the edit-distance d(U, V) = L(U) for every answer of the query.

In the previous section we expressed the alignment sets A(V) recursively by
the means of concatenation with a single operation and unions of alignment sets.
Hence it is interesting whether the edit-distance lists inherit these properties of
alignment sets. In the sequel we shall see that the answer is in a certain sense
affirmative. We say ’in certain sense’ because the language L is given at this
stage in a non-constructive manner and the decision problem about Inf(L) is
something we cannot argue about. But abstracting the decision procedure gives
us a efficient method which simulates union of alignment sets and concatenation
of alignment sets with a single operation on edit-distance lists.

Next two lemmata summarise these results:

Lemma 4.3.3 Let L be a language, A be an alignment set and op ∈ Op be an
operation, op = (X,Y). If L : Σ∗ → N L-represents A, then the edit-distance

4.3. EDIT-DISTANCE LISTS 41

list L′ : Σ∗ → N defined as:

Dom(L′) = Dom(L) ◦X ∩ Inf(L)

L′(U ◦X) =

{
L(U) + c(op) if U ◦X ∈ Inf(L)
¬! else

L-represents the alignment set A ◦ op.

Proof. Since l(op) = X each alignment ω ∈ A◦op has left side l(ω) ∈ Σ∗◦X.
We first prove that:

Dom(L′) = {l(ω) |ω ∈ A ◦ op and l(ω) ∈ Inf(L)}.

First consider a word U ′ ∈ Dom(L′). Then U ′ ∈ Dom(L) ◦ X. Since L L-
represents A, we deduce that U ′ = l(ω) ◦X with ω ∈ A. Since op = (X,Y) we
obtain that ω ◦ op ∈ A ◦ op and l(ω ◦ op) = l(ω) ◦X = U ′. Finally U ′ ∈ Inf(L)
and therefore l(ω ◦ op) ∈ Inf(L).

Next, let ω′ ∈ A ◦ op and l(ω′) ∈ Inf(L). Therefore, ω′ = ω ◦ op for some
alignment ω ∈ A. Let U = l(ω). Since op = (X,Y) we have that l(ω′) = U ◦X ∈
Inf(L). It remains to verify that U ◦X ∈ Dom(L) ◦X which is equivalent to
show that U ∈ Dom(L). But U ◦ X ∈ Inf(L) and therefore the subword
U ∈ Inf(L). We also have that l(ω) = U with ω ∈ A. Since L L-represents A
this implies that U ∈ Dom(L).

The last step of the proof is to show that the values attained by L′ are the
same as those taken by the edit-distance list which L-represents A ◦ op. This
follows by a straightforward computation. Let U ◦X ∈ Dom(L′), then:

L′(U ◦X) = L(U) + c(op) = min{c(ω) |ω ∈ A, l(ω) = U}+ c(op)
= min{c(ω) + c(op) |ω ∈ A, l(ω) = U}
= min{c(ω ◦ op) |ω ◦ op ∈ A ◦ op, l(ω) ◦ l(op) = U ◦X}
= min{c(ω′) |ω′ ∈ A ◦ op, l(ω′) = U ◦X}

as required by the definition of the edit-distance list L-representing A ◦ op

Next property of the edit-distance lists shows the relationship between the
edit-distance lists representing an alignment set A and the edit-distance list
representing the alignment set A≤b:

Property 4.3.4 Let L be an edit-distance list which L-represents the alignment
set A and let b ∈ Q+ be a threshold. Then the edit-distance list L≤b : Σ∗ → N
defined as:

L≤b(U) =

{
L(U) if L(U) ≤ b
¬! else

L-represents A≤b.

42 CHAPTER 4. ALIGNMENTS AND EDIT-DISTANCE LISTS

Proof. Indeed, a word U ∈ Dom(L≤b) if and only if U ∈ Dom(L) and
L(U) ≤ b. Since for U ∈ Dom(L):

L(U) = min{c(ω) |ω ∈ A and l(ω) = U},
the constraint L(U) ≤ b implies that:

L(U) = min{c(ω) ≤ b |ω ∈ A and l(ω) = U} = min{c(ω) |ω ∈ A≤b and l(ω) = U}.
If L(U) > b, then every alignment ω ∈ A such that l(ω) = U is of cost c(ω) > b
and hence ω 6∈ A≤b. Therefore, such words U do not belong to the domain of
the edit-distance list L-representing A≤b.

Corollary 4.3.5 Let L be a language, A be a set of alignments, op = (X,Y) be
an operation and b ∈ Q+ be a threshold. If an edit-distance list L L-represents
A, then the edit-distance list L′′ : Σ∗ → N defined as:

Dom(L′′) ⊆ Dom(L) ◦X ∩ Inf(L)

L′′(U ◦X) =

{
L(U) + c(X) if L(U) + c(X) ≤ b and U ◦X ∈ Inf(L)
¬! else

L-represents the alignment set (A ◦ op)≤b.
Proof. Immediately by Lemma 4.3.3 and Remark 4.3.4

The constructions described by Lemma 4.2.6 and Corollary 4.3.5 reflect the
concatenation of alignment sets with a single operation as an operation on edit-
distance lists which can L-represents the given alignment set. Furthermore, if
we can efficiently solve the decision problem for the language L, the construction
in Lemma 4.3.3 and Corollary 4.3.5 amount to a single go through the domain
of the input edit-distance list.

Our next goal is to describe a similar construction which reflects the union
of alignment sets. This can be achieved quite easy. This time we do not even
need to solve the decision problem for the language L. The idea is that a word,
U , represented by the union of two alignment sets must be represented by at
least one of them. The reverse is also true. And in this case the value of the
edit-distance list at the word U is also easily computed using only the values
of the initial edit-distance lists at U , if defined. The formal statement is the
following:

Lemma 4.3.6 Let L be a language and A1 and A2 be alignment sets. If L1

and L2 are edit-distance lists L-representing A1 and A2, respectively, then the
edit-distance list L : Σ∗ → N defined as:

L(U) =


min{L1(U), L2(U)} if U ∈ Dom(L1) ∩Dom(L2)
L1(U) if U ∈ Dom(L1) \Dom(L2)
L2(U) else

L-represents the alignment set A = A1 ∪ A2.

4.4. REVERSING ALIGNMENTS 43

Proof. By the definition of the edit-distance list L we have that:

Dom(L) = Dom(L1)∪Dom(L2) = {l(ω) |ω ∈ A1, l(ω) ∈ Inf(L)}∪{l(ω) |ω ∈ A2, l(ω) ∈ Inf(L)}

where the last equality follows since Li L-represents the alignment set Ai for
i = 1, 2. Therefore:

Dom(L) = {l(ω) |ω ∈ A1 ∪ A2, l(ω) ∈ Inf(L)} = {l(ω) |ω ∈ A, l(ω) ∈ Inf(L)}.

Therefore to prove that L L-represents the alignment set A it suffices to show
that:

L(U) = min{c(ω) |ω ∈ A and l(ω) = U}
for every U ∈ Dom(L). Then at least one of the sets {ω ∈ A1 | l(ω) = U} and
{ω ∈ A2 | l(ω) = U} is nonempty. Consequently:

min{c(ω) |ω ∈ A and l(ω) = U} = min{c(ω) |ω ∈ A1 ∪ A2 and l(ω) = U}
= min{min{c(ω) |ω ∈ A1 and l(ω) = U},min{c(ω) |ω ∈ A2 and l(ω) = U}}

Now if U ∈ Dom(L1)∩Dom(L2) the last minimum is equivalent to min{L1(U), L2(U)} =
L(U). If U ∈ Dom(L1) \ Dom(L2), the minimum is L1(U) and finally if
U ∈ Dom(L2) \Dom(L1), then it is L2(U). In either case we obtain that:

L(U) = min{c(ω) |ω ∈ A and l(ω) = U}

for U ∈ Dom(L) as required.

4.4 Reversing Alignments

Reconsidering Lemma 4.2.4, Lemma 4.2.6 and Lemma 4.3.3 there is an evident
advantage that we give to right concatenation. And we never mentioned that
symmetric properties and constructions are valid for concatenations on the left.
Namely how about Λ∗ ◦ A, or A(V) ◦B? Do we have similar formulae and can
we reflect them via edit-distance lists? The answers to all these questions are
affirmative. But instead of arguing by symmetry, we first describe the symmetry
which is expressed by the reversal of the alignments.

Intuitively, given the alignment, ω = (l, d)(ε, r)(e, e)(a, a)(d, d), the reverse
alignment should: (i) reverse the order of the individual operations, (ii) align
the reverse words, i.e. leadrev = dael and dreadrev = daerd. In order to
achieve this we give the following definition:

Definition 4.4.1 Let (Op, c) be a set of operations supplied with a cost func-
tion. For an operation op = (X,Y) ∈ Op, we define oprev = (Xrev, Y rev). We
define (Oprev, crev) as:

Oprev = {oprev | op ∈ Op}
crev(oprev) = c(op).

44 CHAPTER 4. ALIGNMENTS AND EDIT-DISTANCE LISTS

First we notice that (oprev)rev = op because of the corresponding property of the
reverse operation on words. Next in case of X,Y ∈ Σ, we have that Xrev = X,
Y rev = Y . In particular we have that Idrev = Id and therefore (Oprev, crev) is
again a set of operations supplied with a cost function1 crev.

With this notion we can also reverse alignments. However the reverse align-
ment would be not an alignment over Op but an alignment over Oprev. Here
are the details:

Definition 4.4.2 Let (Op, c) be a set of operations with a cost function c. For
an alignment ω = op1 ◦ op2 · · · ◦ opN in Op∗ we define ωrev to be the alignment
over Oprev given by:

ωrev = oprevN ◦ oprevN−1 ◦ · · · ◦ oprev1 .

For instance if ω = (l, d)(ε, r)(e, e)(a, a)(d, d), then:

ωrev = (d, d)(a, a)(e, e)(ε, r)(l, d)

and thus ωrev aligns dael against deard exactly as our intuition suggested it
should be.

It is straightforward to see that (ωrev)rev = ω since:

(ωrev)rev =
(
oprevN ◦ oprevN−1 ◦ · · · ◦ oprev1

)rev = op1 ◦ op2 · · · ◦ opN = ω.

Furthermore, it should be clear that the costs of alignments is preserved under
reverse. Indeed:

c(ω) =
N∑
i=1

c(opi) =
N∑
i=1

crev(oprevi) = crev(ωrev).

It should be also clear that for any two alignments ω1 and ω2 over (Op, c),
the reverse alignment of their concatenation ω = ω1 ◦ ω2 is the same as the
concatenation of the reversed alignments ω2 and ω1, where the order is inter-
changed:

(ω1 ◦ ω2)rev = ωrev2 ◦ ωrev1 .

The properties of reversed alignments naturally transfer to set of alignments.
Thus we have that (Oprev)rev = Op and (Arev)rev = A for any set of alignments
A over (Op, c). Furthermore if A and B are sets of alignments, then (A◦B)rev =
Brev ◦ Arev.

We can extend the reverse operation on distance-sets in a natural way:

Definition 4.4.3 Let L : Σ∗ → N be an edit-distance list, then Lrev is the
distance list defined as:

Lrev(U) = L(Urev).

1crev(oprev) = 0 if and only if op ∈ Id, that is oprev ∈ Id.

4.4. REVERSING ALIGNMENTS 45

Now if an edit-distance list L-represents an alignment set A, then Lrev will be
defined on the reversed domain of L, i.e.:

Dom(Lrev) = (Dom(L))rev = {l(ω) | l(ω) ∈ Inf(L) and ω ∈ A}rev.
Therefore a word U belongs to Dom(Lrev) if and only if U = lrev(ω) belongs to
Inf(Lrev) and ω ∈ A. But this is equivalent to:

U ∈ {l(ω) | l(ω) ∈ Inf(Lrev) and ω ∈ Arev}.
Using that the reverse operation on alignments preserves the cost of alignments,
we obtain the following result:

Lemma 4.4.4 Let L be an edit-distance list which L-represents the alignment
set A. Then Lrev Lrev-represents Arev.

Taking into account that applying the reverse operation twice we obtain the
identity both for words and alignments, we deduce that:

Corollary 4.4.5 An edit-distance list L L-represents A if and only if Lrev Lrev-
represents Arev.

Finally, we shall use the reverse operation on alignment sets in order to derive
a characterisation of the alignment sets A(V, b← V1, b1) from Section 4.2. The
following property is obvious:

Lemma 4.4.6 If V ∈ Σ∗ is a word, Op is a set of operations, then:

Arev(V) = AOprev (V rev).

where the subscript Oprev indicates that the alignment sets are considered over
the set of operations Oprev and not Op.

Proof. The equality follows by the fact that every alignment ω ∈ A(V) has the
property that r(ωrev) = V rev and ωrev itself is an alignment over Oprev.

Now we can prove the following analogue of Lemma 4.2.9.

Lemma 4.4.7 Let Op be a set of operations with ρ(Op) = 1 and V = V0 ◦ V1

be a word with lengths |Vi| = ni and let b = b0 + b1 be nonnegative rational
numbers. Let

←−
A j be the alignments:

←−
A j = A(In0

n0−j+1(V0) ◦ V1, b←V1, b1) =
(
A(In0

n0−j+1(V0)) ◦ A≤b1(V1)
)≤b

Then:
←−
A 0 = (Λ∗ ◦ A≤b1(V1))≤b

←−
A j+1 =

Λ∗ ◦

 ⋃
op=(U,I

n0−j
n0−j

(V0))∈Op

op ◦←−A j


≤b

≤b

for j < n0.

46 CHAPTER 4. ALIGNMENTS AND EDIT-DISTANCE LISTS

Proof. Let W0 = V rev1 and W1 = V rev0 . Therefore position l in W1 is position l
in V rev0 and thus it holds the same character as the character at position n0−l+1
in V0. With this remark it is rather straightforward that (In0

n0−j+1(V0))rev =
Ij1(W1). Now using Lemma 4.4.6 we see that:

Arev(V1) = AOprev (W0)
←−
A rev(In0

n0−j+1(V0)) =
−→
AOprev (Ij1(W1)).

This means that:

Arev(Inn0−j+1(V0) ◦ V1, b←V1, b1) = AOprev (W0, b1→W0 ◦ Ij1(W1), b)

Now we apply Lemma 4.2.9 to the sets AOprev (W0, b1→W0 ◦Ij1(W1), b), then we
use the properties of the reverse operations in order to complete the proof.

As a by-product of the above proof we obtain:

Corollary 4.4.8 In the notions of Lemma 4.4.7 it holds:

←−
A j,rev =


 ⋃
op=(U,Ijj (V rev0))∈Oprev)

(
←−
A j−1,rev ◦ op)≤b

 ◦ (Λrev)∗


≤b

.

That is essentially Aj,rev obeys the same recurrence as Aj from Lemma 4.2.9
with the only difference that the alignment sets are considered over (Oprev, crev)
and not over (Op, c).

Chapter 5

Approximate Search in
Regular Sets, ρ(Op) = 1

In this chapter we formally describe how to transform the idea we presented in
Chapter 3 into an algorithm. In this chapter we still consider the case when
ρ(Op) = 1 and thus we can rely on the theoretical preliminaries from Chapter 4.
We start with a brief overview which sets the framework of our approach to
solving the approximate search problem:

Given:L ⊆ Σ∗ regular language,
d = (Op, c) an edit-distance,
q ∈ (0; 1) a threshold parameter

Input: V ∈ Σ∗

Output: {U ∈ L | d(U, V) ≤ q|V |}.

Although our solution is conceptually based on the results presented in Chap-
ter 4 we need to take care of the technical details on which the efficient algorithm
depends.

The main ideas in this chapter were described in [21] and in more details
in [20].

5.1 Algorithm Overview

Given a query word V ∈ Σ∗ of length N , it specifies a query with threshold
qN . The task is to determine all words U ∈ L such that d(U, V) ≤ qN . In
order to apply the idea from Chapter 3 we first slightly generalise the query. In
particular we solve:

Given:L ⊆ Σ∗ regular language,
d = (Op, c) an edit-distance,
q ∈ (0; 1) a threshold parameter

Input: V ∈ Σ∗

47

48CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

0

0 0

1

1 1

Vε

V1V0

V01V00 V10
V11

Figure 5.1: The structure of a searching tree in the case when V is split into 4
subwords.

Output: {U ∈ Inf(L) | d(U, V) ≤ q|V |}.
The difference constitutes in the fact that we search for all the infixes of the
language L which satisfy the query rather than entire words.

This generalisation allows us to split the initial query specified by V into
shorter which we represent as a binary tree, see Figure 5.1. The initial word
V is partitioned into a prefix V0 and a suffix V1 of almost equal lengths. Then
we apply the same procedure to V0 and V1 recursively. The process terminates
when we obtain a word Vα which is short enough, i.e. q|Vα| < 1. In this way we
obtain a binary tree, T (V), whose nodes, α ∈ {0, 1}∗, are labelled with queries
Vα.

Our next goal is to solve each of these queries:

Given:L ⊆ Σ∗ regular language,
d = (Op, c) an edit-distance,
q ∈ (0; 1) a threshold parameter

Input: Vα ∈ Σ∗

Output: {U ∈ Inf(L) | d(U, Vα) ≤ q|Vα|}.
To this end we start with the queries assigned to the leaves of T (V). For
each such query we have that q|Vα| < 1 which suggests that only the exact
match can be an answer to this query. Afterwards we extend the answers of
the queries Vα0 and Vα1 in order to compute the answers for the query Vα. In
this way we are capable to propagate the answers from the leaves towards the
root of the search tree T (V). The extension steps are based on Lemma 4.2.7
and the representation of alignment sets via edit-distance lists which provides
the correctness of the approach. In order to make this technique applicable in
practice we use the following resources:

1. edit-distance lists which L-represent the alignment sets (A(Vα))≤q|Vα|.

2. an automata-based representations of the languages Inf(L) and Inf(Lrev).

5.2. INITIALISATION STEP 49

Thus, on the one hand, the edit-distance lists which L-represent the align-
ment sets (A(Vα))≤q|Vα| describe exactly those infixes, U , with U ∈ Inf(L) such
that U can be aligned with Vα at cost at most q|Vα| and hence d(U, Vα) ≤ q|Vα|.
Therefore the answers of the query will efficiently represented in the edit-
distance lists. On the other hand, the deterministic automata for Inf(L) and
Inf(Lrev) will provide an efficient procedure to extend each word from the do-
main of an edit-distance lists in arbitrary direction while controlling that the
result remains a valid infix of L or Lrev, respectively. Thus, in view of the
constructions described in Chapter ?? we will be able to extend the solutions
of the shorter queries in order to obtain results for the longer queries.

In case that the language L is finite, its infixes can be represented by the
data-structures considered Chapter 2 and this will bring us to a more efficient
algorithm. The result from the second step of our algorithm is that we have the
answers for the query specified by V = Vε:

Given:L ⊆ Σ∗ regular language,
d = (Op, c) an edit-distance,
q ∈ (0; 1) a threshold parameter

Input: V ∈ Σ∗

Output: {U ∈ Inf(L) | d(U, V) ≤ q|V |}.
Since L ⊆ Inf(L) and L is regular we can easily filter these answers so that we
obtain only those words U ∈ L which satisfy:

d(U, V) ≤ q|V |.

This final step is effectuated by the means of an automaton for the language L.

5.2 Initialisation Step

In this section we formally describe how we organise the searching process and
how we initiate it when ρ = ρ(Op) = 1.

Recall that ρ = 1 means that every right hand side of an operation is either
the empty word or a single-character-word. We start by defining the set of
queries we are going to solve. To this end we first split the query word V into
subwords Vα.

Given a word V , we decompose it recursively into shorter subwords Vα with
α ∈ {0, 1}∗ and we define a binary tree T (V) with nodes α as follows (see
Figure 5.1):

1. Vε = V and ε is the root of T (V).

2. if Vα and α are defined and q|Vα| ≥ 1 we define Vα0 and Vα1 such that:

Vα = Vα0 ◦ Vα1

0 ≤ |Vα0| − |Vα1| ≤ 1.

We set α0 to be the left child of α and α1 to be the right child of α.

50CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

For every node α we define the length, Nα = |Vα|, of the word Vα and the
threshold bα = qNα. As we explained above we associate with every node α the
query:

Given:L ⊆ Σ∗ regular language,
d = (Op, c) an edit-distance,
q ∈ (0; 1) a threshold parameter

Input: Vα ∈ Σ∗

Output: {U ∈ Inf(L) | d(U, Vα) ≤ q|Vα|}.

and in the node α we compute the graph of the edit-distance list L(α) which
L-represents the alignment set A(Vα)≤bα .

Lemma 5.2.1 Given a leaf, α, of the search tree T (V), we have that:

L(α) =

{
{〈U, 0〉} if U = Vα and Vα ∈ Inf(L)
∅ otherwise.

If we further dispose on a deterministic automaton A which recognises Inf(L)
we can compute the (graphs of the) edit-distance lists L(α) for all the leaves α
in time O(N).

Proof. Indeed for every leaf α we have that bα = qNα < 1. Now since each
nonidentity operation is of positive cost, we conclude that:

A(Vα)≤bα = {ωα}

where ωα ∈ Id∗ is uniquely determined by the condition r(ωα) = Vα. It is
then clear that c(ωα) = 0 and l(ωα) = r(ωα) = Vα. Hence, according to the
definition of L-representability we deduce:

L(α) =

{
{〈U, 0〉} if U = Vα and Vα ∈ Inf(L)
∅ otherwise.

This proves the first part of the lemma. The second part follows immediately
by the first. To see this, consider the subwords, Vα, of V where α ranges over
all the leaves of T (V). Using the automaton A we can check in time O(Nα)
whether Vα ∈ Inf(L). Now the result follows by the fact that:∑

α leaf of T (V)

Nα = N.

Hence the total time spent in the traversal of the automaton A is O(N).

ApproximateSearchInitialise(IAr, V ,N, q, α)
Nα ← N
Vα ← V

5.3. EXTENSION STEPS 51

if qN < 1 then
T (α)←empty trie with root r
s←the initial state of IAr
st← TraverseAutomaton(IAr, s, V)
L(α)← ∅
if st is defined then

u← TraverseTrie(T , r, V)
st(u)← st
B[N]←new empty bucket
B[N].Insert(〈u, 0〉
L(α).Append(B[N])

fi
else

Nleft ← dN2 e
Nright ← bN2 c
Vleft ← V [1..Nleft]
Vright ← V [Nleft + 1..N]
ApproximateSearchInitialise(IA, Vleft, Nleft, q, α0)
ApproximateSearchInitialise(IA, Vright, Nright, q, α1)

5.3 Extension Steps

This section describes how the answers of the queries at the nodes α0 and α1
can be extended as to obtain the answers for the query specified by the node
α. Here we present two possible approaches. The first one is rather general and
involves a standard still tedious indexing of the edit-distance lists. The second
one is based on a tricky but natural order of the (graph of) the edit-distance
lists which however is applicable only for finite languages L.

5.3.1 Edit-Distance Lists Represented as Tries

Our goal is to find the edit-distance lists L(α) that L-represent the alignment
set A≤bα(Vα) for every node α of the query tree T (V). To this end we shall
proceed in a bottom-up fashion and compute L(α) on the basis of L(α0) and
L(α1). The idea is simply to use Lemma 4.2.7 from Chapter 4 for Vα = Vα0◦Vα1

and bα = bα0 + bα1:

A≤bα(Vα) = A(Vα0, bα0 → Vα, bα) ∪ A(Vα, bα ← Vα1, bα1).

The framework of alignment sets and edit-distance lists representing align-
ment sets that we developed in Chapter 4 allow us to compute the desired result
iteratively. In particular we are going to compute the representations of the sets
A(Vα0, bα0 → Vα, bα) and A(Vα, bα ← Vα1, bα1) in steps and afterwards we shall
unite them.

To get the idea, let us consider the computation of the edit-distance lists
representing A(Vα0, bα0 → Vα, bα) for fixed α. Since we have the edit-distance

52CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

list L(α0) we know that we have appropriate representations of the alignment
set:

A≤bα0(Vα0).

We are going to compute the edit-distance lists Lr(α, j) that L-represent the
alignment sets

−→
A j defined as:

−→
A j = A(Vα0, bα0 → Vα0 ◦ Ij1(Vα1), bα)

Based on Lemma 4.2.9 we have that
−→
A j can be expressed as:

−→
A 0 = (A≤bα0 (Vα0) ◦ Λ∗)≤bα

−→
A j =


 ⋃

(U,Ijj (Vα1))∈Op

(
−→
A j−1 ◦ op)≤bα

 ◦ Λ∗


≤bα

for j ≥ 1. In the latter case we proceed in two steps. In the first step given
the edit-distance lists Lr(α, j − 1) an L-representation for the alignment set−→
A j−1 for j we first determine the edit-distance list L′r(α, j) that L-represents
the alignment set:

Ãj =
⋃

(U,Ijj (Vα1))∈Op

(
−→
A j−1 ◦ op)≤bα

In a second step we compute the list Lr(α, j) that L-represents the alignment
set:

−→
A j =

(
Ãj ◦ Λ∗

)≤bα
.

We refer to the first step as extension step and to the second step as ε-closure
step. In this terms the computation of

−→
A 0 is a particular case. It requires only

a single ε-closure step applied on the A≤bα0(Vα0).
The extension step is essentially based on Lemma 4.3.3 and Lemma 4.3.6.

The ε-closure step additionally exploits Lemma 4.2.4 which allows to consider
the ε-closure step as union of concatenations. In order to apply Lemma 4.3.3
we need a supervisory mechanism that filters the words that are not infixes of
the regular language Inf(L). To this end we use a deterministic finite state
automaton, IAr for the language Inf(L).

Symmetrically, in order to find appropriate edit-distance lists representation
for A(Vα, bα ← Vα1, bα1) we apply Lemma 4.4.7. Thus we need to compute
edit-distance lists that L-represent the alignment sets:

←−
A j = A(INα0

Nα0−j+1
(Vα0) ◦ Vα1, bα ← Vα1, bα1)

for j varying from 0 to Nα0. However, according to Corollary 4.4.8 this prob-
lem reduces to the problem

−→
A j by reversing both the alignment sets and the

operation set. In particular we have that:
←−
A j,rev = Arev(V revα1 , bα1 → V revα1 ◦ Ij1(V revα0), bα)

5.3. EXTENSION STEPS 53

On the other hand disposing on an edit-distance list Lrevl (α, j) that Lrev-
represents the alignment set

←−
A j,rev we can easily compute the edit-distance

list Ll(α, j) that L-represents the alignment set
←−
A j due to Lemma 4.4.4. We

do not need to do this for every single j. Since we are interested only in the
final outcome Ll(α,Nα0), we can apply the reverse operation once only for
Lrevl (α,Nα0). In the sequel we shall develop a procedure that computes the
edit-distance lists Lr(α, j) with respect to the edit-distance (Op, c) and relies
on an infix automaton IAr with the language Inf(L). Thus, in order to to
compute the edit-distance lists Lrevl (α, j) it will be enough to substitute Vα1

with V revα0 , (Op, c) with (Oprev, crev) and IAr with an automaton IAl for the
language Inf(Lrev).

In what follows we address these issues for the extensions and ε-closures.
Finally we shall comment on the union of the edit-distance lists Lr(α0, j) and
Ll(α1, j) so that we obtain the actual list of interest L(α) and its intact repre-
sentation.

Representation of Edit-Distance Lists.
As we already mentioned the extension and ε-closure steps are supervised by

a deterministic infix automaton AIr with language the set of infixes of the given
language L, i.e. L(AIr) = Inf(L). Additionally, the domains Dom(Lr(α, j))
will be stored by the means of a trie T . Whereas many edit-distance lists will
be computed during this step, a unique trie will be maintained and it will be
extended appropriately. Each edit-distance list will be responsible to keep track
of its domain within the trie T .

With every node u of the trie T we associate a label label(u) which is the
word spelled by the path form the root of T to the node u. In each node u ∈ T
we store the following piece of information:

1. a state, st(u), in the infix automaton AIr. The state st(u) is the state
reached from the initial state of AIr with the label label(u).

2. an integer cost(u).

3. an active flag act(u) which can be true or false.

Now the elements of the distance list Lr(α, j) are represented as a list of
buckets Bjα[0], Bjα[1], . . . , see Figure 5.2. In this example we have the represen-
tation of the edit-distance list for the subquery (abb, 1) in the regular language
{ababbb, acbbb}∗ with respect to the Levenshtein edit-distance. All the can-
didates are stored in a trie where the common prefixes are shared between
the distinct words. Each bucket stores an appropriate representation of the
candidates of corresponding length. For instance, the bucket B[3] stores the
representation of the candidates of length3. On our example, these are 〈abb, 0〉
and 〈aba, 1〉. This information about a single candidate is encoded in a pointer
to an appropriate node in the trie and an integer value, see Figure 5.2. In the
nodes of the trie we store a reference to the corresponding state in the infix
automaton, AIr. Thus, for instance the state with label S6 in the trie, encodes
that with the word aba we reach from the initial state S0 to the state S6 in the

54CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

S1
S4 S7

S2

S3 S6

S5

S9
b

c c

b b

b b

a a

a

a

a

a

b

c
c

b

S0
S8

b

Inf({ababb, acbbb}∗)

a

a

b

b

b

B[3] B[4]

1
1
0

B[2]Lr(abb)

S0 S7

S9S6

S4S1
a S8

1
1

Figure 5.2: The representation of the edit-distance lists Lr(abb, 1) that L-
represents (A≤0(ab) ◦ A(b)))≤1.

infix automaton for {ababbb, acbbb}∗. Thus, each state of the trie is assigned
to a unique state in the infix automaton. However the converse should not hold.

The representation for the edit-distance lists Ll(α, j) is similar.However the
representation is reversed, i.e. it goes from right to left rather then to the
natural left to right reading order. For our example, we use a deterministic
infix automaton for the language ({ababbb, acbbb}∗)rev and the trie spells the
candidates from Dom(Ll(abb, 2)) in reverse fashion. Thus, for example, the
exact match abb is spelled like bba. This is the only significant feature that
distinguishes the representation of Ll(α, j) from the one for Lr(α, j).

In general the bucketBjα[n] stores (representations of) the elements1 〈U, cU 〉 ∈
Lr(α, j) such that |U | = n. Hence the bucket with number n is responsi-
ble uniquely for the n-th slice of the edit-distance list. Upon the time the
edit-distance list Lr(α, j) will have been constructed no empty buckets will be
present in its representation. However some empty buckets may arise during
the construction. The list of buckets is ordered increasingly with n.

1For the better readability of the outline we use the same notation for the edit-distance
lists Lr(α, j) and their graphs that we actually represent.

5.3. EXTENSION STEPS 55

Every bucket Bjα[n] is a list of pairs 〈u, c(u)〉 where:

1. u is a node in the trie T , such that label(u) ∈ Dom(Lr(α, j)).

2. c(u) is an integer.

During the construction of the bucket Bjα some of the values c(u) might be
undefined but upon termination they will satisfy that:

〈label(u), c(u)〉 ∈ Lr(α, j).

Finally we keep a list Act of distinct active nodes. At the beginning of each
step j, Act is being emptied and is filled in during the step.

Extension. Construction of the lists L′r(α, j).
We first describe how a representation of Ãj is computed on the base of

previously computed edit-distance lists. We call the resulting edit-distance list
L′r(α, j).

Initialisation of the buckets. For a positive integer j > 0, we consider the al-
ready constructed edit-distance list Lr(α, j−1). Let µ = max{|l(op)| | op ∈ Op}
be the maximal length of a left side of an operation. At the initialisation step
we take care to create empty buckets that will represent the edit-distance list
L′r(α, j). Since the alignment ω′ that are represented by L′r(α, j) are a result
from the concatenation of an alignment ω represented in Lr(α, j−1) and a single
operation op ∈ Op, we know that |l(ω′)| = |l(ω)|+|l(op)|. Hence given the list of
nonempty buckets representing Lr(α, j−1), Bj−1

α [n1], Bj−1
α [n2], . . . , Bj−1

α [nMj−1],
we know that elements of L′r(α, j) will be assigned only to buckets Bjα[n] such
that n = nk + l where l ≤ µ. Thus in the first step for each l ≤ µ we determine
the sets:

S(j − 1, l) = {n+ l |Bj−1
α [n] is a bucket}

Since the buckets Bj−1
α [n] are ordered increasingly within a list, each of the sets

S(j− 1, l) can be easily obtained in increasing order in time proportional to the
number of buckets of Lr(α, j − 1). Next we can sort the sets S(j − 1, op) in a
single increasingly sorted set S(j − 1) = {s1 < s2 < · · · < s|S|} and we create a
list of empty buckets:

Bjα[s1], Bjα[s2] . . . Bjα[s|S|]

Finally, for every n and every operation l ≤ µ the bucket Bj−1
α [nk], is assigned

an l-pointer to the bucket Bjα[nk + l].

InitialiseBuckets(〈Op, c〉, η, j,L)
//L is an array of lists, e.g. Lr(α, k, .) or Ll(α, k, .)

µ← max{|l(op)| | op ∈ Op}
for l = 0 to µ do

S[l]← ∅
for B[n] ∈ L[j−1] in (increasing) order do// B[n] = Bj−signα [n]

S[l].Insert(〈n+ l, n〉)
done

56CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

done
SOrd←MergeSort(S, µ)
last← ⊥
while SOrd 6= ∅ do
〈m,n〉 ← SOrd.RemoveF irst()
if m 6= last then

Bnew[m]← new empty block
L[j].Append(Bnew[m])
last← m

fi
l← m− n
B[n].pointer[l]← Bnew[m]

done

MergeSort(S, µ)
H ← ∅ //empty heap of pairs ordered w.r.t. the first component
SOrd← ∅
for l = 0 to µ do
〈m,n〉 ← S[l].F irst()
if 〈m,n〉 is defined then

H.InsertToHeap(〈m,n〉)
fi

done
while H 6= ∅ do
〈m,n〉 ← H.ExtractMin()
SOrd.Append(〈m,n〉)
l← m− n
〈m next, n next〉 ← S[l].Next(〈m,n〉)
if 〈m next, n next〉 is defined then

H.InsertToHeap(〈m next, n next〉)
fi

done
return SOrd

Lemma 5.3.1 Let Mj−1 be the number of buckets in Lr(α, j−1), then the cre-
ation of the buckets Bjα[n] can be carried out in time O (|Mj−1|(µ+ 1) log(µ+ 1)).
Furthermore, each bucket Bj−1

α [nm] is assigned with an l-pointer to a valid
bucket Bjα[nm + l].

Proof. Clearly, we can determine each of the the sets S(j − 1, l) in time
O(Mj−1) each. Therefore each of them contains at most |Mj−1| elements. Since
the buckets are ordered, each of the sets S(j−1, l) is increasingly ordered. Hence,
we can obtain the sorted set S(j−1) using a merge sort of µ+ 1 ordered sets at
the total expense of O (Mj−1(µ+ 1) log(µ+ 1)) time. It is also straightforward
to set the pointers during the merge sort.

5.3. EXTENSION STEPS 57

Filling the buckets. In the second step we consider the list Lr(α, j − 1) and
we look at the operations op ∈ Op meeting the following conditions, see also
procedure FillBuckets:

1. |r(op)| = 1.

2. r(op) = Ijj (Vα1), i.e. the j-th character of Vα1.

For every such operation, op, we pass through the buckets Bj−1
α [nk] and for

each element 〈u′, c(u′)〉 ∈ Bj−1
α [nk] we proceed in the following way:

1. if c(u′) + c(op) > bα we continue with the next element in the bucket or
in case that this was the last element of the bucket with the next bucket.

2. we follow the transitions in AIr starting at st(u′) and reading l(op). If
we fail at some step we proceed with the next pair, else we define the last
state of the chain of transitions to be st.

3. we traverse the trie T from u′ with label l(op) and create each nonexisting
state on the way. Let u be the last state on this sequence.

4. if u is a new node in the trie or act(u) is false, then:

(a) we set act(u) = true and st(u) = st.

(b) we insert u to the list of active nodes Act and we insert a pair 〈u,−1〉
to the bucket Bjα[nk+|l(op)|] (this is done by using the |l(op)|-pointer
of the bucket Bj−1

α [nk] we are currently investigating.)

(c) we set cost(u) = c(u′) + c(op).

5. if cost(u) > c(u′) + c(op) then we reset cost(u) = c(u′) + c(op).

Finally, for each bucket Bjα[n] and each element 〈u, c〉 ∈ Bjα[n] we set c =
cost(u).

FillBuckets(A, T , 〈Op, c〉, q, V ,Act, α, η,L, j)
//L is an array of lists, e.g. Lr(α, .) or Ll(α, .)

bα ← q|Vα|
pos← if η = 1 then j else |Vα0| − j + 1
for op ∈ Op do

if r(op) = Vαη[pos] then
for B[n] ∈ L[j − 1] do

for 〈u′, c′〉 ∈ B[n] do
if c′ + c(op) ≤ bα then

st← TraverseAutomaton(A, st(u′), l(op))
if st is defined then

u← TraverseTrie(T , u′, l(op))
if act(u) = false then

act(u)← true
st(u)← st

58CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

cost(u)← c′ + c(op)
Act.Insert(u)
B[n].pointer[|l(op)|].Insert(〈u,−1〉)

//B[n].pointer[|l(op)|] is actually the bucket B[n+ |l(op)|] of L[j])
fi
if cost(u) > c′ + c(op) then

cost(u)← c′ + c(op)
fi

fi
fi

fi
done

done
fi

done
for B[n] ∈ L[j] do

for 〈u, c〉 ∈ B[n] do
c← cost(u)

done
done

TraverseAutomaton(A, st,W)
/*δA is the transition function of a deterministic automaton A
st is a state of A and W is a word with characters W [i]
starting from i = 1. The result is δ∗A(st,W).*/

for i = 1 to |W | do
if δA(st,W [i]) is not defined

return not defined
fi
st← δA(st,W [i])

done
return st

TraverseTrie(T , st,W)
/* δT is the transition function of a trie T
st is a state of T and W is a word with characters W [i]
starting from i = 1. The trie is modified so that all the states
along δ∗T (st,W) are defined and the result is δ∗T (st,W).*/

for i = 1 to |W | do
if δT (st,W [i]) is not defined then

st′ ← new trie state
act(st′) = false; cost(st′) = −1
δT (st,W [i])← st′

fi
st← δA(st,W [i])

done
return st

5.3. EXTENSION STEPS 59

Lemma 5.3.2 Let Size(j−1) be the size of the list Lr(α, j−1), i.e. the number
of pairs in all of its buckets. Then the step of filling the buckets Bjα requires
O(Size(j − 1)) time. Furthermore upon termination of this step the following
two properties hold:

1. u ∈ Act if and only if act(u) = true if and only if 〈u, c〉 ∈ Bjα[n] with
n = |label(u)| and some c.

2. L′r(α, j) L-represents Ãj.

Proof. The time bounds for this step should be clear. Indeed we need
O(||Op||) time2 in order to determine which operations op meet the condition
|r(op)| = 1 and r(op) = Ijj (Vα1). Next each element of Bj−1

α [nk], 〈u′, c(u′)〉,
is considered once only and we do some work on it. First we traverse one the
automaton AIr starting from st(u′) with the label l(op). Since we have an
immediate access to st(u′), this step requires O(|l(op)|) steps for the traversal.
Next we may need to traverse and possibly update the trie T , again at the cost
O(|l(op)|). And finally we have to do some work for the state u. Again each of
these actions is an atomic one, i.e. insertion of an element in a list or resetting
an integer value. The only subtle point is that we have an immediate access to
the list Bjα[nk + |l(op)| which is globally provided by the list Bj−1

α [nk]. Thus
we spend for each pair 〈u′, c(u′)〉 constant amount of time. This results in the
claimed bound by summing over all the elements of Lr(α, j − 1).

Next, consider the situation when u becomes active. This happens at the
same time when u is inserted to the list Act and to some bucket Bjα[n]. Fur-
thermore if the activity of u was invoked by some pair 〈u′, c(u′)〉 ∈ Bj−1

α [nk]
and some operation op, then n = nk + |l(op)|, since |label(u′)| = nk. Us-
ing that u results from u′ by traversal of l(op) in the trie T , we deduce that
|label(u)| = |label(u′)|+ |l(op)| = nk + |l(op)| = n as claimed.

Finally, using Lemma 4.2.6 and Lemma 4.3.3 and Lemma 4.3.6 from Chap-
ter 4 we can argue that the edit distance list L′r(α, j) has the property to L-
represent the alignment set Ãj . This follows by the assumption that Lr(α, j−1)
L-represent the alignment set

−→
A j−1 and the recurrence:

Ãj =
⋃

(U,Ijj (Vα1))∈Op

(
−→
A j−1 ◦ op)≤bα .

We remark that Step 5 guarantees that cost(u) is minimal over all possible
ways the node u can be reached from some u′ w.r.t. the procedure. Therefore,
upon termination the list Act and the edit-distance list L′r(α, j) have the desired
properties.

ε-closure step. Once we have a representation of L′r(α, j) we need to obtain
a representation of Lr(α, j) by considering the cases where the last operation in

2This can be done in a somewhat more efficient way by using some tricks described by
Reffle, [52], but this is not of much significance for the analysis.

60CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

a successful alignment might be op ∈ Λ. We organise this process as prescribed
by Lemma 4.2.4.

We consider the buckets Bjα[n] in increasing order of n. During this step
some buckets may be deleted and new ones might be created but their order
within the list will always respect the order of their indices n. We proceed as
follows, see also procedure EpsilonClosure:

1. if the list Bjα[n] is empty, delete it and proceed with the next unconsidered
bucket.

2. for every pair 〈u, c〉 ∈ Bjα[n] do the following:

(a) set c = cost(u).

(b) for every operation op ∈ Λ such that cost(u) + c(op) ≤ bα do:

i. traverse AIr starting from st(u) with label l(op). If all the states
along the chain are defined, let st be the last reached state, oth-
erwise continue with the next operation.

ii. traverse the trie T from u with label l(op). Create all nonexisting
states on the way and let u1 be the final one.

iii. if act(u1) = false then:
A. set act(u1) = true, st(u1) = st.
B. insert u1 to the list Act.
C. go along the list of buckets starting from the current Bjα[n]

and find a bucket Bjα[n + l(op)]. If such a list does not ex-
ist, then create it appropriately in the list of buckets. Add
〈u1,−1〉 to Bjα[n+ l(op)].

D. set cost(u1) = cost(u) + c(op).
iv. if cost(u1) > cost(u) + c(op), then reset cost(u1) = cost(u) +

c(op).

EpsilonClosure(A, T , 〈Op, c〉, q, V ,Act, α,L, j)
bα ← q|Vα|
for B[n] ∈ L[j] in increasing order of n do

if B[n] = ∅ then
L[j].Remove(B[n])

else
for 〈u′, c′〉 ∈ B[n] do
〈u′, c′〉 ← 〈u′, cost(u′)〉
for op ∈ Op with r(op) = ε do // op ∈ Λ

if c(op) + c′ ≤ bα then
st← TraverseAutomaton(A, st(u′), l(op))

if st is defined then
u← TraverseTrie(T , u′, l(op))
if act(u) = false then

act(u)← true

5.3. EXTENSION STEPS 61

Act.Insert(u)
st(u)← st
cost(u)← c′ + c(op)
m← n //a block counter along the list
do

B[m′]← L[j].Next(B[m])
if B[m′] is not defined then

m′ ←∞
fi
if m′ ≤ n+ |l(op)|

m← m′

fi
whilem′ < n+ |l(op)|
if m < n+ |l(op)| then

B[n+ |l(op)|]← new empty block
L[j].InsertAfter(B[m], B[n+ |l(op)|])
B ← B[n+ |l(op)|]

else
B ← B[m]

//In either case B is assigned to Bjα[n+ |l(op)|]
B.Insert(〈u,−1〉)

fi
if cost(u) > c′ + c(op) then

cost(u)← c′ + c(op)
fi

fi
fi

done
done

done

Lemma 5.3.3 Let Size(j) be the size of Lr(α, j) upon termination of the algo-
rithm and Z be the number of empty buckets at the end of the filling of buckets
stage, then the above procedure can be executed in time O(Size(j) + Z). Fur-
thermore it correctly computes Lr(α, j).

Proof. The correctness of the algorithm follows by Lemma 4.2.4 and the
correctness of the construction of L′r(α, j) as described in the previous lemma.
Then indeed the algorithm applies Lemma 4.2.4 to obtain the correct slices
Bjα[n] of the edit distance list Lr(α, j). It also accounts for obtaining only
valid infixes label(u) ∈ Inf(L) which is effectuated by the traversal of the
automaton AIr. The only difference between the proposed algorithm and the
straightforward realisation of Lemma 4.2.4 is the look-ahead technique which
the algorithm utilises. Thus, instead of computing the bucket Bjα[n] on the
basis of the previous results Bjα[n′] with n′ < n, it adds pieces of information
from earlier stages Bjα[n′] to the later stages Bjα[n]. At Step iv we update the
minimum value cost(u1) while keeping a witness that it is attainable.

62CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

The time bounds can be argued in the following way. During this stage of the
algorithm, if a new bucket is created this happens in Step C and immediately
afterwards it is filled with an element. Thus no empty buckets occur. This
shows that at most Z buckets will be deleted in this stage of the algorithm.
Next each element 〈u, c(u)〉 is considered once only because it can reside only in
Bjα[n] with n = |label(u)|. However the buckets are considered in order and an
already considered bucket is never reconsidered again. In order to complete the
analysis let us consider the work done per element 〈u, c(u)〉 ∈ Bjα[n]. First we
set its eventual value c(u) = cost(u) which requires constant time per element.
Next we consider at most |Λ| operations op ∈ Λ. For each of them we have
at most two traversals with l(op)| – one in the infix automaton and possibly a
second one in the trie, T . Each of them is executed at the cost of O(|l(op)|) and
hence can be considered for constant.

If a node u1 ∈ T has to be considered as a result of a particular operation
op, then the amount of work it would require is clearly O(1) save for the Step C
where we need to search for a specific bucketBjα[n+|l(op)|]. However, this bucket
lies in at most |l(op)| elements apart from the current bucket, Bjα[n]. Therefore,
we can follow the list of buckets, starting from the current one in O(|l(op)|)
time and as a result we shall either find the required bucket Bjα[n + |l(op)|] or
establish that such a bucket does not exist. In the latter case we can determine
the position where a bucket Bjα[n + |l(op)|] must be inserted within the same
time-bounds, O(|l(op)|), and insert it at the cost of O(1) time.

Summing up we spend O(
∑
op∈Λ |l(op)|) time per element 〈u, c(u)〉 in the

edit-distance list Lr(α, j) and therefore the total amount of work the algorithm
requires is O(Size(j) + Z) as claimed.

Now, given an edit-distance list L(α0) we can easily compute Lr(α, |Vα1|),
see procedure RightExtension. We start with an EpsilonClosure step of the
candidates generated in L(α0) and then iterate the main steps extension and
ε-closure. In the step extension we initialise the buckets and fill them in. To
control these steps we use a deterministic infix automaton, IAr, for the language
Inf(L).

Similarly to the right extensions, given the edit-distance list Lrev(α1) we
can compute the edit-distance list, Lrevl (α, |Vα0|), see procedure LeftExtension.
The only difference here is that we have to process the word Vα0 backwards, i.e.
from right to left. This is the reason to start counting from |Vα0|+ 1, using the
reverse edit-distance, (Oprev, crev), and a deterministic automaton, IAl, for the
Inf(Lrev).
RightExtension(A, 〈Op, c〉, q, α, V , L)

η ← 1
Nα1 ← |Vα1|
T ← T (α0)
Lr(α, 0)← L(α0)
Act← InitialiseActive(T , Lr(α, 0))
EpsilonClosure(A, T , 〈Op, c〉, q, V ,Act, α, Lr(α, .), 0)

5.3. EXTENSION STEPS 63

Inactivate(Act, T)
for j = 1 to Nα1 do

if Lr(α, j − 1) = ∅ then
Lr(α,Nα1)← ∅
return empty trie

fi
InitialiseBuckets(〈Op, c〉, η, j, Lr(α, .))
FillBuckets(A, T , 〈Op, c〉, q, V ,Act, α, η, Lr(α, .), j)
EpsilonClosure(A, T , 〈Op, c〉, q, V ,Act, α, Lr(α, .), j)
Inactivate(Act, T)

done
return T

LeftExtension(A, 〈Op, c〉, q, α, V , L)
η ← 0
Nα0 ← |Vα0|
T ← T (α1)
Ll(α, 0))← L(α1)
Act← InitialiseActive(T , Ll(α, 0))
EpsilonClosure(A, T , 〈Op, c〉, q, V ,Act, α, Ll(α, .), 0)
Inactivate(Act, T)
for j = 1 downto Nα0 do

if Ll(α, j − 1) = ∅ then
Ll(α,Nα0)← ∅
return empty trie

fi
InitialiseBuckets(〈Op, c〉, η, j, Ll(α, .))
FillBuckets(A, T , 〈Op, c〉, q, V ,Act, α, η, Ll(α, .), j)
EpsilonClosure(A, T , 〈Op, c〉, q, V ,Act, α, Ll(α, .), j)
Inactivate(Act, T)

done
return T

InitialiseActive(T , L)
A← ∅
for B bucket in L do

for 〈u, c〉 ∈ B do
act(u)← true
cost(u)← c
A.Insert(u)

done
done
return A

Inactivate(Act, T)
for u ∈ A do

act(u)← false

64CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

A.Remove(u)
done

Reverse and Union.
As a result from the LeftExtension we have obtained instead the desired

edit-distance list Ll(α,Nα0) its reverse Lrevl (α,Nα0). However, according to

Lemma 4.4.7 Lrevl (α, j) Lrev-represent the alignment set
←−
Ajrev. Thus, we need

to reverse the edit-distance list with respect to Corollary 4.4.5 in order to obtain
a L-representation for

←−
A j . This can be easily computed by the means of the

procedure ReverseDistanceList:

ReverseDistanceList(A, T , L)
T rev ← new empty trie with root r
s←initial state of A
for B bucket in L do

for 〈u, c〉 ∈ B do
W ← label(u, T)
st← TraverseAutomaton(A, s,W)
urev ← TraverseTrie(T rev, r,W)
st(urev)← st
u← urev

done
done
return T rev

label(u, T)
if u is the root of T

return ε
else

p← par(u, T) // parent of u in T
σ ← ch(u, T) // i.e. δT (p, σ) = u
return label(p, T) ◦ σ

Lemma 5.3.4 Given a representation of the edit-distance list Lrevl (α, j) and a
deterministic automaton IAr for the language Inf(L) we can compute a repre-
sentation of Ll(α, j) in time O(

∑
U∈Dom(Ll(α,j))

(|U |+ 1)).

Proof. Indeed we can invoke the procedure ReverseDistanceList(IAr, Tl(α), Lrevl (α, j))
where Tl(α) is the trie from the representation of Lrevl (α, j). Clearly, it processes
each element of the original edit-distance list and reverses its label. Traversing
the automaton IAr with the reversed label yields the automaton-state with re-
spect to the straight language, Inf(L). The time complexity follows by the fact
that we spend O(1) time per element of the edit-distance list plus the additional
time in the computation of the label, label(u), in the procedure label(T , u). Thus
we spend O(|U |+1) time per element U ∈ Dom(Ll(α, j)) which yields the total
bound of O(

∑
U∈Dom(Ll(α,j))

(|U |+ 1)).

5.3. EXTENSION STEPS 65

We take these remarks into account when computing the edit-distance list
L(α), see Figure 5.3. Since it should L-represent the alignment set:

A≤bα(Vα) = A(Vα0, bα0 → Vα, bα) ∪ A(Vα, bα ← Vα1, bα1),

we can apply Lemma 4.3.6 to the edit-distance lists Lr(α,Nα1) and Ll(α,Nα0)
that L-represent the sets A(Vα0, bα0 → Vα, bα) and A(Vα, bα ← Vα1, bα1), re-
spectively.

To this end, for a fixed α we initiate a new trie, T (α), which is responsible
for the list L(α) and we construct L(α) by the means of the following procedure,
see also procedure UnionDistanceLists:

1. we determine the nonempty buckets for L(α) and allocate them. To this
end we take advantage of a merge-sort procedure of the indices of the
buckets in Lr(α,Nα1) and Ll(α,Nα0).

2. we start with the empty trie T (α).

(a) for every element 〈u, c(u)〉 ∈ Lr(α,Nα1) insert label(u) to T (α). Let
u′ be the resulting node on the trie.

i. st(u′) = st(u).
ii. act(u′) = true, insert u′ to Act.
iii. cost(u′) = c(u′).

(b) for every element 〈u, c(u)〉 ∈ Ll(α,Nα0), insert label(u) to T (α). Let
u′ be the resulting node on the trie.

i. st(u′) = st(u).
ii. if act(u′) = false, set act(u′) = true and cost(u′) = c(u), add u′

to Act.
iii. if cost(u′) > c(u), set cost(u′) = c(u).

(c) for every node u ∈ Act, insert 〈u, cost(u)〉 to Bα[|label(u)|]. Set
act(u) = false.

(d) Reset Act = ∅.

UnionDistanceLists(Tl, Tr, V , Ll, Lr, α)
T ← empty trie with root r
Nα0 ← |Vα0|
Nα1 ← |Vα1|
B left← Ll(α,Nα0).F irst()
B right← Lr(α,Nα1).F irst()
while B left or B right is defined do

n left← index of B left in Ll(α,Nα0) // i.e. B left = BNα0
α [n left]

n right← index of B right in Lr(α,Nα1) // i.e. B right = BNα1
α [n right]

if n left < n right then
B ← new empty block B[n left]
B left← Ll(α,Nα0).Next(B left)

66CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

1

a

b

c

b b

a

b b

b

b

b

c
b

B[2] B[3] B[4]

S1
S4 S7

S2

S3 S6

S5

S9
b

c c

b b

b b

a a

a

a

a

a

b

c
c

b

S0
S8

1

1
1

1
0

1

b

1

Inf({ababb, acbbb}∗)

L(abb)

S0 S2

S1

S5

S3

S4

S6 S9

S7

S3 S6 S9

S6

S7

Figure 5.3: Merging left and right extension lists.

5.3. EXTENSION STEPS 67

fi
if n right < n left then

B ← new empty block B[n right]
B right← Lr(α,Nα1).Next(B right)

fi
if n right = n left then

B ← new empty block B[n right]
B left← Ll(α,Nα0).Next(B left)
B right← Lr(α,Nα1).Next(B right)

fi
L(α).Append(B)

done
Act← ∅
for B ∈ Lr(α,Nα1) do

for 〈u, c〉 ∈ B do
W ← label(Tr, u)
u′ ← TraverseTrie(T , r,W)
st(u′)← st(u)
act(u′)← true
cost(u′)← c
Act.Insert(u′)

done
done
for B ∈ Ll(α,Nα0) do

for 〈u, c〉 ∈ B do
W ← label(Tl, u)
u′ ← TraverseTrie(T , r,W)
st(u′)← st(u)
if act(u′)← true then

cost(u′)← min(cost(u′), c)
else

cost(u′)〈c
Act.Insert(u′)

fi
done

done
while Act 6= ∅ do

u← Act.Remove()
act(u)← false
B[|label(u)|].Insert(〈u, cost(u)〉)
cost(u)← −1

done
return T

Lemma 5.3.5 The above algorithm correctly computes the representation of
L(α). Furthermore the time complexity if O(

∑
〈u,c(u)〉 |label(u)|) where the sum-

68CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

mation is over all pairs in L(α).

Proof. The algorithm processes each pair 〈u, c(u)〉 ∈ Lr(α,Nα1) and each
pair 〈u, c(u)〉 ∈ Ll(α,Nα0) once only and inserts a node u′ ∈ T (α) with label
label(u′) s.t.:

label(u′) =

{
label(u) if 〈u, c(u)〉 ∈ Lr(α,Nα1)
label(u) if 〈u, c(u)〉 ∈ Ll(α,Nα0).

In either case st(u′) is the final state of the traversal of label(u′) in the infix
automaton AIr and each such step clearly requires O(|label(u′)|) time. Fur-
thermore each such node u′ becomes active and the algorithm assures that u′ is
inserted in Act. Therefore in the second pass along the elements of Act we obtain
that label(u′) takes each of the values in Dom(Ll(α,Nα0)) ∪Dom(Lr(α,Nα1))
once only. Since u′ is then inserted to the bucket Lα we obtain that:

Dom(L(α)) = Dom(Ll(α,Nα0)) ∪Dom(Lr(α,Nα1)).

In Steps (a).iii and (b).iii the algorithm asserts that c(u′) is the minimum of the
two values c(u′) which might be computed by Lr(α,Nα1) ∪ Ll(α,Nα0). There-
fore according to Lemma 4.3.6 L(α) L-represents the union of the alignment
sets represented by Lr(α,Nα1) and Ll(α,Nα0) as required. The time com-
plexity is evidently in O(

∑
〈u,c(u)〉 |label(u)|) since for each such pair we spend

O(|label(u)|) in traversals of the infix automaton and the trie.

Summing up, we obtain a procedure that given L(α0) and L(α1) computes
the edit-distance list L(α), see ExtensionStep. It takes advantage of an infix
automata, IAr and IAl, for the language Inf(L) and Inf(Lrev), respectively,
the word V and the edit-distance, (Op, c). First it extends to the right L(α0),
then it extends to the left (i.e. applies LeftExtension to) Lrev(α1) to obtain
Lrevl (α,Nα0) and reverses this output in order to obtain Ll(α,Nα0). Finally, it
merges the results Lr(α,Nα1) and Ll(α,Nα0).

ExtensionStep(IAr, IAl, Tl, L, V , α, 〈Op, c〉, q)
Tr ← RightExtension(IAr, 〈Op, c〉, q, α, V , L)
T (α1)← ReverseDistanceList(T (α1), L(α1))
Tl ← LeftExtension(IAl, 〈Op, c〉, q, α, V , L)
Tl ← ReverseDistanceList(Tl, Ll(α, |Vα0|)))
return UnionDistanceLists(Tl, Tr, V , Ll, Lr, α)

Given the ExtensionStep algorithm we can easily device a recursive proce-
dure, see ApproximateSearchRecursive. In particular, to determine the edit-
distance list L(α), we first check whether α is a leaf according to the definition
of the search tree, T (V). If this is the case we apply 5.2.1. Otherwise we recur-
sively compute L(α0) and L(α1) and then apply the ExtensionStep to obtain
L(α).

5.3. EXTENSION STEPS 69

ApproximateSearchRecursive(IAr, IAl, L, V , α, 〈Op, c〉, q)
if qNα < 1 then

return T (α)
else
Tr ← ApproximateSearchRecursive(IAr, IAl, L, V , α0, 〈Op, c〉, q)
Tl ← ApproximateSearchRecursive(IAr, IAl, L, V , α1, 〈Op, c〉, q)
return ExtensionStep(IAr, Tr, IAl, Tl, L, V , α, 〈Op, c〉, q)

fi

In order to answer the query, we compute the edit-distance list L(ε) and
afterwards select those words in the domain of the list that are also words in
the language L. To this end we additionally use a deterministic finite state
automaton, A, with language L, see procedure ApproximateSearchSimple.

ApproximateSearchSimple(V ,N, q, α,A, IAr, IAl, 〈Op, c〉)
ApproximateSearchInitialise(V ,N, q, ε)
T ← ApproximateSearchRecursive(IAr, IAl, L, V , ε, 〈Op, c〉, q)
for B ∈ L(ε) do

for 〈u, c〉 ∈ B do
W ← label(T , u)
s←initial state of A
if TraverseAutomaton(A, s,W) is defined then

report W
fi

done
done

Proposition 5.3.6 Given a query word V of length |V | = N , the extension
steps of approximate search problem can be solved in time O(T1 + T2) where:

T1 =
∑
α∈TN

Nα0∑
j=0

|Ll(α, j)|+
Nα1∑
j=0

|Lr(α, j)|


T2 =

∑
α∈TN

∑
U∈Dom(L(α))

|U |.

Proof. Applying the algorithm described in this Section we have that the
search splits into two main interleaving phases. The first one is the computation
of the intermediate edit-distance lists Lrevl (α, j) and Lr(α, j). And the second
is the computation of the edit-distance lists L(α). As argued by Lemma 6.1.3
and Lemma 4.2.4 we have that the time for the computation of the intermediate
list Lr(α, j) is O(Tr(α, j)) where:

Tr(α, j) =

{
|L(α)|+ |Lr(α, 0)| if j = 0
|Lr(α, j − 1)|+ |Lr(α, j)| if j > 0.

70CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

Since j is bounded by the length of right child, α1, of α we derive that the time
spent in the computation of intermediate lists Lr(α, j) is O(Tr):

Tr =
∑

α∈T (V)

Nα1∑
j=0

Tr(α, j)

=
∑

α∈T (V)

Nα1∑
j=1

(|Lr(α, j − 1)|+ |Lr(α, j)|) + |Lr(α, 0)|+ |L(α)|


≤ 2

∑
α∈T (V)

Nα1∑
j=0

|Lr(α, j)|+
∑

α∈T (V)

|L(α)|.

However |L(α)| ≤ |Lr(α,Nα1)|+ |Ll(α,Nα0)| and consequently we get that:

Tr ≤ 2
∑

α∈T (V)

Nα1∑
j=0

|Lr(α, j)|+
∑

α∈T (V)

(|Lr(α,Nα1)|+ |Ll(α,Nα0)|)

≤ 3
∑

α∈T (V)

|Nα1|∑
j=0

|Lr(α, j)|+
∑

α∈T (V)

Nα0∑
j=1

|Ll(α, j)| ≤ 3T1.

Similar argument reveals that the time spent in the computation of the
intermediate edit-distance lists Ll(α, j) does not exceed O(T1) and therefore
the time for constructing the intermediate edit-distance lists is O(T1).

To complete the proof it remains to analyse the time required for the con-
struction of the edit-distacnce lists L(α). According to Lemma 4.3.6 our algo-
rithm spends O(T (α)) time for the list L(α) where:

T (α) =
∑

U∈Dom(Lr(α,Nα1))

|U |+
∑

U∈Dom(Ll(α,Nα0))

|U |.

Since each word U which belongs to Dom(Lr(α,Nα1)) ∪ Dom(Ll(α,Nα0)) is
inserted in the domain of the list L(α), we get that:

T (α) ≤ 2
∑

U∈L(α)

|U |.

Therefore the total time required for the construction of the lists L(α) is bounded
by a constant factor of:∑

α∈T (V)

T (α) ≤ 2
∑

α∈T (V)

∑
U∈Dom(L(α))

|U | = 2T2.

Therefore the time-complexity of these steps is O(T2) and we derive a total
bound for the time required for all the extension phases as O(T1 + T2).

5.3. EXTENSION STEPS 71

5.3.2 Deg-lex Order of Edit-distance Lists. Faster Tech-
nique for Finite Languages

In case that the given regular language L is finite we can significantly simplify
the algorithm presented in the previous section as well as to reduce its time
complexity.

To this end we use a representation of the language L as a bidirectional
CDWAG as described in Chapter 2. It is not important which of both structures,
the structure of Blumer et al. or the one of Inenaga. The only properties of the
structure we are going to use are listed below:

1. for each infix U of L we have a unique constant size representation st(U).

2. given a representation st(U) and an arbitrary character a ∈ Σ we have an
O(1) algorithm which:

(a) determines whether U ◦ a (a ◦ U) is an infix of the language L
(b) and in the positive case produces a representation st(U◦a) (st(a◦U)).

3. there is an O(1) algorithm which given a representation of an infix U ,
st(U), provides an index ind(U) in the word WL (the concatenation of all
the words in L where an occurrence of U starts.)

In the sequel we describe how the above properties give rise to a more effi-
cient and elegant algorithm which solves the approximate search problem in for
languages. Since both the Inenaga’s and the Blumers’ constructions obey these
properties, see Chapter 2, this implies that this algorithm is applicable and can
be implemented at the cost of linear space with respect to the size of the finite
language L.

Definition 5.3.7 The deg-lex order on words U, V ∈ Σ∗ is defined as:

U �deg−lex V ⇐⇒ |U | < |V | or (|U | = |V | and U �lex V).

It should be clear (Σ∗,�deg−lex) is a linear ordering.
The idea is to keep the edit-distance lists Ll(α, j), Lr(α, j) and L(α) ordered

with respect to �deg−lex. Each pair of the edit-distance list L, say 〈U, cU 〉 is
represented as 〈st(U), len(U), cU 〉 where st(U) is the constant size representation
of U w.r.t. the data-structure we are using and len(U) = |U | is the length of the
word. Finally, we preprocess the long word W = WL in order to compute the
lexicographic order of the suffixes of W , wi ◦ wi+1 · · · ◦ w|W |. More specifically,
we maintain an array f [1..|W |] such that for each index i we get the position f [i]
where the suffix of W starting at position i would be placed if all the (nonempty)
suffixes of W were lexicographically sorted.

Join(L, SA, f, k)
//L[1..k] is an array of lists. Each list contains representations,
//〈st(U), len(U), c(U)〉 of words U sorted in deg-lex increasing order.

72CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

//f compares
Heap←empty heap
for i = 1 to k do
〈st, l, c〉 ← L[i].F irst()
if 〈st, l, c〉 is defined then

Heap.InsertJoinHeap(〈st, l, c, i〉, f , SA)
fi

done
LOrd← ∅
last← 〈⊥,−1〉
while Heap 6= ∅ do
〈st, l, c, i〉 ← ExtractJoinMin(Heap, f, SA)
if 〈st, l〉 6= last then

LOrd.Append(〈st, l, c〉)
last← 〈st, l〉

fi
〈st, l, c〉 ← L[i].Next(〈st, l, c〉)
if 〈st, l, c〉 is defined then

InsertJoinHeap(Heap, 〈st, l, c, i〉, f , SA)
fi

done
return LOrd

CompareJoinHeap(Heap,m,n,f,SA)
〈st′, l′, c′, i′〉 ← Heap[m]
〈st′′, l′′, c′′, i′′〉 ← Heap[n]
if l′ < l′′ then return true
if l′ > l′′ then return false
if SA[f [st′]] < SA[f [st′′]] then return true
if SA[f [st′′]] < SA[f [st′]] then return false
if c′ < c′′ then return true
if c′ > c′′ then return false
return true //the order w.r.t. to the specific list-index is not important.

InsertJoinHeap(Heap, 〈st, l, c, i〉, f , SA)
n← Heap.size+ 1
Heap[n]← 〈st, l, c, i〉
m← bn+1

2 c
while m > 0 and CompareJoinHeap(Heap,m, n, f, SA) = false do

Swap(Heap,m, n)
n← m
m← bn2 c

done

ExtractJoinMin(Heap, f, SA)
result← Heap[1]
n← Heap.size

5.3. EXTENSION STEPS 73

Heap[1]← Heap[n]
Heap.size← n− 1
m← 1
while 2m < n do

if 2m+ 1 < n and CompareJoinHeap(Heap, 2m+ 1, 2m, f, SA) then
min← 2m+ 1

else
min← 2m

if CompareJoinHeap(Heap,min,m, f, SA) then
Swap(Heap,min,m)
m← min

else
m← n //i.e. break the loop.

done
return result

The basic observation which gives rise to our modified algorithm is that the
union (join) of deg-lex sorted edit-distance lists can be efficiently computed by
the means of an merge-sort-like algorithm:

Lemma 5.3.8 Let L1, L2, . . . , Lk, be deg-lex sorted edit-distance lists. Then we
can compute a deg-lex sorted edit-distance list for their join, L =

∨k
j=1 Lj, in

time O(
∑k
j=1 |Lj | log k) where the join L =

∨k
j=1 Lj is defined as:

Dom(L) = ∪kj=1Dom(Lj) and

L(U) = min
j
Lj(U) for U ∈ ∪kj=1Dom(Lj).

Proof. The key property we use is that any two words U ′, U ′′ ∈ Inf(L) can
be compared in O(1) time using only their representation 〈st(U ′), len(U ′), cU ′〉
and 〈st(U ′′), len(U ′′), cU ′′〉. Indeed first we compare the lengths len(U ′) and
len(U ′′). If they are distinct, then the word of smaller length is also smaller
with respect to the deg-lex order. Consider the negative case when len(U ′) =
len(U ′′). Then we look at the representation st(U ′) and st(U ′′). If st(U ′) =
st(U ′′) then obviously U ′ = U ′′. Finally, if st(U ′) 6= st(U ′′) then by the third
property of our data-structure we can find indices ind′ and ind′′ in constant
time, such that ind′ is a starting position of U ′ in WL and ind′′ is a starting
position of U ′′ in WL.

It should be clear that ind′ 6= ind′′. Otherwise since len(U ′) = len(U ′′) we
get that U ′ = U ′′ which implies that st(U ′) = st(U ′′). Since ind′ 6= ind′′ we
have that f [ind′] 6= f [ind′′] and therefore f [ind′] < f [ind′′] or f [ind′] > f [ind′′].
In the former case we conclude that the suffixes of WL starting at position ind′

is lexicographically less than that starting at position ind′′. The first suffix
starts with U ′ and the second with U ′′. Since |U ′| = |U ′′| but U ′ 6= U ′′ we
deduce that U ′ and U ′′ differ at some position. Let j be the first position
where U ′ and U ′′ differ. Then this is also the first position where the suffix
starting at position ind′ does not match the corresponding position of the suffix

74CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

starting at position ind′′. Since f [ind′] < f [ind′′] this implies that U ′ ≺lex U ′′
and therefore U ′ ≺deg−lex U ′′. The case where f [ind′] > f [ind′′] is considered
analogously.

Since st(U ′) and st(U ′′) have constant representation, we can check their
equality in O(1) time. The constant execution of the rest of the steps is also
clear.

Now given the deg-lex sorted edit-distance lists we can easily adopt a merge
sort algorithm which renders their join. The only thing we need to be conscious
of is that when two elements 〈st(U ′), len(U ′), c′〉 and 〈st(U ′′), len(U ′′), c′′〉 have
the property that st(U ′) = st(U ′′) (and len(U ′) = len(U ′′)), i.e. when they
represent the same word, we always store the minimum of min(c′, c′′) of the
values c′ and c′′.

With these remarks it should be clear that merging the lists L1, . . . Lk using
a binary heap we achieve both a deg-lex ordered representation for their join
and the claimed running time O(

∑k
j=1 |Lj | log k).

The algorithm described in the proof is illustrated in procedure Join.

Based on this result we can easily modify the algorithm which constructs
the intermediate edit-distance lists Lr(α, j) and Ll(α, j) as follows. We describe
only the case with Lr(α, j) the second being dual:

1. Construct a deg-lex sorted list L′r(α, j) using the deg-lex sorted list Lr(α, j−
1).

2. Construct a deg-lex sorted list Lr(α, j) using the list L′r(α, j).

We highlight the details on each of these two steps next.
Construction of the deg-lex sorted L′r(α, j).
The idea is simple. We extend the already available deg-lex sorted edit-

distance list Lr(α, j − 1) with each compatible operation op. As a result we
obtain Lr(α, j − 1; op). Each of these lists is again deg-lex sorted (as we shall
see) and their total number is O(|Op|). Thus, we can apply the algorithm of
the previous lemma in order to determine their join, L′r(α, j).

The details are as follow, see also procedure ExtensionJoinStepStimple:

1. for every operation op ∈ Op with |r(op)| = 1 such that r(op) = Ijj (Vα1), i.e.
is a the j-th character of Vα1, construct an edit-distance list Lr(α, j−1; op).
To this end:

(a) consider the elements 〈st(U ′), len(U ′), c′〉 of Lr(α, j − 1) in order.
(b) for each such element determine whether c′+ c(op) ≤ bα. If not then

proceed with the next element.
(c) if c′+c(op) ≤ bα, traverse the bidirectional data structure from st(U ′)

with the label l(op). If this procedure fails at some point continue
with the next element of the list. Otherwise call st′′ the last constant
size representation obtained.

(d) attach to the back of Lr(α, j − 1; op) the element 〈st′′, len(U ′) +
|l(op)|, c′ + c(op)〉.

5.3. EXTENSION STEPS 75

2. use the merge-sort algorithm to compute the join of all the resulting lists
Lr(α, j − 1; op). Thus we obtain L′r(α, j).

ExtensionJoinStepSimple(A, SA, f, 〈Op, c〉, q, V , α, η, L, j)
pos← if η = 1 then j else |Vα0| − j + 1
k ← 0
for op ∈ Op with |r(op)| 6= ε do

k ← k + 1
L(α, j; op)← ∅
for 〈st, l, c〉 ∈ L(α, j − 1) do

if r(op) = V [pos] then
if η = 1 then

st′ ← ExtendRight(A, st, l(op))
else

st′ ← ExtendLeft(A, st, l(op))
fi
if st′ is defined and c(op) + c ≤ q|Vα| then

L(α, j; op).Insert(〈st′, l + |l(op)|, c(op) + c〉)
fi

fi
done

done
return Join(L(α, j; .), SA, f, k)

Lemma 5.3.9 The edit-distance list L′r(α, j) computed by the above procedure
L-represents Ãj and is deg-lex ordered. The computation of each such list re-
quires O(|Lr(α, j − 1)|) time and the total time spent for the computation of
L′r(α, j) is:

O(|Lr(α, j − 1)|).

Proof. Using that Lr(α, j−1) L-represents
−→
A j−1, Lemma 4.3.3 implies that

Lr(α, j − 1; op) represents (
−→
A j−1 ◦ op)≤bα . Further, we prove that Lr(α, j −

1; op) is deg-lex sorted. To see this consider two elements 〈st′1, len′1, c′1〉 and
〈st′2, len′2, c′2〉 inserted in Lr(α, j − 1; op). Assume that 〈st′i, len′i, c′i〉 was in-
serted when considering the element 〈sti, leni, ci〉 in the list Lr(α, j − 1) for
i = 1, 2 and let 〈st1, len1, c1〉 be considered first. If st1 represents the word
U1, then by the construction of st′1 it follows that st′1 represents U1 ◦ l(op).
Furthermore len′1 = len1 + l(op) = |U1 ◦ l(op)|. Similarly if st2 represents U2,
then st′2 represents U2 ◦ l(op) and len′2 = len2 + |l(op)| = |U2 ◦ l(op)|. Now
since 〈st1, len1, c1〉 was considered first, it follows that U1 ≺deg−lex U2 and
therefore U1 ◦ l(op) ≺deg−lex U2 ◦ l(op). However when 〈st′2, len′2, c′2〉 is inserted
to Lr(α, j − 1; op), the triple 〈st′1, len′1, c′1〉 resides already there and therefore
being inserted at the back, 〈st′2, len′2, c′2〉 correctly preserves the deg-lex order
of the list. Since each of the lists Lr(α, j − 1; op) is deg-lex ordered and rep-
resents (

−→
A j−1 ◦ op)≤bα , respectively, their join is also deg-lex ordered and by

76CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

Lemma 4.3.6 it represents Ãj . Therefore the computed edit-distance list L′r(α, j)
has the desired properties.

It is also clear that the time spent per triple 〈st, len, c〉 ∈ Lr(α, j − 1) is
proportional to O(|l(op)|+ |r(op)|). This follows from the properties about the
data-structure representing the infixes of the language L. Applying Property 1
subsequently we can compute the representation st′′ from the representation st
in time O(|l(op)|). In particular we spend O(

∑
op∈Op(|l(op)|+ |r(op)|)) time per

element 〈st, len, c〉 ∈ Lr(α, j − 1) and thus the time for the construction of the
lists Lr(α, j − 1; op) is bounded by O(|Lr(α, j − 1)|. Applying Lemma 5.3.8 we
obtain the conclusion of the lemma.

Construction of the deg-lex sorted list Lr(α, j).
We start this step by considering the elements of L′r(α, j). The idea is again

to use Lemma 4.2.4 in order to construct Lr(α, j). We pass through the elements
of L′r(α, j) and split it in buckets Bjα[n] according to their length component,
len. Specifically, the bucket Bjα[n] occurs if and only if there are elements
〈st, n, c〉 ∈ L′r(α, j) and it contains all these elements in the same order as the
order in which these elements occur in the list L′r(α, j).

Lemma 5.3.10 The buckets Bjα[n] can be computed in O(|L′r(α, j)|) time and
each of them is deg-lex ordered.

Proof. Preserving the order of the elements of L′r(α, j) also preserves their
property to be sorted in the buckets. Furthermore since L′r(α, j) is deg-lex or-
dered once we encounter an element 〈st, n, c〉 it follows that no element 〈st′, n′, c′〉
with n′ < n will occur afterwards. Thus filling in the buckets can be performed
in a single pass through the elements of L′r(α, j).

Now we complete the buckets Bjα[n] in increasing order of n. To this end the
buckets are organised in a list in increasing order of n. During this procedure
new buckets might be created and they also will be inserted and considered as
follows, see also procedure EpsilonClosureJoinStepSimple:

1. consider the buckets Bjα[n] in increasing order of n.

2. for each operation op ∈ Λ construct a list Bjα[n; op] as follows:

(a) consider the elements 〈st, len, c〉 ∈ Bjα[n] in order (len = n for each
such element).

(b) if c+ c(op) > bα proceed with the next element.

(c) traverse the data-structure starting from st to the right with the label
l(op). If all the representation on the way exist define st′ to be the
last one, otherwise continue with the next element of the bucket.

(d) insert 〈st′, len+ l(op), c+ c(op)〉 to the back of the list Bjα[n; op].

3. go along the list of buckets to find the bucket Bjα[n + |l(op)|]. If there is
no such bucket create an empty bucket Bjα[n+ |l(op)|] and insert it as to
preserve the general order of the buckets.

5.3. EXTENSION STEPS 77

4. find the join Bjα[n+ |l(op)|]∨Bjα[n; op] using the merge sort algorithm and
set this as the new value of Bjα[n+ |l(op)|].

5. append the elements of Bjα[n] in this order at the back of Lr(α, j).

EpsilonClosureJoinStepSimple(A, SA, f, 〈Op, c〉, V , α, η, q, L, j)
LBuck ← SplitInBuckets(L(α, j)
for B[n] ∈ LBuck in order do //this corresponds to increasing order of n

for op ∈ Op with r(op) = ε do
B[n; op]← ∅
for 〈st, l, c〉 ∈ B[n] in order do //assert that n = l

if η = 1 then
st′ ← RightTraverse(A, st, l(op))

else
st′ ← LeftTraverse(A, st, l(op))

fi
if st′ is defined and c(op) + c ≤ q|Vα| then

B[n; op].Insert(〈st′, l + |l(op)|, c+ c(op)〉)
fi

dobe
B[m]← L.Next(B[n])
last← n
while B[m] is defined and m ≤ n+ |l(op)| do

last← m
B[m]← L.Next(B[m])

done
if last = n+ |l(op)| then

B[last]← Join({B[last], B[n; op]}, SA, f, 2
else

B[n+ |l(op)|]← B[n; op]
LBuck.InsertAfter(B[last], B[n+ |l(op)|])
fi

done
return Concat(LBuck)

Concat(LBuck)
LCat← ∅
for B[n] ∈ LBuck in order do

for 〈st, l, c〉 ∈ B[n] in order do
LCat.Append(〈st, l, c〉)

done
done
return LCat

SplitInBuckets(L)
LBuck ← ∅
last← ⊥

78CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

for 〈st, l, c〉 ∈ L in order do
if last 6= l then

B[l]← new bucket
LBuck.Append(B[l])
last← l

fi
B[l].Append(〈st, l, c〉)

done
return LBuck

Lemma 5.3.11 During the algorithm all the buckets are deg-lex ordered. Fur-
thermore every list Bjα[n; op] is deg-lex ordered and represents (

−→
A j [n]◦op)≤q|Vα|

and the list Lr(α, j) is computed correctly.

Proof. As in the proof of Lemma 5.3.2 the construction of the supplemen-
tary lists Bjα[n; op] preserves the deg-lex order and Bjα[n; op] represents exactly
Bjα[n; op]. Afterwards, in Step (d), the algorithm also preserves the deg-lex or-
der provided that the input lists are deg-lex ordered. Since at the beginning all
the buckets are deg-lex ordered, we deduce that at each step of the algorithm
this property is preserved.

Next an easy inductive argument shows that at the time when Bjα[n] is
considered it L-represents the union:

Ãj [n] ∪
⋃
op∈Λ

(
−→
A j [n− l(op)] ◦ op)≤q|Vα| =

−→
A j [n]

and according to Lemma 4.2.4 we deduce that the union of the buckets Bjα[n]
upon the termination of the algorithm yield the desired result Lr(α, j). Fur-
thermore if n < n′, then any element 〈st, n, c〉 ∈ Bjα[n] and any element
〈st′, n′, c′〉 ∈ Bjα[n′] representing words U and U ′ respectively have the prop-
erty that |U | = n < n′ = |U ′|, in particular U ≺deg−lex U ′. This implies that
Lr(α, j) is correctly computed and is deg-lex sorted upon the termination of the
algorithm.

Now we can easily complete single extension step by combining the previous
results. Essentially RightExtensionJoin and LeftExtensionJoin are analogues of
RightExtension and LeftExtension, that carry out the extension to right and
the reversed left extension. The main difference is that we do not encode the
generated candidates explicitly in tries, rather they are implicitly stored in deg-
lex ordered edit-distance lists. This circumstance imposes that we construct
several deg-lex edit-distance lists and then join them together.

RightExtensionJoin(A, SA, f, 〈Op, c〉, q, α, V , L)
Lr(α, 0)← L(α0)
Lr(α, 0)← EpsilonClosureJoinStepSimple(A, SA, f, T , 〈Op, c〉, V , α, 1, q, L, 0)
for j = 1 to |Vα1| do

Lr(α, j)← ExtensionJoinStepSimple(A, SA, f, T , 〈Op, c〉, q, V , α, 1, L, j)

5.3. EXTENSION STEPS 79

Lr(α, j)← EpsilonClosureJoinStepSimple(A, SA, f, T , 〈Op, c〉, V , α, 1, q, L, j)
if Lr(α, j) = ∅ return ∅

done
return Lr(α, |Vα1|)

LeftExtensionJoin(A, SA, f, 〈Op, c〉, q, α, V , L)
Ll(α, 0)← L(α1)
Ll(α, 0)← EpsilonClosureJoinStepSimple(A, SA, f, T , 〈Op, c〉, V , α, 0, q, L, 0)
for j = 1 dowto |Vα0| do

Ll(α, j)← ExtensionJoinStepSimple(A, SA, f, T , 〈Op, c〉, q, V , α, 0, L, j)
Ll(α, j)← EpsilonClosureJoinStepSimple(A, SA, f, T , 〈Op, c〉, V , α, 0, q, L, j)
if Ll(α, j) = ∅ return ∅

done
return Ll(α, |Vα0|)

Lemma 5.3.12 The computation of Lr(α, j) requires O(|Lr(α, j)|) time.

Proof. It should be clear that for each element 〈st, len, c〉 ∈ Bjα[n] we spend
O(1) time in Steps 2(a)-(d) and Step 3. Additionally we spend O(1) time for
each element of Bjα[n] in steps of type 3 when the merge sort is invoked by
some bucket list Bjα[n− |l(op)|; op]. However there can be at most O(|Λ|) such
operations for a particular n, and therefore the total number of steps an ele-
ment 〈st, len, c〉 ∈ Bjα[n] is processed is O(|Λ|) which is considered as constant.
Therefore the algorithm runs in O(

∑
n |Bjα|) time and since the buckets are

pairwise disjoint and their union is Lr(α, j), the upper bound follows.

Remark 5.3.13 We stress that the described algorithm is applicable for the
steps of left extensions as well. The only details are that we should substitute
the edit-distance (Op, c) with the reversed (Oprev, crev) and traverse the bidi-
rectional structure leftwards instead of rightwards. The correctness then follows
by the properties of the reversed alignments, see Section 4.4.

Given L(α0) and L(α1) we can apply the subroutines RightExtensionJoin
and LeftExtensionJoin to compute L(α). Since the representation of the infixes
is uniform, we do not need any reverse operation as in the general case, see
procedure ExtensionJoin.

ExtensionJoin(A, SA, f, 〈Op, c〉, q, α, V , L)
LRight← RightExtensionJoin(A, SA, f, 〈Op, c〉, q, α, V , L)
LLeft← LeftExtensionJoin(A, SA, f, 〈Op, c〉, q, α, V , L)
L(α)← Join({LRight, LLeft}, SA, f, 2)

Lemma 5.3.14 Given deg-lex sorted edit-distance lists Lr(α,Nα1) and Ll(α,Nα0)
we can compute a deg-lex sorted edit-distance list L(α) in O(|L(α)|).

Proof. Since L(α) = Lr(α,Nα1)∨Ll(α,Nα0) it suffices to apply the merge-
sort algorithm which renders L(α) in time proportional to the result.

80CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

Now the recursive computation of L(α) is clear, see procedure RecursiveEx-
tensionJoin. The only issue is in the initialisation where we need to encode the
infix Vα, appropriately, see InitialiseJoin.

RecursiveExtensionJoin(A, SA, f, 〈Op, c〉, q, α, V , L)
if q|Vα| ≥ 1 then

RecursiveExtensionJoin(A, SA, f, 〈Op, c〉, q, α0, V , L)
RecursiveExtensionJoin(A, SA, f, 〈Op, c〉, q, α1, V , L)
ExtensionJoin(A, SA, f, 〈Op, c〉, q, α, V , L)

else
InitialiseJoin(A, q, α,N, V , L)

fi

InitialiseJoin(A, q, α,N, V , L)
s←initial state of A
if qNα < 1 then

st← TraverseRight(A, s, Vα)
if st is defined then

L(α)← {〈st,Nα, 0〉}
else

L(α)← ∅
fi

Finally we can solve the query by simply computing L(ε) and reporting
those words that are represented in L(ε) and in the same time are words L, see
ApproximateSearchJoin.

ApproximateSearchJoin(A, SA, f, 〈Op, c〉, q, V)
Nε ← |V |
Vε ← V
InitialiseJoin(A, q, ε,N, V , L)
RecursiveExtensionJoin(A, SA, f, 〈Op, c〉, q, ε, V , L)
for 〈st, l, c〉 ∈ L(ε) do

if st is final in A
report the word U with st = st(U)

fi
done

Proposition 5.3.15 If L is finite, there is a data structure O(||L||) which en-
ables the extension steps for every query word V of length N in time:

O(T1 + T ′2)

where:

T1 =
∑

α∈T (V)

Nα1∑
j=0

|Lr(α, j)|+
∑

α∈T (V)

Nα0∑
j=0

|Ll(α, j)|

T ′2 =
∑

α∈T (V)

|L(α)|.

5.4. REPORTING THE ANSWERS 81

Proof. We use the Blumer et Blumer’s structure from Chapter 2 which
obeys the Properties 1-3 and we apply the algorithms described above. Then
the result follows as in Proposition 5.3.6.

5.4 Reporting the Answers

Once we have determined the edit-distance list L(ε) we can easily filter it so
that we obtain the answers of the original query:

Given:L ⊆ Σ∗ regular language,
d = (Op, c) an edit-distance,
q ∈ (0; 1) a threshold parameter

Input: V ∈ Σ∗

Output: {U ∈ L | d(U, V) ≤ q|V |}.
The following lemma states that this can be done efficiently:

Lemma 5.4.1 Assume that for a given query word V we have the edit-distance
list L(ε) determined by the root of search tree T (V). If in addition we dispose
on a (deterministic) final state automaton for the language L we can answer
the query:

Given:L ⊆ Σ∗ regular language,
d = (Op, c) an edit-distance,
q ∈ (0; 1) a threshold parameter

Input: V ∈ Σ∗

Output: {U ∈ L | d(U, V) ≤ q|V |}.
in time O(

∑
U∈Dom(L(ε) |U |).

Proof. The procedure we use is a simple one. For every word U in the
domain of the edit-distance list Lε we use the deterministic automaton for the
language L in order to check in O(|U |) time whether U ∈ L or not. If it does
belong to the language L, we report it otherwise we proceed with the next
word. Clearly, this algorithm runs in O(

∑
U∈Domε |U |) total time. Furthermore

it provides the correct answer of the query. Indeed since Lε L-represents the
alignment set (A(V))≤bε we deduce that U ∈ Domε if and only if:

1. U ∈ Inf(L).

2. there is an alignment ω ∈ A(Vε) with l(ω) = U and c(ω) ≤ bε.
Since Vε = V the second condition is equivalent to d(U, V) ≤ q|V |. Now the
correctness of the algorithm follows by the fact that L ⊆ Inf(L), i.e. each word
of L is also an infix of L. Therefore the set of answers of the original query
is contained in the set of answers represented by L(ε) and thus applying the
automaton A for the language L we can correctly filter out the answer of the
query.

82CHAPTER 5. APPROXIMATE SEARCH IN REGULAR SETS, ρ(OP) = 1

Chapter 6

Approximate Search in the
General Case, ρ(Op) ≥ 1

In the previous chapters we considered the approximate search problem in the
special case when ρ(Op) = 1. In this case each operation has a right side
of length at most 1. This was the reason for the validity of Lemma 4.1.1.
In particular, if we consider the alignment, ω = (d, d)(ε, r)(ε, e)(a, a)(d, d), in
terms of Levenshtein operation of dad and dread and we determine V0 = dre
and V1 = ad, we can decompose ω = ω0 ◦ ω1 such that r(ω0) = V0 = dre and
r(ω1) = V1 = ad. To this end it is enough to set ω0 = (d, d)(ε, r)(ε, e) and
ω1 = (a, a)(d, d). However, this is no more the case if we allow the operation
(a, ea) along the standard Levenshtein operations. Then we can consider the
alignment ω′ = (d, d)(ε, r)(a, ea)(d, d). In this situation it is impossible to
decompose ω′ as ω′ = ω′0 ◦ ω′1 such that r(ω′) = dre and r(ω′1) = ad.

Actually, this is the main, if not the only problem we need to address on our
way of generalisation of the approximate search algorithm to the case, ρ(Op) ≥
1. Furthermore, it is not difficult to see a rather simple and natural solution of
this problem. In fact ”solution” is not the right word. We are not going to force
the alignment ω′ to have a decomposition into ω′0 and ω′1 with r(ω′) = dre and
r(ω′1) = ad. This is impossible! Rather, we are going to get around the problem.
This means that instead of looking for subalignments with predetermined right
sides, we are going to determine the right sides so that they comply with the
alignment and that are not much longer/shorter than the required one. The
main observation is that only one operation can stay on our way to achieve the
desired decomposition. In our case, this is (a, ea) and it has a right side of length
2 ≤ ρ(Op). We shall see, that this simple fact already enables a decomposition
that s not too far away from the one we had in the simple case, ρ(Op) = 1.

In the sequel, we shall first adapt Lemma 4.1.1 to the case ρ(Op) ≥ 1.
This would naturally give us the corresponding variant of Corollary 4.1.2 that
will indicate how to proceed with an appropriate variant of Lemma 4.2.7 and
Lemma 4.2.9. Our experience with the algorithm from Chapter 5 suggests that

83

84CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

these preparations should lead to a generalisation of the approximate search
algorithm to arbitrary ρ(Op) ≥ 1. We shall formally defend this hypothesis in
Section 6.2.

The main ideas from this chapter were essentially presented in [20].

6.1 Decomposition Techniques for ρ(Op) ≥ 1

We start this section with a variant of Lemma 4.1.1 which applies for the case
ρ(Op) ≥ 1. Actually, it also reflects a tiny still important detail that we have
skipped in the case ρ(Op) = 1. Namely, we can always assume that the left
subalignment ω0 is always maximal in the sense that ω0 ∈ Op∗ ◦ (Op \Λ)∪{ε}.
The details are formally presented in the next lemma:

Lemma 6.1.1 Let V = V0 ◦ V1 be a word, and ω be an alignment with right
side r(ω) = V . Then there exist alignments ω0 and ω1, and o ∈ Op ∪ {ε} such
that:

ω = ω0 ◦ o ◦ ω1

|r(ω0)| ≤ |V0| ≤ |r(ω0)|+ |r(o)|
|r(ω1)| ≤ |V1| ≤ |r(ω1)|+ |r(o)|
ω0 ◦ o 6∈ Op∗ ◦ Λ.

Furthermore, if o ∈ Op, the inequalities are strict.

Proof. Let ω = op1 ◦op2 ◦· · ·◦opN . We define ω(m) = opm ◦opm+1 ◦· · ·◦opN
for 1 ≤ m ≤ N + 1. Since ω(N+1) = ε and ω(1) = ω we deduce that 0 =
|r(ω(N+1))| ≤ |V1| ≤ |V | = |r(ω(1))|. Consequently, we can find a minimal
integer number m0 such that |r(ω(m0))| ≤ |V1|. We set ω1 = ω(m0). There
are two possible cases, (i) r(ω1) is of length |V1| and (ii) the length of r(ω1) is
strictly smaller than |V1|. We consider each of these two cases:

1. |V1| = |r(ω1)|. Then we set o = ε and ω0 = op1 ◦ · · · ◦ opm0−1. Clearly we
have that ω = ω0◦ω1. It is also clear that |V | = |r(ω)| = |r(ω0)|+|r(ω1)| =
|r(ω0)|+ |V1|. Since |V | = |V0|+ |V1|, we deduce that |r(ω0)| = |V0|. Thus
the inequalities hold.

2. |V1| > |r(ω1)|. Then it should be clear that m0 > 1. We set o = opm0−1

and ω0 = op1 ◦ · · · ◦ opm0−2. Again, a straightforward computation shows
that ω = ω0 ◦ o ◦ ω1. Furthermore, according to the definition of m0 we
have that:

|V1| < |r(opm0−1 ◦ ω1)| = |r(o)|+ |r(ω1)|.
From our assumption in this case we also have that |V1| > |r(ω1)|.
Next |V | = |r(ω0)|+ |r(o)|+ |r(ω1)|. Since |V | = |V0|+ |V1| the inequalities
for r(ω1) imply that:

|r(ω0)| = |V | − |r(ω1)| − |r(o)| < |V | − |V1| = |V0|

6.1. DECOMPOSITION TECHNIQUES FOR ρ(OP) ≥ 1 85

ρ(Op) = 1 ρ(Op) = ρ ≥ 1
ω ω0 ◦ ω1 ω0 ◦ o ◦ ω1,

o = ε or 1 ≤ |r(o)| ≤ ρ
c(ω) ≤ b0 + b1 c(ω0) ≤ b0 c(ω0) ≤ b0

or c(ω1) ≤ b1 or c(ω1) ≤ b1
A(V) V = V1 ◦ x where x ∈ Σ V = V1 ◦ V ′ where 1 ≤ |V ′| ≤ ρ

(concatenation) ∪op=(U,x)∈OpA(V ′) ◦ op ◦ Λ∗ ∪V ′ ∪op=(U,V ′)∈Op A(V ′) ◦ op ◦ Λ∗

A≤b(V) A(V0, b0 → V, b) A(V0, b0
k→ V, b)

(V = V0 ◦ V1) A(V, b,← V1, b1) A(V, b k← V1, b1)
(b = b0 + b1) A(V0, b0 → V, b) ∪ A(V, b← V1, b1)

⋃
k

(
A(V0, b0

k→ V, b) ∪ A(V, b k← V1, b1)
)

Table 6.1: Main differences between the case ρ(Op) = 1 and ρ(Op) ≥ 1.

and
|r(ω0)|+ |r(o)| = |V | − |r(ω1)| > |V | − |V1| = |V0|.

Finally, in either case we have ω0 ◦ o = op1 ◦ · · · ◦ opm0−1. Assume that m0 > 1,
then since |r(opm0−1)|+ |r(ω1)| > |V1| ≥ |r(ω1)|, we obtain that |r(opm0−1)| > 0
and therefore opm0−1 6∈ Λ. Consequently, ω0 ◦ o 6∈ Op∗ ◦ Λ. If m0 = 1, then
ω0 ◦ o = ε is of length 0.

What Lemma 6.1.1 tells us, is that instead of the desired decomposition
ω = ω0 ◦ ω1 guaranteed by Lemma 4.1.1, we can achieve a decomposition ω =
ω′0 ◦ o ◦ ω′1 such that the difference between the lengths of r(ωi) and r(ω′i) is
bounded in the interval {0, 1, . . . , ρ(Op)− 1}. In the case when ρ(Op) = 1 this
set is a singleton. In the general case we should account for ρ(Op) different
possibilities. This naturally suggests the generalisation approach, sketched in
Table 6.1.

Next, we shall get into more details.

Corollary 6.1.2 Let b = b0 + b1 be nonnegative rational numbers and V =
V0 ◦ V1 be a word with n0 = |V0| and n1 = |V1| such that ni > 0 for i = 0, 1.
Then an alignment ω with r(ω) = V has cost c(ω) ≤ b only if there exist an
integer 0 ≤ k < ρ and alignments ω′0 and ω′1 such that ω = ω′0 ◦ ω′1 and:

1. either r(ω′0) = In0−k
1 (V0) and c(ω0) ≤ b0 and for k > 0 the first operation

of ω′1 has right side of length at least k + 1,

2. or r(ω′1) = In1
k+1(V1) and c(ω1) ≤ b1 and the last operation of ω′0 has right

side of length at least k + 1.

Proof. Let ω = ω0 ◦ o ◦ω1 be the decomposition of ω provided by Lemma 6.1.1.
Then c(ω) = c(ω0) + c(o) + c(ω1). We consider two cases:

1. b0 ≥ c(ω0), then we set ω′0 = ω0, ω′1 = o ◦ ω1 and k = |V0| − |r(ω0)| ≥ 0.
Since |r(o)| + |r(ω0)| ≥ |V0| with equality only if o = ε, we deduce that

86CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

k < ρ. Now, since r(ω0) is of length n0 − k we obtain that r(ω0) =
In0−k
1 (V0). If k 6= 0, then o 6= ε and o is the first operation of ω′1. Since
|r(ω0)|+ |r(o)| > |V0| we obtain that |r(o)| ≥ k + 1 as required.

2. b0 < c(ω0), then since b1 + b0 = b ≥ c(ω0) + c(o) + c(ω1), we obtain that
c(ω1) < b1. Now we set ω′1 = ω1 and ω′0 = ω0 ◦o and k = n1−|r(ω1)| ≥ 0.
Again, using that |r(ω1)| + |r(o)| − n1 ≥ 0 with equality only if o = ε,
we deduce that k < ρ. Now a straightforward computation shows that
r(ω′1) = In1

k+1(V1). Hence, if k > 0, then o 6= ε and therefore |r(o)| ≥ k+1.
Therefore the last operation of ω′0 is of length at least k + 1. Finally if
o = ε, then according to Lemma 6.1.1 ω′0 6∈ Op∗ ◦ Λ and thus the last
operation of ω′0 is of length at least 1.

Next we consider the extension of alignments of shorter words to alignments
of longer words. Next lemma generalises Lemma 4.2.6 in a straightforward way:

Lemma 6.1.3 Let Op be a set of operations with ρ = ρ(Op) and V ∈ Σ∗ be a
word of length |V | = n > 0, then:

A(V) =

 n−1⋃
j=n−ρ

⋃
op=(U,Inj+1(V))∈Op

A(Ij1(V)) ◦ op

 ◦ Λ∗

Proof. As in the proof of Lemma 4.2.6 we first consider an alignment ω ∈
A(V). Since V is nonempty, r(ω) = V 6= ε and it can be uniquely decomposed
as ω = ω′ ◦ op ◦ ωε where ωε has right side the empty word and r(op) 6= ε.
Hence r(op) is some nonempty suffix of V and consequently it has the form
op = (U, Inj+1(V)). Since 1 ≤ |r(op)| ≤ ρ we deduce that 1 ≤ n − j ≤ ρ and
therefore n − ρ ≤ j ≤ n − 1. It follows that r(ω′) = Ij1(V) and consequently
ω′ ∈ A(Ij1(V)). It is also clear that the fact r(ωε) = ε implies that ωε ∈ Λ∗.
Thus we have proved that:

ω = ω′ ◦ op ◦ ωε ∈ (A(Ij1(V)) ◦ op) ◦ Λ∗

with n− ρ ≤ j ≤ n− 1 and r(op) = Inj+1(V). This shows the inclusion from left
to right.

The inclusion from right to left is clear. Indeed, if ω′ ∈ A(Ij1(V)) and
r(op) = Inj+1(V), and ωε ∈ Λ∗, then:

r(ω′ ◦ op ◦ ωε) = r(ω′) ◦ r(op) ◦ r(ωε) = Ij1(V) ◦ Inj+1(V) ◦ ε = In1 (V) = V.

This means that ω′ ◦ op ◦ ωε ∈ A(V).

We should note that Ij1(V) with j < |V |, is a proper prefix of V . Hence in
view of Lemma 4.2.4, Lemma 6.1.3 characterises A(V) recursively.

Before we generalise the rest of the results from Chapter 4, let us recon-
sider our running example, ω′ = (d, d)(ε, r), (a, ea)(d, d). As we have already

6.1. DECOMPOSITION TECHNIQUES FOR ρ(OP) ≥ 1 87

realised the operation (a, ea) prevents us to apply Lemma 4.1.1 and we needed
Lemma 6.1.1 to handle this case. This shows that we have to put some efforts
in order to control the operations with longer right side. To achieve this we
introduce the following notions:

Definition 6.1.4 Given a word V ∈ Σ∗ and an integer k ∈ N we define:
−→
A k(V) = A(V) ∩ ({op ∈ Op | |r(op)| > k} ◦Op∗ ∪ {ε})
←−
A k(V) = A(V) ∩ (Op∗ ◦ {op ∈ Op | |r(op)| > k} ∪ {ε}).

Now we can use Lemma 6.1.2 in order to obtain a divide-and-conquer descrip-
tion of alignment sets. In the sequel we explain how to generalise Lemma 4.2.7:

Lemma 6.1.5 Let ρ = ρ(Op) and V = V0 ◦V1 for some words V0, V1 ∈ Σ∗ with
lengths n0 and n1, respectively such that ni ≥ ρ for i = 0, 1 and n = n0 + n1.
Let b = b0 + b1 for some rational numbers b0, b1 ∈ Q+, and:

−→
Bk = A(V0, b0

k→ V, b) =


(
A≤b0(In0−k

1 (V0)) ◦ A(Inn0−k+1(V0 ◦ V1))
)≤b

if k = 0(
A≤b0(In0−k

1 (V0)) ◦ −→A k(Inn0−k+1(V0 ◦ V1))
)≤b

, else

←−
Bk = A(V, b k← V1, b1) =

(←−
A k(In0+k

1 (V0 ◦ V1)) ◦ A≤b1(In1
k+1(V1))

)≤b
Then:

A≤b(V) =
⋃ρ−1
k=0

−→
Bk ∪

⋃ρ−1
k=1

←−
Bk.

Proof. We first prove the inclusion from left to right. Let ω ∈ A≤b(V). Thus,
by Corollary 6.1.2 there are alignments ω′0 and ω′1 such that ω = ω′0 ◦ω′1 and an
integer 0 ≤ k < ρ such that:

1. either r(ω′0) = In0−k
1 (V0) and c(ω′0) ≤ b0 and for k > 0 the first operation

of ω′1 is with right side of length at least k + 1

2. or r(ω′1) = In1
k+1(V1) and c(ω′1) ≤ b1 and the last operation of ω′0 is with

right side of length at least k + 1.

We consider each of these two cases separately. In the first case we have that
ω′0 ∈ A≤b0(In0−k

1 (V0)). Next since r(ω′0)◦r(ω′1) = V0◦V1 and r(ω′0) = In0−k
1 (V0)

we deduce that r(ω′1) = In0
n0−k+1(V0) ◦ V1 = Inn0−k+1(V0 ◦ V1) because the total

length of V0 ◦ V1 is n. Finally, for k > 0 the first operation of ω′1 has right hand
side of length at least k + 1 which implies that:

ω′1 ∈
{

Ak(Inn0−k+1(V0 ◦ V1)) if k = 0
−→
Ak(Inn0−k+1(V0 ◦ V1)) if k > 0

Finally, using that c(ω) = c(ω′0) + c(ω′1) ≤ b we obtain that:

ω = ω′0 ◦ ω′1 ∈ A(V0, b0
k→ V, b) =

−→
Bk.

88CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

The second case is considered dually. We easily see that ω′1 ∈ A≤b1(In1
k+1(V1))

and that r(ω′0) = V0 ◦ Ik1 (V1) = In0+k
1 (V0 ◦ V1). Finally since the last operation

of ω′0 has right side of length at least k + 1 we deduce that:

ω′0 ∈
←−
Ak(In0+k

1 (V0 ◦ V1))

which implies that:

ω = ω′0 ◦ ω′1 ∈
←−
Ak(In0+k

1 (V0 ◦ V1)) ◦ A≤b1(In1
k+1(V1)).

Since c(ω) ≤ b we conclude that ω ∈ A(V, b k← V1, b1) =
←−
Bk. These completes

the proof of the inclusion from left to right. The inclusion from right to left is
rather straightforward. It follows by the immediate observation that V0 ◦ V1 =
In0−k
1 (V0) ◦ Inn0−k+1(V0 ◦ V1) and V0 ◦ V1 = In0+k

1 (V0 ◦ V1) ◦ In1
k+1(V1).

Let us recall that the approximate search algorithm presented in Chapter 5
essentially computed the edit-distance lists for the alignment sets A(V0, b0→V, b)
and A(V, b←V1, b1). The analogue of these sets in case ρ(Op) ≥ 1 are the unions:

∪ρ−1
k=0

−→
Bk = ∪ρ−1

k=0A(V0, b0
k→ V, b) and

∪ρ−1
k=0

←−
Bk = ∪ρ−1

k=0A(V, b k← V1, b1).

Thus it is natural to determine how these sets can be expressed recursively. The
approach extends in a natural way Lemma 4.2.9. We first show the case ”→”.
The case of left extensions will be given at the end of this section.

Lemma 6.1.6 Let V = V0 ◦ V1 be words with lengths |Vi| = ni ≥ ρ and let
b = b0 + b1 be nonnegative rational numbers. For k + j ≥ 0 we define the
alignment sets

−→
Bj
k = A(V0, b0

k→ In0+j
1 (V0 ◦ V1), b) as:

−→
Bj
k =


(
A≤b0(In0−k

1 (V0)) ◦ −→A k(In0+j
n0−k+1(V0 ◦ V1))

)≤b
for k > 0(

A≤b0(In0
1 (V0)) ◦ A(In0+j

n0+1(V0 ◦ V1))
)≤b

for k = 0.

Then for each j ≥ 1 and k < ρ it holds :

−→
Bj
k =


 j−1⋃
j′=j−ρ

⋃
op=(U,I

n0+j
n0+j′+1

(V0◦V1))∈Op

(
−→
Bj′

k ◦ op)≤b
 ◦ Λ∗


≤b

The result in this lemma concerns the values j ≥ 1. However, it is important
that j = 0 and k = 0, we have:

−→
B0

0 =
(
A≤b0(In0

1 (V0)) ◦ A(ε)
)≤b

=
(
A≤b0(In0

1 (V0)) ◦ Λ∗
)≤b

,

6.1. DECOMPOSITION TECHNIQUES FOR ρ(OP) ≥ 1 89

whereas for j = −k and k > 0, we have that:

−→
Bj
k =

(
A≤b0(In0−k

1 (V0)) ◦ −→A k(ε)
)≤b

= A≤b0(In0−k
1 (V0)))≤b = A≤b0(In0−k

1 (V0)).

Here the second equality follows by the definition of
−→
A k(ε) which implies that

the unique alignment in this set is the empty alignment, ε.
Proof. (of Lemma 6.1.6) The case k = 0 concerns alignment sets of the form:

−→
Bj

0 =
(
A≤b0(In0

1 (V0)) ◦ A(In0+j
n0+1(V0 ◦ V1))

)≤b
.

In this sense they are similar to the alignment sets A(V0, b0 → V, b) consid-
ered in Chapter 4. Thus they can be handled in the same way but instead of
Lemma 4.2.6 we have to use Lemma 6.1.3 tailored for ρ ≥ 1.

In the sequel we concentrate our attention on the case j ≥ 1 and 0 < k < ρ.
Let ω be an alignment in

−→
Bj
k. Then, ω can be uniquely decomposed as ω =

ω′0 ◦ ω1 ◦ op ◦ ωε such that:

ω′0 ∈ A≤b0(In0−k
1 (V0)) and ωε ∈ Λ∗ and op 6∈ Λ.

Therefore r(op) = In0+j
n0+j′+1(V0 ◦V1) for some j−ρ ≤ j′ < j. Now, there are two

possible cases. Either ω1 = ε or ω1 6= ε. In the former case, we conclude that the
first operation of ω1 is the same as the first operation of ω1 ◦ op ◦ωε. Therefore
the facts: ω1 ◦ op ◦ ωε ∈

−→
A k(In0+j

n0−k+1(V0 ◦ V1)), r(op) = In0+j
n0+j′+1(V0 ◦ V1) and

r(ωε) = ε imply that ω1 ∈
−→
A k(In0+j′

n0−k+1(V0 ◦ V1)). Therefore we conclude that:

ω′0 ◦ ω1 ∈ A≤b0(In0−k
1 (V0)) ◦ −→A k(In0+j′

n0−k+1(V0 ◦ V1)). Since c(ω′0 ◦ ω1) ≤ c(ω) ≤ b
we obtain that ω′0 ◦ ω1 ∈

−→
Bj′

k and consequently: ω ∈
(

(
−→
A j′

k ◦ op)≤b ◦ Λ∗
)≤b

.

The case when ω1 = ε is a particular one. In this case ω1 ◦ op = op and
the assumption that ω1 ◦ op ◦ ωε ∈

−→
A k(In0+j

n0−k+1(V0 ◦ V1)) implies that |r(op)| ≥
k + 1. As in the first case we also have that r(op) = In0+j

n0+j′+1(V0 ◦ V1) for some
j − ρ ≤ j′ < j. Taking into account that |r(op)| ≥ k + 1 and |r(op)| = j − j′
we get that |r(op)| + j′ = j > 0 and |r(op)| ≥ k + 1. Therefore we get that
ω′0 ∈ A≤b0(In0+j′

1 (V0)) =
−→
Bj′

k and we can conclude the proof as above.
The inclusion from right to left follows by an immediate computation.

If we now unite the sets
−→
Bj
k for k < ρ we get the following corollary:

Corollary 6.1.7 In the notations of Lemma 6.1.6 we determine:
−→
Bj = ∪ρ−1

k=0

−→
Bj
k.

Then:

−→
Bj =


 j−1⋃
j′=j−ρ

⋃
op=(U,I

n0+j
n0+j′ (V0◦V1))∈Op

(
−→
Bj′ ◦ op)≤b

 ◦ Λ∗


≤b

90CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

for every integer number j ≥ 1.

Since the notion and facts derived for edit-distance lists and reversed align-
ments from Section 4.3 and 4.4, respectively, do not rely on the specificity of
ρ(Op) = 1 they extend immediately to the general case, ρ(Op) ≥ 1. It is only in
Lemma 4.4.7 that we essentially use the assumption ρ(Op) = 1. This is due to
the necessity to use the concatenation of an alignment set with some operations
in order to express the terms A(V). This imposes the use of Lemma 4.2.6. In
case that ρ(Op) ≥ 1 we should apply Lemma 6.1.3, instead. Thus we get the
following recursive description of the sets ∪kA(V, b k← V1, b1).

Lemma 6.1.8 Let V = V0 ◦ V1 be a word with lengths |Vi| = ni ≥ ρ and let
b = b0 + b1 be nonnegative rational numbers. Let

←−
Bj
k be the alignments:

←−
Bj
k = A(Inn0−j+1(V0◦V1), b k← V1, b1) =

(←−
A k(In0+k

n0−j+1(V0 ◦ V1)) ◦ A≤b1(In1
k+1(V1))

)≤b
Then for each j ≥ 1 and k < ρ it holds :

←−
Bj
k =

Λ∗ ◦

 j−1⋃
j′=j−ρ

⋃
op=(U,I

n0−j′
n0−j+1(V0◦V1))∈Op

(op ◦←−Bj′

k)≤b



≤b

Proof. Let W0 = V rev1 and W1 = V rev0 and n = n0 + n1. Therefore position
l in W0 ◦ W1 is position l in (V0 ◦ V1)rev and thus it holds the same char-
acter as the character at position n − l + 1 in V0 ◦ V1. With this remark it
is rather straightforward that (In0+k

n0−j+1(V0 ◦ V1))rev = In1+j
n1−k+1(W0 ◦W1) and

(In1
k+1(V1))rev = In1−k

1 (W0). Now using Lemma 4.4.6 we see that:

Arev(In1
k+1(V1)) = AOprev (In1−k

1 (W0))
←−
A rev
k (In0+k

n0−j+1(V0 ◦ V1)) =
−→
AOprev,k(In1+j

n1−k+1(W0 ◦W1)).

Therefore for k > 0 we have that:
←−
B j,rev
k = AOprev (W0, b1

k→ In1+j
1 (W0 ◦W1), b)

and applying Lemma 6.1.6 to the sets Bj,rev
k , and then the reverse operation we

get the result. The case when k = 0 is similar.

As a by-product of the above prove we obtain:

Corollary 6.1.9 In the notions of Lemma 6.1.8 we set
←−
Bj = ∪ρ−1

k=0

←−
Bj
k. Then

it holds:

←−
Bj,rev =


 j−1⋃
j′=j−ρ

⋃
op=(U,I

n1+j
n1+j′+1

(V rev1 ◦V rev0))∈Oprev)

(
←−
Bj′,rev ◦ op)≤b

 ◦ (Λrev)∗


≤b

.

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 91

ρ ρ(Op) = 1 ρ(Op) ≥ 1
nodes of T (V) α ∈ {0, 1}∗, Nα ≥ 0 α ∈ {0, 1}∗, Nα ≥ 4(ρ− 1)

queries associated single ρ2 pairs (k0, k1)
with a node α (Vα, qNα) (Vα[k0; k1], qNα)

initialisation of the leaves O(|V |) O(|V |+ #answers)
no bookkeeping some additional bookkeeping

edit-distance lists L(α), Lr(α, j), Ll(α, j) L(α, k0, k1), Lr(α, k0, j), Ll(α, k1, j)
k0, k1 ≤ ρ− 1

representation buckets Bjα buckets Bk,jα , k ≤ ρ− 1
and tries Tα and tries Tα

computation based on Lemma 4.4.7 based on Lemma 6.1.8
of extensions
complexity

∑
α,j(|Lr(α, j)|+ |Ll(α, j)|)

∑ρ−1
k=0

∑
α,j(|Lr(α, k, j)|+ |Ll(α, k, j)|)

(asymptotical) +
∑
α,U∈Dom(L(α)) |U |) +

∑ρ−1
k0,k1=0

∑
α,U∈Dom(L(α,k0,k1)) |U |)

Table 6.2: Comparison between the main characteristics of the basic and gen-
eralised algorithms.

6.2 Approximate Search Algorithm, ρ(Op) ≥ 1

As Table 6.1 indicates the main difference between the case ρ(Op) = 1 and
ρ(Op) ≥ 1 is that in case ρ(Op) = 1 we have one (or two) object(s) that we
have to compute, whereas in case ρ(Op) ≥ 1 we have unions of ρ(Op) or 2ρ(Op)
to account for. Furthermore, Lemma 4.2.7 did not impose any constraints on
the lengths of the words V0 and V1. However, the validity of its analogue,
Lemma 6.1.5, requires that both |V0| ≥ ρ(Op)− 1 and |V1| ≥ ρ(Op)− 1.

It turns out that these constraints can be easily reflected in our original
algorithm by some additional bookkeeping that increases the complexity of the
algorithm with a factor O(ρ2). Considering ρ = ρ(Op) as a global constant, this
does not change the asymptotical complexity of the algorithm.

The differences between the basic and the generalised algorithm are sum-
marised in Table 6.2 and we shall highlight the most essential ones in the sequel.

6.2.1 Organisation of the Query Tree T (V). Initialisation

In the general case when Op may contain arbitrary operations op, i.e. |r(op)|
is not necessarily less than 2, we cannot use the Lemma 4.2.7 but rather
Lemma 6.1.5. This means that the alignment sets A(Vα)≤bα defined in Chap-
ter 5 cannot be expressed in general only by the means of the corresponding
alignment sets for the nodes α0 and α1. What we need to do is to consider some
more alignment sets which leave a ’slot’ in Vα for another operation either at
the end or at the beginning. In order to have enough space for a prefix and for
a suffix slot, we need to guarantee that the word Vα is long enough. This is the
first constraint which we reflect in the construction of the search tree, T (V).

92CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

We modify the construction from the previous chapter as follows:

1. Vε = V and ε is the root of T (V).

2. if Vα and α are defined, q|Vα| ≥ 1 and |Vα| ≥ 4(ρ− 1) we define Vα0 and
Vα1 such that:

Vα = Vα0 ◦ Vα1

0 ≤ |Vα0| − |Vα1| ≤ 1.

We set α0 to be the left child of α and α1 to be the right child of α.

Again, we denote with Nα the length of Vα and we use bα = qNα as the threshold
corresponding to the query word Vα. The only difference between the construc-
tions in Section 5.2 and the one in this section is the constraint Nα ≥ 4(ρ− 1)
next to bα ≥ 1. However, if ρ = 1, then bα ≥ 1 already implies that Nα > 0.
Therefore the construction above generalises the construction of the search tree
in the Section 5.2.

Before associating queries with the nodes α as we did in the simple case, let
us establish an easy still useful fact about the leaves of the search trees T (V).

Lemma 6.2.1 Assume that |V | = N ≥ 2(ρ − 1) and let α be a leaf in T (V).
Then Nα ≥ 2(ρ− 1).

Proof. First, if α = ε, i.e. we have that the tree is a trivial one, the statement
becomes apparent because N ≥ 2(ρ − 1). Thus, let us consider the case when
α has a parent β in T (V) and let η ∈ {0, 1} be such that α = β ◦ η. Now, since
β is an inner node of T (V) we deduce that Nβ ≥ 4(ρ− 1). Consequently, if we
denote η = 1− η we obtain:

Nβη +Nα = Nβ ≥ 4(ρ− 1) and |Nβη −Nα| ≤ 1.

Clearly, this implies that Nα ≥ Nβ−1
2 ≥ 2(ρ−1) in the case when Nβ > 4(ρ−1).

If, however, Nβ = 4(ρ− 1), then Nβ is even and therefore Nβη and Nα have the
same parity which implies that Nβη = Nα = 2(ρ− 1).

Unlike the situation when ρ = 1 where we defined a single query per node
α, in case ρ > 1 we define ρ2 queries for every node α. Specifically, for every
two nonnegative integers k0, k1 < ρ and a word Vα we introduce:

Vα[k0; k1] = INα−k1
k0+1 (Vα)).

What this expression means, is that Vα[k0; k1] is the infix of Vα after removing
the first k0 and the last k1 characters. Now the natural question is whether
this is possible. And indeed we have not removed fantom-characters since by
Lemma 6.2.1 we have that |Vα| ≥ 2(ρ− 1) ≥ k0 + k1.

Now with each node α we can associate the queries Vα[k0; k1] specified as:

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 93

Given:L ⊆ Σ∗ regular language,
d = (Op, c) an edit-distance,
q ∈ (0; 1) a threshold parameter

Input: Vα ∈ Σ∗, k0, k1 ∈ {0, 1, . . . , ρ− 1}
Output: {U ∈ Inf(L) | d(U, Vα[k0; k1]) ≤ q|Vα|}.
We stress that the threshold is still determined by Vα and it might be a little
bit greater than the threshold q|Vα[k0; k1]| which the word Vα[k0; k1] would
have determined. Nevertheless, we cannot do any better if we rely only on
Lemma 6.1.5.

Again the objective for the node α is to resolve all the queries Vα[k0; k1] for
k0, k1 < ρ which are attributed to it. We specify this task as computing the
edit-distance lists L(α, k0, k1) = L[Vα[k0; k1]] which L-represent the alignment
sets:

(A(Vα[k0; k1]))≤bα .

Lemma 6.2.2 Assume that we have an infix automaton IA for the language
Inf(L) and a precomputed index I which maps every triple (W,k0, k1) where
W ∈ Σ∗ is a word of length |W | < 4(ρ − 1), and k0, k1 < ρ are integers to
I(W,k0, k1) = L[W [k0; k1]]. Let V ∈ Σ∗ be arbitrary. Then we can compute the
edit-distance lists L(α, k0, k1) where α ranges over the leaves of the search tree
T (V) in time:

O

ρ2N +
∑

α leaf of T (V)

∑
k0,k1<ρ

|L(α, k0, k1)|


Proof. Consider a leaf α in T (V). There are two possibilities: (i) it satisfies

qNα < 1 or (ii) it satisfies Nα < 4(ρ−1). In the former case using the automaton
IA, we can proceed as in Lemma 5.2.1. Thus the list L(α, k0, k1) is either a
nowhere defined function or defined only for Vα[k0; k1] and attaining value 0 at
this word. We can resolve which of these two cases applies in time O(Nα). In
the latter case, when Nα < 4(ρ − 1), the triple (Vα, k0, k1) is in the domain of
I and we can access the edit-distance list:

I(Vα, k0, k1) = L[Vα[k0; k1]] = L(α, k0, k1)

at the cost of a single traversal of Vα[k0, k1] and the size of the edit-distance list.
Summing up we get that the total time required for the initialisation is within
the bounds

O

 ∑
α leaf of T (V)

∑
k0,k1<ρ

(Nα + |L(α, k0, k1)|)


and since

∑
α leaf of T (V)Nα = N and there are ρ2 pairs (k0, k1) we deduce the

initialisation step described above requires:

O

ρ2N +
∑

α leaf of T (V)

∑
k0,k1<ρ

|L(α, k0, k1)|



94CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

for all the leaves α and k0, k1 < ρ.

Procedures ApproximateSearchInitialiseGeneral executes the main initiali-
sation step as described in the proof of the previous Lemma. The procedure
PreComputeIndex uses the algorithm of Mihov and Schulz, [42], i.e. procedure
Search2, in order to compute the required index.

ApproximateSearchInitialiseGeneral(IAr, V ,N, q, α, ρ, I)
//we need additional an inverted index, I, and the parameter ρ

Nα ← N
Vα ← V
if qN < 1 or N < 4(ρ− 1) then

if qN < 1 then
for k0 = 0 to ρ− 1 do

for k1 = 0 to ρ− 1 do
〈T , L〉 ← InitialiseWithTraverse(IAr, V [k0 + 1..N − k1])
〈T (α, k0, k1), L(α, k0, k1)← 〈T , L〉

done
done

else // qN ≥ 1 and N < 4(ρ− 1)
for k0 = 0 to ρ− 1 do

for k1 = 0 to ρ− 1 do
〈T (α, k0, k1), L(α, k0, k1)〉 ← RetrieveFromIndex(I, V [k0+1..N−

k1], bqNc)
done

done
else

Nleft ← dN2 e
Nright ← bN2 c
Vleft ← V [1..Nleft]
Vright ← V [Nleft + 1..N]
ApproximateSearchInitialiseGeneral(IA, Vleft, Nleft, q, α0, ρ, I)
ApproximateSearchInitialiseGeneral(IA, Vright, Nright, q, α1, ρ, I)

InitialiseWithTraverse(A, V)
T ←empty trie with (new) root r
s←the initial state of A
st← TraverseAutomaton(A, s, V)
L← ∅
if st is defined then

u← TraverseTrie(T , r, V)
st(u)← st
B[N]←new empty bucket
B[N].Insert(〈u, 0〉
L.Append(B[N])

return 〈T , L〉

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 95

RetrieveFromIndex(I, V , b)
〈IT [.], IT (.), IL(.)〉 ← I
s←the initial state of IT [b]
u← TraverseAutomaton(IT [b], V)
if u is defined then

return 〈IT (u), IL(u)〉
else

return 〈∅, ∅
fi

PreComputeIndex(Ar,Al, 〈Op, c〉, ρ, q)
N ← 4(ρ− 1)− 1
s←the initial state of Ar
if qN < 1 return ∅
for V ∈ Σ≤N do

for b = 0 to bqNc do
IT [b]←empty trie with root r[b]
N − hood← Search2(Ar,Al, V , b, 〈Op, c〉)
if N − hood 6= ∅

u← TraverseTrie(IT [b], r[b], V
IT (u)←empty trie with root r(u)
IL(u)← ∅
for U ∈ N − hood in deg-lex order do

u′ ← TraverseTrie(IT (u), r(u), U)
st(u)← TraverseAutomaton(Ar, s, U
c(u′)← Edit−Distance(U, V , 〈Op, c〉)
if B[|U |] is not the last bucket in IL(u)

B[|U |]←new empty bucket
IL(u).Append(B[|U |])

fi
B[|U |].Append(〈u′, st(u), c(u′)〉)

done
fi

done
done
return 〈IT [.], IT (.), IL(.)〉

Remark 6.2.3 The idea for an index I was used by Myers, [47], and Baeza-
Yates and Navarro, [49]. However, their indices are tailored for finite languages
(infixes of a long text) and their size depends on the length of the language.
The assumptions in Lemma 6.2.2 are weaker. Specifically the minimal index I
which one can select has a finite domain which is determined by q and ρ and
involves no information for longer words of the language L. Furthermore every
query has a finite number of answers which might depend on the query word,
though. Nevertheless we can rely that such a finite index I with the properties
as described in the Lemma exists. In Section 6.2.4 and in the Appendix we are
going to find an upper bound for its size in terms of ρ and q.

96CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

6.2.2 Extension Steps

The necessity to compute more queries in a single node of the query tree, T (V),
imposes that we compute more edit-distance lists and more intermediate edit-
distance lists. Specifically for every pair k0, k1 ≤ ρ − 1 and each node α of
T (V) we need to compute a edit-distance list L(α, k0, k1) that L-represents the
alignment set:

A≤bα(Vα[k0; k1]).

In order to achieve this for the non-leaf nodes, α, we shall first compute the
edit-distance lists Lr(α, k0, j) that L-represents the alignment sets:

∪ρ−1
k=0

−→
A (INα0

k0+1(Vα0), bα0
k→ I

Nα0+j

k0+1 (Vα0 ◦ Vα1), bα)

and similarly edit-distance lists Ll(α, k1, j) that L-represents the alignment sets:

∪ρ−1
k=0

←−
A (INα−k1

Nα0−j+1(Vα0 ◦ Vα1), bα
k← I

Nα1−k1

k+1 (Vα1), bα1).

As soon as we dispose on the edit-distance lists Lr(α, k0, Nα1−k1) and Ll(α, k1, Nα0−
k0) we can find their join and obtain the edit-distance list L(α, k0, k1). In fact,
due to the reverse manner we handle the left extension, we shall rather have
Lrevl (α, k1, Nα0 − k0). This is exactly what our procedure for union of edit-
distance lists from Chapter 5 is designed for.

We compute the edit-distance lists in increasing order of j. Namely, for fixed
α and k0 we compute the edit-distance lists Lr(α, k0, j) for j = 0, 1, . . . , Nα1

and similarly for fixed α and k1 we compute the edit-distance lists Lrevl (α, k1, j)
for j = 1, 2, . . . , Nα0. The reason for the asymmetry of left and right extensions
is that a left extension never starts with an operation op ∈ Λ and hence we do
not need to compute Lrevl (α, k1, 0) which would correspond to the edit-distance
list Lr(α, k0, 0).

As in the algorithm from Chapter 5, the computation of edit-distance lists
Lr(α, k0, j) and Lrevl (α, k1, j) is reduced to the two main steps: extension
and ε-closure. These two steps are applied interchangingly as prescribed by
Lemma 6.1.8. In particular given that the edit-distance lists Lr(α, k0, j

′) repre-
sent the alignment sets:

−→
Bj′ = ∪ρ−1

k=0A(INα0
k0+1(Vα0), bα0

k→ INα0+j′

k0+1 (Vα0 ◦ Vα1), b)

for j′ = j − 1, j − 2, . . . j − ρ we first compute the edit-distance list L′r(α, k0, j)
that L-represents the alignment set:

B̃j =
j−1⋃

j′=j−ρ

⋃
op=(U,I

Nα0+j
Nα0+j′+1

(Vα0◦Vα1))∈Op

(
−→
Bj ◦ op)≤bα .

In a second step we compute the edit-distance list Lr(α, k0, j) that L-represents
the alignment set:

(B̃j ◦ Λ∗)≤bα .

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 97

With respect to Lemma 6.1.6 we have that (B̃j ◦ Λ∗)≤bα =
−→
Bj and thus

Lr(α, k0, j) will be correctly computed.
A subtle detail is the initialisation of the edit-distance lists Lr(α, k0, j

′) for
j′ ≤ 0. However, it is easy to see that Lr(α, k0,−k) for 0 < k < ρ would be
consistent with the recurrence if it L-represents the alignment set:

A≤bα0(Vα0[k0; k]).

And Lr(α, k0, 0) should L-represent the alignment set:

(A≤bα0(Vα0[k0; 0]) ◦ Λ∗)≤bα .

Thus, we can set Lr(α, k0,−k) = L(α0, k0, k) for 0 < k < ρ and we obtain
Lr(α, k0, 0) with a single ε-step applied on the edit-distance list L(α, k0, 0).

ε-closure steps. At this point we should clarify the ε-closure step. Since it
considers only operations op ∈ Λ it is not concerned by the value ρ(Op) ≥ 1.
Thus, regardless which of the two representations of edit-distance lists (with tries
and buckets, or with deg-lex ordered lists) we use, the ε-step can be performed
in the same (respective) way as in the basic case ρ(Op) = 1. Thus, we have:

Lemma 6.2.4 Let Size′(k0, j) be the size of the representation of the edit-
distance list L′r(α, k0, j) and Size(k0, j) be the size of Lr(α, k0, j), then Lr(α, k0, j)
can be computed in time O(Size(k0, j) + Size′(k0, j)).

Extension steps. The only difference between the basic case ρ(Op) = 1
and the case ρ(Op) ≥ 1 is the presence of a parameter j′ that varies between
j − ρ and j − 1. Actually, if ρ = 1, then j′ = j − 1 is the only integer in this
range. Hence, our algorithm from Chapter 5 should be modified as to reflect
this detail. Thus, if Bk0,j

′

α [n] are the buckets representing the edit-distance
lists L(α, k0, j

′), the allocation of new buckets, Bk0,j
α [n] in the representation

L(α, k0, j), is carried out on the bases not only of j′ = j− 1 but with respect to
j′ = j − 1, j − 2, . . . , j − ρ. Recall, that µ = max{|l(op)| | op ∈ Op}. Thus, we
first compute ρ× (µ+ 1) sets:

S(j′, l) = {n+ l |Bk0,j
′

α [n] is a (nonempty) bucket for L(α, k0, j
′)}.

Here j′ = j − 1, j − 2, . . . , j − ρ and l = 0, 1, . . . , µ. Assuming that the buckets
are originally increasingly sorted with respect to n, we get the sets S(j′, l) in
increasing order as well. Then we can merge them in a single set S = {s1 <
s2 < · · · < s|S|} using a merge sort. Finally, we create the buckets Bk0,j

α [sm]
for m ≤ |S| and we assign l-pointers for each bucket Bk0,j

′

α [n] with j′ < j and
each l ≤ µ which indicates the bucket Bk0,j

α [n + l]. Similarly to Lemma 5.3.1
we can prove that this procedure can be efficiently performed, see procedure
InitialiseBucketsGeneral:

Lemma 6.2.5 Let Mj′ be the number of buckets in Lr(α, k0, j
′), then the cre-

ation of the buckets Bk0,j
α [n] can be carried out in time O (|Mj−1|ρ(µ+ 1) log(ρ(µ+ 1))).

Furthermore, each bucket Bk0,j−1
α [nm] is assigned with an l-pointer to a valid

bucket Bk0,j
α [nm + l].

98CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

InitialiseBucketsGeneral(〈Op, c〉, η, j,L)
//L is an array of lists, e.g. Lr(α, k, .) or Ll(α, k, .)

µ← max{|l(op)| | op ∈ Op}
ρ← max{|r(op)| | op ∈ Op}
for k = 1 to ρ do

for l = 0 to µ do
S[k, l]← ∅

for B[n] ∈ L[j − k] in (increasing) order do
S[k, l].Insert(〈n+ l, n, k〉)

done
done
SOrd←MergeSortGeneral(S, µ, ρ)
last← ⊥
while SOrd 6= ∅ do
〈m,n, k〉 ← SOrd.RemoveF irst()
if m 6= last then

Bnew[m]← new empty block
L[j].Append(Bnew[m])
last← m

fi
l← m− n
B ← B[n] bucket from L[j − k]
B.pointer[l]← Bnew[m]

done

MergeSortGeneral(S, µ, ρ)
H ← ∅ //empty heap of pairs ordered w.r.t. the first component
SOrd← ∅
for k = 1 to ρ do

for l = 0 to µ do
〈m,n〉 ← S[k, l].F irst()
if 〈m,n〉 is defined then

H.InsertToHeap(〈m,n, k〉)
fi

done
done
while H 6= ∅ do
〈m,n, k〉 ← H.ExtractMin()
SOrd.Append(〈m,n, k〉)
l← m− n
〈m next, n next, k next〉 ← S[k, l].Next(〈m,n〉)
if 〈m next, n next, k next〉 is defined then

H.InsertToHeap(〈m next, n next, k next〉)

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 99

fi
done
return SOrd

Filling in the buckets Bk0,j
α [n] can be carried out in essentially the same way

as in Chapter 5. We only need to replace the lines:

1. |r(op)| = 1.

2. r(op) = Ijj (Vα1), i.e. the j-th character of Vα1.

For every such operation, op, we pass through the buckets Bj−1
α [nk] and for each

element 〈u′, c(u′)〉 ∈ Bj−1
α [nk] we proceed in the following way:. . . .

with the lines:

1. |r(op)| ≥ 1.

2. r(op) = Ijj−|r(op)|+1(Vα0 ◦Vα1), i.e. the last |r(op)| characters of Vα0 ◦Vα1.

For every such operation, op, we pass through the buckets Bj−|r(op)|α [nk] and for
each element 〈u′, c(u′)〉 ∈ Bj−|r(op)|α [nk] we proceed in the following way:. . . .

This means that we consider not only the last edit-distance list, but the
last ρ edit-distance lists. A pseudo-code reflecting these changes is presented in
procedure FillBucketsGeneral. Thus, analogously to Lemma 5.3.2 we have:

Lemma 6.2.6 For j′ < j let Size(j′) be the size of the list Lr(α, k0, j
′), i.e.

the number of pairs in all of its buckets. Then the step of filling the buckets
Bk0,j
α performed by the modified algorithm requires O(

∑j−1
j′=j−ρ Size(j

′)) time.
Furthermore upon termination of this step the following two properties hold:

1. u ∈ Act if and only if act(u) = true if and only if 〈u,−1〉 ∈ Bk0,j
α [n] with

n = |label(u)|.

2. L′r(α, k0, j) L-represents B̃j.

FillBucketsGeneral(A, T , 〈Op, c〉, q, V ,Act, α, η,L, j)
//L is an array of lists, e.g. Lr(α, k, .) or Ll(α, k, .)

bα ← q|Vα|
pos← if η = 1 then j else |Vα0| − j + 1
for op ∈ Op with r(op) 6= ε do

if Equal(r(op), V , α, η, j) then // check if r(op) matches at position j in Vαη
for B[n] ∈ L[j − |r(op)|] do

for 〈u′, c′〉 ∈ B[n] do
if c′ + c(op) ≤ bα then

st← TraverseAutomaton(A, st(u′), l(op))

100CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

if st is defined then
u← TraverseTrie(T , u′, l(op))
if act(u) = false then

act(u)← true
st(u)← st
cost(u)← c′ + c(op)
Act.Insert(u)
B[n].pointer[|l(op)|].Insert(〈u,−1〉)

//B[n].pointer[|l(op)|] is actually the bucket B[n+ |l(op)|] of L[j]
fi
if cost(u) > c′ + c(op) then

cost(u)← c′ + c(op)
fi

fi
fi

fi
done

done
fi

done
for B[n] ∈ L[j] do

for 〈u, c〉 ∈ B[n] do
c← cost(u)

done
done

Equal(U, V , α, η, j)
if η = 0 then

sign← 1
end pos← j

else
sign← −1
end pos← j

fi
i← |U |
while i > 0 and U [i] = Vα[end pos] do

i← i− 1
end pos← end pos− sign

done
return i = 0

Corollary 6.2.7 The size of the representation of L′r(α, k0, j) is O(
∑j−1
j′=j−ρ Size(j

′)).

(The size of the trie or other automata are not accounted as a part of the
representation of L′r(α, k0, j).

Proof. Clearly there are at most
∑j−1
j′=j−ρ Size(j

′) buckets allocated for
the L′r(α, k0, j) before the procedure filling-in the buckets is invoked. Since its

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 101

execution requires O(
∑j−1
j′=j−ρ Size(j

′)) total time it cannot modify more than
this amount of the structure of L′r(α, k0, j). Which gives the desired upper
bound.

The important fact here is that the size of a specific edit-distance list Lr(α, k0, j
′)

is involved in the time complexity of its own construction Lr(α, k0, j
′), and the

construction of the next ρ edit-distance lists Lr(α, k0, j
′+1),. . .Lr(α, k0, j

′+ρ).
However, it is not used in any other computations. Therefore each edit-distance
lists contributes at most O(ρ) times to the total complexity of the algorithm.

RightExtension(A, 〈Op, c〉, q, α, V , ρ, L, T)
η ← 1
Nα1 ← |Vα1|
T ← T (α0)
for k0 = 0 to ρ− 1 do
Tr(α, k0)← RightInitialise(A, 〈Op, c〉, q, α, V , k0, Lr)
for j = 1 to Nα1 do

if Lr(α, j′) = ∅ for j′ = j − ρ . . . j − 1 then
Lr(α,Nα1)← ∅
return empty trie

else
RightExtensionStep(A, Tr(α, k0), 〈Op, c〉, q, V ,Act, α, η, Lr, j)

fi
done

done
return T (α, k0)

RightInitialise(A, 〈Op, c〉, q, T , α, V , k0, L)
Tr(α, k0)←new empty trie with root r
for k1 = 0 to ρ− 1 do

Lr(α, k0,−k1)← L(α0, k0, k1)
for B[n] ∈ Lr(α, k0,−k1) do

for 〈u, c〉 ∈ B[n] do
U〈label(T (α0, k0, k1), u)
u′ ← TraverseTrie(Tr(α, k0), r, U)
u← u′

done
done

done
Act← InitialiseActive(T (α, k0), Lr(α, k0, 0)
EpsilonClosure(A, T (α, k0), 〈Op, c〉, q, V ,Act, α, 1, Lr(α, k0, .), 0)
Inactivate(Act, T (α, k0))
return Tr(α, k0)

RightExtensionStep(A, Tr(α, k0), 〈Op, c〉, q, V ,Act, α, η, Lr, j, ρ)
InitialiseBucketsGeneral(〈Op, c〉, η, j, Lr(α, k0, .)

102CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

FillBucketsGeneral(A, T (α, k0), 〈Op, c〉, q, V ,Act, α, η, Lr(α, k0, .), j)
EpsilonClosure(A, T (α, k0), 〈Op, c〉, q, V ,Act, α, η, Lr(α, k0, .), j)
Inactivate(Act, T (α, k0))

done

LeftExtension(A, 〈Op, c〉, q, α, V , ρ, L, T)
η ← 0
Nα0 ← |Vα0|
for k1 = 0 to ρ− 1 do
Tl(α, k1)← LeftInitialise(A, 〈Op, c〉, q, α, V , k1, Ll)
for j = 1 to Nα0 do

if Ll(α, k1, j
′) = ∅ for j′ = j + ρ . . . j + 1 then

Ll(α, k1, Nα0)← ∅
return empty trie

else
LeftExtensionStep(A, Tl(α, k1), 〈Op, c〉, q, V ,Act, α, η, Ll, j, ρ)

fi
done

done
return T (α, k0)

LeftInitialise(A, 〈Op, c〉, q, T , α, V , k1, L)
Tl(α, k1)←new empty trie with root r
Nα0 ← |Vα0|
for k0 = 0 to ρ− 1 do

Ll(α, k1,−k0)← L(α1, k0, k1)
for B[n] ∈ Lr(α, k1, Nα0 + k0) do

for 〈u, c〉 ∈ B[n] do
U〈label(T (α1, k0, k1), u)
u′ ← TraverseTrie(Tl(α, k1), r, U)
u← u′

done
done

done
return Tl(α, k1)

LeftExtensionStep(A, T , 〈Op, c〉, q, V ,Act, α, η, L, k1, j, ρ)
InitialiseBucketsGeneral(〈Op, c〉, η, j, L(α, k1, .))
FillBucketsGeneral(A, T , 〈Op, c〉, q, V ,Act, α, η, Ll(α, k1, .), j)
EpsilonClosure(A, T , 〈Op, c〉, q, V ,Act, α, η, L(α, k1, .), j)
Inactivate(Act, T)

done

Union. The procedures for union of edit-distance lists do not depend on
the specific value ρ(Op). Thus they do not require any modifications and
Lemma 5.3.5 and Lemma 5.3.8 remain valid.

This analysis leads to similar complexity results as the Proposition 5.3.6 and
Proposition 5.3.15 from Chapter 5.

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 103

Proposition 6.2.8 Given a query word V of length |V | = N , the extension
steps of approximate search problem can be solved in time O(T1 + T2) where:

T1 = ρ

ρ−1∑
k=0

∑
α∈TN

Nα0∑
j=1

|Ll(α, k, j)|+
Nα1∑
j=0

|Lr(α, k, j)|


T2 =

ρ−1∑
k0,k1=0

∑
α∈TN

∑
U∈L(α,k0,k1)

|U |.

Proof. The reason for the additional factor of ρ was explained above. The
remaining details can be filled in analogously to Proposition 5.3.6. They are
illustrated in the procedure ApproximateSearchGeneral which generalises the
procedure ApproximateSearch form Chapter 5.

Proposition 6.2.9 If L is finite there is a data structure of size O(||L||) which
enables the execution of the extension steps for every query word V of length N
in time:

O(T1 + T ′2)

where:

T1 = ρ

ρ−1∑
k=0

∑
α∈T (V)

|α1|∑
j=0

|Lr(α, k, j)|+
∑

α∈T (V)

|α0|∑
j=1

|Ll(α, k, j)|

T ′2 =
ρ−1∑

k0,k1=0

∑
α∈TN

|L(α, k0, k1)|.

Proof. The algorithm from Chapter 5 can be generalised in essentially the
same way as the algorithm for the infinite regular language. The details are re-
flected in the procedure ExtensionJoinStepGeneral and the main procedure that
solves the approximate search problem in the finite language case is Approxi-
mateSearchJoinGeneral. The analysis of this algorithm can be thus performed
as in Proposition 6.2.8 combined with Proposition 6.2.8.

ExtensionStepGeneral(IAr, IAl, Tl, L, V , α, 〈Op, c〉, q, ρ)
for k0 = 0 to ρ− 1 do
Tr(α, k0)← RightExtension(IAr, T , 〈Op, c〉, q, α, L, V , k0, ρ)

done
for k0 = 0 to ρ− 1 do

for k1 = 0 to ρ− 1 do
T (α1, k0, k1)← ReverseDistanceList(T (α1, k0, k1), L(α1, k0, k1))

done
done
for k1 = 0 to ρ− 1 do
Tl(α, k1)← LeftExtension(IAr, T , 〈Op, c〉, q, α, L, V , k0, ρ)

104CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

done
for k0 = 0 to ρ− 1 do

for k1 = 0 to ρ− 1 do
Tl(α1, k0, k1)← ReverseDistanceList(Tl(α1, k1), Ll(α1, k1, |Vα0|−k0))

done
done
for k0 = 0 to ρ− 1 do

for k1 = 0 to ρ− 1 do
T (α, k0, k1)← UnionDistanceLists(Tl(α, k1), Tr(α, k0), V , Ll(α, k1, |Vα0|−

k0), Lr(α, k0, |Vα1| − k1), α)
done

done

ApproximateSearchRecursiveGeneral(IAr, IAl, L, V , α, 〈Op, c〉, q, ρ)
if q|Vα|α < 1 or ρ(4|Vα|)− 1 then

return
else
Tr ← ApproximateSearchRecursive(IAr, IAl, L, V , α0, 〈Op, c〉, q, ρ)
Tl ← ApproximateSearchRecursive(IAr, IAl, L, V , α1, 〈Op, c〉, q, ρ)
return ExtensionStepGeneral(IAr, Tr, IAl, Tl, L, V , α, 〈Op, c〉, q, ρ)

fi

ApproximateSearchGeneral(V ,N, q, α, I,A, IAr, IAl, 〈Op, c〉)
ρ← ρ(Op)
ApproximateSearchInitialiseGeneral(A, V ,N, q, ε, ρ, I)
ApproximateSearchRecursiveGeneral(IAr, IAl, L, V , ε, 〈Op, c〉, q, ρ)
for B ∈ L(ε, 0, 0) do

for 〈u, c〉 ∈ B do
W ← label(T (ε, 0, 0), u)
s←initial state of A
if TraverseAutomaton(A, s,W) is defined then

report W
fi

done
done

ExtensionJoinStepGeneral(A, SA, f, 〈Op, c〉, q, V , α, η, L, j)
pos← if η = 1 then j else |Vα0| − j + 1
k ← 0
for op ∈ Op with |r(op)| 6= ε do

k ← k + 1
L(α, j; op)← ∅
for 〈st, l, c〉 ∈ L(α, j − |r(op)|) do

if Equal(r(op), V , α, η, j) then
if η = 1 then

st′ ← ExtendRight(A, st, l(op))
else

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 105

st′ ← ExtendLeft(A, st, l(op))
fi
if st′ is defined and c(op) + c ≤ q|Vα| then

L(α, j; op).Insert(〈st′, l + |l(op)|, c(op) + c〉)
fi

fi
done

done
return Join(L(α, j; .), SA, f, k)

RightExtensionJoinGeneral(A, SA, f, 〈Op, c〉, q, α, V , L, k0, ρ)
for k = 0 to ρ− 1 do

Lr(α, k0,−k)← L(α0, k0, k)
done
Lr(α, k0, 0)← EpsilonClosureJoinStepSimple(A, SA, f, T , 〈Op, c〉, V , α, 1, q, Lr(α, k0, .), 0)
for j = 1 to |Vα1| do

Lr(α, k0, j)← ExtensionJoinStepSimple(A, SA, f, T , 〈Op, c〉, q, V , α, 1, Lr(α, k0, .), j)
Lr(α, j)← EpsilonClosureJoinStepSimple(A, SA, f, T , 〈Op, c〉, V , α, 1, q, Lr(α, k0, .), j)
if Lr(α, k0, j

′) = ∅ for j′ ∈ [j − ρ+ 1; j] return ∅
done
return Lr(α, |Vα1|)

LeftExtensionJoinGeneral(A, SA, f, 〈Op, c〉, q, α, V , L, k1, ρ)
for k = 0 to ρ− 1 do

Ll(α, k1,−k)← L(α1, k, , k1)
done
for j = 1 to |Vα0| do

Ll(α, k1, j)← ExtensionJoinStepSimple(A, SA, f, T , 〈Op, c〉, q, V , α, 0, Ll(α, k1, .), j,)
Ll(α, k1, j)← EpsilonClosureJoinStepSimple(A, SA, f, T , 〈Op, c〉, V , α, 0, q, Ll(α, k1, .), j)
if Ll(α, j) = ∅ for j′ ∈ [j; j + ρ− 1] return ∅

done
return Ll(α, k1, 1)

ExtensionJoinGeneral(A, SA, f, 〈Op, c〉, q, α, V , L, k0, k1, ρ)
LRight← RightExtensionJoinGeneral(A, SA, f, 〈Op, c〉, q, α, V , L, k0, ρ)
LLeft← LeftExtensionJoinGeneral(A, SA, f, 〈Op, c〉, q, α, V , L, k1, ρ)
L(α)← Join({LRight, LLeft}, SA, f, 2)

InitialiseJoinGeneral(I,A, q, α,N, V , L, ρ)
s←initial state of A
if qN < 1 then

for k0 = 0 to ρ− 1 do
for k1 = 0 to ρ− 1 do

st← TraverseRight(A, s, Vα
if st is defined then
L(α, k0, k1)← {〈st,Nα, 0〉}

done

106CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

done
else // qN ≥ 1 and N < 4(ρ− 1)

for k0 = 0 to ρ− 1 do
for k1 = 0 to ρ− 1 do

L(α, k0, k1)← RetrieveFromJoinIndex(I, V [k0+1..N−k1], bqNc)
done

done
fi

RecursiveExtensionJoinGeneral(I,A, SA, f, 〈Op, c〉, q, α, V , L, ρ)
if q|Vα| ≥ 1 and N ≥ 4(ρ− 1) then

RecursiveExtensionJoinGeneral(A, SA, f, 〈Op, c〉, q, α0, V , L)
RecursiveExtensionJoinGeneral(A, SA, f, 〈Op, c〉, q, α1, V , L)
for k0 = 0 to ρ− 1 do

for k1 = 0 to ρ− 1 do
ExtensionJoinGeneral(A, SA, f, 〈Op, c〉, q, α, V , L, k0, k1, ρ)

done
done

else
InitialiseJoinGeneral(I,A, q, α,N, V , L, ρ)

fi

ApproximateSearchJoinGeneral(I,A, SA, f, 〈Op, c〉, q, V)
Nε ← |V |
Vε ← V
RecursiveExtensionJoinGeneral(I,A, SA, f, 〈Op, c〉, q, ε, V , L)
for 〈st, l, c〉 ∈ L(ε, 0, 0) do

if st is final in A
report the word U with st = st(U)

fi
done

RetrieveFromIndex(I, V , b)
〈IT [.], IT (.), IL(.)〉 ← I
s←the initial state of IT [b]
u← TraverseAutomaton(IT [b], V)
if u is defined then

return IL(u)
else

return 〈∅, ∅
fi

PreComputeIndex(A,Al, 〈Op, c〉, ρ, q)
N ← 4(ρ− 1)− 1
s←the initial state of Ar
if qN < 1 return ∅
for V ∈ Σ≤N do

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 107

for b = 0 to bqNc do
IT [b]←empty trie with root r[b]
N − hood← Search2(Ar,Al, V , b, 〈Op, c〉)
if N − hood 6= ∅

u← TraverseTrie(IT [b], r[b], V
IL(u)← ∅
for U ∈ N − hood in deg-lex order do

st(u)← RightTraverse(A, s, U
c(u)← Edit−Distance(U, V , 〈Op, c〉)
IL(u).Append(〈st(u), c(u)〉)

done
fi

done
done
return 〈IT [.], IT (.), IL(.)〉

A subtle detail that is on a level of semantics and not on level of represen-
tation is the following. The left extensions always start with an operation that
is not an insertion while this is not a constraint for the right extensions. Thus
provided that abb has a left child corresponding to ab and a right child corre-
sponding to b, the right extension of ab will generate first aba as a candidate
for ab at edit-distance 1. On the other hand considering the left extension of
the exact match b must start either with a deletion or with a substitution on
the side of ba. Consequently the candidate abab for abb which corresponds to a
left extension of b with aba is not generated, see Figure 6.1. The reason is that
the only way to align abab with abb at cost not exceeding 1 is by deleting the
second a on the side of abab and this is inadmissible. Still abab is generated as
a right extension of ab, Figure 5.2. This asymmetry is reflected also in the shift
of the summing index j when it concerns the left extensions. This detail was
not presented in the basic case algorithm in Chapter 5 for the sake of simplicity.

6.2.3 Reporting the Answers

At the end of the recursive procedure presented in the previous paragraph, we
dispose on several edit-distance lists L(ε, k0, k1). Each of them answers the
query for V [k0; k1] = IN−k1

k0+1 (V). Clearly we need only the answers for the word
V = V [0; 0]. Thus we can discard all but the edit-distance list L(ε, 0, 0) and
handle it in the same way as we did with the edit-distance list L(ε) in Chapter 5.
Analogously to Lemma 6.2.10 we obtain the following result:

Lemma 6.2.10 Assume that for a given query word V we have the edit-distance
list L(ε, 0, 0) determined by the root of search tree T (V). If in addition we
dispose on a deterministic finite state automaton for the language L we can
answer the query:

Given:L ⊆ Σ∗ regular language,
d = (Op, c) an edit-distance,

108CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

R0

R1
R4 R7

R2

R3 R6

R5

R10
R11

R9

R8

a

b

c

b b

b b

b

b

b

c

a a

a

a

a

a

a

b

c

a

b
c

b

b
a

c

1

B[3]

1

1
1

1
0

B[2]

c

Ll(abb)

Inf(({ababb, acbbb}∗)rev)

R2

R9

R8

R5

R3

R3R0

R6

Figure 6.1: The representation of edit-distance lists.

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 109

q ∈ (0; 1) a threshold parameter
Input: V ∈ Σ∗

Output: {U ∈ L | d(U, V) ≤ q|V |}.

in time O(
∑
U∈Dom(L(ε,0,0)) |U |).

Proof. We traverse each word U ∈ Dom(L(ε, 0, 0) with the deterministic finite
state automaton for L. This is done O(|U |) time. If the automaton recognises
U , then we report it as an answer of the query, otherwise we proceed with the
next word in the list. The claimed complexity is then evident.

6.2.4 Memory Bookkeeping

In the construction of the query tree, T (V), in Subsection 6.2.1 we imposed the
requirement that each inner node α of the tree must satisfy |Vα| ≥ 4(ρ − 1).
This is the minimal possible value that guarantees that the infixes considered
in all the subqueries will be well defined. As a result we needed an index, I, in
Lemma 6.2.2 that stores the answers for queries of length less than 4(ρ− 1).

It should be clear that we can substitute the lower bound 4(ρ − 1) with a
bigger value, say 2n0 + 4(ρ − 1). This will lead to the fact that for α 6= ε the
lengths |Vα| ≥ n0+2(ρ−1). The algorithm described in the previous subsections
needs only a subtle adjustment in order to run correctly in this case as well.
Specifically, instead of an index for the words of length less than 4(ρ − 1) we
will need an index for the words of length less than 2n0 + 4(ρ− 1).

The possibility to adjust the parameter n0 has the following effect. In the
next chapter we shall derive an upper bound for the efficiency of the algorithm
described above. Under certain constraints it will turn out that the algorithm
runs fast on average and the bigger the n0 the better the performance. However,
the maintenance of an appropriate index, I, requires space. In order to estimate
the size of I, one can proceed as follows.

Given two positive integers, N and M , we consider all the alignments ω ∈
AN,M with the properties: (i) |r(ω)| = N and (ii) c(ω) ≤ qM . Intuitively,
each such alignment, ω, with cost, c(ω) ≤ qM does not contain more than qM
nonidentity operations because each nonidentity operation costs at least one
unit. Therefore, if we additionally know that r(ω) = V where V is a fixed word
of length N , ω can be regarded in the following way. First we choose the exact
cost c(ω) ∈ {0, 1, . . . , [qM]} of the alignment, then we select the positions in
{0, 1 . . . , N + c(ω)} where a nonidentity operation in ω occurs and finally we
select the operation itself. A careful analysis of this procedure shows that the
number of alignments with fixed right side V of length N and cost not exceeding
qM does not exceed:

[qM]∑
k=0

(
N + k

k

)
|Op|k.

110CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

Formalising the above idea and taking into account that there are |Σ|N words
of length N , in the Appendix we shall formally prove that:

|AN,M | ∈ exp(O(N + qM)).

Clearly, |AN,M | is also an upper bound for the number of pairs of words
(U, V) with |V | = N and d(U, V) ≤ qM . Now we can prove the following
lemma:

Lemma 6.2.11 There is an algorithm, that given an automaton A with lan-
guage L and an integer n0, computes an index I with the following properties:

1. for each n < 2n0 + 4(ρ− 1) and k0, k1 < ρ and each word Vα ∈ Σn, I an
provides the edit-distance list:

L(α, k0, k1) = {〈U, c〉 |U ∈ Inf(L) and d(U, Vα[k0; k1]) = c ≤ q|Vα|}
in time:

O(n+ ||L(α, k0, k1)||)

2. I requires exp(O(2n0 + 4ρ0)) storage space.

Proof. The index I can be constructed as follows, see also procedure Pre-
ComputeIndex. For each n < 2n0 + 4(ρ − 1) we generate the words V ∈ Σn.
We define the bound bn = qmin(2n0 + 4(ρ− 1), n+ 2(ρ− 1)) and determine the
set:

{〈U, c〉 | d(U, V [k0; k1]) = c ≤ bn}
by the means of the algorithm of Mihov and Schulz, [42], for example. We
represent the words V [k0; k1] in a trie T (I). Each node of this trie stores an
additional link to the answers of the above query that are ordered in lists in
increasing order of c.

With this index, we can easily handle the first requirement. Indeed, given a
word V = Vα of length |V | < 2n0 + 4(ρ− 1) and k0, k1 < ρ we traverse the trie
T (I) with the word V [k0; k1]. Clearly, the length, n, of V [k0; k1] satisfies that
|V | ≤ n + 2(ρ − 1) because each of k0 and k1 is smaller than ρ. We also have
that n ≤ |V | < 2n0 + 4(ρ − 1). This implies that q|V | ≤ bn and therefore the
edit-distance list L(α, k0, k1) can be easily computed on the bases of the lists
attached to the node of T (I) corresponding to V [k1; k2]. Indeed, we scan these
lists in order of c until c ≤ q|V |, see procedure RetrieveFromIndex.

Next we argue the space requirements for I. Clearly, the number of pairs
(U, V) with |V | ≤ 2n0 +4(ρ−1)−1 and d(U, V) ≤ qmin(|V |+2(ρ−1), 4(ρ−1))
is bounded by the number of alignments ω ∈ AN,M where N < 2n0 + 4(ρ− 1)
and M = min(N + 2(ρ− 1), 2n0 + 4(ρ− 1)). Since |AN,M | ∈ exp(O(N + qM))
we get:∑
N<2n0+4(ρ−1)

|AN,2n0+4(ρ−1)| ∈
∑

N<4(ρ−1)

exp(O(4q(ρ− 1) +N))

= exp(O(q(4(ρ− 1) + 2n0) + 2n0 + 4(ρ− 1)))
= exp(O((1 + q)(2n0 + 4(ρ− 1))).

6.2. APPROXIMATE SEARCH ALGORITHM, ρ(OP) ≥ 1 111

For each such pair we need additional O(n0 + ρ) space two represent the words
V and U . This concludes the proof.

Remark 6.2.12 In the particular case when n0 = 0, the size of the index, I,
described in the Lemma 6.2.11 has the magnitude of exp((1 + q)4(ρ − 1)) and
thus is of constant size.

112CHAPTER 6. APPROXIMATE SEARCH IN THE GENERAL CASE, ρ(OP) ≥ 1

Chapter 7

Running Time of the
Generalised Myers’
Algorithm

Now, that we have generalised the Myers’ algorithm as to solve the approximate
search problem for arbitrary regular sets, we address its complexity. As in
[47] the main benefit of the algorithm is that it will generate small number
of alignments on average. This implies that the portion of those query words
that require more time is neglectful. Myers shows this for the Levenshtein
edit-distance and a special case of finite languages. In order to extend this
result for arbitrary edit-distance and regular languages, we apply an approach
based on generating functions. It allows us to encode the essential part of the
information of the edit-distance and the regular language in the terms of power
series, where the variables represent the distribution of the individual characters
in the alphabet.

In Chapter 5 we proved the linear time for the initialisation required by
our algorithm and we also provided an estimate of the complexity of the entire
algorithm in terms of the sizes of the generated edit-distance lists. Similar
bounds were derived for the general case in Chapter 6. In this Chapter we
relate the expectation for this value with the characteristics of the given regular
language, L, the generalised edit-distance, (Op, c), and the threshold, q.

The basic results from this chapter were described in [19].

7.1 Average Number of Generated Candidates
during the Extension Steps

We cannot uniformly bound the time required for this step in a nontrivial way.
The reason is that some specific query words, V , may generate exponential
number of different words U ∈ L with d(U, V) ≤ q|V |.

113

114CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

In order to obtain an upper bound in the average-case of our algorithm,
we shall consider some distribution on the query words V ∈ Σ∗. We assume
that this distribution is induced by the independently distributed characters
σ1, . . . σ|Σ| of the input alphabet.

In these settings, it is natural to consider the distribution as a |Σ|-dimensional
vector, where the coordinates correspond to the distinct characters. In a sig-
nificant part of the outline of this subsection, we would not use the specificity
of this vector and it will come into play when the final computation has to be
done.

Hence, we naturally come to the use of generating functions, which should
be considered as multivariable polynomials whose terms ts correspond either
explicitly or implicitly to the type of word ||U ||, i.e. often we shall count some
features of the words of type s in the coefficients of the terms ts. (recall that ts

is a short hand for
∏|Σ|
i=1 t

si
i)

With this remarks in mind, we proceed as follows. Firstly, we shall bound
uniformly alignments the number of alignments ω with a fixed left side l(ω) = U
– an infix of L – and such that c(ω) ≤ q|r(ω)|. Secondly, we shall turn our
viewpoint and changing the summation order we shall obtain an upper bound
for the alignments ω with c(ω) ≤ q|r(ω)|, |r(ω)| is fixed (but not r(ω) itself) and
l(ω) is an infix of the language L. In order to model these quantitative properties
of the language we use generating function gA where A is a finite automaton
with L(A) = L is some ε-free automaton recognising the language L. Thus,
we obtain an upper bound for the average running time of the algorithms from
Chapter 5 and Chapter 6 in terms of the language L, the edit-distance induced
by (Op, c) and the threshold q ∈ (0; 1).

Finally, under convergence assumptions, we prove O(N) time on average for
the algorithms from Chapter 5 and Chapter 6 for query words, V , of length N .
In Section 7.3, we shall give sufficient conditions that guarantee convergence
and thus make the result consistent.

Recall Definition 1.8.1 where we defined ||U ||i to be the number of occur-
rences of the character σi in U and we set:

||U || = (||U ||1, ||U ||2, . . . , ||U |||Σ|).

Next definition plays an important role in our counting technique.

Definition 7.1.1 Let Σ be an alphabet, Σ = {σ1, . . . , σ|Σ|}, and (Op, c) be a
generalised edit-distance over Σ. We define Opε = Op ∩ ({ε} × Σ∗) and Opi =
Op∩(σiΣ∗×Σ∗). The generating functions fε(t1, . . . , t|Σ|, z) and fi(t1, . . . , t|Σ|, z)
with respect to the set of operations Op are introduced as:

fε(t1, . . . , t|Σ|, z) =
∑

(ε,V)∈Opε
t||V ||zc(op) and

fi(t1, . . . t|Σ|, z) =
∑

(U,V)∈Opi
t||V ||−||U ||zc(op).

7.1. AVERAGE NUMBER OF GENERATED CANDIDATES DURING THE EXTENSION STEPS115

We determine the generating function fΣ : R|Σ| × R→ R|Σ| as:

fΣ(t; z) = (f1(t; z), f2(t; z), . . . f|Σ|(t; z)).

Intuitively, each of the terms t||r(op)||−||l(op)||zc(op) encodes the following two
features of the operation op. Firstly, the power of z determines the cost of op.
Secondly, the power (positive or negative) of tj indicates how the application of
op modifies the number of characters σj . Since we shall interpret tj as probabil-
ities for the occurrence of the character σj , t||r(op)||−||l(op)|| for specific t would
encode the the probability of r(op) divided by the probability for l(op).

We illustrate Definition 7.1.1 on the special case of Levenshtein edit-distance
(see Remark 1.3.3):

OpL = Σ× Σ ∪ {ε} × Σ ∪ Σ× {ε}

cL(op) =

{
0, if op = (σi, σi) for some i ≤ |Σ|
1, otherwise.

According to the definition, the sets Opi are given by:

Opi = {σi} × Σ ∪ {σi} × {ε} = {σi} × (Σ ∪ {ε})

because each operation op whose left side l(op) starts with σi is actually of the
form l(op) = σi. Next, the set Opε is specified by:

Opε = {ε} × Σ.

In order to to better understand the function fi(t; z) we simplify the expres-
sion:

fi(t; z) =
∑

op∈Opi
t||r(op)||−||l(op)||zc(op).

By the discussion above, the operations op ∈ Opi is either of the form op =
(σi, σj) or op = (σi, ε) where σj varies in Σ. Hence we obtain:

fi(t; z) =
|Σ|∑
j=1

t||σj ||−||σi||zcL((σi,σj)) + t||σi||−||ε||zcL((σi,ε)).

Now, recall that ||V || is a |Σ|-dimensional vector where the k-th position indi-
cates the number of characters σk in the word V . Therefore:

||σi|| = (0, . . . , 1
↑
i

, . . . , 0) and ||ε|| = (0, . . . , 0).

Thus, the definition of ts =
∏|Σ|
j=1 t

sj
j implies that:

t||σj || = tj , t||σi|| = ti and t||ε|| = 1.

116CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

Plugging this into the expression for fi, we get:

fi(t; z) =
|Σ|∑
j=1

tjt
−1
i zcL((σi,σj)) + t−1

i zcL((σi,ε))

= tit
−1
i zcL((σi,σi)) + t−1

i

∑
j 6=i

tjz
cL((σi,σj)) + t−1

i zcL((σi,ε)).

Now, we use the definition of cL. Since cL((σi, σi)) = 0 and cL((σi, σj)) = 1 for
i 6= j and cL((σi, ε)) = 1, we derive:

fi(t; z) = 1 + t−1
i

∑
j 6=i

tjz + t−1
i z = 1 + t−1

i z

1 +
∑
j 6=i

tj

 .

We observe that the term 1 will always appear in the expressions for fi (con-
sidered as polynomials of z). It is due to the identity operation (σi, σi) which
is of cost 0 and according to the definition of the operation set, Op, is the only
identity operation starting with σi. The rest of the terms of the polynomial
fi(t; z) are edit-distance-specific and they correspond to the nonidentity opera-
tions involving σi as an initial character of the left side of the operations. (But
since the nonidentity operations are of positive cost they can contribute only to
the positive powers of z in fi(t; z))

Next, let us consider the function fε which was defined as:

fε(t; z) =
∑

op∈Opε
t||r(op)||zcL(op).

Note that ||ε|| = (0, 0, . . . , 0) is the |Σ|-dimensional zero vector, and therefore
we can represent fε similarly to fi, i.e.:

fε(t; z) =
∑

op∈Opε
t||r(op)||−||l(op)||zcL(op).

Since Opε = {ε} × Σ we obtain:

fε(t; z) =
|Σ|∑
j=1

t||σj ||−||ε||zcL((σj ,ε)).

As we already discussed, t||σj || = tj and t||ε|| = 1. By the definition of the
Levenshtein edit-distance cL((σj , ε)) = 1 and therefore:

fε(t; z) =
|Σ|∑
j=1

tjz = z

|Σ|∑
j=1

tj .

Although this was only an example, it facilitates us to draw some general
conclusions about the form of the functions fi and fε. Firstly, since c(op) ≥ 0 is

7.1. AVERAGE NUMBER OF GENERATED CANDIDATES DURING THE EXTENSION STEPS117

an integer number for all operations op, the functions fi and fε can be considered
as polynomials of z (with coefficients α(t) which are rational functions of t).
Secondly, since c(op) = 0 if and only if op is an identity operation and the only
identity operations are of the form op = (σi, σi) we deduce that:

fi(t; z) = 1 + zhi(t; z) and fε(t; z) = zhε(t; z)

where hε and hi are polynomials of z with parameters depending on t. This is
due to the fact that only (σi, σi) is an identity operation starting with σi and
that there are no identity operations (ε, V).

Finally, in the framework where ti are probabilities of independently dis-
tributed random variables σi we have that

∑|Σ|
i=1 ti = 1 and ti ∈ (0; 1). Under

these assumptions hi(t; z) and hε(t; z) are uniformly continuous considered as
functions of z and therefore they are bounded when z varies in any finite interval.
Later, we shall benefit from this observation in the special case z ∈ (0; 1).

Definition 7.1.2 Let P (t) and Q(t) be n-dimensional generating functions of
the form:

P (t) =
∑

s∈Zn
a(s)ts and Q(t) =

∑
s∈Zn

b(s)ts

where the coefficients a(s) and b(s) are real numbers for all n-tuples s. We say
that P � Q if and only if:

∀s ∈ Zn(a(s) ≤ b(s)).

It should be clear that � defines a partial ordering on power series. Next,
assume that P � Q are as above and the coefficients a(s) are nonnegative, then
for a nonnegative real-valued vector t ∈ Rn+ such that Q(t) converges, P (t) also
converges and:

P (t) ≤ Q(t).

Furthermore, if P is with nonnegative coefficient, P � Q, and R(t) =
∑

s r(s)ts

is a power series with nonnegative coefficients, then P (t)R(t) � Q(t)R(t).
In order to derive an upper bound for the efficiency of our algorithm, we

proceed in a somewhat implicit way. That is, instead of counting how many
alignments a certain input would invoke, we count in how many different in-
puts a fixed infix U may be generated. This viewpoint motivates the following
definition:

Definition 7.1.3 Let U ∈ Σ∗ be a word, q ∈ (0; 1) be rational and s ∈ N|Σ|,
with A(U, q; s) we denote the set of all alignments ω ∈ Op∗, s.t.:

l(ω) = U, ||r(ω)|| = s and c(ω) ≤ q|r(ω)|.
We set a(U, q; s) = |A(U, q; s)| and with A(U, q) we denote the union of all sets
A(U, q; s) when s varies in N|Σ|. Finally, we set Q(U, q; t) to be the series:

Q(U, q; t) =
∑

s

a(U, q; s)ts,

where s = (s1, . . . , s|Σ|) varies in N|Σ|.

118CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

Next, we show how to uniformly bound the parameters a(U, q; s) in terms
of the generating functions fi and fε and the parameter q which depend only
on the set of operations an the threshold parameter q.

Lemma 7.1.4 Let U ∈ Σ∗ and q ∈ (0; 1) be fixed, then there exists a function
bU,q : Z|Σ| × R→ R with the following properties:

1. for each s ∈ Z|Σ| and each z ∈ (0; 1):

a(U, q; s) ≤ bU,q(s, z).

2. for all real vectors t ∈ R|Σ| and z ∈ R such that fε(z−qt; z) < 1, it holds:

∑
s∈Z|Σ|

bU,q(s, z)ts =
(z−qt)||U ||

1− fε(z−qt; z)

(
fΣ(z−qt; z)

1− fε(z−qt; z)

)||U ||
.

Before stepping to the proof, it is worth mentioning that for q ∈ (0; 1) and t ∈
R|Σ|+ , (specifically, no zero coordinates are allowed) the function fε(z−qt; z) =
zhε(z−qt; z) = O(z−λz) = O(z1−λ) where λ is defined as:

λ = max{−c(op) + 1 + q|r(op)| | op ∈ Opε}.

In particular if λ < 1 we can always find a z ∈ (0; 1) such that fε(z−qt; z) < 1.
Hence both conditions 1 and 2 will be satisfied. On the other hand, if there is an
operation op ∈ Opε with −c(op) + 1 + q|r(op)| ≥ 1, all the words V ∈ {r(op)}∗
will have the property:

V = (r(op))n and d(ε, V) ≤ nc(op) ≤ nq|r(op)| = q|V |.

Thus ε would be close to an infinite set of (longer and longer) words V , which
from certain philosophical point of view seems to be irrelevant.

Proof. (of Lemma 7.1.4) Let U = u1u2 . . . un be a word of length n. Each
alignment ω = op1◦op2 . . . opN with l(ω) = U can be considered in the following
way:

1. a subalignment ωε = op′j1 ◦ op′j2 ◦ · · · ◦ op′jk of all operations of ω such
that op′ji ∈ Opε. In particular, the number of these operations is |ωε| = k
within ω. (Note, that subalignment means that j1 < j2 < · · · < jk.)

2. a subalignment ωΣ = op′′j1 ◦ op′′j2 · · · ◦ op′′jN−k of ω which consists of all
operations op′′ji 6∈ Opε.

3. a sequence of βω ∈ {0, 1}N which contains k zeroes and N − k ones such
that:

βω(j) = 0 ⇐⇒ opj ∈ Opε.

7.1. AVERAGE NUMBER OF GENERATED CANDIDATES DURING THE EXTENSION STEPS119

Clearly, given the data 〈ωε, ωΣ, βω〉 we can uniquely reconstitute the align-
ment ω. To this end it suffices to shuffle the sequences ωε and ωΣ as encoded
in βω.

In order to satisfy the property a(U ; s) ≤ bU,q(s; z) for all z ∈ (0; 1) we are
searching for a power series P (t; z) such that:

Q(U, q; t) =
∑
s∈Z

a(U, q; s)ts � P (t; z)

for all z ∈ (0; 1). If we manage to determine such a power series P (t; z) we can
simply set bU,q(s; z) = [ts]P (t; z).

We approach the problem in the sequel by replacing the sum over s ∈ Z
with a sum over all alignments in A(U) = A(U, q). This can be easily achieved
as follows: ∑

s∈Z
a(U, q; s)ts =

∑
s∈Z

∑
ω∈A(U,q;s)

t||r(ω)||

=
∑

ω∈A(U)

t||r(ω)||.

As we already explained we can think of ω = 〈ωε, ωΣ, βω〉 where ωε ∈ (Opε)∗,
ωΣ ∈ Op∗ \ (Opε)∗ and βω ∈ {0, 1}∗ with |ωε| zeroes and |ωΣ| ones. Each such
alignment ω belongs to A(U) if and only if:

l(ω) = U and c(ω) = c(ωΣ) + c(ωε) ≤ q|r(ω)|.

Observe also that ||r(ω)|| = ||r(ωε)||+ ||r(ωΣ)||. We use the notion ||β||0 for the
number of zeroes and ||β||1 for the number of ones for a word β ∈ {0, 1}∗ and
OpΣ = Op \Opε. Hence we obtain:∑
s∈Z

a(U, q; s)ts =
∑

ω∈A(U)

t||r(ω)||

=
∑

ωε∈(Opε)∗

∑
ωΣ∈(OpΣ)∗,l(ωΣ)=U,

c(ωε)+c(ωΣ)≤q|r(ωε)|+q|r(ωΣ)|

∑
β∈{0,1}∗
||β||0=|ωε|
||β||1=|ωΣ|

t||r(ωε||+||r(ωΣ||

=
∑

ωε∈(Opε)∗

∑
ωΣ∈(OpΣ)∗,l(ωΣ)=U,

c(ωε)+c(ωΣ)≤q|r(ωε)|+q|r(ωΣ)|

(|ωε|+ |ωΣ|
|ωε|

)
t||r(ωε||+||r(ωΣ||.

We use the following two simple observations which allow us to overcome the
technical problems in this summation and still obtain an appropriate upper
bound. Firstly, |ωΣ| ≤ n since each operation op′′ji ∈ OpΣ implies that |l(op′′ji)|| ≥
1 and l(ωε) = ε. Therefore:

n = |l(ωΣ| =
|ωΣ|∑
i=1

|l(op′′ji)| ≥ |ωΣ|.

120CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

This implies that
(
n+|ωε|
|ωε|

)
≥
(|ωΣ|+|ωε|
|ωε|

)
. Subsequently we obtain:

∑
s∈Z

a(U, q; s)ts =
∑

ωε∈(Opε)∗

∑
ωΣ∈(OpΣ)∗,l(ωΣ)=U,

c(ωε)+c(ωΣ)≤q|r(ωε)|+q|r(ωΣ)|

(|ωε|+ |ωΣ|
|ωε|

)
t||r(ωε||+||r(ωΣ||

�
∑

ωε∈(Opε)∗

∑
ωΣ∈(OpΣ)∗,l(ωΣ)=U,

c(ωε)+c(ωΣ)≤q|r(ωε)|+q|r(ωΣ)|

(|ωε|+ n

|ωε|

)
t||r(ωε||+||r(ωΣ||.

The second observation aims to remove the condition c(ωε)+c(ωΣ) ≤ q|r(ωε)|+
q|r(ωΣ)| from the summing and still preserve the sum from blowing up. We
achieve this by introducing a fresh variable z ∈ (0; 1). It is rather straightforward
that:

∀ω ∈ Op∗[zc(ω)−q|r(ω)| ≥ 0] and
zc(ω)−q|r(ω)| ≥ 1 ⇐⇒ c(ω)− q|r(ω)| ≤ 0 ⇐⇒ c(ω) ≤ q|r(ω)|.

Finally, zc(ω)−q|r(ω)| = zc(ωε)−q|r(ωε)|zc(ωΣ)−q|r(ωΣ)|. Therefore for each z ∈
(0; 1) we obtain:

∑
s∈Z

a(U, q; s)ts �
∑

ωε∈(Opε)∗

∑
ωΣ∈(OpΣ)∗,l(ωΣ)=U,

c(ωε+c(ωΣ)≤q|r(ωε)|+q|r(ωΣ)|

(|ωε|+ n

|ωε|

)
t||r(ωε||+||r(ωΣ||

�
∑

ωε∈(Opε)∗

∑
ωΣ∈(OpΣ)∗

l(ωΣ)=U

(|ωε|+ n

|ωε|

)
t||r(ωε||+||r(ωΣ||zc(ωε)−q|r(ωε|zc(ωΣ)−q|r(ωΣ)|.

Now we can single out the sums over ωε and ωΣ and obtain:

∑
s∈Z

a(U, q; s)ts �
∑

ωε∈(Opε)∗

(|ωε|+ n

|ωε|

)
t||r(ωε||zc(ωε)−q|r(ωε|

∑
ωΣ∈(OpΣ)∗

l(ωΣ)=U

t||r(ωΣ||zc(ωΣ)−q|r(ωΣ|

=
∑

ωε∈(Opε)∗

(|ωε|+ n

|ωε|

)
(z−qt)||r(ωε||zc(ωε)

∑
ωΣ∈(OpΣ)∗

l(ωΣ)=U

(z−qt)||r(ωΣ)||zc(ωΣ).

We bound uniformly each of the two sums. First we deal with the easier

7.1. AVERAGE NUMBER OF GENERATED CANDIDATES DURING THE EXTENSION STEPS121

one:∑
ωε∈(Opε)∗

(|ωε|+ n

|ωε|

)
(z−qt)||r(ωε||zc(ωε) =

∞∑
k=0

∑
ωε∈(Opε)k

(|ωε|+ n

|ωε|

)
(z−qt)||r(ωε||zc(ωε)

=
∞∑
k=0

∑
ωε=op1◦op2···◦opk

opj∈Opε

(
k + n

k

) k∏
j=1

(z−qt)||r(ωε||zc(ωε)

=
∞∑
k=0

(
k + n

k

) ∑
op1◦op2···◦opk
opj∈Opε

(z−qt)
Pk
j=1 ||r(opj ||z

Pk
j=1 c(opj)

=
∞∑
k=0

(
k + n

k

) ∑
op1◦op2···◦opk
opj∈Opε

k∏
j=1

(z−qt)||r(opj)||zc(opj)

=
∞∑
k=0

(
k + n

k

)
fkε (z−qt; z).

Finally, we step to the sum:

R(t; z) =
∑

ωΣ∈(OpΣ)∗,l(ωΣ)=U

(z−qt)||r(ωΣ)||zc(ωΣ)

Our aim is to show that:

R(t; z) � (z−qt)||U ||f ||U ||Σ (z−qt; z).

First, note that ||r(ωΣ)|| = ||l(ωΣ||+ (||r(ωΣ|| − ||l(ωΣ)||). Since l(ωΣ) = U , we
get:

R(t; z) =
∑

ωΣ∈(OpΣ)∗,l(ωΣ)=U

(z−qt)||l(ωΣ||(z−qt)||r(ωΣ)||−||l(ωΣ||zc(ωΣ)

= (z−qt)||U ||
∑

ωΣ∈(OpΣ)∗,l(ωΣ)=U

(z−qt)||r(ωΣ)||−||l(ωΣ||zc(ωΣ).

Next we manipulate the sumR1(t; z) =
∑
ωΣ∈(OpΣ)∗,l(ωΣ)=U (z−qt)||r(ωΣ)||−||l(ωΣ||zc(ωΣ)

by unfolding each alignment operation by operation:

R1(t; z) =
∑

ωΣ∈(OpΣ)∗,l(ωΣ)=U

(z−qt)||r(ωΣ)||−||l(ωΣ)||zc(ωΣ)

=
∑

op1◦op2···◦opm∈(OpΣ)∗

l(op1)◦l(op2)...l(opm)=U

(z−qt)
Pm
j=1 ||r(opj)||−||l(opj)||z

Pk
j=1 c(opj)

=
∑

op1◦op2···◦opm∈(OpΣ)∗

l(op1)◦l(op2)...l(opm)=U

k∏
j=1

(z−qt)||r(opj)||−||l(opj)||zc(opj)

122CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

Let uj = σij for j = 1 . . . n. We weaken the constraint l(op1)◦l(op2) . . . l(opm) =
U by replacing it with a requirement only on the first character of l(opi). Specifi-
cally, the first character of l(opi) has to match the corresponding character of U ,
but the next characters are not forced to this constraint. Formally we require:

l(op1) ∈ Opi1 and l(opj) ∈ OpiP
j′<j |l(opj′)|+1 .

Clearly, since the coefficient before each term ts is some power of z we get a
non-smaller power series:

R1(t; z) =
∑

op1◦op2···◦opm∈(OpΣ)∗

l(op1)◦l(op2)...l(opm)=U

k∏
j=1

(z−qt)||r(opj)||−||l(opj)||zc(opj)

�
∑

op1◦op2···◦opm
l(op1)∈Opi1 and l(opj)∈OpiP

j′<j |l(opj′)|+1

k∏
j=1

(z−qt)||r(opj)||−||l(opj)||zc(opj)

Finally we can uniquely map each such term to a term with the same value by
adding to the set of operations the identity operations (σji , σji) ∈ Opji for al ji
such that:

∃k ≤ m[
∑
j′≤k
|l(opj′)| < ji <

∑
j′≤k+1

|l(opj′)|],

that is in the case that uj is covered by the operation opk+1 but uj is not the
starting position of opk+1 we map it to the identity operation which has the
characteristics ||r((σj , σj))|| − ||l((σj , σj)|| = 0 and c((σj , σj)) = 0. Clearly this
mapping is injective since it is uniquely determined by the set of operations opj .
Therefore:

R1(t; z) �
∑

op1◦op2···◦opm
l(op1)∈Opi1 and l(opj)∈OpiP

j′<j |l(opj′)|+1

k∏
j=1

(z−qt)||r(opj)||−||l(opj)||zc(opj)

�
∑

op1◦op2···◦opn
l(opj)∈Opji

k∏
j=1

(z−qt)||r(opj)||−||l(opj)||zc(opj)

=
|Σ|∏
i=1

f
||U ||i
i (z−qt; z) = f

||U ||
Σ (z−qt; z).

Therefore we obtain that:

R(t; z) = (z−qt)||U ||R1(t; z) � (z−qt)||U ||f ||U ||Σ (z−qt; z)

7.1. AVERAGE NUMBER OF GENERATED CANDIDATES DURING THE EXTENSION STEPS123

This already proves that:

∑
s∈Z

a(U, q; s)ts �
∞∑
k=0

(
n+ k

k

)
fkε (z−qt; z)R(t; z)

� (z−qt)||U ||f ||U ||Σ (z−qt; z)
∞∑
k=0

(
n+ k

k

)
fkε (z−qt; z).

Now setting:

bU,q(s, z) = [ts](z−qt)||U ||f ||U ||Σ (z−qt; z)
∞∑
k=0

(
n+ k

k

)
fkε (z−qt; z)

we get the result for the first part of the lemma and in the particular case that
0 ≤ fε(z−qt; z) < 1 we obtain:

∑
s∈Z|Σ|

bU,q(s, z)ts = (z−qt)||U ||f ||U ||Σ (z−qt; z)
∞∑
k=0

(
n+ k

k

)
fkε (z−qt; z)

= (z−qt)||U ||f ||U ||Σ (z−qt; z)
1

(1− fε(z−qt; z))|U |+1

=
(z−qt)||U ||

1− fε(z−qt; z)

(
fΣ(z−qt; z)

1− fε(z−qt; z)

)||U ||
.

For the main result in this Section we shall use the Definition 1.8.8 from
Chapter 1. Formally, to each automaton A with no ε-transitions it assigns the
power series:

gA(t) =
∑

π∈Π(A)

t||λ(π)||.

Finally, we define the measure we are actually interested in – the number
of infixes of a given language which will be considered by the algorithms in
Chapter 5 and Chapter 6 by an input V .

Definition 7.1.5 For a word V ∈ Σ∗, language L and a rational number q ∈
(0; 1) we denote with GenL(V, q) the set of all alignments ω ∈ Op∗ such that
l(ω) ∈ Inf(L), r(ω) = V and c(ω) ≤ q|V |. Formally:

GenL(V, q) = {ω ∈ Op∗ | l(ω) ∈ Inf(L) & r(ω) = V & c(ω) ≤ q|V |}.

We set genL(V, q) = |GenL(V, q)|.

Based on Lemma 7.1.4 we are able to uniformly bound the values genL(V):

124CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

Lemma 7.1.6 Let A = 〈Σ, Q, I,∆, T 〉 be an automaton and q ∈ (0; 1) be a
rational number. Define the functions vi : R|Σ|×R→ R and v : R|Σ|×R→ R|Σ|
as:

vi(t, z) = z−qti
fi(z−qt; z)

1− fε(z−qt; z)
v(t; z) = (v1(t; z), . . . , vm(t; z)).

Then for each positive real vector t ∈ R|Σ|+ and a real number z ∈ (0; 1) with the
properties fε(z−qt; z) < 1, it holds:∑

V ∈Σ∗ genL(A)(V, q)t||V || ≤ gA(v(t,z))
1−fε(z−qt;z)∑

V ∈Σ∗
∑
ω∈GenL(A)(V,q)

|l(ω)|t||V || ≤∑|Σ|i=1
vi(t;z)

1−fε(z−qt;z)
∂gA
∂vi

(v(t; z)).

Note that gA(v(t; z)) may be ∞ if the power series diverge. In this case the
the inequalities hold for trivial reasons. The interesting case is when gA(v(t; z))
converges. In Section 7.3 we shall consider some sufficient properties of the
automaton A and the edit-distance which guarantee convergence.

Proof. (of Lemma 7.1.6) Note that ω ∈ GenL(A)(V, q) implies that there
c(ω) ≤ q|r(ω)| and therefore V = r(ω) ∈ A(l(ω), q). Conversely if an alignment
ω belongs to the set A(U, q) for some infix U ∈ Inf(L), then clearly ω ∈
GenL(A)(r(ω), q). Thus we obtain:∑

V ∈Σ∗

genL(A)(V)t||V || =
∑
V ∈Σ∗

∑
ω∈GenL(A)(V,q)

t||V ||

=
∑

U∈Inf(L(A))

∑
ω∈A(U,q)

t||r(ω)||

=
∑

U∈Inf(L(A))

∑
s∈Z|Σ|

a(U, q; s)ts.

Now, for a fixed infix U and fε(z−qt; z) < 1, Lemma 7.1.4 states that:∑
s∈Z|Σ|

a(U ; s)ts �
∑

s∈Z|Σ|
bU,q(s, z)ts and

∑
s∈Z|Σ|

bU,q(s, z)ts =
(z−qt)||U ||

1− fε(z−qt; z)

(
fΣ(z−qt; z)

1− fε(z−qt; z)

)||U ||

However, the right hand side of this equality is precisely v||U||(t,z)
1−fε(z−qt;z) . Thus,

since t is a positive real vector we obtain:∑
s∈Z|Σ|

a(U, q; s)ts ≤ 1
1− fε(z−qt; z)

v(t, z)||U ||.

7.1. AVERAGE NUMBER OF GENERATED CANDIDATES DURING THE EXTENSION STEPS125

Now, it is obvious that:∑
V ∈Σ∗

genL(A)(V, q)t||V || ≤
1

1− fε(z−qt; z)
∑

U∈Inf(L(A))

v(t; z)||U ||

≤ 1
1− fε(z−qt; z)

gA(v(t; z)).

The last inequality follows by the fact that each infix of L(A) corresponds to
at least one path in A and the observation that v(t, z) is a nonnegative vector.
For the second part of the Lemma note that:∑
V ∈Σ∗

∑
ω∈GenL(A)(V,q)

|l(ω)|t||V || =
∑

U∈Inf(L(A))

∑
ω∈A(U,q)

|l(ω)|t||r(ω)||

=
∑

U∈Inf(L(A))

∑
ω∈A(U,q)

|U |t||r(ω)||

� 1
1− fε(z−qt; z)

∑
U∈Inf(L(A))

|U |v||U ||(t; z)

=
1

1− fε(z−qt; z)
∑

U∈Inf(L(A))

|Σ|∑
i=1

vi(t; z)
∂v||U ||

∂vi
(t; z)

=
1

1− fε(z−qt; z)

|Σ|∑
i=1

vi(t; z)
∂
∑
U∈Inf(L(A)) v||U ||

∂vi
(t; z)

� 1
1− fε(z−qt; z)

|Σ|∑
i=1

vi(t; z)
∂gA
∂vi

(v(t; z))

=
|Σ|∑
i=1

vi(t; z)
1− fε(z−qt; z)

∂gA
∂vi

(v(t; z))

The result from Lemma 7.1.6 refers to all the words V ∈ Σ∗. If we consider
more carefully the proof, we will realise that it can be strengthened if we are
interested only of long enough words V ∈ Σ∗. Indeed, if N is a fixed integer
and V ∈ Σ∗ is of length |V | ≥ N , then all the alignments ω ∈ GenL(V, q) have
the property:

c(ω) ≤ q|V |.
Now, for every operation op ∈ Op we have that |r(op)| − |l(op)| ≤ ρ and fur-
thermore |r(op)| − |l(op)| > 0 implies that c(op) ≥ 1. Therefore:

q|V | ≥ c(ω) ≥ 1
ρ

(|r(ω)| − |l(ω)|).

Since r(ω) = V , we deduce that |l(ω)| ≥ (1
ρ − q)|V | ≥ (1

ρ − q)N . Therefore
words U ∈ Inf(L) of length less than (1

ρ − q)N will never belong to some set

126CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

GenL(V, q) provided that |V | ≥ N . Thus, if we are interested only of the words
generated by words V of length |V | ≥ N we can replace the generating function
gA that reflects all the infixes in L(A) with the generating function gA,n that
reflects the infixes in L(A) of length at least n = (1

ρ − q)N . Formally, we obtain
the following result:

Corollary 7.1.7 In the notation of Lemma 7.1.6 if n0 is positive integer and
1
ρ > q, and n1 = (1

ρ − q)n0, then for each positive real vector t ∈ R|Σ|+ and a real
number z ∈ (0; 1) with the properties fε(z−qt, z) < 1, it holds:

∑
V ∈Σ∗ genL(A)(V, q)t||V || ≤ gA,n1 (v(t,z))

1−fε(z−qt;z)∑
V ∈Σ∗

∑
ω∈GenL(A)(V,q)

|l(ω)|t||V || ≤∑|Σ|i=1
vi(t;z)

1−fε(z−qt;z)

∂gA,n1
∂vi

(v(t; z)).

7.2 Average Time Complexity of the Extension
Steps

The technique developed in the previous section allows us to estimate the run-
ning time of the algorithms described in Chapter 5 and Chapter 6. The analysis
is carried out on average under the assumption of independent distribution of
the characters σ1, σ2, . . . , σ|Σ| in the alphabet Σ.

We start with the following folklore which is however useful for the complete
understanding of the result:

Lemma 7.2.1 Let pr : Σ → (0; 1) be a probability on Σ. Assume that the
characters of Σ are independently distributed in Σ∗ with distribution pr. Let
ti = pr(σi) for i = 1 . . . |Σ| and j, n,N ∈ N be such that j+n ≤ N . If W ∈ Σn,
then: ∑

Ij+nj+1 (V)]=W

pr(V |V ∈ ΣN) = t||W ||.

Proof. Indeed since the characters in Σ are independently distributed we
have that:

pr(V |V ∈ ΣN) = t||V || = t||I
j
1(V)||t||I

j+n
j+1 (V)||t||I

N
j+n+1(V)||.

7.2. AVERAGE TIME COMPLEXITY OF THE EXTENSION STEPS 127

Now using once again the independence of the characters’ distribution we obtain:∑
Ij+nj+1 (V)=W

pr(V |V ∈ ΣN) =
∑
V ∈ΣN

Ij+nj+1 (V)=W

pr(V)

=
∑
V ∈ΣN

Ij+nj+1 (V)=W

t||I
j
1(V)||t||I

j+n
j+1 (V)||t||I

N
j+n+1(V)||

=
∑
V ∈ΣN

Ij+nj+1 (V)=W

t||I
j
1(V)||t||W ||t||I

N
j+n+1(V)||

= t||W ||
∑
V1∈Σj

t||V1||
∑

V2∈ΣN−j−n

t||V2||

= t||W ||.

Proposition 7.2.2 Let pr : Σ → (0; 1) be a probability and ti = pr(σi) for
σi ∈ Σ. Let q ∈ (0; 1) and z ∈ (0; 1) be such that fε(z−4qt; z) < 1 and
fε(z−2qt; z) < 1. Define the functions vi(t; z) and v

(2)
i (t; z), and v(t; z) and

v(2)(t; z) as:

vi(t; z) = z−2qtifi(z
−2qt;z)

1−fε(z−2qt;z)

v(t; z) = (v1(t; z), v2(t; z), . . . , v|Σ|(t; z)

v
(2)
i = z−4qtifi(z

−4qt;z)
1−fε(z−4qt;z)

v(2)(t; z) = (v(2)
1 (t; z), v(2)

2 (t; z), . . . , v(2)
|Σ|(t; z).

If A is a finite state automaton with language L = L(A) and generating function
gA and N ∈ N then the expected running time EV ∈ΣNT (V) of the algorithm in
Chapter 6, is bounded by:

EV ∈ΣNT (V) ≤ 2c0N

 gA(v(2)(t; z))
1− fε(z−4qt; z)

+
|Σ|∑
i=1

vi(t; z)
1− fε(z−2qt; z)

∂gA
∂vi

(v(t; z))

 ,

where c0 = c0(Op) is some global constant.

Proof. For a fixed a word V ∈ ΣN and ρ = ρ(Op), let:

T0(V) =
∑
α∈T (V)

∑ρ−1
k=0

∑|Vα1|
j=0 |Lr(α, k, j)|

T1(V) =
∑
α∈T (V)

∑ρ−1
k=0

∑|Vα0|
j=1 |Ll(α, k, j)|

T2(V) =
∑
α∈T (V)

∑ρ−1
k0=0

∑ρ−1
k1=0

∑
U∈L(α,k0,k1) |U |.

128CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

Then by Proposition 6.2.8 there exists a constant c0 = c0(Op) such that the
time spent for answering the query V is T (V) ≤ c0(T0(V) + T1(V) + T2(V)).
Therefore:

EV ∈ΣNT (V) ≤ c0(EV ∈ΣNT0(V) + EV ∈ΣNT1(V) + EV ∈ΣNT2(V)).

Next we have that |Lr(α, k, j)| ≤ genL(W, 4q) where W = I
Nα0+j

k+1 (Vα). This
follows by the following argument. Each pair 〈U, cU 〉 ∈ Lr(α, k, j) has the
property that d(U,W) ≤ q|Vα|. Now taking into account that k ≤ ρ − 1 and
|Vα0| ≥ |Vα|2 we deduce that:

|Vα| ≤ 2|Vα0| ≤ 2|INα0
k+1 (Vα0)|+ 2k ≤ 4|INα0

k+1 (Vα0)| ≤ 4|W |.

Similar argument shows that |Ll(α, k, j)| ≤ genL(W ; 4q) whereW = INα−kNα0−j(Vα).

However, here we use that j ≥ 0 and |Vα1| ≥ |Vα|−1
2 which yields the same result.

We consider each of the terms EV ∈ΣNT0(V), EV ∈ΣNT1(V) and EV ∈ΣNT2(V)
separately. However the arguments for the first two are very similar. We start
with EV ∈ΣNT0(V). Note that the structure of the tree T (V) depends only on
the length N = |V | of V . Thus, we can consider T (V) = T (N) and we set
Nα = |Vα|. Hence:

EV ∈ΣNT0(V) =
∑
V ∈ΣN

pr(V)
∑

α∈T (V)

ρ−1∑
k=0

|Nα1|∑
j=0

genL(INα0+j
k+1 (Vα), 4q)

=
∑

α∈T (N)

ρ−1∑
k=0

|Nα1|∑
j=0

∑
V ∈ΣN

genL(INα0+j
k+1 (Vα), 4q)pr(V)

=
∑

α∈T (N)

ρ−1∑
k=0

|Nα1|∑
j=0

∑
W∈ΣNα0−k+j

∑
V ∈ΣN

I
Nα0+j
k+1 (Vα)=W

genL(W, 4q)pr(V)

=
∑

α∈T (N)

ρ−1∑
k=0

|Vα1|∑
j=0

∑
W∈ΣNα0−k+j

genL(W, 4q)
∑
V ∈ΣN

k−1Vα0◦(j]Vα1=W

pr(V)

=
∑

α∈T (N)

ρ−1∑
k=0

|Vα1|∑
j=0

∑
W∈ΣNα0−k+j

genL(W, 4q)pr(W)

=
∑

α∈T (N)

ρ−1∑
k=0

|Vα1|∑
j=0

∑
W∈ΣNα0−k+j

genL(W, 4q)t||W ||

where the last two equalities follow by Lemma 7.2.1. Now suppose that the
triples 〈α, k1, j1〉 and 〈β, k2, j2〉 specify the same subintervals in [1;N]. Since
Nα ≥ 4(ρ−1) and k1 < ρ and similarly Nβ ≥ 4(ρ−1) and k2 ≤ ρ−1, we get that
β is an ancestor of α or vice versa and k1 = k2. W.l.o.g. assume that β is an

7.2. AVERAGE TIME COMPLEXITY OF THE EXTENSION STEPS 129

ancestor of α. Hence β has as descendants α0 and α1. Now I
Nβ0
k2+1(Vβ) properly

contains INαk1+1(Vα) unless β0 = α. In the former case INαk1+1(Vα) = I
Nβ0+j2
k1+1 (Vβ)

if and only if j1 = Nα1 and j2 = 0. Hence each subinterval of [1;N] is described
by at most two triples 〈α, k, j〉. Since there are at most O(N) subintervals of
[1;N] of certain length |W | we obtain:

EV ∈ΣNT0(V) =
∑

α∈T (N)

ρ0∑
k=0

|Vα1|∑
j=0

∑
W∈Σ|Vα0|−k+j

genL(W, 4q)t||W ||

≤ 2N
N∑
n=0

∑
W∈Σn

genL(W, 4q)t||W ||

≤ 2N
∞∑
n=0

∑
W∈Σn

genL(W, 4q)t||W ||

≤ 2N
gA(v(2)(t; z))

1− fε(z−4qt; z)
.

The last inequality follows by the first part of Lemma 7.1.6.

Analogously, one can show that:

EV ∈ΣNT1(V) ≤ 2
gA(v(2)(t; z))

1− fε(z−4qt; z)
.

Finally, consider the expectation EV ∈ΣNT2(V). Here, we use that a pair
〈U, cU 〉 ∈ L(α, k0, k1) will be generated if and only if d(U,W) = cU ≤ q|Vα|
where W = Vα[k0; k1]. However, since k0, k1 ≤ ρ− 1 and Nα = |Vα| ≥ 4(ρ− 1)
for every inner node α, we obtain that:

|W | ≥ |Vα| − 2(ρ− 1) ≥ |Vα| −
|Vα|

2
=
|Vα|

2
.

This implies that for every pair 〈U, cU 〉 ∈ L(α, k0, k1), there is an alignment

130CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

ω ∈ Gen(W, 2q) with l(ω) = U . Therefore we can write:

EV ∈ΣNT2(V) =
∑
V ∈ΣN

T2(V)pr(V)

≤
∑
V ∈ΣN

ρ−1,ρ−1∑
k0,k1=0

∑
Pα∈T (N)

∑
ω∈Gen(Vα[k0;k1],2q)

|l(ω)|pr(V)

=
ρ−1,ρ−1∑
k0,k1=0

∑
α∈T (N)

∑
W∈ΣNα−k0−k1

∑
V ∈ΣN

Vα[k0;k1]=W

∑
ω∈Gen(W,2q)

|l(ω)|pr(V)

=
ρ−1,ρ−1∑
k0,k1=0

∑
α∈T (N)

∑
W∈ΣNα−k0−k1

∑
ω∈Gen(W,2q)

|l(ω)|
∑
V ∈ΣN

Vα[k0;k1]=W

pr(V)

=
ρ−1,ρ−1∑
k0,k1=0

∑
α∈T (N)

∑
W∈ΣNα−k0−k1

∑
ω∈Gen(W,2q)

|l(ω)|pr(W)

=
ρ−1,ρ−1∑
k0,k1=0

∑
α∈T (N)

∑
W∈ΣNα−k0−k1

∑
ω∈Gen(W,2q)

|l(ω)|t||W ||.

Clearly, for different triples 〈α, k0, k1〉 the subintervals Vα[k0; k1] define different
subintervals of [1;N]. Therefore:

EV ∈ΣNT2(V) ≤
ρ−1,ρ−1∑
k0,k1=0

∑
α∈T (N)

∑
W∈ΣNα−k0−k1

∑
ω∈Gen(W,2q)

|l(ω)|t||W ||

≤ N

N∑
n=0

∑
W∈Σn

∑
ω∈Gen(W,2q)

|l(ω)|t||W ||

≤ N

∞∑
n=0

∑
W∈Σn

∑
ω∈Gen(W,2q)

|l(ω)|t||W ||

≤ N

|Σ|∑
i=1

vi(t; z)
1− fε(z−2qt; z)

∂gA
∂vi

(v(t; z))

The last inequality follows by the second part of Lemma 7.1.6. Summing up we
get that the expected time of the algorithm in Chapter 6 is:

EV ∈ΣNT (V) ≤ c0(EV ∈ΣNT0(V) + EV ∈ΣNT1(V) + EV ∈ΣNT2(V)).

Under the assumptions that gA(v(2)(t; z)) and ∂gA
∂vi

(v(t; z)) converge we get that
EV ∈ΣNT (V) ∈ O(N) since the set of operations Op is of fixed.

Taking into account Corollary 7.1.7 and the discussion from Chapter 6, Sub-
section 6.2.4, we get that:

7.2. AVERAGE TIME COMPLEXITY OF THE EXTENSION STEPS 131

Corollary 7.2.3 In the notation of Proposition 7.2.2, assume that we further
dispose on an index providing the answers for all the queries of length less than
2n0 + 4(ρ − 1) for some integer number n0 in the sense of Lemma 6.2.11. Let
n1 = (1

ρ − 2q)n0 and n2 = (1
ρ − 4q)n0, then:

EV ∈ΣNT (V) ≤ 2c′0N

gA,n2(v(2)(t; z))
1− fε(z−4qt; z)

+
|Σ|∑
i=1

vi(t; z)
1− fε(z−2qt; z)

∂gA,n1

∂vi
(v(t; z))

 ,

where c′0 = c′0(Op) is some absolute constant.

Remark 7.2.4 In the proof of Proposition 7.2.2 we substituted the natural
parameter q with 2q and 4q, respectively. The reason is that we needed a
uniform bound of the ratio of the lengths of the words INα−k1

k0+1 (Vα) and Vα on
the one hand, and the lengths of words INα0+j

k0+1 (Vα) and Vα, on the other. Since
k0, k1 are globally bounded by ρ and the length of Vα is always at least 4(ρ−1),
we easily got an estimate of 1

2 for the first ratio and 1
4 for the second ratio.

Remark 7.2.5 In view of Remark 7.2.4 it follows that with the increase of
the lengths of words Vα the first ratio will tend to 1 and the second ratio will
tend to 1

2 . Thus, modifying the initialisation step allowing longer lengths for
the leaves of the tree T (V) we will increase the time efficiency of the algorithm.
However, the space requirements will also increase exponentially with the longest
admissible length of the tree.

Remark 7.2.6 Actually, if ρ(Op) = 1, then the only possible values for k0 and
k1 is k0 = k1 = 0. Hence, INα−k1

k0+1 (Vα) = Vα and thus first ratio of lengths is
1. Similarly, the ratio of the lengths of INα0+j

k0+1 (Vα) = INα0+j
1 (Vα) and Vα is at

least 1
2 .

In view of Remark 7.2.6 we can strengthen the statement from Proposi-
tion 7.2.2 in the special case ρ(Op) = 1:

Proposition 7.2.7 Let pr : Σ → (0; 1) be a probability and ti = pr(σi) for
σi ∈ Σ and ρ(Op) = 1. Let q ∈ (0; 1) and z ∈ (0; 1) be such that fε(z−2qt; z) < 1
and fε(z−qt; z) < 1. Define the functions vi(t; z) and v(2)

i (t; z), and v(t; z) and
v(2)(t; z) as:

vi(t; z) = z−qtifi(z
−qt;z)

1−fε(z−qt;z)

v(t; z) = (v1(t; z), v2(t; z), . . . , v|Σ|(t; z)

v
(2)
i = z−2qtifi(z

−2qt;z)
1−fε(z−2qt;z)

v(2)(t; z) = (v(2)
1 (t; z), v(2)

2 (t; z), . . . , v(2)
|Σ|(t; z).

If A is a finite state automaton with language L = L(A) and generating function
gA and N ∈ N then the expected running time EV ∈ΣNT (V) of the algorithm in

132CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

Chapter 6, is bounded by:

EV ∈ΣNT (V) ≤ 2c1N

 gA(v(2)(t; z))
1− fε(z−2qt; z)

+
|Σ|∑
i=1

vi(t; z)
1− fε(z−qt; z)

∂gA
∂vi

(v(t; z))

 ,

where c1 = c1(Op) is some global constant.

Proof. Follows from the proof of Proposition 7.2.2, Remark 7.2.4 and Re-
mark 7.2.6.

Taking into account Remark 7.2.6 and Corollary 7.2.3 in the special case
when ρ = 1 we obtain:

Corollary 7.2.8 In the notation of Proposition 7.2.7, let ρ(Op) = 1 and as-
sume that we further dispose on an index providing the answers for all the
queries of length less than 2n0 for some integer number n0. Let n1 = (1− q)n0

and n2 = (1− 2q)n0, then:

EV ∈ΣNT (V) ≤ 2c′1N

gA,n2(v(2)(t; z))
1− fε(z−2qt; z)

+
|Σ|∑
i=1

vi(t; z)
1− fε(z−qt; z)

∂gA,n1

∂vi
(v(t; z))

 ,

where c′1 = c′1(Op) is some absolute constant and:

7.3 Sufficient Convergency Conditions

Next we show some sufficient conditions which guarantee that the upper bounds
given in terms of gA(v(t; z)) exist. Here:

vi(t; z) = z−qti
fi(z−qt; z)

1− fε(z−qt; z)
v(t; z) = (v1(t; z), . . . , v|Σ|(t; z)).

and gA is the generating function for the automaton A. These results are
based on simple algebraic facts which successfully apply to finite state automata
theory.

For the understanding this section the reader should recall the relationship
between automata and matrices and the norm of a matrix, see Chapter 1,
Section 1.7 and Section 1.8. As in Section 1.8 we shall assume that the set
of states, Q, of some finite state automaton, A, is identified with the first |Q|
positive integers, i.e. {1, 2, . . . , |Q|}.

In Section 1.8 we associated with each finite state automatonA = 〈Q,Σ, I,∆, T 〉
without ε-transitions the matrix MA(t) with entries aj,k(t) for 1 ≤ j, k ≤ |Q|,
as:

aj,k(t) =
∑

i:(j,σi,k)∈∆

ti.

7.3. SUFFICIENT CONVERGENCY CONDITIONS 133

Then, using Definition 1.8.8 we also saw that:

gA(t) =
∑

π∈Π(A)

t||λ(π)|| =
∞∑
N=0

∑
π∈Π(A):|π|=N

t||λ(π)|| =
n∑
j=1

n∑
k=1

a∗j,k(t)

where a∗j,k(t) are the entries of the matrix:

M∗A(t) =
∞∑
N=0

MN
A (t)

defined in Chapter 1, Section 1.8.
One way to prove convergence of gA(t) is to show that the norm of ||M∗A(t)||

is less than ∞. To this end it suffices to show that:

||MA(t))|| < 1

as we shall see.
Next lemma is a standard application of calculus which however favourably

serves our purposes.

Lemma 7.3.1 Let ||.|| be a norm on matrices and let t ∈ R|Σ|+ . For a matrix
A(t) = {ai,j(t)}ni,j=1 let ∂A

∂tk
(t) be the matrix with entries a′i,j(t) = ∂ai,j

∂tk
(t) for

every i, j and k ≤ |Σ|.

1. If A(t) and B(t) are arbitrary matrices and C(t) = A(ttB(t), then.

∂C

∂tk
(t) =

∂A

∂tk
(t)B(t) +A(t)

∂B

∂tk
(t).

2. For arbitrary N ∈ N and k ≤ |Σ|, it holds:

∂AN

∂tk
(t) =

N−1∑
m=0

Am(t)
∂A

∂tk
(t)AN−1−m(t).

Proof. The proof of the first part of the lemma follows by straightforward
computation. Indeed since C(t) = A(t)B(t) we have:

ci,j(t) =
n∑
s=1

ai,s(t)bs,j(t).

Therefore:

∂ci,j
∂tk

(t) =
n∑
s=1

∂ai,s
∂tk

(t)bs,j(t) +
n∑
s=1

ai,s(t)
∂bs,j
∂tk

(t).

134CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

But ∂ai,s
∂tk

(t) is exactly the (i, s)-entry of ∂A
∂tk

(t) whereas ∂bs,j
∂tk

(t) is the (s, j)-entry
of the matrix ∂B

∂tk
(t). Hence we obtain that:

∂C

∂tk
(t) =

∂A

∂tk
(t)B(t) +A(t)

∂B

∂tk
(t).

The second part of the lemma now follows immediately by the first part by
a straightforward induction argument on N .

Lemma 7.3.2 Let ||.|| be a norm on matrices and let t ∈ R|Σ|+ and A be an
ε-free finite state automaton with adjacency matrix MA(t). If

||MA(t)|| < 1.

Then:

1. ||M∗A(t)|| <∞.

2. ||∂M
∗
A(t)
∂tj

|| <∞ for each j = 1 . . . |Σ|.

Proof. The proof of the first part follows immediately by the triangle in-
equality and ||AB|| ≤ ||A||||B|| property. Specifically:

||M∗A(t)|| = ||
∞∑
N=0

MN
A (t)|| ≤

∞∑
N=0

||MA(t)||N =
1

1− ||MA(t)|| .

The last equality follows by ||MA(t)|| < 1.
For the second part we have:

∂M∗A
∂tj

(t) =
∞∑
N=0

∂MN
A

∂tj
(t).

By the second part of Lemma 7.3.1 we deduce:

∂M∗A
∂tj

(t) =
∞∑
N=0

N−1∑
m=0

Mm
A (t)

∂MA
∂tj

(t)MN−m−1
A (t).

Now we apply the triangle inequality and the multiplication inequality with

7.3. SUFFICIENT CONVERGENCY CONDITIONS 135

respect to the matrix norm to get:∣∣∣∣∣∣∣∣∂M∗A∂tj
(t)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∞∑
N=0

N−1∑
m=0

Mm
A (t)

∂MA
∂tj

(t)MN−n−1
A (t)

∣∣∣∣∣
∣∣∣∣∣

≤
∞∑
N=0

∣∣∣∣∣
∣∣∣∣∣
N−1∑
m=0

Mm
A (t)

∂MA
∂tj

(t)MN−m−1
A (t)

∣∣∣∣∣
∣∣∣∣∣

≤
∞∑
N=0

N−1∑
m=0

||MA(t)||m
∣∣∣∣∣∣∣∣∂MA∂tj

(t)
∣∣∣∣∣∣∣∣ ||MA(t)||N−m−1

=
∞∑
N=0

N

∣∣∣∣∣∣∣∣∂MA∂tj
(t)
∣∣∣∣∣∣∣∣ ||MA(t)||N−1

=
∣∣∣∣∣∣∣∣∂MA∂tj

(t)
∣∣∣∣∣∣∣∣ ∞∑
N=0

N ||MA(t)||N−1 =
∣∣∣∣∣∣∣∣∂MA∂tj

(t)
∣∣∣∣∣∣∣∣ 1

(1− ||MA(t)||)2

As a corollary we obtain.

Lemma 7.3.3 Let A be a finite state automaton, z ∈ (0; 1) and t ∈ R|Σ|+ satisfy
the following properties:

1. fε(z−qt; z) < 1.

2. for each state k ∈ Q it holds:∑
〈k,σi,j〉∈∆

z−qti
fi(z−qt; z)

1− fε(z−qt; z)
< 1,

then gA(v(t; z)) and
∑|Σ|
j=1 vj(t; z)

∂gA
∂vj

(v(t; z)) converge.

Proof. For the proof we consider the norm ||.||∞, see Section ??:

||A||∞ = max
i

n∑
j=1

|ai,j |.

Let MA(t) be the adjacency matrix of the automaton A. Hence, the norm of
||MA(v(t; z))||∞ is given as:

||MA(v(t; z))||∞ = max
k

n∑
j=1

|MA(k, j; v(t; z))|.

However, the functions MA(k, j; v(t; z))) are nothing else but:

MA(k, j; v(t; z)) =
|Σ|∑
i=1

∑
〈k,σi,j〉∈∆

vi(t, z) =
|Σ|∑
i=1

∑
〈k,σi,j〉∈∆

z−qti
fi(z−qt; z)

1− fε(z−qt; z)

136CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

which are positive numbers under the assumptions of the lemma. Hence we get:

||MA(v(t, z))||∞ = max
k

n∑
j=1

∑
〈k,σi,j〉∈∆

z−qti
fi(z−qt; z)

1− fε(z−qt; z)

= max
k

∑
〈k,σi,j〉∈∆

z−qti
fi(z−qt; z)

1− fε(z−qt; z)
< 1

where the last inequality is fulfilled according to the assumptions of the lemma.
Now using that ||MA(v(t; z))||∞ < 1 we obtain the result by applying Lemma 7.3.2.

Corollary 7.3.4 Let (Op, c) be the Levenshtein edit-distance and q ≤ 1
2 . If

|Σ| ≥ 9, pr : Σ → (0; 1) be a probability distribution and ti = pr(σi). If the
deterministic automaton A has the property that for each state k:

4
3
|Σ|

∑
i:!δ(k,σi)

ti + 2|{i :!δ(p, σi)}| <
√
|Σ|,

then there exists z ∈ (0, 1) such that gA(v(t; z)) is finite.

Proof. The idea of the proof is to find such a z that the preconditions of
the Lemma 7.3.3 hold. To this end, first note that:

fε(z−qt; z) = z

|Σ|∑
i=1

z−qti = z1−q and

fi(z−qt; z) = 1 + zt−1
i zq

∑
j 6=i

tjz
−q + zzqt−1

i

= 1 + zt−1
i − z + z1+qt−1

i .

Therefore we have that:

vi(t; z) = z−qti
1 + zt−1

i − z + z1+qt−1
i

1− z1−q

= z−qti
1− z

1− z1−q +
z1−q + z

1− z1−q .

Now since q ≤ 1
2 and we assume z ∈ (0; 1) we obtain that:

z1−q + z

1− z1−q ≤
√
z + z

1−√z =
√
z

1 +
√
z

1−√z .

Now for
√
z ≤ 1

3 or equivalently for z ≤ 1
9 we get that 1+

√
z

1−√z ≤
1+ 1

3
1− 1

3
= 2 and

therefore:
z1−q + z

1− z1−q ≤ 2
√
z.

7.3. SUFFICIENT CONVERGENCY CONDITIONS 137

On the other hand, for q ≤ 1
2 we have:

z−qti
1− z

1− z1−q ≤ z
−qti

1− z
1−√z = z−qti(1 +

√
z) ≤ 4

3
z−qti

whenever z ≤ 1
3 . Finally, again since q ≤ 1

2 , z−q ≤ z− 1
2 , which implies:

z−qti
1− z

1− z1−q ≤
4
3
ti√
z
.

Summing up for z ≤ 1
9 we have:

vi(t; z) ≤ 2
√
z +

4
3
ti√
z
.

Thus setting z = 1
|Σ| ≤ 1

9 for |Σ| ≥ 9, we obtain:

vi

(
t;

1
|Σ|

)
≤ 2

1√
|Σ|

+
4
3
ti
√
|Σ|

and therefore for each state k ∈ Q we have:∑
〈k,σi,j〉∈∆

vi

(
t;

1
|Σ|

)
=

∑
i:!δ(k,σi)

vi

(
t;

1
|Σ|

)
≤ 2

1√
|Σ|
|{i :!δ(k, σi)}|+

4
3

√
|Σ|

∑
i:!δ(k,σi)

ti

≤ 1√
|Σ|

2|{i :!δ(k, σi)}|+
4
3
|Σ|

∑
i:!δ(k,σi)

ti


<

1√
|Σ|
√
|Σ| = 1.

The last inequality follows by the assumptions of the Corollary. Now the result
follows by Lemma 7.3.3.

Corollary 7.3.5 In the notation of Corollary 7.3.4 if the distribution of the
characters is uniform, i.e. ti = 1

|Σ| and the for each state k of the automaton it
holds:

|{i | !δ(k, σi)}| <
3
10

√
|Σ|,

then there exists z ∈ (0; 1), such that gA(v(t; z)) converges.

Proof. First, if |Σ| ≤ 9, then the automaton has no transitions and the claim
is obvious. Thus, |Σ| > 9. Next, in the case of uniform distribution we have
that:

|Σ|
∑

i:!δ(k,σi)

ti = |i :!δ(k, σi)|

138CHAPTER 7. RUNNING TIME OF THE GENERALISED MYERS’ ALGORITHM

because each ti = 1
|Σ| . Now the condition:

4
3
|Σ|

∑
i:!δ(k,σi)

ti + 2|i :!δ(k, σi)| <
√
|Σ|

is equivalent to:
10
3
|i :!δ(k, σi)| <

√
|Σ|

which trivially holds by the assumptions of the claim.

The meaning of Corollary 7.3.5 is the following. It gives a local constraint
on the structure of the automaton, A, that guarantees that the algorithm from
Chapter 5 will perform only linear time work for most of the query words.
Indeed, if the portion of those words that require more than linear time was
essential, they would contribute to the average running time and make it ex-
ceed any linear function. However, according to Corollary 7.3.5 this is not the
case. Certainly, this result depends also on the magnitude of the threshold, q,
which should be q < 1

4 in order to apply Corollary 7.3.5 in the framework of
Proposition 7.2.7.

Furthermore if gA(v(t; z)) converges under the assumptions from Lemma 7.3.2
or Lemma 7.3.3, then the functions gA,n0(v(t; z)) in Corollary 7.2.3 and gA,n0(v(t; z))
tend to zero when n0 tends to infinity. This shows that by an appropriate choice
of n0 we can the constant gA,n0(v(t; z)) arbitrary small.

Chapter 8

Learning the Edit-Distance

In the previous chapters we developed a divide and conquer algorithm for the
approximate search problem in arbitrary regular sets and described a general
framework in which we argued its efficiency.

In this chapter we shall address the more challenging problem of reconstruc-
tion the original word on the basis of the observed noisy, i.e. query, word. To
this end we shall assume that we have a finite set of instances, I = {(Ui, Vi)}i.
A pair, (Ui, Vi), in this set tells us that the correct original word for the noisy
word Vi is Ui. In a sense, the set of instances reflects the nature of noise but
does not determine it in an explicit way as the generalised edit-distance does.
Along with the set I we also assume a dictionary, D, for the language of original
words. It contains the words Ui, but it is in general much larger than I.

Given these data, the problem is to determine the original words, U , for
arbitrary noisy (query) words, V .

In some previous works, [54, 41, 52], this problem is addressed by solving
the approximate search problem at a preliminary stage. Using a Levenshtein
edit-distance, [54, 41], or generalised edit-distance whose operations are based
on expert-knowledge, [52], these algorithms first retrieve a set of candidates.
Based on the set of instances, I, one can further develop techniques for ranking
these candidates.

Alternative approaches, [53, 14, 59, 48], explore a statistical framework.
They fix a set of operations and afterwards ”learn” their probabilities (i.e. minus
logarithm of costs) by using a Log- Linear Method, [53, 14, 59], or Bayesian
Networks and Hidden Markov Models, [48]. In this way they achieve essentially
a generalised edit-distance and the problem of retrieval the original word is
reduced to the determination of the closest word to the given noisy (query)
word.

Our approach differs from the above named methods. It does not use any
predefined operation sets and does not constrain their lengths in any way. It
explores the structure of the instances and the structure of the dictionary in
order to compute the operations and their probabilities that take into account
the context in which the noise has corrupted the original word.

139

140 CHAPTER 8. LEARNING THE EDIT-DISTANCE

The essential part of this Chapter was published in [22]. In the sequel we
describe our idea in more details. In Section 8.1 we present the extraction of
the operations and the computation of their probabilities. In Section 8.2 we
consider an efficient technique for extracting an ordered list of candidates for
a given noisy word. In Section 8.3 we finally argue the adequateness of our
approach empirically.

8.1 Extraction of Operations

Given a finite (multi)set of instances, I = {(Ui, Vi)}i, which implicitly reveals
that due noise the original word Ui from a dictionary D, was transformed to a
noisy word Vi, we denote with N = {Vi}i the set of noisy words in the set of
instances.

The concept of our approach is the following. The operations exhibited in
the set of instances, I, transform distinctive infixes in the noisy words into
distinctive infixes in the dictionary words, D. This is the background of our
approach which also obeys some basic principles. Firstly, most of the characters
in the noisy word and its original dictionary word are the same. Otherwise,
we would not be able to recognise it. Secondly, the general character order is
preserved, i.e. although local transpositions may occur, suffixes and prefixes of
words are not interchanged on a regular basis. Finally, the length of the noisy
word does not deviate too much from the length of its dictionary original(s).

8.1.1 Canonical and Candidate Trees of a Word

An infix which is distinctive for a set of words, W, would be either explicitly
pointed out in this set as a word, or it would be implicitly encoded in this set.
In the latter case there should be natural markers that indicate its significance.
We consider as such markers the different contexts in which infixes occur. This
is the motivation to formally define a distinctive infix in a set of words, W, as
either (i) a prefix in W, or (ii) an infix in W which occurs in at least two:

Definition 8.1.1 Given a finite set of words, W, a distinctive infix (distinx),
is an infix V ∈ Inf(W) that has one of the following two properties:

1. V ∈ Pref(W),

2. or there exist distinct characters a, b ∈ Σ such that aV, bV ∈ Inf(W).

The set of all distinxes in W is denoted with SW .

From Lemma 2.2.1 ditinxes are just another name for the representatives in the
set W and SW is just the structure of Blumer et al,[12].

Let us now assume that we have an instance, say (knows, knoweth) ∈ I,
saying that knows is the original word for the noisy word knoweth. The idea
is to propagate this knowledge to shorter distinxes that compose both words.
This will allow us to deduce properties of shorter distinxes that occur more often

8.1. EXTRACTION OF OPERATIONS 141

and thus are responsible for the properties of more words. In the same time we
would like to preserve the information for the longer distinxes, that determine
the words in a more unambiguous way.

To achieve this goal, we consider a hierarchical decomposition of the words
N ∈ N , see Figure 8.1. Intuitively, we intend to split N = knoweth into a prefix
and a suffix, say k and noweth, respectively. Still, they cannot be arbitrary, but
N -distinxes. This is why the suffix noweth might be excluded in our case. As a
splitting criterion we choose the maximal proper suffix of knoweth, which is an
N -distinx. In our case this is oweth. Formally, we define:

Definition 8.1.2 Given a finite set of words, W, and a distinx V ∈ SW , the
longest proper suffix of V , lpsW(V) = lps(V) is the longest infix V1 6= V s.t.:

V1 ∈ Suf(V) and V1 ∈ SW .
It might be the case that lps(V) is not defined for some words, e.g. if V = ε.

Now, we have that lps(knoweth) = oweth. Therefore, the complementary
proper prefix of lps(knoweth) to the word knoweth is kn. This is the motivation
for the next definition:

Definition 8.1.3 Given a finite set of words, W, and a distinx V ∈ SW the
complementary proper prefix of V , cppW(V) = cpp(V), is defined as follows:

1. if lps(V) is defined and lps(V) 6= ε, then cpp(V) = V0 s.t. V = V0◦lps(V).

2. if lps(V) = ε, then cpp(V) is the prefix of V of length |V | − 1.

3. if lps(V) is not defined, then cpp(V) is not defined either.

As an immediate corollary from the definition of the distinxes we have:

Lemma 8.1.4 If W is a finite set of words and V is a distinx in W, such that
cpp(V) is defined, then cpp(V) is also a distinx.

Proof. Indeed, if V is a prefix inW, then cpp(V) is also a prefix of W, since
it is a prefix of V . In the alternative case, we have that there exist two distinct
characters a, b ∈ Σ such that aV, bV ∈ Inf(W). Therefore a and b also precede
the prefix cpp(V) of V and therefore cpp(V) ∈ SW .

Now, we repeat the decomposition of longest proper suffix and a comple-
mentary proper prefix recursively and thus, we get the notion of the canonical
tree:

Definition 8.1.5 Let W be a finite set of words and V ∈ SW be a distinx in
W. The canonical tree TW(V) is defined recursively as follows:

1. if lps(V) is not defined, then TW(V) is a trivial tree with root V .

2. if lps(V) is defined, then TW(V) is a tree with root V , left subtree:

T (l)
W (V) = TW(cpp(V))

and right subtree:
T (r)
W (V) = TW(lps(V))

142 CHAPTER 8. LEARNING THE EDIT-DISTANCE

knows

k nows

n ows

o ws
w s

knoweth

kn oweth

ow ethk n

o w e th

t h

Figure 8.1: On the left is the canonical tree, TN (V), for the noisy word V =
knoweth w.r.t. the set of noisy words, N . On the right is the canonical tree
TD(U) of its dictionary original word U = knows.

The result of applying Definition 8.1.5 to our example V = knoweth is illus-
trated on Figure 8.1. Next Lemma shows that the size of the canonical trees is
proportional to the length of the word they represent:

Lemma 8.1.6 For every distinx V ∈ SW with V 6= ε the number of nodes in
the canonical tree TW(V) is at most 4|V | − 1.

Proof. The proof proceeds by induction on the length of V . For |V | = 1, TW(V)
has a single root and at most two other nodes, thus summing up to at most
3 = 4.1 − 1. This proves the basis of the induction. For the induction step we
have to consider two cases. The general case is when lps(V) 6= ε. Then we have
that cpp(V) ◦ lps(V) = V and therefore |cpp(V)| + |lps(V)| = |V |. It should
be also clear that since lps(V) is a proper suffix of V , cpp(V) 6= ε. Therefore
we can apply the induction hypothesis for both lps(V) and cpp(V). Thus, we
conclude that:

|TW(V)| = |TW(lps(V))|+ |TW(cpp(V))|+ 1
≤ 4|lps(V)| − 1 + 4|cpp(V)| − 1 + 1 = 4|V | − 1.

Therefore, the claim follows in this case. It remains to consider the case when
lps(V) = ε. In this case |cpp(V)| = |V | − 1. Furthermore, since |V | 6= 1, we
have that cpp(V) 6= ε. Hence, we can apply the induction hypothesis to cpp(V)
and as a result we obtain:

|TW(V)| = |TW(cpp(V))|+ 2
≤ 4(|V | − 1) + 2 = 4|V | − 2 < 4|V | − 1

which proves the claim in this case, either.

Next, recall that the dictionary D represents the dictionary words. Thus, we
can apply the canonical tree procedure for U = knows w.r.t. D. It is tentative
to match both canonical trees, the one for knoweth w.r.t. N and the one for

8.1. EXTRACTION OF OPERATIONS 143

knows w.r.t. D, see Figure 8.1. The problem is that D is in general much larger
than the number of different noisy words in the set N . Thus, we would observe
some D-distinxes in D, e.g. nows, whose noisy variants have not occurred as
N -distinxes. To handle this situation we give more freedom for an hierarchical
representation of the dictionary words, see Figure 8.2. Namely, we consider not
only the split of knows as a prefix, k, and a suffix, nows, but also the splits, kn
and ows, and know and s, etc. provided that both the prefix and the suffix are
D-distinxes. Formally, we define:

Definition 8.1.7 Given a finite set of words, W, and a distinx V ∈ SW , the
proper suffix of level k of V , ps(k)(V), is defined as:

ps(k)(V) =

{
lps(V) if k = 1
ps(k−1)(lps(V)), else

Analogously, to the complementary proper prefixes we can define the proper
prefixes of level k. The relation between the proper prefixes of level k and the
proper suffixes of level k is the same as the relation between the complementary
proper prefixes and longest proper suffixes:

Definition 8.1.8 Given a finite set of words, W, and a distinx V ∈ SW , the
proper prefix of level k of V , pp(k)(V) is defined as:

1. if ps(k)(V) is defined and ps(k)(V) 6= ε, then pp(k)(V) = V0 s.t. V =
V0 ◦ ps(k)(V).

2. if ps(k)(V) = ε, then pp(k)(V) is the prefix of V of length |V | − 1.

3. if ps(k)(V) is not defined, then pp(k)(V) is not defined, either.

The notion of proper suffixes of level k and proper prefixes of level k allow
us to make a guess how the word, say knows, should be decompose, for instance
in kn and ows. Applying a sequence of guesses recursively, we arrive at the
definition of a candidate tree, see Figure 8.2:

Definition 8.1.9 Given a finite set of words, W, and a distinx V ∈ SW , a
candidate tree for V , is defined recursively:

1. the trivial tree with root V is a candidate tree for V .

2. if k ≥ 1 is such that pp(k)(V) and ps(k)(V) are defined and T1 is a candidate
tree for pp(k)(V) and T2 is a candidate tree for ps(k)(V), then the tree with
root V , left subtree T1 and right subtree T2 is a candidate tree for V .

It should be clear, that unlike the canonical tree, that is uniquely determined
by the finite set of words and a distinx from this set, many candidate trees might
be assigned to a single distinx. Actually, this number may be exponential in the
length of the particular distinx. However, the number of different distinxes that
can occur in some of the candidate trees for a particular distinx is polynomially
bounded by the length of the distinx. This is what the next lemma claims:

144 CHAPTER 8. LEARNING THE EDIT-DISTANCE

knows

kn ows

o ws

knows

k nows

n ows

knows

kn ows

ow s

o ows

w s

ww s

k n k n

Figure 8.2: Different candidate trees for R = knows. One of them is TD(U).

Lemma 8.1.10 Given a set of words, W, and a distinx V ∈ SW , there are at
most

(|V |
2

)
+1 different distinxes that can occur in some candidate tree, CT W(V).

Proof. Each node of a candidate tree CT W(V) is assigned with an infix of V .
The result now follows since there are at most

(|V |
2

)
infixes of V that are not

the empty word and ε is also an infix of V .

8.1.2 Retrieval of Operations and their Probabilities

Now, we expect that one or more of the candidate trees for knows should match
the structure of the canonical tree for knoweth, see Figure 8.3. Knowing which
this candidate tree is and how it matches the canonical tree for knoweth we
would be able to propagate the knowledge that knoweth is a noisy variant of
knows to shorter distinxes of both structures.

To achieve this objective, we are going to introduce an edit-distance between
trees. The main idea is to reflect that typically we have identities that should be
stimulated whereas the length discrepancies between distinxes that are supposed
to form an operation, are less likely and thus, have to be penalised on general.
There are many ways to model these two properties. Next definition presents
one specific formal way to define similarity between candidate and canonical
trees. It is used only to determine the ’real’ operations and to assign them with
appropriate probabilities. It is not used in the searching that we describe in the
next section.

Definition 8.1.11 Let TN (V) be a canonical tree for the distinx V in the set
of noisy words, N . Let CT D(U) be a candidate tree for the distinx U in the
dictionary, D, then the edit-distance between these two trees is defined as:

dT (CT D(U), TN (V)) = min

{
max(|U |, |V |)− id
dT (CT (l)

D (U), T (l)
N (V)) + dT (CT (r)

D (U), T (r)
N (V))

where id = 1 if V and U have the same last character and id = 0, otherwise.
The superscripts (l) and (r) denote left and right subtree, respectively.

8.1. EXTRACTION OF OPERATIONS 145

knoweth→knows

kn→kn oweth→ows

ow→ow eth→sk→k n→n

o→o w→w e th

t h

knows

kn ows

ow s

o w

k n

Figure 8.3: On the left, the candidate tree of U = knows which is best ranked
w.r.t. V = knoweth. On the right, the noisy variant knoweth → knows is
propagated to the subtrees to obtain new (shorter) operations.

Actually, we are not interested in the tree mapping. We are rather interested of
the mapping between distinxes from one structure into the other. The similarity
notion between trees is only a strong motivation how to achieve this. Thus, we
give the following definition:

Definition 8.1.12 Let U be a distinx in a finite set D and V be a distinx in a
finite set N . Then we define:

dW (U, V) = min
CT : a candidate tree for U

dT (CT, TN (V)).

Lemma 8.1.13 Given two distinxes U ∈ SD and V ∈ SN the values dW (U ′, V ′)
where U ′ ∈ SD is an infix of U and V ′ ∈ TN (V) can be determined in O(|U |3|V |)
total time.

Proof. From the definition of dW and dT it is easy to see that:

1. if lps(V) is not defined, then dW (U, V) = max(|U |, |V |)− id,

2. if lps(V) is defined, then:

dW (U, V) = min

{
max(|U |, |V |)− id
mink(dW (pp(k)(U), cpp(V)) + dW (ps(k)(U), lps(V)).

Thus, the computation of the values dW (U ′, V ′) required by the lemma can be
computed by a standard dynamic programming scheme using the above recur-
rence, see procedure TreeDistance. In particular, we consider the problem of
finding dW (U ′, V ′) as a problem of filling in the entries of a table with rows as-
signed to the distinxes the U ′ and columns assigned to the distinxes V ′. Hence,
our table has O(|U |2) rows and O(|V |) columns. Each entry (U ′, V ′) of this table

146 CHAPTER 8. LEARNING THE EDIT-DISTANCE

is associated with the value dW (U ′, V ′) which is computed once only. To com-
pute dW (U ′, V ′) we use the above recurrence. If case 1 applies, the computation
clearly needs O(1) time. In the alternative case we consider all possible k such
that ps(k)(U ′) is defined. Since for distinct values of k, ps(k)(U ′) are different
suffixes of U ′, there are at most |U ′| ≤ |U | possible values for the parameter k. If
some of the values dW (pp(k)(U ′), pp(V ′)) or dW (ps(k)(U ′), lps(V ′)) are not com-
puted yet, the computational efforts to retrieve these values are assigned to the
corresponding entry of the table, dW (pp(k)(U ′), pp(V ′)) or dW (ps(k)(U ′), lps(V ′)),
respectively and not to the computation of dW (U ′, V ′). Thus, we assign at most
|U | units of time for the computation of a particular value dW (U ′, V ′). Since
there are O(|U |2|V |) entries in the table we arrive at the claimed upper bound
of O(|U |3|V |) total time..

TreeDistance(CandNodes, CanNodes, i, j,Matrix)
if Matrix[i][j] is defined then

return Matrix[i][j]
else

if last character(CandNodes[i]) = last character(CanNodes[j]) then
id← 1

else
id← 0

fi
Matrix[i][j]← max(|CandNodes[i]|, |CanNodes[j]|)− id
if lps(CanNodes[j] is not defined

return Matrix[i][j]
right← index of(CanNodes[j], CanNodes)
left← index of(CanNodes[j], CanNodes)
k ← i
while k is defined do

right1← index of(CandNodes[k], CandNodes))
left1← index of(CandNodes[k]), CandNodes)
if right1 is defined then

TreeDistance(CandNodes, CanNodes, left1, left,Matrix)
TreeDistance(CandNodes, CanNodes, right1, right,Matrix)
if Matrix[left1][left]+Matrix[right1][right] < Matrix[i][j] then

Matrix[i][j]←Matrix[left1][left] +Matrix[right1][right]
fi

fi
k ← right1

done
fi

Once we have the values dW (U ′, V ′) that measure how far away the distinxes
U ′ and V ′ are, we propagate the knowledge that V is a noisy variant of U to
all those pairs (U ′, V ′) that contribute to the value dW (U, V). We will define
these pairs (U ′, V ′) as well as the pair (U, V) as operations. In order to properly

8.1. EXTRACTION OF OPERATIONS 147

define the pairs (U ′, V ′) that contribute to dW (U, V) and also the magnitude
of contribution we: (i) determine those pairs of distinxes that witness for the
optimal edit distance, dW (U, V), between U and V and (ii) stimulate those of
these pairs that occur in different contexts.

Whereas, the first property is more or less intuitive and is widely used,
the second objective is a particular one for our case. The point is that the
structure SW induces an hierarchical decomposition of words. Thus, we do not
need to account for pairs of shorter distinxes that always entail the same pair of
longer distinxes. However, if a shorter pair of distinxes is often characteristic for
different longer extension pairs, then it is probable that also new, unobserved
pairs of distinxes rely on such a decomposition. For this reason we boost the
importance of such pairs of distinxes.

Following, this concept we first define the pairs (U ′, V ′) that have prop-
erty (i):

Definition 8.1.14 Let D and N be finite sets, U ∈ D and V ∈ N , then:

1. (U, V) contributes to the value dW (U, V).

2. if (U ′, V ′) contributes to dW (U, V) and k is an integer such that:

dW (U ′, V ′) = dW (pp(k)(U ′), cpp(V)) + dW (ps(k)(U ′), lps(V)),

then (pp(k)(U ′), cpp(V)) and (ps(k)(U ′), lps(V)) also contribute to the
value dW (U, V).

In order to model the second property, i.e. pairs that contribute to dW (U, V)
in different contexts, we use a naive counting principle:

Definition 8.1.15 Let D and N be finite sets of words U ∈ D and V ∈ N .
For distinxes U ′ ∈ SD and V ′ ∈ SN we define aU,V (U ′, V ′) as:

aU,V (U ′, V ′) = |{(Ul, Vl) | (Ul ◦ U ′, Vl ◦ V ′) contributes to dW (U, V)}|+
|{(Ur, Vr) | (U ′ ◦ Ur, V ′ ◦ Vr) contributes to dW (U, V)}|

when (U, V) 6= (U ′, V ′) and we set aU,V (U, V) = 1.

The algorithmic structure of the above definitions allows us to efficiently
compute the values aU,V (U ′, V ′), as the next Lemma states:

Lemma 8.1.16 Given an instance pair (U, V) ∈ I the (nonzero) values aU,V (U ′, V ′)
can be computed in time O(|U |3|V |).

Proof. We first compute the values dW (U ′, V ′) over all U ′ that are distinxes
in D and are infixes of U and all the distinxes V ′ in the canonical tree TN (V).
Then, essentially the same dynamic programming scheme as in the computation
of the values dW (U ′, V ′), see procedure Propagate, can be used to determine
those pairs (U ′, V ′) that contribute to dW (U, V). Finally, the values aU,V (U ′, V ′)
are increased only when we arrive in (U ′, V ′) either from a new pair, or from the

148 CHAPTER 8. LEARNING THE EDIT-DISTANCE

same pair but this (U ′, V ′) play the role of suffixes and not of prefixes. Since
the dynamic programming scheme is the same as in Lemma 8.1.13 we obtain
the same running time, O(|U |3|V |).

Propagate(CandNodes, CanNodes, i, j,Matrix,a)
U ← CandNodes[i]
V ← CanNodes[j]
if a[U, V] is not defined then

a[U, V]← 0
right← index of(CanNodes[j], CanNodes)
left← index of(CanNodes[j], CanNodes)
if right is defined then

k ← i
while k is defined do

right1← index of(CandNodes[k], CandNodes)
left1← index of(CandNodes[k], CandNodes)
if right1 is defined and
Matrix[left1][left] +Matrix[right1][right] = Matrix[i][j] then

Propagate(CandNodes, CanNodes, left1, left,Matrix, a)
Propagate(CandNodes, CanNodes, right1, right,Matrix, a)

fi
k ← right1

done
fi

fi
a[U, V]← a[U, V] + 1

Now, the entire training process can be regarded as an iteration over all the
pairs of instance, (Ui, Vi) ∈ I. For each such pair, (Ui, Vi), we first determine
the edit-distance dW (Ui, Vi) and then the scores, aUi,Vi(U

′, V ′). For a fixed
pair (U ′, V ′) of distinxes we accumulate all the scores aUi,Vi(U

′, V ′) in a single
amount a(U ′, V ′) which reflects the global number of contributions of the pair
(U ′, V ′). Formally, we define:

a(U ′, V ′) =
∑

(U,V)∈I
aU,V (U ′, V ′).

Lemma 8.1.17 Given a (multi)set of instances, I = {(Ui, Vi)}i, and a dic-
tionary, D, let N = {V | ∃U((U, V) ∈ I)}. Then, the values a(U ′, V ′) can be
computed in total time:

O(
∑

(Ui,Vi)∈I
|Ui|3|Vi|).

Proof. Follows from Lemma 8.1.16 and the definition of the values a(U ′, V ′),
see procedure Training.

8.2. SEARCHING DICTIONARY CANDIDATES 149

Training(I = {(Ui, Vi)}i,SD,SN , a)
for (U, V) ∈ I do

CandNodes← array of Inf(U) ∩ SD
CanNodes← array of the distinxes in TN (V)
Matrix← matrix of dimension |CandNodes| × |CanNodes|
i← index of(U,CandNodes)
j ← index of(V ,CanNodes)
TreeDistance(CandNodes, CanNodes, i, j,Matrix)
b←matrix of dimension |CandNodes| × |CanNodes|
Propagate(CandNodes, CanNodes, i, j,Matrix, b)
for U ′ ∈ CandNodes and V ′ ∈ CanNodes s.t. b[U ′, V ′] 6= 0 do

if a[U ′, V ′] is not defined then
a[U ′, V ′]← 0

fi
a[U ′, V ′]← a[U ′, V ′] + b[U ′, V ′]

done
done

Finally, we determine the set of operations, Op, as those pairs of distinxes
(U ′, V ′) that have contributed to at least one optimal edit-distance dW (U, V).
Specifically, we set:

Op = {(U ′, V ′) | a(U ′, V ′) > 0}.

To each operation (U ′, V ′) we attribute an empirical conditional probability
p(U ′|V ′) that accounts how likely it is according to the scores a(U ′′, V ′) that V ′

is modified to U ′. Formally we set:

p(U ′|V ′) =
a(U ′, V ′)∑

(U ′′,V ′)∈Op a(U ′′, V ′)

8.2 Searching Dictionary Candidates

Given a noisy word, V , we want to reconstruct the most likely original words,
U , that correspond to V . To this end we proceed in two stages. In the first stage
we recognise the N -distinxes exhibited by V . Thus, we essentially determine
the natural N -structure of the noisy word V . In the second stage, we organise
an exhaustive search which generates and ranks dictionary candidates. Using a
variant of an A-star algorithm, [24, 25], similar to Mohri, [45], and Eppstein, [18],
we generate the candidates in order.

In order to retrieve correction candidates U ∈ D, for a query word, V , we
rely on the operations, Op, their conditional probabilities, p, and the structures
SD and SN . It is important to stress that N is the set of the noisy words
observed during the training, i.e. in the set of instances I.

150 CHAPTER 8. LEARNING THE EDIT-DISTANCE

u

slietraiterou
traiter ou lie

ietertrai
aitr

t r a i t e r o s l i e
er

traiterouslie

Figure 8.4: The tree T̃N (N) constructed for the query word N = traiterouslie.
The dashed nodes are infixes which are not N -distinxes, the solid nodes are
infixes which are N -distinxes.

8.2.1 Approximate Canonical Trees

Ideally, if the query word V was observed during the learning stage, we would
have no problems to retrieve its canonical tree, TN (V). Unfortunately, this is not
the case when V 6∈ N , say V = traiterouslie might be such a word. Still, V would
share some common N -distinxes with the noisy words in N . The asymmetric
structure of the N -distinxes which appears to give more credit to suffixes than
to prefixes suggests a natural approach how to define an approximation, T̃N (V),
of the canonical tree, see Figure 8.4:

Definition 8.2.1 Let V be a word and W be a finite set of words. An approx-
imate canonical tree T̃W(V) is defined recursively as follows:

1. if V ∈ SW , then T̃W(V) = TW(V).

2. if V ∈ SW , then T̃W(V) is a tree with root V , right subtree TW(V2) and
left subtree T̃W(V1) where:

V2 = lpsW(V) and V = V1 ◦ V2.

We illustrate Definition 8.2.1 on a the word, V = traiterouslie, see Figure 8.4.
Clearly, V 6= ε and it turns out that the longest proper suffix of V that is a
distinx in N is V2 = slie. This uniquely determines the prefix V1 = traiterou.
Now, since V2 is a distinx in N , it determines a canonical tree TN (slie). This
is the right subtree of TN (traiterouslie). To compute the left subtree of the
desired approximate canonical tree, Definition 8.2.1 refers recursively to the
approximate canonical tree of V1 = traiterou. Again, we determine the longest
N -distinx, V12 that is a suffix of V1. It turns out that V12 = ou. Hence, the
prefix V11 is traiter. Now, we can retrieve the canonical tree TN (ou) from the
structure N . This will be the right subtree of T̃N (traiterou). To determine the
left subtree of T̃N (traiterou) we proceed with V11 = traiter in the same fashion.

8.2. SEARCHING DICTIONARY CANDIDATES 151

We note that in the special case when the query word V belongs to the
training set N , we have T̃N (V) = TN (V).

In order to determine the approximate canonical tree, T̃N (V), it is clear
that the longest suffixes of any prefix, Ii1(V), of V that occur in Inf(N) will
play an important role. We denote these suffixes with si(V), for i = 1, . . . , |V |,
respectively. Thus, in a first step, given the query word V and the structure SN
we are going to find the representations of the suffixes si(V). Given the si(V)
it will be then easy to apply the Definition 8.2.1 in order to compute T̃N (V).
Next Lemma takes after a previous result of Aho and Corasick, [7], and shows
that representations of all the suffixes lsi(V) can be computed in linear time.

Lemma 8.2.2 Given a query word V of length N , the representations of the
longest suffixes si(V) of Ii1(V) that is also an infix in N can be computed in
O(|V |) total time.

Proof. For the proof we use an adapted version of the Aho-Corasick, [7], algo-
rithm, see procedure ComputeLongestSuffixes. We assume that N is nonempty.
Let, V = v1 ◦ v2 · · · ◦ vn. Then, s0(V) = ε. Now, the step from si(V) to si+1(V)
is conducted as follows. Knowing the representation of si(V) in the structure
N , we check in time O(1) whether si(V) can be extended with the vi+1. If this
is the case, we also compute the representation of si+1(V) = si(V) ◦ vi+1, see
Chapter 2. If this is not the case, we follow the longest proper suffix link of
si(V), s(1)

i+1 = lps(si(V)) and check whether s(1)
i+1 can be extended with vi+1.

If it fails, we proceed with s
(2)
i+1 = lps(s(1)

i+1) and so on. Two cases may occur.
We reach a step k where s(k)

i+1 can be extended with vi+1. Alternatively, we
end up with the situation where lps(s(k)

i+1) is not defined for a certain k. In the
latter case, we deduce that the character vi+1 does not occur in the set N and
thus si+1(V) is not defined. In the former case, similarly to the algorithm of
Aho and Corasick, si+1(V) = s

(k)
i+1 ◦ vi+1. Hence, we can compute the repre-

sentation of si+1(V) in time O(k + 1) where k is the number of unsuccessful
attempts to extend s

(j)
i+1 with vi+1. Since, at each such step s

(j+1)
i+1 = lps(s(j)

i+1)
diminishes with at least one, we deduce that the number of such steps, j, is
k ≤ |si(V)| − |s(k)

i+1| = |si(V)| − |si+1(V)|+ 1.
A subtle point is the situation where si+1(V) is not defined. In this case, we

assume that |si+1(V)| = −1 and at the next step we have to restart our search
not from si+1 as it is undefined, but from ε.

After this remark we can easily compute that the number of atomic steps
performed by the algorithm is bounded by a factor of:

n−1∑
i=0

(|si(V)| − |si+1(V)|+ 1) = |s0(V)| − |sn(V)|+ n = n− |sn(V)| ≤ n.

Therefore, the time spent for the computation of the representation of the infixes
si(V) is carried out in time O(|V |).

152 CHAPTER 8. LEARNING THE EDIT-DISTANCE

ComputeLongestSuffixes(V ,SN , s)
//δ is the transition function of SN
//V = v1 ◦ v2 · · · ◦ vn

n← |V |
sε ← the initial state of SN
s[0]← (sε, 0)
for i = 1 to n do

(st, j)← s[i− 1]
if st is not defined

(st, j)← (sε, 0)
fi
while st is defined and δ(st, vi) is not defined do

st← lps(st)
j ← len(st)

done
if st is defined

s[i]← (δ(st, vi), j + 1)
else

s[i]← ⊥
fi

done

Once we dispose on the infixes si(V) it is almost straightforward to compute
the approximate canonical tree for V .

Lemma 8.2.3 Given a query word V and the representations of si(V) with
respect to the structure SW for each i = 1, 2, . . . , |V |, the approximate canonical
tree T̃W(V) can be computed in time O(|V |).

Proof. From the definition of the approximate canonical tree follows that it is
comprised of right subtrees that are canonical trees and left subtrees that are
approximate canonical trees.

First, storing lps(U) and cpp(U) for each distinx U ∈ SW , we can compute
the every canonical tree TW(U ′) for a distinx U ′ in W in time proportional to
the time of the tree itself. Thus, according to Lemma 8.1.6, the canonical tree
TW(U ′) can be computed in time O(|U ′|).

This remark resolves the case when V ∈ SW . Next, let us assume that
V 6∈ SW and the length of V is n, see procedure ApproximateCanonicalTree.
Therefore |sn(V)| < |V |. Now, we consider the representation sn(V) that is in
the form (V ′, j) where V ′ ∈ SW and j = |sn(V)|. Two cases may arise:

1. j = |V ′| and thus sn(V) = V ′,

2. or j < |V ′|, and therefore sn(V) is a proper suffix of V ′.

In the first case, it is clear that V ′ is the longest suffix of V that is a distinx in
SW . Therefore lpsW(V) = V ′. In the second case, it is also easy to see that the

8.2. SEARCHING DICTIONARY CANDIDATES 153

longest suffix of V that is a distinx is the longest proper suffix of V ′ that is a
distinx. Therefore lpsW(V) = lpsW(V ′).

Hence, we can determine lpsW(V) in constant time, O(1). As a result we can
compute the right subtree of T̃W(V) in time O(|lpsW(V)|) because lpsW(V) ∈
SW . As for the complementary prefix of V , it is V1 such that V = V1 ◦ lpsW(V).
In particular its length is n1 = n − |lpsW(V)|. Since V1 is a prefix of V , the
infixes sj(V) = sj(V1) for j ≤ n1 and thus we can repeat the same procedure
for V1.

The time complexity of the described algorithm is:

Time(V) = Time(V1) +O(|lpsW(V)|).

Since |lpsW(V)| = |V | − |V1| we get that Time(V) = Time(V1) +O(|V | − |V1|)
and an easy induction argument shows that Time(V) = O(|V |).

ApproximateCanonicalTree(SW , n, s)
(V ′, j)← s[n])
if j = |V ′|

Tright ← TW(V ′)
n1 ← n− j then

else
Tright ← TW(lps(V ′))
n1 ← n− |lps(V ′)|

fi
if n1 = 0 then

return Tright
else

Tleft ← ApproximateCanonicalTree(SW , n1, s)
T ←tree with a new root, left subtree Tleft and right subtree Tright
return T

fi

8.2.2 Alignment Graphs. Searching of Candidates

Given a query word V = v1 ◦ v2 ◦ · · · ◦ vn and its approximate canonical tree
T̃N (V), we describe how to generate a list ranked candidates for V . To this
end it is useful to consider an alignment graph associated with the word V , see
Figure 8.5. This will allow us to define the search problem in terms of graphs
and apply graph algorithms to efficiently solve it. The alignment graph for
the word V is a directed graph with vertices numbered from 0 to n and arcs,
(i, j), correspond in one-to-one fashion to the nodes of T̃N (V). To make this
intuition precise we need the following definition that assigns with each node of
the approximate canonical tree a corresponding segment from the word V :

154 CHAPTER 8. LEARNING THE EDIT-DISTANCE

3

13

t:0.75

ou:0.8

ter:0.9

slie:0.9

er:0.7

lie:0.85

trai:0.95

s:0.8

a:0.65

i:0.55

i:0.55

o:0.6

l:0.7

r:0.7t:0.75r:0.7

u:0.65

e:0.5

e:0.5

ai:0.8

ie:0.75

tr:0.9

4

12111098

765210

Figure 8.5: The alignment graph GN (V) for V = traiterouslie.

Definition 8.2.4 Given an approximate canonical tree, TW(V), for a word
V = v1 ◦ v2 ◦ · · · ◦ vn we associate with each node of the tree an interval in the
following way:

1. the interval associated with the root V is [0;n].

2. if V ′ is a node in the tree with associated interval int(V ′) = [i; j] and V ′

has a left child V ′1 and right child V ′2 , then:

int(V ′1) = [i; i+ |V ′1 |] and int(V ′2) = [j − |V ′2 |; j].

It should be clear, that the length of the interval int(V ′) is exactly |V ′|. Fur-
thermore, unless V ′1 = ε or V ′2 = ε, we have that int(V ′) = int(V ′1) ∪ int(V ′2)
and the two smaller intervals share only an endpoint. Now, we can define the
alignment graph for a word V formally:

Definition 8.2.5 Given a set of words,W, and a query word, V = v1◦v2◦· · ·◦vn
of length n, an alignment graph for V with respect to the structure, SW is a
directed graph GW(V) with nodes {0, 1, . . . , n} and arcs:

EW(V) = {(i, j) | [i; j] = int(V ′) for some nonempty word V ′ ∈ TW(V) ∩ SW}

With each arc (i, j) in the graph GW(V) we associate a label λ(i, j) = Iji+1(V).

It is straightforward that given an approximate canonical tree, we can con-
struct the corresponding alignment graph in linear time:

Lemma 8.2.6 Given the approximate canonical tree TW(V) for a word V , the
alignment graph GW(V) can be constructed in time O(|V |).
Proof. First, we compute the intervals associated with each tree node, see
procedure ComputeIntervals. Second, we follow the definition of an alignment

8.2. SEARCHING DICTIONARY CANDIDATES 155

graph, see procedure ComputeAlignmentGraph. The first step requires O(1)
time per tree node summing up toO(|TW(V)|) time for all the nodes. The second
step, see procedure ComputeAlignmentGraph, also requires O(|V | + |TW(V)|)
time. Since by Lemma 8.2.3 ||TW(V)| ∈ O(|V |), the complexity of this step and
also of the entire algorithm is O(|V |).

ComputeIntervals(T , V ′, i, j)
int(V ′)← [i; j]
V ′1 ← the left child of V ′ in T
V ′2 ← the right child of V ′ in T
if V1 is defined then

ComputeIntervals(T , V ′1 , i, i+ |V ′1 |)
ComputeIntervals(T , V ′2 , j − |V ′2 |, j)

fi

ComputeAlignmentGraph(SW , T , V)
n← |V |
ComputeIntervals(T , V , 0, n)
G← graph with vertices {0, 1, . . . , n} and edges E = ∅
for V ′ ∈ T do

if V ′ ∈ SW and V ′ 6= ε then
[i; j]← int(V ′)
E ← E ∪ {(i, j)}
λ(i, j)← Iji+1(V)

fi
done
return G

Now, we model how likely it is that a dictionary word U ∈ D is the original
for the noisy word V . To this end we account for: (i) the N -distinxes shared by
V ; (ii) the operations Op and their conditional probabilities p derived during
the training stage; (iii) the correct assemblage of operations w.r.t. U ∈ D and
the query word V . We combine this constraints in an optimisation problem as
it is commonly done in similar problems, e.g. Moore, [14, 59]:

`(V → U) = max
k∏
j=1

p(Uj |λ(ij−1, ij))

subject to: (i0, i1, . . . , ik) a (0, n)-path in GN (V)
(Uj , λ(ij−1, ij)) ∈ Op for j ≤ k
U = U1 ◦ U2 ◦ · · · ◦ Uk.

Since, the concatenation of the labels along each path from 0 to n results to
V , the second two lines essentially say that the path of interest in the graph
GN (V) must correspond to an alignment between U and V with respect to the
set of operations, Op.

156 CHAPTER 8. LEARNING THE EDIT-DISTANCE

slie sly,0.9 slie,0.07 sli,0.03

Figure 8.6: The precomputed lists L(ν) for ν = slie.

Remark 8.2.7 The reason to deviate from the initial definition of edit-distance
that we considered in the previous Chapters is the following. We have modelled
not the cost of the operations but rather their frequency, that is how often they
are likely to occur. In this context, it is also natural to ask how likely it is that
the original of V is U , and not what the total cost of modifying U to V would be.
In this terms, the original of V should be the most probable amongst the possible
words U . Technically, one can reduce the multiplication and maximisation to
summation and minimisation, respectively, by taking minus logarithm of the
probabilities. Yet, the problem remains different from the approximate search
problem considered in the previous chapters.

Now, having the notion of likeliness, we state the ranked searching problem
for a query word V as:

Find all U (i) ∈ D in decreasing order of `(V → U (i)) > 0.

In order to efficiently solve this problem, we organise the set of all operations,
(U ′, V ′) ∈ Op, in sorted lists L(V ′) w.r.t. p(U ′|V ′), see Figure 8.6. This enables
a constant access to the most probable operation with right side V ′ and a
successive access to the less probable ones in decreasing order. Thus, we can
easily compute an upper bound for the probability of a dictionary suffix which
matches the noisy suffix, vi+1 . . . vn.

To this end, it suffices to supply each arc (i, j) with a cost c(i, j) = p(U (0)|λ(i, j))
determined by the first element U (0) in the list L(λ(i, j)), see Figure 8.5. Then
we compute the best cost of an (i, n)-path:

d(i) = max
k∏
j=1

c(ij−1, ij).

Using that GN (V) is acyclic this can be done in a simple and efficient way. It
is rather straightforward that:

d(n) = 1
d(i) = max

j:(i,j) is an arc inGN (V)
c(i, j)d(j).

From this observation we can derive the following lemma:

Lemma 8.2.8 Given an alignment graph GN (V) and the values c(i, j) for every
arc (i, j) in the graph, the upper bounds d(i) for all i can be computed in total
time O(|V |).

8.2. SEARCHING DICTIONARY CANDIDATES 157

Proof. For the proof it suffices to consider the vertices in decreasing order and
compute the values d(i) according to the above recurrence, see procedure Com-
puteUpperBounds. Since each arc (i, j) in the graph GN (V) has the property
i < j, the values required on the right hand side in this recurrence will be al-
ready computed, by the time of considering the node i. In this way each arc in
the graph will be considered once only. Thus, the total time of this procedure
will be then proportional to the total number of arcs in the graph. However
the number of arcs in the graph does not exceed the number of nodes in the
approximate canonical tree T̃N (V). Finally, since T̃N (V) can be computed in
time O(|V |) according to Lemma 8.2.3 it has also at most O(|V |) nodes, thus
the number of arcs in GN (V) is also O(|V |).

ComputeUpperBounds(GN (V), c,d)
n← |V |
d[n]← 1
for i = n− 1 downto 1 do

d[i]← 0
for each arc (i, j) ∈ GN (V)

if d[i] < c(i, j)d[j] then
d[i]← c(i, j)d[j]

fi
done

done

Disposing on the upper bounds, d(i), and the lists of operations, L(V ′), we
initiate an exhaustive search, see procedure SearchHypotheses. It consists of
two main stages. In the first stage, we initialise a set of hypotheses with some
hypotheses corresponding to the trivial path from 0 to 0. In the second stage,
we explore an already defined hypothesis and generate new hypotheses.

Each hypothesis is a quintuple, (Pj , Uj , sj , tj , pj). It encodes a prefix Pj
of the dictionary D which aligns the prefix I

sj
1 (V) according to the alignment

graph GN (V) with probability pj . Furthermore, (sj , tj) is an arc in the align-
ment graph and (Uj , λ(sj , tj)) is an operation. At each stage of the algorithm,
we explore the most promising quintuple where we account for its current prob-
ability and the upper bound, d(tj), for the best (hypothetical) suffix it could
be combined with. In particular, all the generated hypotheses are considered in
decreasing order of the characteristic:

pj × p(Uj |λ(sj , tj))× d(tj).

Due to the extreme properties of the values d(tj) the above value is the (hypo-
thetically) best possible extension of the prefix Pj followed by the assumption
for Uj .

SearchHypotheses(SD,L, G,d, n,Hypotheses)

158 CHAPTER 8. LEARNING THE EDIT-DISTANCE

Marked← ∅
InitialiseHypotheses(L, G,d, n,Hypotheses)
while Hypotheses 6= ∅ do

h← Hypotheses.ExtractMin()
(st(P), U, s, t, p)← h
if t 6= n then

ExtendHypothesis(h,S D,L, Gd, n,Hypotheses)
else

if st(P) is final state in SD then
if st(P) not marked then

report (P , p)
mark st(P)
Marked.Insert(st(P))

fi
fi

fi
GenerateNextHypothesis(h,L,d, Hypotheses)

done
for st ∈Mark do

st unmark
done

In the sequel we shall describe each of the two stages in details:
Initialisation. We consider the alignment graph GN (V) and generate all the

quintuples of the form (ε, U (0)
j , 0, j, 1), such that:

(0, j) ∈ EN (V) and U
(0)
j is the first element in L(λ(0, j)).

This corresponds to initialise the trivial path 0 and make all possible best as-
sumptions for its immediate extensions, see procedure InitialiseHypotheses.

InitialiseHypotheses(SD,L, G,d, n,Hypotheses)
Hypotheses← ∅
for (0, j) an arc in G do

sε ← initial state of SD
U ← L(λ(0, j)).F irstElement()
h← (sε, U, 0, j, 1)
Hypotheses.Insert(h,d)

done

Extension. Among all the currently generated quintuples, (Pj , Uj , sj , tj , pj),
we select the one with highest score, see procedure SearchHypotheses:

pj × p(Uj |λ(sj , tj))× d(tj).

Thus, we choose the one that seems the most promising to extend to a candidate
of maximal probability. Next, we check this hypothesis by extending the prefix
Pj with the Uj in the structure SD. If our hypothesis is true and Pj ◦ Uj is a
prefix of in SD, then there are two possible cases:

8.2. SEARCHING DICTIONARY CANDIDATES 159

1. tj = n. In this case, we have reached the end of a path from 0 to n, and
therefore Pj ◦Uj aligns the word V with probability pj × p((Uj |λ(sj , tj)).
Thus, if Pj ◦Uj ∈ D, we report this word as the next generated candidate
with probability:

pj × p((Uj |λ(sj , tj)).

2. tj 6= n. In this case tj < n and we have to traverse further edges before
constructing a path reaching n, see procedure ExtendHypothesis. Each of
these paths should follow one of the edges emerging from tj in the graph
GN (V). Therefore we determine the quintuples:

(Pj ◦ Uj , U ′, tj , t′, pj × p((Uj |λ(sj , tj))),

where (tj , t′) is an edge in GN (V) and U ′ is the first element of the list
L(λ(tj , t′)). Thus, the choice of U ′ determines the most promising exten-
sion of the current hypothesis Pj ◦ Uj if we follow the edge (tj , t′).

ExtendHypothesis(h,SD,L, G,d, n,Hypotheses)
h← (st(P), U, s, t, p)
st next← TraverseInfixStructure(SD, st(P), U)
if st next is defined and corresponds to a prefix in D then

p next← p× p(U |λ(s, t))
for (t, t next) an arc in G do

U next← L(λ(t, t′)).F irstElement()
h next← (st next, U next, t, t next, p next)
Hypotheses.Insert(h,d)

done
fi

Thus, we have verified the hypothesis (Pj , Uj , sj , tj , pj) and we extract it
from the list of the generated hypotheses. Before proceeding with the next one,
we need to account for the other possible extension assigned to the edge (sj , tj),
see procedure SearchHypotheses. The most promising among them is the one
associated with the next element after Uj in the list L(λ(sj , tj)). Thus, pro-
vided that Uj is not the last element of L(λ(sj , tj)) and U ′j is the next element
in L(λ(sj , tj)), we substitute the hypothesis (Pj , Uj , sj , tj , pj) with the hypoth-
esis (Pj , U ′j , sj , tj , pj). Otherwise, we simply remove (Pj , Uj , sj , tj , pj). This
completes the description of the search and generation procedure of correction
candidates.

In order to efficiently maintain the access to the most probable hypothesis, its
removal and insertion of new hypotheses, we use a heap organised with respect
to the values:

pj × p(Uj |λ(sj , tj))× d(tj).

The method described above is an adapted version of an A-star approach, [24,
25], to solve the shortest path problem. A similar algorithm on acyclic graphs
was proposed by Eppstein, [18], and also used by Mohri et at., [45]. The ap-
plicability of this approach in our case follows by the fact that the values d(j)

160 CHAPTER 8. LEARNING THE EDIT-DISTANCE

do provide an upper bound for any possible suffix in D that could be generated
along a path from j to n in the alignment graph.

In summary, the search algorithm presented in this Section comprises of
three main steps, see procedure SearchCorrectionCandidates:

1. computation of the longest suffixes si(V) and the approximate canonical
tree TN (V),

2. computation of the alignment graph GN (V) and the upper bounds d(j),

3. generation and exploration of hypotheses.

SearchCorrectionCandidates(SN ,SD,L, V)
ComputeLongestSuffixes(V ,SN , s)
T ← ApproximateCanonicalTree(SN , |V |, s)
G← ComputeAlignmentGraph(SN , T , V)
for (i, j) an arc in G do

U ′ ← L(λ(i, j))
c(i, j)← p(U ′|λ(i, j))

done
ComputeUpperBounds(GN (V), c,d)
SearchHypotheses(SD,L, G,d, n,Hypotheses)

Proposition 8.2.9 For a given query word V , the running time of the Search-
CorrectionCandidates is:

O(|V |+
∑

h∈Hypotheses
(|U(h)|+ log |Hypotheses|))

where Hypotheses is the set of all generated hypotheses by the procedure SearchHypotheses
and U(h) is the extension infix U for the hypothesis h.

Proof. From Lemmata 8.2.2, 8.2.3, 8.2.6, 8.2.8 follows that first two steps
of the algorithm are computed in time O(|V |). To estimate the running time
of the search procedure, we first observe that each hypothesis is inserted, con-
sidered and extracted once only. Hence, using a binary heap to maintain the
set of all hypotheses, the cost for an insertion and deletion of a hypothesis
is log |Hypotheses|. When extending a hypothesis we spend additional |U(h)|
time to follow the transitions of the structure SD. This shows that we spend
O(|U(h)|+ log |Hypotheses|) per hypothesis h, thus proving the desired upper
bound.

Remark 8.2.10 It is worth mentioning that for each hypothesis h we spend at
most O(|U(h)| + |V | log |Hypotheses|) time since we may add at most |V | + 1
new hypotheses. Thus, the running time of the algorithm is determined not by
the size of all the hypotheses but by the size of all the generated hypotheses.

8.3. EVALUATION 161

Corpus size training test Language Dictionary
set size set size

TCD 1641 499 texts 437 texts 62 texts Early Mod. Carnegie
[1] 204 Kwords English Mellon,[2]

IMPACT 37 Kwords 5 Kwords 32 Kwords 19th Cent. BAS
BG, [3] Bulgarian Bulg.,[35]

ICAMET,[62] 469 texts 300 texts 148 texts Early Mod. Carnegie
182 Kwords English Mellon,[2]

TREC-5,[4] 55 Ktexts 27 Ktexts 27 Ktexts OCR-ed Carnegie
20 Gwords 10 Gwords 10 Gwords English Mellon,[2]

Table 8.1: General characteristics of the evaluation resources.

Remark 8.2.11 We note that our search algorithm can be easily adapted to
retrieve the ”n-best” candidates or the candidates with probability above a fixed
threshold. Furthermore, we can constrain the number of hypotheses it should
consider. From the previous Remark, this will speed it up. Finally, we can
control the threshold of the candidates’ probability that we are interested in.
All these features can be easily implemented by introducing an appropriate ad-
ditional counter or threshold in the while-loop in procedure SearchHypotheses.
The time to maintain it appropriately could be easily estimated at O(1).

Remark 8.2.12 To handle queries which may require non-dictionary candi-
dates we can omit the constraints imposed by the structure SD. Thus, our
algorithm would provide non-dictionary candidates, UND0 , UND1 , . . . along with
the dictionary candidates UD0 , U

D
1 , One can rescore the former ones by

a factor of 1 − p̃(UD0 |V) in order to suppress their influence in case that the
dictionary candidate is really a probable one.

8.3 Evaluation

We evaluated our approach, REBELS, on two different tasks – normalisation
of historical texts and OCR-postcorrection, two different languages – English
and Bulgarina, on four different data sets. Table 8.1 summarises the general
information for the resources used for the tests.

8.3.1 TCD 1641

The TCD 1641 corpus consists of 8000 depositions from the 1641 Irish rebellion,
digitised at the Trinity College Dublin [1]. These depositions are written in Early
Modern English and the task was to rewrite the words in Modern English.

A representative part of the corpus was manually aligned on word level and
we evaluated the performance of REBELS on different types of queries on it.

162 CHAPTER 8. LEARNING THE EDIT-DISTANCE

Coverage Moses TT REBELS
all 90.8 97.1

nocc 3.4 69.2
occ 99.5 99.8
nid 78.1 90.0
id 94.4 99.1

Errors Moses TT REBELS
all 9.4 5.0

nocc 96.9 47.5
occ 0.8 0.6
nid 22.7 16.5
id 5.9 1.5

Table 8.2: The coverage (on the left) and the errors (on the right) in per-
cent of Moses TT and our new system, REBELS. Here nocc=not occurred,
occ=occurred, nid=nonidentity, id=identity.

We measured the errors1 and coverage2 of the first ten candidates generated by
the system. We compared the results of REBELS with the results produced
by the Moses translation table (Moses TT), [5], after training on the same set
of documents. Each query, V , was assigned as nocc(occ) if V 6∈ N (V ∈ N)
and to nid(id) if V 6= U(V = U) where U is the correct candidate according to
the corpus. Tables 8.2 summarise the overall results and the results for these
four categories of queries. They reveal an evident advantage for REBELS in
unobserved query words and much better coverage on queries with V 6= U . In
the same time it is almost impeccable on words observed during the training
and words which should not be changed.

8.3.2 IMPACT BG

The IMPACT BG corpus for Bulgarian consists of 37640 words from late 19th
century Bulgarian newspaper articles, digitised at the Bulgarian Academy of
Sciences in the framework of the IMPACT Project [3]. The task here was again
to find the correct modern word that corresponds to a historic word. Unlike
the TCD corpus, the IMPACT BG corpus is unambiguous. This means, that
the corpus itself is a set of pairs and not a multiset. However, the same historic
words may be assigned to different modern words and vice versa. Another
interesting feature of this corpus is that consists of ”pure” historic words, i.e.
there are no pairs (U, V) with U = V .

On this corpus we studied the saturation of REBELS. To this end the words
in the corpus were sorted in decreasing order with respect to their frequency
in the historical language. Afterwards we set six experiments as follows. For
experiment number k ≤ 6 we used the first 5000k pairs for training and we
evaluated the performance of our system on the last 37640 − 5000k historical
words. Table 8.3 gives the coverage and errors from these six experiments.

1That is the ratio of the cases where the first suggested candidate is not the correct one to
the number of all queries.

2The coverage is the ratio of the cases where one of the suggested candidates is the correct
one to the number of all queries.

8.3. EVALUATION 163

k 1 2 3 4 5 6
coverage 86.2 85.0 92.5 95.7 95.9 97.9

errors 18.5 20.0 13.4 8.9 8.0 4.5

Table 8.3: Saturation of REBELS on Historical Bulgarian dictionary. Coverage
and errors in percent.

VARD2,[10] Moses,[5] REBELS
WER 35.0 11.3 9.1

Table 8.4: WER in percent for ICAMET of VARD2, Moses and REBELS.

8.3.3 ICAMET

The ICAMET Corpus of Letters contains 469 complete letters (182 000 words),
from different sources, written between 1386 and 1698 digitised at Innsbruck
University [62]. On ICAMET we evaluated the word error rate3 (WER) on the
normalisation result. We trained Moses on training set and used the phrase pairs
of length less than four from the Moses translation table. When translating a
document we called our system for single words or for two consecutive words. We
choose the sequence of modern words with best total score. We compared our
results with the results obtained by Moses when the language model is switched
off. Table 8.4 reports the results achieved on ICAMET by a previous system
VARD24, [10], by Moses and by REBELS. Applying Moses with a language
model trained on the Gutenberg corpus, [6], improved Moses’ results to 9.7%
WER, thus could not achieve the performance of REBELS without using any
language model.

8.3.4 TREC-5

The TREC-5 Confusion Track Corpus is compiled from the 1994 edition of the
Federal Register of the United States Government Printing Office. It consists of
about 55 600 original texts and their OCR-ed variants that contain about 5%
of errors on character level. We used 50% of the documents for training and
evaluated the error rate and the coverage, both on word level, on the rest 50%
of the documents. Our coverage ratio, see Table 8.5, improve previous results
on this data set, reported in [54] and [41]. The error rate of REBELS is 4.31%.

Although we do not have a formal framework that would allow us to argue the
superiority of our approach to previous techniques to defining similarity between
words, the experiments presented in this section reveal that it is adequate,
language independent and applicable in different areas.

3This is the Levenshtein edit-distance of modernisation and the corrected text divided by
the length of the corrected text.

4In [10] the authors report precision of 65%.

164 CHAPTER 8. LEARNING THE EDIT-DISTANCE

REBELS Levenshtein Automata Levenshtein Automata, [54]
with training, [41]

coverage 98.37 96.82 91.21

Table 8.5: Coverage in percent for TREC-5 of REBELS and automata tech-
niques described in [41] and [54].

Appendix A

Bookkeeping

In the sequel we describe the technical details involved in the memory book-
keeping required in Chapter 6. We formally prove an upper bound for the space
requirement for an inverted index which provides the answers of the approx-
imate search problem for an arbitrary word, V , of length not exceeding N .
Setting N = 4(ρ − 1) where ρ = ρ(Op) is the length of the longest right side
of an operation, results to a solution of our particular problem. The idea is a
simplified version of the one outlined in Chapter 7.

Definition A.1 The generating functions φε(z) and φΣ(z) with respect to a
generalised edit-distance (Op, c) are introduced as:

φε(z) =
∑
op∈Λ z

c(op) and

φΣ(z) =
∑
op∈Op\Λ z

c(op).

Lemma A.2 Let N,M ∈ N be arbitrary and q ∈ (0; 1). If

AN,M = {ω ∈ Op∗ | |r(ω)| = N & c(ω) ≤ qM}

then the size of AN,M is bounded by:

|AN,M | ≤ z−qM
qM∑
k=0

(
N + k

k

)
φkε(z)φNΣ (z)

Proof. For each alignment ω = op1 ◦op2 ◦ · · · ◦opn. we can view ω as a triple
ω = 〈ωε, ωΣ, βω〉 where:

1. ωε = opj′1 ◦ opj′2 ◦ · · · ◦ opj′k where j′1 < j′2 < · · · < j′k ≤ n and opj′i ∈ Λ.

2. ωΣ = opj′′1 ◦ opj′′2 ◦ · · · ◦ opj′′m where j′′1 < j′′2 < · · · < j′′m ≤ n and opj′′i ∈
Op \ Λ.

3. βω ∈ {0, 1}n with βω(j) = 1 if and only if opj ∈ Op(l)
ε

165

166 APPENDIX A. BOOKKEEPING

Clearly the cost of the alignment ω is c(ω) = c(ωε) + c(ωΣ) and the length
|r(ω)| = |r(ωΣ)| since r(ωε) = ε. Thus ω ∈ AN,M if and only if:

|r(ωΣ)| = N

c(ωΣ) + c(ωε) ≤ qM.

Now consider a variable z ∈ (0; 1). It is straightforward to see that:

zc(ωΣ)+c(ωε)−qM ≥ 0 and
zc(ωΣ)+c(ωε)−qM ≥ 1 ⇐⇒ c(ωε) + c(ωΣ) ≤ qM.

Furthermore, since each operation of the set Λ is of positive cost, there are no
more than qM operations in ωε. Consequently, we obtain:

|AN,M | =
∑

ω∈AN,M
1

≤
∑
ωε∈Λ∗

|ωε|≤qM

∑
ωΣ∈(Op\Λ)∗

|r(ω)|=N

∑
β∈{0,1}∗
||β||0=|ωΣ|
||β||1=ωε

zc(ωε)+c(ωΣ)−qM

=
∑
ωε∈Λ∗

|ωε|≤qM

∑
ωΣ∈(Op\Λ)∗

|r(ω)|=N

(|ωε|+ |ωΣ|
|ωε|

)
zc(ωε)zc(ωΣ)z−qM

= z−qM
∑
ε∈Λ∗

|ωε|≤qM

zc(ωε)
∑

ωΣ∈(Op\Λ)∗

|r(ω)|=N

(|ωε|+ |ωΣ|
|ωε|

)
zc(ωΣ).

Note, that for each ωΣ we have that |ωΣ| ≤ |r(ωΣ)| because each of the
operations which constitute ωΣ is of non-zero length right hand side whereas
r(ωε) = ε is of length 0. Therefore,

(|ωΣ|+|ωε|
|ωε|

)
≤
(
N+|ωε|
|ωε|

)
whenever |r(ωΣ)| =

N . Hence we obtain:

|AN,M | ≤ z−qM
∑
ε∈Λ∗

|ωε|≤qM

zc(ωε)
∑

ωΣ∈(Op\Λ)∗

|r(ω)|=N

(|ωε|+ |ωΣ|
|ωε|

)
zc(ωΣ)

≤ z−qM
∑
ωε∈Λ∗

|ωε|≤qM

(
N + |ωε|
|ωε|

)
zc(ωε)

∑
ωΣ∈(Op\Λ)∗

|r(ω)|=N

zc(ωΣ).

167

Now we compute the sum:

∑
ε∈Λ∗

|ωε|≤qM

(
N + |ωε|
|ωε|

)
zc(ωε) =

≤qM∑
k=0

∑
ωε∈Λ∗

|ωε|=k

(
N + k

k

)
zc(ωε)

=
≤qM∑
k=0

(
N + k

k

) ∑
op1◦op2···◦opk

opj∈Λ

z
Pk
j=1 c(opj)

=
≤qM∑
k=0

(
N + k

k

) ∑
op1◦op2···◦opk

opj∈Λ

k∏
j=1

zc(opj)

=
≤qM∑
k=0

(
N + k

k

) k∏
j=1

∑
opj∈Λ

zc(opj)

=
≤qM∑
k=0

(
N + k

k

) k∏
j=1

φε(z) =
≤qM∑
k=0

(
N + k

k

)
φkε(z).

Next consider the sum:

∑
ωΣ∈(Op\Λ)∗

|r(ω)|=N

zc(ωΣ) =
∑

op1◦op2...opn
opj∈Op\ΛP
j |r(opj)|=N

z
Pn
j=1 c(opj)

=
∑

op1◦op2...opn
opj∈Op\ΛP
j |r(opj)|=N

n∏
j=1

zc(opj)

=
∑

op1◦op2...opn
opj∈Op\ΛP
j |r(opj)|=N

n∏
j=1

zc(opj) |r(opj)|∏
m=2

z0



Now we can interpret the term z0 in the product
∏|r(opj)|
k=2 z0 as zc((uk,uk)) where

uk is the k-th character of r(opj). In this way we map injectively the sequence of
the operations op1, op2, . . . opn to a sequence of operations op′1, op

′
2, op

′
3, . . . op

′
N

with:

n∏
j=1

zc(opj) =
N∏
j=1

zc(op
′
j).

168 APPENDIX A. BOOKKEEPING

Since z > 0 we obtain:

∑
ωΣ∈(Op\Λ)∗

|r(ω)|=N

zc(ωΣ) =
∑

op1◦op2...opn
opj∈Op\P
j |r(opj)|=N

n∏
j=1

zc(opj) |r(opj)|∏
m=2

z0



≤
∑

op1◦op2...opN
opj∈Op\Λ

N∏
j=1

zc(opj)

=
N∏
j=1

∑
opj∈Op\Λ

zc(opj)

=
N∏
j=1

φΣ(z) = φNΣ (z)

Summing up we get:

|AN,M |
∑

ω∈AN,M
1 ≤ z−qM

qM∑
k=0

(
N + k

k

)
φkε(z)φNΣ (z)

as stated.

As a corollary we obtain:

Corollary A.3 Let N,M ∈ N be fixed and q ∈ (0; 1) and z ∈ (0; 1). Then:

|AN,M | ≤ exp ((N + qM)φε(z)− qM log z +N log φΣ(z))

Proof. Indeed for k ≤ qM , we have that
(
N+k
k

)
≤ (N+k)k

k! ≤ (N+qM)k

k! . Now
according to Lemma A.2 we obtain:

|AN,M | ≤ z−qM
qM∑
k=0

(
N + k

k

)
φkε(z)φNΣ (z)

≤ z−qMφNΣ (z)
qM∑
k=0

(N + qM)kφkε(z)
k!

≤ z−qMφNΣ (z)
∞∑
k=0

(N + qM)kφkε(z)
k!

= z−qMφNΣ (z) exp((N + qM)φε(z))
= exp ((N + qM)φε(z)− qM log z +N log φΣ(z)) .

169

Using Corollary A.3 it is not difficult to give a rough upper bound for the
number of alignments AN,M which does not depend on the specific form of the
operations Op but only on the size of |Λ|, |Op| and the size of the alphabet Σ.
To this end we note that each function φΣ(z) is of the form:

φΣ(z) =
∑

op∈Op\Λ
zc(op) =

∑
op∈Id

zc(op) +
∑

op∈Op\(Λ∪Id)

zc(op).

However, if op ∈ Id we get that c(op) = 0 and otherwise c(op) ≥ 1. Therefore
for z ∈ (0; 1) we obtain:

φΣ(z) ≤ |Id|+ z(|Op| − |Λ| − |Id|).

Analogously, using that Λ ∩ Id = ∅ we can bound φε(z) for z ∈ (0; 1) by:

φε(z) ≤ |Λ|z.

Taking into account Corollary A.3 and |Id| = |Σ| we get the following upper
bound:

Corollary A.4 For integers number N,M ∈ N and q, z ∈ (0; 1) it holds:

|AN,M | ≤ exp ((N + qM)z|Λ| − qM log z +N log(|Σ|+ z(|Op| − |Λ| − |Σ|)).

In particular for z = qM
N+qM |Λ|−1 this implies:

|AN,M | ≤ exp
(
qM

(
log

N + qM

qM
+ 1 + log |Λ|

)
+N log

(
|Σ|+ qM

N + qM

|Op| − |Λ| − |Σ|
|Λ|

))
.

Actually, z = qM
N+qM |Λ|−1 is the extreme point for the function:

(N + qM)z|Λ| − qM log z.

Clearly a more sharp upper bound is provided by z′ which minimises the func-
tion:

(N + qM)z|Λ| − qM log z +N log(|Σ|+ z(|Op| − |Λ| − |Σ|).
Corollary A.4 shows the following asymptotic upper bound for the size of AN,M :

Lemma A.5 For every two positive integers N and M , |AN,M | ∈ expO(qM +N).

170 APPENDIX A. BOOKKEEPING

Conclusion

In the current work we carried out a theoretical study on the approximate search
problem in a regular set of words. However, one should keep in mind that for
practical purposes, e.g. OCR-postcorrection, genome analysis, normalisation
of historical texts, the approximate search problem arises only as a subtask.
Essentially, solving the approximate search problem, yields a list of correction
candidates. Choosing the correct candidate from this list is considered as a sep-
arate problem . In particular, it can be done by manual inspection or another
automatic procedure that ranks the correction candidates. Therefore, if one fol-
lows this direction, the time efficiency of the approximate search stage becomes
an important issue.

An alternative approach that extracts the relevant operations, their scores
and provides a search procedure that can be directly applied to solve the above
tasks, was proposed and developed in Chapter 8 .

In this context the main contributions of the current work are:

1. General framework for study of alignments and efficient genera-
tion of correction candidates. The approach considered in Chapter 4
provides a general framework to consider alignments and study their prop-
erties. The notion of edit-distance lists then allows to efficiently implement
these observations in practice when we are interested only in the genera-
tion of correction candidates.

2. New algorithm for approximate search in arbitrary regular sets
of words. In Chapter 5 we described a divide and conquer algorithm for
the approximate search problem in regular sets. In this way we generalised
the algorithm of Myers, [47], where a special case of a finite set of words
is considered, algorithm of Baeza-Yates and Navarro, [49], and Mihov and
Schulz [42]. Applying the technique of edit-distance lists we further avoid
the redundancies encountered in all these algorithms during the generation
of candidates.

3. New algorithm for approximate search w.r.t. arbitrary edit-
distance. In Chapter 6 we showed that our algorithm can be easily ex-
tended to capture generalised edit-distances thus extending it beyond the
standard Levenshtein edit-distance. To achieve this we made an observa-
tion on the properties of the alignments of interest and reflected it in terms

171

172 CONCLUSION

of edit-distance lists – the general framework developed in Chapter 4.

4. Efficiency of the proposed algorithm, practically. Due to the use of
edit-distance lists, the proposed divide and conquer algorithm generates
each correction candidate once only, Chapters 4 and 6. Proposition 5.3.6,
Proposition 5.3.15 argue this result mathematically in a special case for
the edit-distance. Proposition 6.2.8 and Proposition 6.2.9 lead to the same
conclusion in the general case. It also preserves the basic property of the
Myers’ algorithm, [47]. Hence, at the beginning it starts with an exact
match and the error-tolerance increases with the length of the currently
generated candidate. In this way the error-tolerance is suppressed for short
infixes and it comes close to the desired error-tolerance only for infixes that
are long and thus informative with respect to the given language.

5. Efficiency of the proposed algorithm, theoretically. In Chapter 7
we proposed a general framework which enables to assess the quality of our
algorithm. In Proposition 7.2.2 and Proposition 7.2.7 show that on average
the running time of our algorithm is linear where the constant depends on
type edit-distance, the threshold and the structure of the regular language.

Although the proposed framework is different from the one used in [47]
and [49], this result can be regarded in the following way. Given the
distribution of the input alphabet and the regular language, how can we
choose the threshold parameter and the edit-distance so that we achieve a
desired time efficiency. This is motivated for application purposes where
we desire to get a manageable list of correction candidates and definitely
not the entire set of words (in the finite case).

6. New approach to defining similarity between words. In Chapter 8
we described a new approach for extraction of operations and definition of
similarity between words. Based on the structure of the language and the
structure of a given training set of instances, it takes into account context
of various size that is implicitly contained in the data. Hence, it can be
flexibly applied for different languages and different sources of noise. The
designed algorithm is shown to be practical and knowing the parameters
of its efficiency and the specific application of the notion of similarity, one
can easily control its efficiency derived in Proposition 8.2.9.

The main concept that stays behind Results 1–5 extends previous ideas of
Myers, [47], Baeza-Yates and Navarro, [49], and Mihov and Schulz, [42]. Its
realisation relies on classical results in the theory of finite state automata and
partially uses previous results due to Blumer et al., [11, 12], Ko and Aluru, [34].
To achieve Result 5 the author adapted an algebraic approach proposed of Eilen-
berg, [17], classical results from linear algebra, graph theory, theory of the finite
state automata. Result 6 is a product of an original mathematical interpreta-
tion of the structure of Blumer et al., [12]. For its algorithmic implementation
it applies ideas due to Aho and Corasick, [7], and also generic idea suggested by
Hart et al., [24, 25], that nicely fits in the framework proposed by the author.

173

The Results 1 to 6 were reflected in one own paper and in several joint
papers with Stoyan Mihov, Petar Mitankin, Klaus Schulz, Vladislav Nenchev,
as follows:

1. Some algebraic properties of alignments of words, S. Gerdjikov,
Comptes rendu de l’Academie bulgare des Sciences, 65(10):1311–
1319, 2012,

This is a paper with one author. In this paper are reflected the basic
steps leading to Results 1 and 5. In particular, it describes the basic
properties of the edit-distance lists and alignments sets that are in the
background of achieving Propositions 5.3.6 and 5.3.15. It also communi-
cates Lemma 7.1.6 that is the essential ingredient for the proof of Propo-
sitions 7.2.2 and 7.2.7.

2. WallBreaker - overcoming the wall effect in similarity search,
S. Gerdjikov, S. Mihov, P. Mitankin, and K. U. Schulz, ACM
Proceedings of the 2013 Joint EDBT/ICDT Workshops, 2013,

and its full version:

Good parts first - a new algorithm for approximate search in
lexica and string databases, S. Gerdjikov, S. Mihov, P. Mitankin,
and K. U. Schulz, ArXiv, 2013
e-prints:http://adsabs.harvard.edu/abs/2013arXiv1301.0722G.

These two papers are joint papers with Petar Mitankin, Stoyan Mihov and
Klaus Schulz. The algorithm for approximate search described in these
papers, is a result obtained in the seminar led by Stoyan Mihov. During
the regular sessions of this seminar both Petar Mitnakin and the author
worked and presented their progress on this problem. Thus, they reached
to two different yet equivalent solutions in the case of Levenshtein edit-
distance. The differences were in the specific linear data structure used
for the representation of the set of words.

Studying in more details the references Petar Mitankin came across to an
even more compact data structure proposed in [12, 29].

The author extended the algorithm to the case of arbitrary edit-distance.

Results 2, 3 and 4 build on the ideas presented in these two papers, [20] and
[21]. Furthermore, the experimental results in [20] and the independent
evaluation carried out during Workshop S4, see above, empirically confirm
the statement expressed by Result 4.

3. Extraction of spelling variations for noisy text correction. S. Gerd-
jikov, S. Mihov, and V. Nenchev, In Proceedings of 12th Interna-
tional Conference on Documents Analysis and Recognition 2013,
2013, p.324–328.

This is a joint paper with Stoyan Mihov and Vladislav Nenchev. In this
paper the author contributed the approach, its development and imple-

174 CONCLUSION

mentation. The paper presents the key ideas of the approach along with
its empirical evaluation. Thus, essentially it summarises Result 6.

Some of the results were also presented on international forums as follows:

• WallBreaker - overcoming the wall effect in similarity search,
S. Gerdjikov, S. Mihov, P. Mitankin, and K. U. Schulz, on the
EDBT/ICDT Workshop for Scalable String Similarity Search/Join,
Genoa, Italy, 2013. (oral presentation S. Gerdjikov)

In this talk the author presented the essential ideas from papers [21] and
[20] with a special focus on Result 4 – the practical efficiency of the pro-
posed approximate search algorithm.

• Extraction of spelling variations for noisy text correction. S. Gerd-
jikov, S. Mihov, and V. Nenchev on the 12th International Con-
ference on Documents Analysis and Recognition, Washington,
DC, USA, 2013. (poster presentation S. Gerdjikov)

With this poster the author illustrated the results from [22]. In discus-
sions with scientists from different areas, interested in processing historical
texts or OCR-postcorrection, the author presented Result 6 from different
viewpoints and motivated its capacity for various tasks.

• On Modernisation of Historical Texts. S. Gerdjikov, Computabil-
ity in Europe 2012, Cambridge, UK, 2012. (informal talk)

In this presentation the author presented Result 6 in the context of the
normalisation of Early Modern English words.

Essential parts of Result 5 and Result 6 were also presented on the Spring
Session of the Faculty for Mathematics and Informatics, Sofia University:

• In what extent are the spelling variations in the 19th century
Bulgarian language regular? S. Gerdjikov, Spring Session of the
Faculty for Mathematics and Informatics, Sofia University, 2012
(oral presentation at the Chair of Logic and its Applications),

In this talk the author presented Result 6 on the particular task of nor-
malisation of historical Bulgarian language.

• Combinatorial etude: ”Alignments of words” S. Gerdjikov, Spring
Session of the Faculty for Mathematics and Informatics, Sofia
University, 2011 (oral presentation at the Chair of Logic and its Appli-
cations),

In this talk the author presented the combinatorial results, Lemma 7.1.6,
related to Result 5.

175

With regard to the previous paragraphs, the author declares that the current
dissertation is an original scientific work. The use of previous results is fairly
reflected with appropriate references, and complies with the copyrights of their
authors and/or publishers and/or copyright holders of the specific results.

176 CONCLUSION

Bibliography

[1] http://1641.tcd.ie.

[2] http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[3] http://www.impact-project.eu.

[4] http://trec.nist.gov/pubs/trec5/t5 proceedings.html.

[5] http://www.statmt.org/moses/.

[6] http://www.gutenberg.org.

[7] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Commun. ACM, 18:333–340, June 1975.

[8] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A
basic local alignment search tool. Journal of Molecular Biology, 215:403–
410, 1990.

[9] R. A. Baeza-Yates and G. Navarro. Faster approximate string matching.
Algorithmica, 23(2):127–158, 1999.

[10] A. Baron and P. Rayson. Automatic standardisation of texts containing
spelling variations how much training data do you need? In Proceedings of
the Corpus Linguistics Conference, CL2009, 2009.

[11] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and
J. Seiferas. The smallest automation recognizing the subwords of a text.
Theoretical Computer Science, 40:31 – 55, 1985. Eleventh International
Colloquium on Automata, Languages and Programming.

[12] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht.
Complete inverted files for efficient text retrieval and analysis. Journal of
the Association for Computing Machinery, 34(3):578–595, 1987.

[13] L. Boytsov. Super-linear indices for approximate dictionary super-linear
indices for approximate dictionary super-linear indices for approximate dic-
tionary searching. In Proceedings of the 5th International Conference on
Similarity Search and Applications, 2012.

177

178 BIBLIOGRAPHY

[14] E. Brill and R. C. Moore. An improved error model for noisy channel
spelling correction. In Proc. 38th ACL, pages 286–293, 2000.

[15] H.-L. Chan, T.-W. Lam, W.-K. Sung, S.-L. Tam, and S.-S. Wong. Com-
pressed indexes for approximate string matching. In ESA’06: Proceedings
of the 14th conference on Annual European Symposium, pages 208–219,
London, UK, 2006. Springer-Verlag.

[16] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary matching and
indexing with errors and don’t cares. In STOC ’04: Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing, pages 91–
100, New York, NY, USA, 2004. ACM.

[17] S. Eilenberg. Automata, Languages and Machines, volume A. Academic
Press, Inc. Orlando, Fl, USA, 1974.

[18] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing,
pages 652–673, 1998.

[19] S. Gerdjikov. Some algebraic properties of alignments of words. Comptes
rendu de l’Academie bulgare des Sciences, 65(10):1311–1319, 2012.

[20] S. Gerdjikov, S. Mihov, P. Mitankin, and K. Schulz. Good parts first - a
new algorithm for approximate search in lexica and string databases. ArXiv
e-prints:http://adsabs.harvard.edu/abs/2013arXiv1301.0722G, 2013.

[21] S. Gerdjikov, S. Mihov, P. Mitankin, and K. Schulz. Wallbreaker - over-
coming the wall effect in similarity search. In ACM Proceedings of the 2013
Joint EDBT/ICDT Workshops, 2013.

[22] S. Gerdjikov, S. Mihov, and V. Nenchev. Extraction of spelling variations
for noisy text correction. In Proceedings of 12th International Conference
on Documents Analysis and Recognition, 2013.

[23] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

[24] P. Hart, N. Y. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics SSC4, 4(2):100–107, 1968.

[25] P. Hart, N. Y. Nilsson, and B. Raphael. Correction to ”a formal basis for
the heuristic determination of minimum cost paths”. SIGART Newsletter,
37:28–29, 1971.

[26] D. S. Hirschberg. Algorithms for the longest common subsequence problem.
J. ACM, 24:664–75, 1977.

[27] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley Publishing Company, 1979.

BIBLIOGRAPHY 179

[28] R. Horn and C. Johnson. Norms for Vectors and Matrices. Cambridge
University Press, 1990.

[29] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. On-
line construction of symmetric compact directed acyclic word graphs. In
Proc. of 8th International Symposium on String Processing and Information
Retrieval (SPIRE’01), pages 96–110. IEEE Computer Society, 2001.

[30] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri,
and G. Pavesi. On-line construction of compact directed acyclic word
graphs. Word Journal Of The International Linguistic Association,
146(2):1–12, 2005.

[31] J. Kärkkäinen and P. Snaders. Simple linear work suffix array construc-
tion. In In proceedings of the 30th International Colloquium Automata,
Languages and Programming., pages 81–88, Cancun, Mexico, 2003. IEEE
Computer Society.

[32] S. Kleene. Representation of events in nerve nets and finite automata.
Automata Studies, (34):3–41, 1956.

[33] J. Klovstad and L. Mondshein. The caspers linguistic analysis system.
Acoustics, Speech and Signal Processing, IEEE Transactions on, 23(1):118–
123, 1975.

[34] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays.
Journal of Discrete Algorithms, (3):143–156, 2005.

[35] S. Koeva. Grammar dictionary of the bulgarian language. description of
the concept for organization of the linguistic data. Bulgarian language,
6:49–58, 1998.

[36] K. Kukich. Techniques for automatically correcting words in texts. ACM
Computing Surveys, pages 377–439, 1992.

[37] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 1966.

[38] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity
searches. Science, 227:1435–41, 1985.

[39] M. G. Maaß. Linear bidirectional on-line construction of affix trees. In Proc.
of 11th Ann. Symp. on Combinatorial Pattern Matching (LNCS1848),
pages 320–334. Springer-Verlag, 2000.

[40] E. M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the Association for Computing Machinery, 23(2):262–272, 1976.

180 BIBLIOGRAPHY

[41] S. Mihov, P. Mitankin, A. Gotscharek, U. Reffle, and C. Schulz,
K. U. Ringlstetter. Using automated error profiling of texts for improved
selection of correction candidates for garbled tokens. In AI 2007: Advances
in Artificial Intelligence, pages 456–465. Springer Berlin Heidelberg, 2007.

[42] S. Mihov and K. U. Schulz. Fast approximate search in large dictionaries.
Computational Linguistics, 30(4):451–477, 2004.

[43] P. Mitankin, S. Mihov, and K. U. Schulz. Deciding word neighborhood
with universal neighborhood automata. Theoretical Computer Science,
412(22):2340 – 2355, 2011.

[44] M. Mohri, P. Moreno, and E. Weinstein. General suffix automaton con-
struction algorithm and space bounds. Theoretical Computer Science,
410(37):3553–3562, 2009.

[45] M. Mohri and M. Riley. An efficient algorithm for the n-best-strings prob-
lem. In Proceedings ICSLP, 2002.

[46] M. Mor and A. S. Fraenkel. A hash code method for detecting and correct-
ing spelling errors. Commun. ACM, 25(12):935–938, 1982.

[47] E. W. Myers. A sublinear algorithm for approximate keyword searching.
Algorithmica, 12:345–374, 1994.

[48] P. Nabende. Applying Dynamic Bayesian Networks in Transliteration De-
tection and Generation. PhD thesis, University of Groningen, 2011.

[49] G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate
string matching. Journal of Discrete Algorithms, 1(1):205–239, 2000.

[50] K. Oflazer. Error-tolerant finite-state recognition with applications to mor-
phological analysis and spelling correction. Computational Linguistics,
22(1):73–89, 1996.

[51] S. J. Puglisi, W. F. Smyth, and A. H. Turpin. A taxonomy of suffix array
construction algorithms. ACM Comput. Surv., 39(2), 2007.

[52] U. Reffle. Efficiently generating correction suggestions for garbled tockens
of historical language. Natural Language Engineering, 17(2):265–282, 2011.

[53] E. S. Rista and P. N. Yianilos. Learning string-edit distance. IEEE Trans-
action on Pattern Analysis and Machine Intelligence, 20(5):522–532, 1998.

[54] K. Schulz, S. Mihov, and P. Mitankin. Fast selection of small and precise
candidate sets from dictionaies for text correction tasks. In ICDAR ’07:
Proceedings of the Ninth International Conference on Document Analysis
and Recognition, pages 471–75, Washington, DC, USA, 2007. IEEE Com-
puter Society.

BIBLIOGRAPHY 181

[55] K. U. Schulz and S. Mihov. Fast string correction with Levenshtein au-
tomata. IJDAR, 5(1):67–85, 2002.

[56] F. J. Sellers. Bit loss and gain correction code. Information Theory, IRE
Transactions on, 8(1):35–38, 1962.

[57] J. Stoye. Affixbäume. Master’s thesis, Universität Bielefeld, May 1995.

[58] J. Stoye. Affix trees. Technical Report 2000-04, Universität Bielefeld,
Technische Fakultät, 2000.

[59] K. Toutaniva and R. C. Moore. Pronunciation modeling of improved
spelling correction. In Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, pages 144–151, 2002.

[60] E. Ukkonen. Algorithms for approximate string matching. Information
Control, 64:100–18, 1985.

[61] E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14(3):249–
260, 1995.

[62] http://www.uibk.ac.at/anglistik/projects/icamet.

[63] M. S. Watermann. Computational Biology: Maps, Sequences, Genomes.
Chapman and Hall, London, England, 1995.

[64] M. S. Watermann, M. Eggert, and E. Lander. A new algorithm for best
subsequence alignments with application to trna-rrna comparison. J. Mol.
Biol., 197:723–728, 1987.

[65] M. S. Watermann and M. Vingron. Rapid and accurate estimates of statis-
tical significance for sequence data base searches. In Proc. Natl. Academy
Sciences, volume 81, pages 4625–4628, 1994.

[66] P. Weiner. Linear pattern matching algorithms. In Proceedings of 14th
IEEE Annual Symposium on Switching and Automata Theory, pages 1–11,
1973.

[67] S. Wu and U. Manber. Fast text searching: allowing errors. Communica-
tions of the ACM, 35(10):83–91, 1992.

