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Preface

Classical Euclidean geometry, one of the oldest and most established theories of
space, is built on the primitive notion of point. In his book ”The Organization of
Thought”[5] Alfred Whitehead mentions that “it follows from the relative theory
that a point should be definable in terms of the relations between material things”.
Whitehead claimed that the theory of space and time should be ”point-free” in the
sense that neither space points nor time points should be taken as the foundation
element for the theory, the reasoning being that these notions are too abstract and
have no analog in the real world. This, along with some works from de Laguna,
Tarski and other authors, gave birth to the so-called Region Based Theory of Space
(RBTS), sometimes called mereotopology - a ”point-free” theory of space where the
primitive notions are those of ”region” and ”contact” between regions. An exhaustive
look into RBTS is given in [2] where the concepts of ”contact relations” and ”contact
algebras” are explored.

A natural extension of the idea of a point-free theory of space is to try and develop
a point-free theory of time where the notion of a time point(moment) is not primitive.
Dynamic contact algebras, introduced by Vakarelov[7], are a generalization of contact
algebras and are an attempt in that direction. They study regions changing in time
and present formal explications of Whitehead’s ideas of integrated point-free theory
of space and time. The current work is a continuation of that effort and is structured
as follows:

• Section 1 focuses on establishing the needed notation as well as presenting some
already known facts about dynamic contact algebras (DCAs). We also give intu-
ition about the concept of a dynamic contact algebra by presenting the standard
model for DCAs as described in [7].

• Section 2 explores a new type of Kripke structures called dynamic relational struc-
tures. We introduce the notions of a weak and strong dynamic contact algebras
and establish a new relational representation theorem for DCAs.

• Section 3 focuses on the more generic notion of a basic dynamic contact algebra.
We delevop reprentation theory for basic DCAs and finite basic DCAs. We use
the p-morphism technique adapted from modal logic to establish some relations
between basic DCAs and the other types of DCAs.

• In Section 4 we introduce finitary quntifier-free logics for space and time based on
the studied types of dynamic contact algebras. The logics are based on Modus
Ponens and several non-standard rules of inference which replace the non-universal
axioms of DCA. We prove the completeness of these logics in the respective class of
DCAs. Combining the completeness results with the results from previous sections
we conclude some interesting metalogical properties of the proposed systems.
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1 A brief look into RBTS

This introductory section will be abundant on definitions of well-known entities that
play crucial role in the region-based theory of space. In an attempt to render this
work as self-contained as possible, we start be taking a look at the foundations of
lattice theory. This transitions into a brief study of Boolean algebras and contact
algebras. Ultimately, we explore the concept of a dynamic contact algebra and
dedicate an entire subsection to build intuition about the nature of DCAs.

1.1 Facts about lattices and boolean algebras

A structure (W,≤), where ≤ is a binary relation on W , is called a partially ordered
set (poset) iff for any x, y ∈W :

x ≤ x (reflexivity)

x ≤ y and y ≤ x⇒ x = y (antisymmetry)

x ≤ y and y ≤ z ⇒ x ≤ z (transitivity)

The relation ≤ is called a partial order on W . Let ∅ 6= A ⊆W be a non-empty subset
of W . An element a ∈ W is called an upper bound of A if ∀x ∈ A : x ≤ a. The
element a is called least upper bound of A if a is an upper bound of A and for all other
upper bounds b of A we have that a ≤ b. Dually, we can define a lower bound of A
and greatest lower bound of A. An element a ∈W such that ∀x ∈W : x ≤ a is called
the greatest element of W . Similarly, an element a ∈ W such that ∀x ∈ W : a ≤ x
is called the smallest element of W .

Definition 1.1 (Lattice). The partially ordered set (W,≤, ·,+) is called a lattice
if every two-element subset of W has greatest lower bound and least upper bound.
We’ll use the notation a · b to denote the greatest lower bound of {a, b} and a+ b to
denote the least upper bound of {a, b}. A lattice which has a greatest element and
a smallest element will be called a bounded lattice. We’ll denote such lattices with
(W,≤, 0, 1, ·,+), where 0 is the smallest and 1 is the greatest element. A lattice is
called a distributive lattice if it satisfies the following additional conditions:

(D) a · (b+ c) = a · b+ a · c
(D̂) a+ (b · c) = (a+ b) · (a+ c)

Definition 1.2 (Boolean algebra). Let B = (B,≤, 0, 1, ·,+, ∗) be a structure where
(B,≤, 0, 1, ·,+) is a bounded distributive lattice and ∗, called the complementation
operation, satisfies the following axioms:

(*1) a+ a∗ = 1

(*2) a · a∗ = 0

Then B is called a Boolean algebra. If 0 6= 1 then B is called a nondegenerate Boolean
algebra.
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1.1 Facts about lattices and boolean algebras

Lemma 1.3 (Some properties of Boolean algebra). Let B = (B,≤, 0, 1, ·,+, ∗) be a
Boolean algebra and a, b ∈ B. Then:

a · b ≤ a
a · b ≤ b
a ≤ a+ b

b ≤ a+ b

a · a = a

a+ a = a

a · b = b · a
a+ b = b+ a

(a · b) · c = a · (b · c)
(a+ b) + c = a+ (b+ c)

a∗∗ = a

a ≤ b⇔ a · b∗ = 0

a ≤ b⇔ b∗ ≤ a∗

Definition 1.4 (Atom). Let B = (B,≤, 0, 1, ·,+, ∗) be a Boolean algebra. An
element p ∈ B is called an atom iff p 6= 0 and given any q ∈ B such that q ≤ p we
have q = 0 or q = p. Intuitively, atoms are minimal among the non-zero elements of
a Boolean algebra.

Definition 1.5 (Atomic Boolean algebra). Let B be a Boolean algebra and let A be
the set of its atoms. We say that B is atomic iff for every non-zero element p ∈ B,
there exists a ∈ A such that a ≤ p. Equivalently, every element p ∈ B is the sum of
the atoms a such that a ≤ p.

Lemma 1.6. Let B = (B,≤, 0, 1, ·,+, ∗) be a Boolean algebra such that B is a finite
set. Then B is atomic.

Definition 1.7 (Filter). Let B = (B,≤, 0, 1, ·,+, ∗) be a Boolean algebra. A subset
F of B is called a filter if the following conditions hold:

(i) 1 ∈ F
(ii) x ≤ y, x ∈ F ⇒ y ∈ F
(iii) x, y ∈ F ⇒ x · y ∈ F

If 0 /∈ F then F is called a proper filter.

Remark. Let B be a boolean algebra and let a ∈ B. Then the set [a) = {c : a ≤ c}
is a filter.

Definition 1.8 (Ultrafilter). An ultrafilter is a proper filter F having the following
property:

x+ y ∈ F ⇒ x ∈ F or y ∈ F .

Lemma 1.9. Let B be a Boolean algebra and let a, b ∈ B be such that a � b. Then
there exists an ultrafilter U such that a ∈ U and b /∈ U .
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1.2 Facts about contact algebras

1.2 Facts about contact algebras

Definition 1.10 (Precontact algebra). Let B = (B,≤, 0, 1, ·,+, ∗, C) be a structure
such that (B,≤, 0, 1, ·,+, ∗) is a nondegenerate Boolean algebra and the relation
C ⊆ B ×B satisfies the following axioms:

(C1) aCb⇒ a 6= 0 and b 6= 0

(C2) aCb, a ≤ a′ and b ≤ b′⇒ a′Cb′

(C3) aC(b+ c)⇒ aCb or aCc

(C3′) (a+ b)Cc⇒ aCc or bCc

Then the relation C is called a precontact relation on B or simply a precontact and
the structure B is called a precontact algebra.

Lemma 1.11 (R-extension Lemma). [4] Let B be a Boolean algebra and R be a
precontact relation on B. If F and G are filters of B such that F × G ⊆ R then
there are ultrafilters U and V such that F ⊆ U , G ⊆ V and U × V ⊆ R.

Definition 1.12 (Contact algebra). Let B = (B,≤, 0, 1, ·,+, ∗, C) be a precontact
algebra where the precontact C satisfies the additional axioms:

(C4) aCb⇒ bCa

(C5) a · b 6= 0⇒ aCb

Then C is called a contact relation or simply a contact and B is called a contact
algebra. On the base of (C4) only one of the axioms (C3) and (C3′) is needed. Also,
(C5) is equivalent to (C5′) a 6= 0⇒ aCa. We’ll denote by C the complement of C.
In the context of contact algebras, the elements of the underlying Boolean algebra
are called regions and are considered as abstractions for spacial bodies. Boolean
operations between regions can be used to construct new regions. The 0 element of
the Boolean algebra will be treated as a non-existing region. We’ll say that a region
a ontologically exists or simply, exists, iff a 6= 0. If for two regions a and b we have
that a ≤ b we’ll say that a is part of b.

We will be interested in contact and precontact algebras satisfying the following
additional axiom: (CE) If aCb then (∃c)(aCc and c∗Cb). We call this axiom the
Efremovich axiom, because it is used in the definition of Efremovich proximity spaces.

The following construction from [4] gives an example of Boolean algebras with
precontact relations. Let (W,R) be a relational system where W is a non-empty
set and R is a binary relation on W (such pairs are called adjacency spaces in [4]).
For subsets a, b of W define aCRb iff there exist points x ∈ a and y ∈ b such that
xRy. Then CR is a precontact relation. In [4] it is shown every precontact algebra
is representable as precontact algebra over an adjacency space. The following fact is
proved in [4]:

Lemma 1.13. (i) CR satisfies axiom (C4) iff R is a symmetric relation in W
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1.3 Dynamic contact algebras

(ii) CR satisfies axiom (C5) iff R is a reflexive relation in W

(iii) CR satisfies the Efremovich axiom (CE) iff R is a transitive relation in W

If (W,R) is a relational system such that the relation R is reflexive and symmetric
then by Lemma 1.13 (i) and (ii) the precontact relation CR is a contact relation in
the Boolean algebra of all subsets of W . Every contact algebra is representable as a
contact algebra of this form (see [4]).

Let (W,R, S) be a relational system with two relations. We consider the following
two first-order conditions for R and S (henceforth called compositional axioms):

(R ◦ S ⊆ S) If xRy and ySz, then xSz

(S ◦R ⊆ S) If xSy and yRz, then xSz
We consider also the following two conditions for precontact relations CR and CS

similar to the Efremowich axiom (CE):

(CRCS) If aCSb, then there exists c ⊆W such that aCRc and c∗CSb

(CSCR) If aCSb, then there exists c ⊆W such that aCSc and c∗CRb.
The proof of the following lemma is similar to the proof of Lemma 1.13 (iii):

Lemma 1.14. (i) The condition (CRCS) is fulfilled between precontact relations
CR and CS iff the condition (R ◦ S ⊆ S) is satisfied

(ii) The condition (CSCR) is fulfilled between precontact relations CR and CS iff
the condition (S ◦R ⊆ S) is satisfied

1.3 Dynamic contact algebras

1.3.1 Abstract definition

Definition 1.15 (Dynamic contact algebra). A dynamic contact algebra(DCA) is
any system B = (B,≤, 0, 1, ·,+, ∗, Cs, Ct,B, TR,UTR,NOW ), where (B,≤, 0, 1,
·,+, ∗) is a nondegenerate Boolean algebra and the following properties hold:

(i) Cs is a contact relation on B, which is called space contact

(ii) Ct is a contact relation on B, called time contact which satisfies the following
additional axioms:

(Cs ⇒ Ct) aCsb⇒ aCtb

(CtE) aCtb⇒ (∃c)(aCtc and c∗Ctb) (Efremovich axiom)

(iii) B is a precontact relation on B called the precendence relation

(iv) TR and UTR are subsets of B called time representatives and universal time
representatives respectively, satisfying the following axioms:

(TR1) c ∈ TR⇔ c 6= 0 and (∀a, b ∈ B)(aCtc and bCtc⇒ aCtb)

(TR2) c ∈ UTR⇔ c ∈ TR and cCtc∗

(TRCt) aCtb⇒ (∃c ∈ UTR)(aCtc and bCtc)
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1.3 Dynamic contact algebras

(TRCs) aCsb⇒ (∃c ∈ UTR)((a · c)Csb)

(TRB1) c ∈ TR, cBb and aCtc⇒ aBb

(TRB2) d ∈ TR, aBd and bCtd⇒ aBb

(TRB3) aBb⇒ (∃c ∈ UTR)(cBb and aCtc)

(TRB4) aBb⇒ (∃d ∈ UTR)(aBd and bCtd)

Below, c(i) and c(j) are arbitrary elements of UTR:

(UTRB11) (∀p ∈ B)(pBc(i) or p∗Bc(j)) iff (∃c(k) ∈ UTR)(c(k)Bc(i) and c(k)Bc(j))

(UTRB12) (∀p ∈ B)(pBc(i) or c(j)Bp∗) iff (∃c(k) ∈ UTR)(c(k)Bc(i) and c(j)Bc(k))

(UTRB21) (∀p ∈ B)(c(i)Bp or p∗Bc(j)) iff (∃c(k) ∈ UTR)(c(i)Bc(k) and c(k)Bc(j))

(UTRB22) (∀p ∈ B)(c(i)Bp or c(j)Bp∗) iff (∃c(k) ∈ UTR)(c(i)Bc(k) and c(j)Bc(k))

(UTRNOW ) NOW ∈ UTR

This definition is also called the abstract definition of a DCA. In the next section we’ll
look at the standard model of a DCA which will reveal the reasons this definition
was coined the way it is.

Remark. The implications from right to left of the axioms UTRB11, UTRB12,
UTRB121 and UTRB22 are provable by some (universal) axioms of DCA and, hence,
are superfluous. As an example of the proof let’s consider the following formula,
which implies the implication from the right to the left part of axiom (UTRB21):

If c ∈ UTR, aBc, and cBb, then aBp or p∗Bb.
Suppose that this implication is not true. Then we have: (1) c ∈ UTR, (2) aBc, (3)
cBb, (4) aBp and (5) p∗Bb. From (2) and (4) we get (by axioms (TR2) and (TRB2))
(6) cCtp. Similarly, using (TRB1) and (3) and (5) we get (7) cCtp∗. By the contact
axioms of Ct we obtain from (6) and (7) cCt(p+ p∗) and cCt1, which implies c = 0.
But (1) implies c 6= 0 - a contradiction.

Since DCAs are algebraic structures we adopt for them the standard definitions for
subalgebra, homomorphism, isomorphism and isomorphic embedding. It can be noted
from axioms (TR1) and (TR2) that the sets TR and UTR are definable with first-
order formulas of the relation Ct. We, however, include those notions in the signature
of a DCA since we want to show that they are preserved in the representation theory
of DCAs.

Lemma 1.16 (UTR properties). Let B be a DCA. Then:

(i) if c ∈ UTR, then aCtc⇔ a · c 6= 0⇔ aCsc for any a ∈ B
(ii) aCsb iff (∃c ∈ UTR)((a · c)Cs(b · c))
(iii) aCtb iff (∃c ∈ UTR)((a · c)Ct(b · c))
(iv) aBb iff (∃c, d ∈ UTR)((a · c)B(b · d))
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1.3 Dynamic contact algebras

1.3.2 Snapshot model

In classical physics, the properties of changing objects are defined as functions of
time. This motivates that time is given by a set of time points which has a specific
arithmetic structure. Often, this structure is an abstract relational system of the
form (T,≺), where T is a non-empty set of time points (also called moments of
time) and ≺ is a binary relation on T such that m ≺ n means that m is before n.
This intuition motivates to call ≺ before-after relation or time order.

Suppose that we want to describe a dynamic environment consisting of regions
changing in time. First, assume that we are given a time structure T = (T,≺) and
we want to know what is the spatial configuration of regions at each moment of time
m ∈ T . We assume that for each m ∈ T the spatial configuration of the regions
forms a contact algebra (Bm, Cm)=(Bm, ≤m, 0m, 1m, .m, +m, ∗m, Cm), called a
coordinate contact algebra. We can view the contact algebra (Bm, Cm) as a snapshot
of the spacial configuration at moment m (hence the name of the construction). We
identify a given changing region a with the series < am >m∈T of snapshots and call
such a series a dynamic region. In a sense, this series can be considered also as a
trajectory or time history of a. If a =< am >m∈T is a given dynamic region then
am can be considered as ”a at the time point m”. The static region am will also
be called the m-th coordinate of a. For instance, the expression am 6= 0m means
that a exists at the time point m and the expression amCmbm means that a and b
are in a contact at the moment m. The contact algebra (Bm, Cm) contains all m-th
coordinates of the changing regions.

We denote by B(T ) the set of all dynamic regions. We assume that B(T ) is
a Boolean algebra with Boolean constants defined as follows: 1 =< 1m >m∈T ,
0 =< 0m >m∈T , Boolean ordering a ≤ b iff (∀m ∈ T )(am ≤m bm) and Boolean
operations are defined coordinatewise: a + b =def< am(+m)bm >m∈T , a · b =def<
am(·m)bm >m∈T , a∗ =def< a∗m >m∈T . We’ll call B(T ) dynamic model of space over
the time structure (T,≺). The Boolean algebra B(T ) is a actually a subalgebra
of the Cartesian product

∏
m∈T Bm of the contact algebras (Bm, Cm), m ∈ T . A

model which coincides with this Cartesian product is called a full model. Models
that contain all dynamic regions a such that for all m ∈ T we have am = 0m or
am = 1m will be called rich models. It’s clear that full models are also rich.

Dynamic model of space is a spatio-temporal structure in which one can give
explicit definitions of various spatio-temporal relations between dynamic regions.
To start off, we’ll take a look at the following three basic spatio-temporal relations
between dynamic regions mentioned in the abstract definition of DCA: space contact,
time contact and precedence relation.

Let a and b be dynamic regions. We’ll say that a and b are in space contact,
denoted by aCsb, iff (∃m ∈ T )(amCmbm). Intuitively, space contact between a and
b means that there is a time point in which a and b are in a contact. We’ll say that a
and b are in time contact and write aCtb iff (∃m ∈ T )(am 6= 0m and bm 6= 0m). So,
two dynamic regions are in time contact if there exists a time point in which both
of them exist simultaneously. Finally, we say that a preceeds b, denoted as aBb, iff
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1.3 Dynamic contact algebras

(∃m,n ∈ T )(m ≺ n and am 6= 0m and bn 6= 0n). B is called precedence relation.
Colloquially, if a preceeds b then there is a time point in which a exists which is
before a time point in which b exists. The following lemma ([7] Part 2, Lemma 1.4)
verifies that the relations defined above satisfy the respective axioms of DCA:

Lemma 1.17. (i) Cs and Ct are contact relations

(ii) aCsb→ aCtb

(iii) If the dynamic model of space B(T ) is rich, then Ct satisfies the Efremovich
axiom

(iv) B is a precontact relation.

The following lemma is not from [7] and is a new one. It gives us the possibility
to add two new axioms to the abstract DCA definition since they are true in the
standard model of DCA.

Lemma 1.18. Suppose that the dynamic model of space B(T ) is rich. Then the
compositional axioms for Ct and B are true, that is:

(CtB) If aBb, then there exists c such that aCtc and c∗Bb.

(BCt) If aBb, then there exists c such that aBc and c∗Ctb

Proof. (i) Suppose aBb and define c coordinate wise:

ck =

{
0k, if ak 6= 0k

1k, if ak = 0k.

Since the algebra is rich then c exists. The verification of the conclusions aCtc and
c∗Bb is straightforward.

(ii) In a similar manner, by using the following definition of c:

cl =

{
0l, if bl = 0l

1l, if bl 6= 0l.

Time conditions. The structures (T,≺) that we are basing our intuition on is a
fairly abstract structure that strives to describe time. An example of such a structure
would be to take the set T to be the set of real numbers and define the ≺ relation to
coincide with one of the standard ordering relations < or ≤ for strict or partial order
between numbers. In general, though, the relation ≺ may satisfy various abstract
properties. The following formulae, called time conditions describe some of these
properties:

(RS) Right seriality (∀m)(∃n)(m ≺ n)

9



1.3 Dynamic contact algebras

(LS) Left seriality (∀m)(∃n)(n ≺ m)

(Up Dir) Updirectedness (∀i, j)(∃k)(i ≺ k and j ≺ k)

(Down Dir) Downdirectedness (∀i, j)(∃k)(k ≺ i and k ≺ j)
(Dens) Density i ≺ j → (∃k)(i ≺ k and k ≺ j)
(Ref) Reflexivity (∀m)(m ≺ m)

(Irr) Irreflexivity (∀m)( not m ≺ m)

(Lin) Linearity (∀m,n)(m ≺ n or n ≺ m)

(Tri) Trichotomy (∀m,n)(m = n or m ≺ n or n ≺ m)

(Tr) Transitivity (∀ijk)(i ≺ j and j ≺ k → i ≺ k)

It’s worth noting that the above listed conditions for time ordering are not indepen-
dent. By taking some meaningful subsets of them, we obtain various notions of time
order. For instance the subsets {(Ref), (Tr), (Lin)}, {(Irr), (Tr), (Tri), (Dens)},
{(Irr), (LS), (RS), (Tr), (Tri), (Dens)} are typical for the classical time, while
for instance, the subset {(Ref), (Tr), (UpDir), (DownDir)} is used to characterize
relativistic time.

It turns out that the properties of a time structure T = (T,≺) are in exact cor-
relation with some special conditions of the time contact Ct and precedence relation
B. These conditions, called time axioms, are given in the following list:

(RS) (∀m)(∃n)(m ≺ n) ⇐⇒ (rs) a 6= 0→ aB1

(LS) (∀m)(∃n)(n ≺ m) ⇐⇒ (ls) a 6= 0→ 1Ba

(Up Dir) (∀i, j)(∃k)(i ≺ k and j ≺ k)⇐⇒ (up dir) a 6= 0 ∧ b 6= 0→ aBp ∨ bBp∗

(Down Dir) (∀i, j)(∃k)(k ≺ i and k ≺ j) ⇐⇒ (down dir) a 6= 0 ∧ b 6= 0 →
pBa ∨ p∗Bb
(Dens) i ≺ j → (∃k)(i ≺ k ∧ k ≺ j) ⇐⇒ (dens) aBb→ aBp or p∗Bb

(Ref) (∀m)(m ≺ m) ⇐⇒ (ref) aCtb→ aBb

(Irr) (∀m)( not m ≺ m) ⇐⇒ (irr) aBb → (∃c, d)(cBd and aCtc and bCtd and

cC
t
d)

(Lin) (∀m,n)(m ≺ n ∨ n ≺ m) ⇐⇒ (lin) a 6= 0 ∧ b 6= 0→ aBb ∨ bBa

(Tri) (∀m,n)(m = n or m ≺ n or n ≺ m) ⇐⇒ (tri) (aCtc and bCtd and cC
t
d) →

(aBb or bBa)

(Tr) i ≺ j and j ≺ k → i ≺ k ⇐⇒ (tr) aBb→ (∃c)(aBc ∧ c∗Bb)

The next lemma ([7], Part2, Lemma 2.1) gives more context about these equivalences.

Lemma 1.19 (Correspondence Lemma). Let B(T ) be a rich model of space over
the time structure (T,≺). Then all the correspondences in the above list are true in
the following sense: the left side of a given equivalence is true in (T,≺) iff the right
side is true in B(T ).
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1.3 Dynamic contact algebras

Remark. Note that Lemma 1.19 remains true if we replace (tri) and (irr) with
simpler formulas which define the same time conditions in rich models:

(tri) If a 6= 0, b 6= 0, then aCtb or aBb or bBa

(irr) If aBb, then (∃c 6= 0)(∃d 6= 0)(c ≤ a and d ≤ b and cC
t
d)

We preserve the old names and further mention of (tri) and (irr) will refer to the
simplified conditions. Also, as an example we show the proof of Lemma 1.19 for the
case (tri)⇔ (Tri) using the new formula for (tri).

Proof. (tri)⇒ (Tri). Suppose (tri) and for the sake of contadiction let (Tri) be not
true, i.e. for some i and j we have i 6= j, i 6≺ j and j 6≺ i. Define a and b coordinate
wise as follows:

ak =

{
1k, if i = k

0k, if i 6= k.
, bk =

{
1k, if j = k

0k, if j 6= k.

Since B(T ) is a rich model of space, then the definition of a and b is correct. It is

easy to see that a 6= 0, b 6= 0, aC
t
b, aBb and bBa which contradicts (tri).

(Tri) ⇒ (tri). Suppose (Tri). In order to prove (tri) suppose a 6= 0, b 6= 0. Then
∃i, ai 6= 0i and ∃j, bj 6= 0j . By (Tri) we have i = j or i ≺ j or j ≺ i. This implies
aCtb or aBb or bBa which completes the proof.

In order to finish the motivation for the abstract definition of DCA we need to take
a look at the sets TR, UTR and the special element NOW . Inspired by phrases like
”during the Industrial Revolution”, ”the epoch of Renaissance” and ”the Bronze
Age”, we can enrich the dynamic model of space by introducing a special set of
dynamic regions called time representatives. These dynamic regions will exist in
a unique point of time and hence, much like the mentioned phrases, will define a
concrete unit of time. The formal definition is a follows:

Definition 1.20 (Time representatives). A dynamic region c in a dynamic model
of space is called a time representative if there exists a time point i ∈ T such that
ci 6= 0i and for all j 6= i, cj = 0j . We say also that c is a representative of the time
point i and indicate this by writing c = c(i). In the case when ci = 1i, c is called
universal time representative. We denote by TR the set of time representatives and
by UTR the set of universal time representatives in a given dynamic model of space.

Lemma 1.21. Let B(T ) be a rich dynamic model of space over the time structure
(T,≺). Then for each time point i ∈ T there exist an universal time representative
c(i) of i. If a is a region such that ai 6= 0i and ai 6= 1i then c(i).a is a time
representative which is not universal.

The above lemma shows that in rich models of space every moment of time is charac-
terized by some universal time representative. This also suggests to enrich the time
structure (T,≺) with a special moment of time denoted by now, corresponding to the
”present moment of time”. We denote by NOW the universal time representative
corresponding to now.

11



1.3 Dynamic contact algebras

We are ready to define the standard model, also called ”snapshot model”, of a
dynamic contact algebra.

Definition 1.22 (Standard DCA). By a standard dynamic contact algebra we mean
any rich dynamic model of space with time structure (T,≺, now) with explicit defi-
nitions of the relations Cs, Ct, B, time representatives TR, universal time represen-
tatives UTR and the universal time representative NOW .

The results of [7] Part 2 (Lemma 1.4, Lemma 3.3 and Lemma 3.7) show that standard
DCAs satisfy the axioms of the abstract definition of DCA. In fact, the abstract
definition of DCA was coined after these properties of standard DCAs. It is shown
in [7] Part 3, , Theorem 3.7 that every DCA with a number of additional time
axioms is representable as a standard DCA over a time structure satisfying the time
conditions determined by the corresponding time axiom.

It is shown in [7] Part 2, Section 3.1 that time representatives, universal time
representatives and NOW significantly increase the expressive power of DCA. These
notions allow us to express different temporal statement for dynamic regions includ-
ing talking about the present, past and future.

Some properties of universal time representatives suggest a translation τ from
the first-order language of time structures into the language of DCAs. If i is a
variable for a time point then let c(i) be a variable for a UTR. Then replace all
atomic formulas i = j and i ≺ j with c(i) = c(j) (or, equivalently c(i)Ctc(j))
and c(i)Bc(j) respectively. For example, A = (∀i)(∃j)(i ≺ j) is translated into
τ(A) = (∀c(i))(∃c(j))(c(i)Bc(j)). Lemma 3.5 from [7] Part 2 asserts the following:

Lemma 1.23. Let B(T ) be a rich standard DCA with time structure (T,≺) and
let A be a formula among (RS), (LS), (UpDir), (DownDir), (Dens), (Ref), (Irr),
(Lin), (Tri), (Tr). Then A is true (T,≺) iff τ(A) is true B(T ).
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2 Relational models for DCAs

Lemma 1.18 shows that the snapshot model verifies two additional properties (com-
positional axioms) for Ct and B which are not part of the abstract DCA definition.
Adding these properties to the definition we obtain the notion of a strong DCA.

Definition 2.1 (Strong DCA). A DCA B satisfying the following additional axioms:

(CtB) aBb⇒ (∃c)(aCtc and c∗Bb)

(BCt) aBb⇒ (∃c)(aBc and c∗Ctb)

is called a strong dynamic contact algebra (SDCA).

Definition 2.2 (Weak DCA). A system B = (B,≤, 0, 1, ·,+, ∗, Cs, Ct, B, TR, UTR,
NOW ) not necessarily satisfying the Efremovich axiom but satisfying all the other
axioms of DCA (see Def.1.15) is called a weak dynamic contact algebra (WDCA). In
particular all DCAs are also WDCAs.

Below we show a few properties of WDCA we’ll be interested in further in the paper.

Lemma 2.3. The following hold for an arbitrary weak DCA:

(i) If a 6= 0, then there exists c ∈ UTR such that a · c 6= 0

(ii) c ∈ UTR⇒ (aCtc iff a.c 6= 0)

(iii) If c ∈ TR and d ∈ UTR then (c.d 6= 0 iff c ≤ d)

(iv) If c ∈ UTR, d ∈ TR and c ≤ d then c = d

(v) Let c, d ∈ UTR. Then the following conditions are equivalent:

• cCtd
• c.d 6= 0
• c = d

(vi) If c ∈ TR, then there exists a unique d ∈ UTR such that c ≤ d
(vii) If c 6= 0, d ∈ UTR and c ≤ d, then c ∈ TR
(viii) c ∈ TR iff c 6= 0 and ∃d ∈ UTR such that c ≤ d
(ix) c ∈ TR iff c 6= 0 and (∀d ∈ UTR)(c.d 6= 0→ c ≤ d)

(x) If c ∈ TR and (∀d ∈ TR)(c ≤ d→ c = d), then c ∈ UTR
(xi) c ∈ UTR iff c ∈ TR and (∀d ∈ TR)(c ≤ d→ c = d)

Proof. (i) Let a 6= 0. Then aCsa and by the axiom (TRCs) there exists c ∈ UTR
such that (a.c)Csa which implies by the contact axioms for Cs that a.c 6= 0
(ii) Let c ∈ UTR. (⇒) Suppose aCtc and for the sake of contradiction that a · c = 0.
Then a ≤ c∗ and by aCtc we get c∗Ctc. By axiom (TR2) this contradicts c ∈ UTR.
(⇐) Suppose a · c 6= 0. Then by the contact axioms for Ct we get aCtc.
(iii) Let c ∈ TR and d ∈ UTR. (⇒) Suppose c·d 6= 0 and for the sake of contradiction
that c 6≤ d. From here we get: cCtd, c · d∗ 6= 0 and cCtd∗. Since c ∈ TR, then by
axiom (TR1) we get from cCtd and cCtd∗ that dCtd∗, which contradicts d ∈ UTR.

13



(⇐) Suppose c ≤ d. Then c.d = c 6= 0 (c is in TR).
(iv) Suppose c ∈ UTR, d ∈ TR and c ≤ d. Then c · d = c 6= 0 and applying (ii) we
get d ≤ c and consequently c = d.
(v) Follows from (ii) and (iii).
(vi) Suppose c ∈ TR. Then by axiom (TR1) c 6= 0 and by (i) there exists d ∈ UTR
such that c · d 6= 0. Then by (ii) we get c ≤ d. For the uniqueness of d suppose that
for d1, d2 ∈ UTR we have c ≤ d1 and c ≤ d2. Then c ≤ d1.d2 and since c 6= 0, then
d1 · d2 6= 0. Then by (v) we get d1 = d2.
(vii) Suppose c 6= 0, d ∈ UTR and c ≤ d and for the sake of contradiction that
c 6∈ TR. Then by axiom (TR2) d ∈ TR and by (TR1) there are a, b such that aCtc,

bCtc and aC
t
b. From here and c ≤ d we get aCtd, bCtd which, together with d ∈ TR

implies aCtb - a contradiction.
(viii) This condition follows from (vi) and (vii).
(ix) (⇒) This implication follows by (iii). (⇐) Suppose (1) c 6= 0 and (2) (∀d ∈
UTR)(c.d 6= 0→ c ≤ d). From (1) we get by (i) that c.d 6= 0 for some d ∈ UTR and
by (2) we obtain that c ≤ d. Then by (viii) we obtain that c ∈ TR.
(x) Suppose c ∈ TR and (∀d ∈ TR)(c ≤ d→ c = d) and for the sake of contradiction
that c 6∈ UTR. Then by axiom (TR2) we get cCtc∗. From c ∈ TR by (vi) there
exists d ∈ UTR (and hence in TR) such that c ≤ d. Then by the assumption we get
c = d and substituting this in cCtc∗ we obtain dCtd∗ which contradicts d ∈ UTR.
(xi) This condition follows from (iv) and (x).

Lemma 2.4. The following statements are universal consequences from the non-
universal axioms of WDCA.

(i) If d ∈ TR, c 6= 0 and c ≤ d, then c ∈ TR
(ii) If c, d ∈ TR and cCtd, then (c+ d) ∈ TR

Proof. (i) The proof of is an easy consequence of axiom (TR1).
(ii) Let c, d ∈ TR and cCtd, then obviously c + d 6= 0. To prove that c + d ∈ TR
suppose aCt(c + d), bCt(c + d) and proceed to show that aCtb. This will imply
by (TR1) that c + d ∈ TR. By the axioms of contact we obtain the following two
disjunctions:

(1) aCtc or (2) aCtd,
(1’) bCtc or (2’) bCtd.

We have to consider four cases. Case (1)(1’): axiom (TR1) implies aCtb (because
c ∈ TR). Similarly, for case (2),(2’) (by the assumption that d ∈ TR). Case (1)(2’):
aCtc and the assumption cCtd imply aCtd (because c ∈ TR). Then bCtd and aCtd
imply aCtb, since d ∈ TR. In a similar way we reason in the case (2)(1’).

The proof of the representation theorem from [7] Part 3 (Theorem 3.7) can be done
without the use of the Efremovich axiom so the theorem holds for WDCAs as well.
In this work, however, we’ll focus on proving a new representation theorem based on
a kind of relational models which we’ll later use for Kripke style semantics of logical
system based on DCAs.
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2.1 Dynamic relational structures

2.1 Dynamic relational structures

Definition 2.5 (Dynamic relational structure). Let W = (W,Rs, Rt,≺, now) be a
relational structure such that:

(i) Rt ⊆W ×W is an equivalence relation

(ii) Rs ⊆W ×W is reflexive and symmetric and Rs ⊆ Rt

(iii) xRty, y ≺ z ⇒ x ≺ z
(iv) x ≺ y, yRtz ⇒ x ≺ z
(v) now ∈W

Then W is called a dynamic relational structure or dynamic relational space. The
subsystem (W,Rt,≺) is called the time substructure of W .

Similarly to time conditions shown in the introductory section, we can define time
conditions in the context of time substructures of dynamic relational structures (the
only difference will be to conditions (Tri) and (Irr)). Let W be a dynamic relational
structure and (W,Rt,≺) be its time substructure. We’ll be interested in the following
additional conditions that this time substructure may satisfy:

(RS)W (∀x ∈W )(∃y ∈W )(x ≺ y)

(LS)W (∀x ∈W )(∃y ∈W )(y ≺ x)

(Up Dir)W (∀x, y ∈W )(∃z ∈W )(x ≺ z and y ≺ z)
(Down Dir)W (∀x, y ∈W )(∃z ∈W )(z ≺ x and z ≺ y)

(Dens)W (∀x, y ∈W )(x ≺ y → (∃z ∈W )(x ≺ z and z ≺ y)

(Ref)W (∀x ∈W )(x ≺ x)

(Irr)W (∀x, y ∈W )(x ≺ y ⇒ xRty)

(Lin)W (∀x, y ∈W )(x ≺ y or y ≺ x)

(Tri)W (∀x, y ∈W )(xRty or x ≺ y or y ≺ x)

(Tr)W (∀x, y, z ∈W )(x ≺ y and y ≺ z → x ≺ z)

With Lemma 1.23 we mentioned a translation τ , studied in [7] Part 2 and 3, from the
the language of time structures into the language of DCA.The next lemma is inspired
by this translation and, although not defined explicitly, serves as an extension of the
translation τ for time substructures of dynamic relational structures. The proof is
the same as [7] part 3, Lemma 1.5 as it does not rely on the Efremovich axiom.

Lemma 2.6 (Translation Lemma). Let B be a WDCA. The following equivalences
hold in the sense that the left part is true in B iff the right part is true in B (see
Section 1.3.2).

(i) (rs)←→ (∀a ∈ UTR)(∃b ∈ UTR)(aBb)

(ii) (ls)←→ (∀a ∈ UTR)(∃b ∈ UTR)(bBa)
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2.2 Strong DCAs over dynamic relational structures

(iii) (updir)←→ (∀a, b ∈ UTR)(∃c ∈ UTR)(aBc and bBc)

(iv) (downdir)←→ (∀a, b ∈ UTR)(∃c ∈ UTR)(cBa and cBb)

(v) (dens)←→ (∀a, b ∈ UTR)(aBb→ (∃c ∈ UTR)(aBc and cBb))

(vi) (ref)←→ (∀a ∈ UTR)(aBa)

(vii) (irr)←→ (∀a, b ∈ UTR)(aBb⇒ aCtb)

(viii) (lin)←→ (∀a, b ∈ UTR)(aBb or bBa)

(ix) (tri)←→ (∀a, b ∈ UTR)(aCtb or aBa or bBa)

(x) (tr)←→ (∀a, b, c ∈ UTR)(aBb and bBc→ aBc)

2.2 Strong DCAs over dynamic relational structures

Given an arbitrary dynamic relational structure W , define the structure B(W ) =
(BW ,≤, 0, 1, ·,+, ∗, Cs

W , Ct
W , BW , TRW , UTRW , NOWW ) in the following way:

(i) BW = 2W , 0 = ∅, 1 = W , ≤=⊆, · = ∩, + = ∪, ∗ = set complement

(ii) ΓCs
W∆⇔ ∃a ∈ Γ,∃b ∈ ∆ : aRsb for Γ,∆ ∈ BW

(iii) ΓCt
W∆⇔ ∃a ∈ Γ,∃b ∈ ∆ : aRtb

(iv) ΓBW∆⇔ ∃a ∈ Γ,∃b ∈ ∆ : a ≺ b
(v) Γ ∈ TRW ⇔ Γ is a non-empty subset of an equivalence class of Rt

(vi) Γ ∈ UTRW ⇔ Γ is an equivalence class of Rt. NOWW = |now|.

Moving forward, we’ll need the following notation for convenience:

a � b def
= b ≺ a

〈≺〉Γ def
= {x | ∃y ∈ Γ such that x ≺ y}

〈�〉Γ def
= {x | ∃y ∈ Γ such that x � y}

Lemma 2.7. Γ ∩ 〈≺〉∆ 6= ∅ ⇔ 〈�〉Γ ∩∆ 6= ∅ for arbitrary Γ and ∆.

Proof. (⇒) Let Γ ∩ 〈≺〉∆ 6= ∅. This means that there is an element, say x, such
that x ∈ Γ and x ∈ 〈≺〉∆, which, by definition, means that ∃y ∈ ∆ such that x ≺ y.
From x ≺ y we get that y � x and since x ∈ Γ we have that y ∈ 〈�〉Γ. Since y ∈ ∆
we naturally get that 〈�〉Γ ∩∆ 6= ∅.
(⇐) Let 〈�〉Γ ∩∆ 6= ∅. Let x be such that x ∈ 〈�〉Γ and x ∈ ∆. From here we get
that ∃y ∈ Γ such that x � y. Hence y ≺ x and since x ∈ ∆ we get that y ∈ 〈≺〉∆.
From here and y ∈ Γ we get that Γ ∩ 〈≺〉∆ 6= ∅.

Using this notation, we can rewrite the definition of the precedence relation BW in
the following equivalent way: ΓBW∆⇔ Γ ∩ 〈≺〉∆ 6= ∅ ⇔ 〈�〉Γ ∩∆ 6= ∅.

Lemma 2.8. (∃Θ ∈ UTRW )(ΓBWΘ and ∆BWΘ)⇔ 〈�〉Γ∩〈�〉∆ 6= ∅ for arbitrary
Γ and ∆ from BW .
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Proof. (⇒) Let Θ ∈ UTRW be such that ΓBWΘ and ∆BWΘ. So, by definition, we
have that 〈�〉Γ ∩ Θ 6= ∅ and 〈�〉∆ ∩ Θ 6= ∅. Let x be such that x ∈ 〈�〉Γ, x ∈ Θ
and let y be such that y ∈ 〈�〉∆, y ∈ Θ. Since Θ is a member of UTRW (hence an
equivalence class of Rt) and x ∈ Θ, y ∈ Θ we get that xRty. From x ∈ 〈�〉Γ we have
that ∃z ∈ Γ such that x � z i.e. z ≺ x. From here, xRty and property (iv) of the
relational structure (see Def. 2.5) we get that z ≺ y i.e. y � z. We also know that
z ∈ Γ so y ∈ 〈�〉Γ. But y ∈ 〈�〉∆ and hence 〈�〉Γ ∩ 〈�〉∆ 6= ∅.

(⇐) Let 〈�〉Γ ∩ 〈�〉∆ 6= ∅ and let x ∈ 〈�〉Γ and x ∈ 〈�〉∆. Take Θ to be the
equivalence class of x with respect to the Rt relation. It is clear that 〈�〉Γ ∩Θ 6= ∅
and 〈�〉∆∩Θ 6= ∅. But, by definition, this means that ΓBWΘ and ∆BWΘ which is
what we needed to prove.

Now we are ready to prove two lemmas that will characterize the structure B(W )
over the dynamic relational structure W .

Lemma 2.9. B(W ) is a dynamic contact algebra.

Proof. We’ll verify that B(W ) satisfies the axioms of DCA. First of all, let’s check
that Cs

W is a contact relation. (C1) ΓCs
W∆ ⇒ Γ 6= ∅ and ∆ 6= ∅? Obvious, since if

either Γ or ∆ were empty we wouldn’t be able to find elements from the two sets that
are Rs-related, which would contradict the assumption that ΓCs

W∆. (C2) ΓCs
W∆

and Γ ⊆ Γ′ and ∆ ⊆ ∆′ ⇒ Γ′Cs
W∆′? From ΓCs

W∆ we get that there exist a ∈ Γ
and b ∈ ∆ such that aRsb. Since Γ ⊆ Γ′, we get a ∈ Γ′ and similarly b ∈ ∆′. Hence
Γ′Cs

W∆′ by definition. (C3) ΓCs
W (∆ ∪ Θ) ⇒ ΓCs

W∆ or ΓCs
WΘ? From the premise

we have that there is a ∈ Γ and b ∈ ∆ ∪Θ such that aRsb. Since b ∈ ∆ ∪Θ then b
must be in at least one of ∆ or Θ. Depending on where b is, we get either ΓCs

W∆
or ΓCs

WΘ (or both). (C4) ΓCs
W∆ ⇒ ∆Cs

WΓ? Follows directly from the symmetry
of the Rs relation. (C5) Γ 6= ∅ ⇒ ΓCs

WΓ? Since Γ is not empty then there is an
element a such that a ∈ Γ. Since Rs is reflexive we have that aRsa and hence ΓCs

WΓ.
Proving that Ct

W is a contact and BW is a precontact can be done in a similar
manner. Let’s check (Cs

W ⇒ Ct
W ). Let ΓCs

W∆. By definition, ∃a ∈ Γ,∃b ∈ ∆ : aRsb.
But Rs ⊆ Rt so aRtb and hence ΓCt

W∆.
Next, let’s make sure that the Efremovich axiom holds for the relation Ct

W :
ΓCt

W∆ ⇒ ∃Θ(ΓCt
WΘ and Θ∗Ct

W∆). Let Θ = {c ∈ W : ∃s ∈ ∆ such that cRts}.
So if c /∈ Θ (which means that c ∈ Θ*) then ∀s ∈ ∆ we have cRts. Hence Θ∗Ct

W∆.
Now we have to show that ΓCt

WΘ. Towards contradiction, suppose that ΓCt
WΘ.

So ∃a ∈ Γ,∃c ∈ Θ : aRtc. Since c ∈ Θ, by definition, ∃b ∈ ∆ : cRtb and by the
transitivity of Rt we get that aRtb. This is a contradiction with the premise ΓCt

W∆.
What’s left is to check that the axioms for the sets TRW and UTRW hold.

Firstly, for (TR1) we need to show that Θ ∈ TRW ⇔ Θ 6= 0 and ∀Γ,∆(ΓCt
WΘ

and ∆Ct
WΘ ⇒ ΓCt

W∆). For the forward direction, let Θ ∈ TRW . By definition
we have that Θ 6= ∅ (first part of what we are trying to prove) and Θ is contained
in an equivalence class of Rt. To prove the second part, let Γ and ∆ be such that
ΓCt

WΘ and ∆Ct
WΘ - we want to show that ΓCt

W∆. From ΓCt
WΘ we get that
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∃a ∈ Γ, ∃c ∈ Θ : aRtc and similarly from ∆Ct
WΘ we have ∃b ∈ ∆,∃d ∈ Θ : bRtd.

Since Θ is contained in an equivalence class of Rt we have that cRtd. From here, the
transitivity of Rt and aRtc we get that aRtd. Now taking into account that bRtd
and the symmetry and transitivity of Rt we get that aRtb. Hence ΓCt

W∆ which
is what we are trying to prove. For the backward direction, suppose that Θ 6= ∅
and ∀Γ,∆(ΓCt

WΘ and ∆Ct
WΘ⇒ ΓCt

W∆). We have to show that Θ is contained in
an equivalence class of Rt, that is ∀c, d ∈ Θ, cRtd. Suppose, towards contradiction,
that ∃c, d ∈ Θ, cRtd. Take Γ = {c}, ∆ = {d}. Obviously, we have that ΓCt

WΘ and
∆Ct

WΘ (by the reflexivity of Rt) but ΓCt
W∆, which is a contradiction.

For (TR2) we need to show that Θ ∈ UTRW ⇔ Θ ∈ TRW and ΘCt
WΘ*. For

the forward direction, suppose that Θ ∈ UTRW and hence, in TRW . We need
to show that ΘCt

WΘ*. Suppose the contrary, ΘCt
WΘ* - this would imply that

∃a ∈ Θ, ∃b ∈ Θ* such that aRtb. But then b belongs to the same equivalence class
as a, so b ∈ Θ. This is a contradiction with b ∈ Θ*. For the backward direction let
Θ ∈ TRW (so Θ is not empty and is contained in some equivalence class, say Ψ, of
Rt) and ΘCt

WΘ*. In order to prove that Θ ∈ UTRW we need to show that Θ = Ψ.
Suppose the contrary, Θ ⊂ Ψ, so ∃d ∈ Ψ such that d /∈ Θ(so d ∈ Θ*). We know that
Θ 6= ∅, so let’s pick an element c ∈ Θ. Since Θ ⊂ Ψ we get that c ∈ Ψ. Since Ψ is an
equivalence class of Rt and we have that c ∈ Ψ and d ∈ Ψ, we get cRtd. From here
and the fact that c ∈ Θ and d ∈ Θ* we get ΘCt

WΘ* which is a contradiction.
Now, let’s check that (TRCt) holds. Let ΓCt

W∆ - we want to show that ∃Θ ∈
UTRW such that ΓCt

WΘ and ∆Ct
WΘ. Since ΓCt

W∆ we have that ∃a ∈ Γ,∃b ∈ ∆
such that aRtb. Take Θ to be equal to the equivalence class of a (obviously b is also
in Θ). Then trivially ΓCt

WΘ and ∆Ct
WΘ.

For (TRCs) suppose ΓCs
W∆ and hence ∃a ∈ Γ, ∃b ∈ ∆ such that aRsb. Take Θ

to be the equivalence class of a with respect to the Rt relation. Clearly a ∈ Γ ∩ Θ
and b ∈ ∆ so (Γ ∩Θ)Cs

W∆.
For (TRB1) let Θ ∈ TRW , ΘBW∆ and ΓBWΘ - we want to show that ΓBW∆.

From ΘBW∆ we have that ∃c ∈ Θ, ∃b ∈ ∆ such that c ≺ b and from ΓBWΘ we
get ∃a ∈ Γ,∃d ∈ Θ such that aRtd. Since c ∈ Θ and d ∈ Θ and Θ is contained in
an equivalence class of Rt we get that dRtc. From here, aRtd and the transitivity
of Rt we get aRtc. Taking this into account, the fact that c ≺ b and Def.2.5(iii) we
get that a ≺ b and hence ΓBW∆. (TRB2) can be proved in the same way using
Def.2.5(iv).

For (TRB3) let ΓBW∆ and we want to show that ∃Θ ∈ UTRW such that ΘBW∆
and ΓCt

WΘ. From ΓBW∆ we get that ∃a ∈ Γ, ∃b ∈ ∆ such that a ≺ b and take Θ to
be the equivalence class of a. We have that ΓCt

WΘ because a ∈ Θ, a ∈ Γ and Rt is
reflexive. We also have that ΘBW∆ since a ∈ Θ, b ∈ ∆ and a ≺ b. Axiom (TRB4)
can be shown in a similar way.

Lastly, we need to make sure that axioms (UTRB11), (UTRB12), (UTRB21)
and (UTRB22) hold. We’ll verify axiom (UTRB22) and the others can be proved in
a similar way. Let Γ and ∆ be members UTRW . For the easier backward direction of
axiom (UTRB22) suppose that there is Θ ∈ UTRW such that ΓBWΘ and ∆BWΘ.
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2.2 Strong DCAs over dynamic relational structures

From here we get that ∃x ∈ Γ,∃y ∈ Θ such that x ≺ y and ∃z ∈ ∆,∃w ∈ Θ such
that z ≺ w. Since y and w are in Θ and it is an equivalence class of Rt we have that
yRtw. From here and x ≺ y we get that x ≺ w. Now, let P be an arbitrary element
of BW - we want to show that ΓBWP or ∆BWP*. Suppose w ∈ P - then obviously
ΓBWP since x ∈ Γ, w ∈ p and x ≺ w. Alternatively, if w /∈ P , then w ∈ P*.
But in this case we have that z ∈ ∆, w ∈ P* and z ≺ w so ∆BWP*. For the
forward direction, let for all P ∈ BW be true that ΓBWP or ∆BWP* and, toward
contradiction, suppose that ¬(∃Θ ∈ UTRW )(ΓBWΘ and ∆BWΘ). Then, by Lemma
2.8 we get that 〈�〉Γ∩〈�〉∆ = ∅. Take P = 〈�〉∆ - so, by the premise, we must have
that ΓBW 〈�〉∆ or ∆BW (〈�〉∆)*. Suppose ΓBW 〈�〉∆ - then ∃x ∈ Γ,∃y ∈ 〈�〉∆
such that x ≺ y. From here we have that y � x and since x ∈ Γ we get that y ∈ 〈�〉Γ.
But y ∈ 〈�〉∆ so we have that 〈�〉Γ ∩ 〈�〉∆ 6= ∅ which is a contradiction. So it
must be the case that ∆BW (〈�〉∆)*. This means that ∃x ∈ ∆ and ∃y ∈ (〈�〉∆)*
(meaning that y /∈ 〈�〉∆) such that x ≺ y. From here we get that y � x and since
x ∈ ∆, y ∈ 〈�〉∆ - contradiction. This means that our initial assumption was false
which completes the prove of the axiom.

Lemma 2.10. B(W ) is a strong dynamic contact algebra.

Proof. By the previous lemma we know that B(W ) satisfies the axioms of a DCA. We
need to assert that the additional axioms for SDCA hold. Firstly, for (CtB), suppose
ΓBW∆ - we want to show that (∃Θ)(ΓCt

WΘ and Θ∗BW∆). Take Θ = {y ∈ W |
for all x ∈ Γ we have xRty}(if Γ = ∅, take Θ = W and the statement follows for
trivial reasons). By definition, ΓCt

WΘ. To prove that Θ∗BW∆, suppose towards
contradiction the opposite - Θ∗BW∆. By definition, ∃y ∈ Θ∗, ∃z ∈ ∆ such that
y ≺ z. Since y ∈ Θ∗, we have that y /∈ Θ and hence, by the definiton of Θ, ∃x ∈ Γ
such that xRty. From here, y ≺ z and Def.2.5(iii) we conclude that x ≺ z. But
since x ∈ Γ and z ∈ ∆ we get that ΓBW∆ which is a contradiction with the premise
ΓBW∆.

For (BCt), suppose ΓBW∆ - we want to show that (∃Θ)(ΓBWΘ and Θ∗Ct
W∆).

Take Θ = {y ∈ W |∃z ∈ ∆ such that yRtz}. So, by definition, Θ∗Ct
W∆. Now,

towards contradiction, suppose that ΓBWΘ. This means that ∃x ∈ Γ, ∃y ∈ Θ such
that x ≺ y. Since y ∈ Θ we have that there is z ∈ ∆ such that yRtz. From here
and Def.2.5(iv) we get that x ≺ z. Since x ∈ Γ and z ∈ ∆ we conclude that ΓBW∆
which is a contradiction.

The following lemma is analogous to Lemma 1.19 and shows a correspondence be-
tween the time axioms in B(W ) and time conditions in W :

Lemma 2.11 (Relational correspondence for time axioms). Let α be any formula
from the list of time axioms - (rs), (ls), (updir), (downdir), (dens), (ref), (irr),
(lin), (tri), (tr) and let A be the corresponding formula from the list of time con-
ditions - (LS)W , (RS)W , (UpDir)W , (DownDir)W , (Dens)W , (Ref)W , (Irr)W ,
(Lin)W , (Tri)W , (Tr)W . Then A is true in W iff α is true in B(W ).
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2.3 Canonical constructions over weak DCAs

Proof. Let’s verify the claim for the density and irreflexivity conditions. The others
can be shown in a similar fashion.
(Dens)W → (dens). Suppose that for all x, y ∈W we have x ≺ y → (∃z)(x ≺ z and
z ≺ y) and let ΓB∆ for some Γ,∆ ∈ BW - we’ll show that ΓBΘ or Θ∗B∆, for any
Θ ∈ BW . By ΓB∆, there are x ∈ Γ, y ∈ ∆ such that x ≺ y and by the premise we
get x ≺ z and z ≺ y, for some z ∈ W . Let Θ be an arbitrary element of BW . If
z ∈ Θ, then ΓB∆. If not, then z ∈ Θ∗ and hence Θ∗B∆ which proves this direction.
(dens)→ (Dens)W . Suppose for all Γ,∆,Θ ∈ BW we have ΓB∆⇒ ΓBΘ or Θ∗B∆.
Towards contradiction, suppose there are x, y ∈ W , x ≺ y such that for all z ∈ W ,
x ⊀ z or z ⊀ y. Let Γ = {x} and ∆ = {y}. We obviously have that ΓB∆ and take
Θ = {s ∈W |x ⊀ s} - clearly ΓBΘ. Take a look at Θ∗ = W \Θ = {s : x ≺ s}. Since
x ≺ y and ∀s ∈ Θ∗, x ≺ s by the assumption we must have that ∀s ∈ Θ∗, s ⊀ y.
This means that Θ∗B∆ which a contradiction with the premise.
(Irr)W → (irr). Let (∀x, y)(x ≺ y → xR

t
y). To prove (irr) suppose ΓB∆. Then

there exist x ∈ Γ and y ∈ ∆ such that x ≺ y. Define Θ = {x} and Ω = {y}. Then
obviously Θ 6= 0, Ω 6= 0, Θ ≤ Γ, Ω ≤ ∆ and ΘCtΩ.
(irr)→ (Irr)W . Let ΓB∆→ (∃Θ,Ω 6= 0)(Θ ≤ Γ, Ω ≤ ∆, and ΘCtΩ). Let x, y ∈W
be such that x ≺ y and take Γ = {x}, ∆ = {y}. We have that ΓB∆. Then there
exist Θ,Ω 6= 0 such that Θ ⊆ {x}, Ω ⊆ {y} and ΘCtΩ. From here we get that

Θ = {x}, Ω = {y} and {x}Ct{y}. Hence xRty.

2.3 Canonical constructions over weak DCAs

In this section, given a weak DCA B, we’ll construct a dynamic relational space. This
will be done by taking a subset of special ultrafilters of B, called UTR-ultrafilters,
and defining several relations between those ultrafilters.

Definition 2.12 (UTR-ultrafilter). Let B be a weak DCA and let U be an ultrafilter
(see Def.1.8) of B. We’ll call U a UTR-ultrafilter if there is an element c ∈ UTR
such that c ∈ U . For convenience, we use the notation U(c), meaning that U is an
UTR-ultrafilter containing the element c ∈ UTR. With UTR-ULT(B) we’ll denote
the set of all UTR-ultrafilters of B.

Let B be a WDCA and F,G be arbitrary filters of B. We’ll define the canonical
relations Rs, Rt and ≺ between filters in B, in the following way:

FRsG⇔ ∀a ∈ F,∀b ∈ G aCsb

FRtG⇔ ∀a ∈ F,∀b ∈ G aCtb

F ≺ G⇔ ∀a ∈ F,∀b ∈ G aBb

The following lemma will contain some characterizations of the UTR-ultrafilters of
weak DCAs with respect to the canonical relations Rs, Rt and ≺.

Lemma 2.13. Let U(c) and V (d) be UTR-ultrafilters. Then:

(i) U(c)RtV (d) iff c = d
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2.3 Canonical constructions over weak DCAs

(ii) U(c)RsV (d) iff c = d and ∀a ∈ U(c), ∀b ∈ V (d) aCsb

(iii) U(c) ≺ V (d) iff cBd

Proof. (i) (⇒) From U(c)RtV (d), by definition, we get that cCtd. By Lemma 2.3(v)
we get c = d.
(i) (⇐) Let c = d - we want to show that U(c)RtV (c), i.e. for any a ∈ U(c), b ∈ V (c)
we should have aCtb. Since a ∈ U(c), c ∈ U(c) and U(c) is an ultrafilter we have
that a · c 6= 0 and hence aCtc. Similarly bCtc. Since c ∈ UTR from axiom (TR1) we
conclude that aCtb.
(ii) Follows directly by taking into consideration the definition of Rs, the fact that
Cs ⊆ Ct(and hence Rs ⊆ Rt) and (i).
(iii) The forward direction is obvious. For the backward direction, let cBd and
a ∈ U(c), b ∈ V (d). a ∈ U(c) means that a · c 6= 0 and hence aCtc. Using the fact
that c ∈ UTR and axiom (TRB1) we get that aBd. Similarly, from b ∈ V (d) we get
bCtd. Since d ∈ UTR by axiom (TRB2) we get that aBb. Hence U(c) ≺ V (d).

Let B be a weak DCA. We associate to B a system W (B) = (X(B), Rs, Rt,≺
, now) where X(B) = UTR-ULT(B), the binary relations Rs, Rt,≺ are the canonical
relations between ultrafilters and now is the fixed UTR-ultrafilter containing the
element NOW .

Lemma 2.14. W (B) is a dynamic relational structure.

Proof. Let’s verify that W (B) satisfies Def.2.5. For the reflexivitty of Rs, let F ∈
X(B) - we want to show that FRsF . Since F is an ultrafilter then we have that
0 /∈ F (ultrafilters are proper filters). Let a be an arbitrary element of F. Then since
a 6= 0 and Cs is a contact relation we have that aCsa and hence FRsF . For the
symmetry, let F,G ∈ X(B) and let FRsG. Let a, b be arbitrary elements in F and
G respectively. Since FRsG we know that aCsb and by the symmetry of the Cs

relation we get that bCsa. Hence GRsF . Reflexivity and symmetry of Rt can be
proved in the same way using that Ct is a contact relation. For the transitivity, let
F (c)RtG(d) and G(d)RtH(e) - we want to show that F (c)RtH(e). From F (c)RtG(d)
using Lemma 2.13 we get that c = d and from G(d)RtH(e) - d = e. Hence c = e
and applying Lemma 2.13 we conclude that F (c)RtH(e). Proving that Rs ⊆ Rt is
trivial since Cs ⊆ Ct. Next, let’s check point (iii) from Def.2.5. Let F (c)RtG(d) and
G(d) ≺ H(e). By Lemma 2.13 we get that c = d and dBe. Hence cBe and by Lemma
2.13 F (c) ≺ H(e). Similarly for (iv), let F (c) ≺ G(d) and G(d)RtH(e). By Lemma
2.13 we ge that cBd and d = e. Hence cBe and by Lemma 2.13 F (c) ≺ H(e).

The system W (B) is called the canonical dynamic relational structure over the weak
DCA B. Let B(W ) be the strong DCA over W (B) as constructed in the previous
section. We’ll call B(W ) the canonical strong DCA associated to B.

Lemma 2.15. Let B be a weak DCA, let A be a formula among (LS)W , (RS)W ,
(UpDir)W , (DownDir)W , (Dens)W , (Ref)W , (Irr)W , (Lin)W , (Tri)W , (Tr)W and
let α be the corresponding formula from the list of time axioms (rs), (ls), (updir),
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2.4 The relational representation theorem

(downdir), (dens), (ref), (irr), (lin), (tri), (tr). Then α is true in B iff A is true
in W (B).

Proof. The proof follows by using Lemma 2.6 and Lemma 2.13. To demonstrate,
let α = (tri). By Lemma 2.6(ix) we have that (tri) is true in the WDCA B iff
(∀a, b ∈ UTR)(aCtb or aBb or bBa) and let’s denote this formula by (tri)′. It
suffices to show that (tri)′ is true in B iff (Tri) is true in W (B)

For (⇒), let (tri)′ hold and let Γ(a),∆(b) ∈ X(B) be arbitrary UTR-ultrafilters.
We have a ∈ UTR, b ∈ UTR and by (tri)′ we get aCtb (so a = b) or aBb or bBa. By
Lemma 2.13 we have Γ(a)Rt∆(b) or Γ(a) ≺ ∆(b) or ∆(b) ≺ Γ(a). For the backward
direction let a, b ∈ UTR. By axiom (TR2) we have that a 6= 0 and hence there
is an UTR-ultrafilter Γ ∈ X(B) such that Γ = Γ(a). Similarly for b there is an
UTR-ultrafilter ∆(b) ∈ X(B). By (Tri) we have that Γ(a)Rt∆(b) or Γ(a) ≺ ∆(b) or
∆(b) ≺ Γ(a). Thus, by Lemma 2.13 we conclude that aCtb or aBb or bBa.

2.4 The relational representation theorem

In this section we’ll complete the study of the representation theory for weak DCAs.
We’ll show that every weak DCA can be isomorphically embedded into the strong
DCA associated to it in a way that preserves the time axioms. Let B be a weak
DCA, W (B) be the canonical dynamic relational structure over B and let B(W ) be
the canonical strong DCA associated to B. We’ll define the function h : B → BW as
follows h(a) = {F ∈ UTR-ULT (B), a ∈ F}. Before showing that h is an embedding
we will need a couple of lemmas.

Lemma 2.16. Let a, b ∈ B. Then the following equivalences hold:

(i) aCsb⇔ ∃U, V ∈ Ult(B) such that URsV, a ∈ U, b ∈ V
(ii) aCtb⇔ ∃U, V ∈ Ult(B) such that URtV, a ∈ U, b ∈ V
(iii) aBb⇔ ∃U, V ∈ Ult(B) such that U ≺ V, a ∈ U, b ∈ V

Proof. We’ll prove only (i) and the others can be shown in the same way. The
backward direction is obvious by definition. For the forward direction, take a look
at the filters [a) = {c : a ≤ c} and [b) = {c : b ≤ c}. Since aCsb and Cs is a
(pre)contact relation, by axiom (Cs2) we get that [a) × [b) ⊆ Cs. By Lemma 1.11
we get that there exist ultrafilters U and V , [a) ⊆ U , [b) ⊆ V such that U ×V ⊆ Cs,
or equivalently URsV .

We’ll be more interested in a stronger version of the previous lemma. We will make
heavy use of Lemma 1.16, fully proved in [7] part 3. It’s worth noting that we stated
this lemma in the introductory section for a slightly stronger class of structures
(dynamic contact algebras) but a careful examination of the proof reveals that it
can be safely applied for weak DCAs as well, as the proof does not rely on the
Efremovich axiom.

Lemma 2.17. Let a, b ∈ B. Then the following equivalences hold:
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2.4 The relational representation theorem

(i) aCsb⇔ ∃U(c), V (c) ∈ UTR-ULT (B) such that URsV, a ∈ U, b ∈ V
(ii) aCtb⇔ ∃U(c), V (c) ∈ UTR-ULT (B) such that URtV, a ∈ U, b ∈ V
(iii) aBb⇔ ∃U(c), V (d) ∈ UTR-ULT (B) such that U ≺ V, a ∈ U, b ∈ V

Proof. (i) For the forward direction, let aCsb. By Lemma 1.16 (ii) we have that
∃c ∈ UTR such that (a · c)Cs(b · c). By the previous lemma we have that there exist
ultrafilters U and V such that a · c ∈ U , b · c ∈ V and URsV . It follows that c ∈ U
and c ∈ V and hence U and V are UTR-ultrafilters having the desired properties.
The backward direction is obvious. (ii) and (iii) can be proved in the same way using
Lemma 1.16 (iii) and (iv).

Lemma 2.18 (Embedding Lemma). The function h is an isomorphic embedding of
B into B(W ), that is:

(i) a ≤ b⇔ h(a) ⊆ h(b)

(ii) aCsb⇔ h(a)Cs
Wh(b)

(iii) aCtb⇔ h(a)Ct
Wh(b)

(iv) aBb⇔ h(a)BWh(b)

(v) c ∈ TR⇔ h(c) ∈ TRW

(vi) c ∈ UTR⇔ h(c) ∈ UTRW

(vii) h(NOW ) = NOWW

Proof. (i) For the forward direction, let a ≤ b and let Γ ∈ h(a) - we want to show
that Γ ∈ h(b). By the definition of h, we have that a ∈ Γ and Γ is a UTR-ultrafilter.
From here and a ≤ b we get that b ∈ Γ (filter property). Hence, Γ ∈ h(b). For
the backward direction, we’ll reason by contraposition, that is suppose that a � b
- we want to show that h(a) * h(b). Since a � b, we know that a · b∗ 6= 0 by
Lemma 1.3. From here and the fact that Cs is a contact relation by (C5) we get
that (a · b∗)Cs(a · b∗). From axiom (TRCs) we get that there is c ∈ UTR such
that (a · b∗ · c)Cs(a · b∗) and from axiom (C1) we get that a · b∗ · c 6= 0. Using the
commutativity and associativity of the meet operation we get (a · c) · b∗ 6= 0, which
from the properties of � means that a · c � b. From Lemma 1.9 we get that there
exists an ultrafilter Γ such that a · c ∈ Γ and b /∈ Γ. Since a · c ≤ a, a · c ≤ c and Γ is
a ultrafilter we have that a ∈ Γ and c ∈ Γ. Since c ∈ UTR, Γ is an UTR-ultrafilter.
From a ∈ Γ we get that Γ ∈ h(a) and since b /∈ Γ we have that Γ /∈ h(b).

For the forward direction of (ii), let aCsb. By Lemma 2.17(i) we get that
∃U(c), V (c) ∈ UTR-ULT (B) such that a ∈ U , b ∈ V and URsV . Hence, we have
that U ∈ h(a) and V ∈ h(b) and we conclude that h(a)Cs

Wh(b). For the backward
direction, let U ∈ h(a) and V ∈ h(b) be such that URsV . We have that a ∈ U and
b ∈ V and by the definition of Rs we get that aCsb. (iii) and (iv) can be proved in
a similar way using Lemma 2.17.

For the forward direction of (v) let c ∈ TR. By axiom (TR1) we get that c 6= 0
and it is easy to see that this implies h(c) 6= 0. Now we want to show that h(c) is
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contained in an equivalence class of Rt, that is, for any U, V ∈ h(c) we have that
URtV . Let U, V be arbitrary elements of h(c). Let a and b be arbitrary elements of
U and V respectively. Since U ∈ h(c) we have that c ∈ U . From here and a ∈ U we
get that a·c 6= 0 and hence aCtc. Similarly bCtc and since c ∈ TR we get aCtb. Since
a, b were abritrary we conclude that URtV and since U, V were arbitrary then h(c)
is contained in an equivalence class of Rt. Hence h(c) ∈ TRW . For the backward
direction, let h(c) ∈ TRW . We want to show that c ∈ TR, i.e. c fulfils axiom (TR1).
It is clear that c 6= 0 - otherwise there wouldn’t have been an UTR-ultrafilter which
contains it (ultrafilters are proper filters). Now, let aCtc and bCtc - we want to show
that aCtb. Using (iii) we get that h(a)Ct

Wh(c) and h(b)Ct
Wh(c). Taking into account

that h(c) ∈ TRW and B(W ) is an SDCA by (TR1) we get that h(a)Ct
Wh(b) and

applying (iii) again we conclude that aCtb.
For (vi)(⇒), let c ∈ UTR - so c ∈ TR and cCtc∗. By (v) we know that h(c) ∈

TRW , i.e. h(c) is a subset of an equivalence class of Rt. Let X be the equivalence
class of Rt such that h(c) ⊆ X. In order to show that h(c) ∈ UTRW we have to
make sure that h(c) = X. Suppose that this is not the case, that is h(c) ⊂ X, so
X \ h(c) 6= 0. Let U ∈ h(c) and V ∈ X \ h(c) - U ∈ h(c) means that c ∈ U and
V ∈ X \ h(c) implies that c∗ ∈ V . Since X is an equivalence class we have that
URtV and hence cCtc∗ which is a contradiction. For (⇐) Let h(c) ∈ UTRW . Since
B(W ) is an SDCA we have that h(c) ∈ TRW and h(c)Ct

Wh(c)∗. By (v) we get
that c ∈ TR - we just have to show that cCtc∗. Since h(c) is a set of ultrafilters it
is easy to see that h(c)∗ = h(c∗). Hence h(c)Ct

Wh(c∗) and using (iii) we arrive at
cCtc∗.

Theorem 2.19 (Relational representation theorem for weak DCAs). Let B be a
weak dynamic contact algebra. Then there exists a strong dynamic contact algebra
B̂ and an isomorphic embedding of B into B̂. Additionally, if α is a formula among
the list of time axioms (rs), (ls), (updir), (downdir), (dens), (ref), (irr), (lin),
(tri), (tr), then α is true in B iff α is true in B̂.

Proof. Let B̂ be the canonical strong DCA associated to B and let h be defined as
above. The Embedding Lemma shows that h is an isomorphic embedding of B into
B̂. The claim about time axioms follows directly from the construction by combining
Lemma 2.15 and Lemma 2.11.

Corollary 2.20. Every DCA can be isomorphically embedded into a strong DCA.
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3 Basic dynamic contact algebras

In this section we’ll introduce the notion of a basic dynamic contact algebra (BDCA)
- a new type of DCAs that is a generalization of weak DCAs. The BDCA defini-
tion will contain the universal axioms of DCA and a couple of universal consequences
from some the remaining axioms of weak DCA (see Lemma 2.4). Inspired by Lemma
2.3(vi), the signature of BDCA will contain an additional function, which for ele-
ments c ∈ TR gives the unique d ∈ UTR such that c ≤ d. Our ultimate goal will be
to show that the universal first-order theory of BDCA concides with that of WDCA,
DCA and SDCA.

3.1 Abstract definition and basic properties

Definition 3.1 (Basic dynamic contact algebra). A basic dynamic contact alge-
bra(BDCA) is any system B = (B,≤, 0, 1, ·,+, ∗, Cs, Ct,B, TR,UTR,NOW,Utr),
where (B,≤, 0, 1, ·,+, ∗) is a nondegenerate Boolean algebra and the following prop-
erties hold:

(i) Cs is a contact relation on B, which is called space contact

(ii) Ct is a contact relation on B, called time contact which satisfies axiom

(Cs ⇒ Ct) aCsb⇒ aCtb

(iii) B is a precontact relation on B called the precendence relation

(iv) TR and UTR are subsets of B called time representatives and universal time
representatives respectively, satisfying the following axioms:

(TR1) c ∈ TR⇒ c 6= 0 and (∀a, b ∈ B)(aCtc and bCtc⇒ aCtb)

(TR2) c ∈ UTR⇔ c ∈ TR and cCtc∗

(TRB1) c ∈ TR, cBb and aCtc⇒ aBb

(TRB2) d ∈ TR, aBd and bCtd⇒ aBb

(TR ≤) c ∈ TR, d ≤ c and d 6= 0⇒ d ∈ TR,

(TR∪) c, d ∈ TR and cCtd⇒ (c+ d) ∈ TR

(v) Utr is a function satisfying the following axioms:

(TRUtr1) c ∈ TR⇒ Utr(c) ∈ UTR and c ≤ Utr(c)

(TRUtr2) a /∈ TR⇒ Utr(a) = 0

The function Utr will give us the unique UTR element (UTR-witness) corresponding
to a specific time representative. The purpose of axiom (TRUtr2) is both to make
the function Utr total and give us a convenient method to check if something is a
time representative. Note that properties (ii),(iii),(iv) and (v) from Lemma 2.3 also
hold for BDCAs since the proofs use only the universal axioms for DCA. By Σbasic

we’ll denote the class of all BDCAs. Let Θ be a set of the so-called time axioms.
Then ΣΘ

basic is the class of all BDCAs satisfying the time axioms from Θ.
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Lemma 3.2. The following properties hold for any basic dynamic contact algebra:

(i) c ∈ UTR⇒ Utr(c) = c

(ii) c ∈ TR⇒ Utr(Utr(c)) = Utr(c)

(iii) If c, d ∈ TR and (cCtd or c ≤ d or c+ d ∈ TR) then Utr(c) = Utr(d)

(iv) If {c1, · · · , cn} ⊆ TR and for all i, j ∈ {1, · · · , n} we have ciC
tcj , then

c1 + · · ·+ cn ∈ TR
(v) If d = c1 + · · · + cn ∈ TR, and for all i ∈ {1, · · · , n} we have ci 6= 0, then
{c1, · · · , cn} ⊆ TR and for all i, j ∈ {1, · · · , n} we have ciC

tcj . Moreover,
Utr(d) = Utr(c1) = . . . = Utr(cn)

(vi) If c, d ∈ UTR and c 6= d, then c.d = 0

(vii) If a · b ∈ TR then a · Utr(a · b) ∈ TR and Utr(a · Utr(a · b)) = Utr(a · b)
(viii) If a1...an ∈ TR and {i1, . . . , ik} ⊆ {1, . . . , n}, then ai1 ...ain .Utr(a1...an) ∈
TR and Utr(ai1 ...ain .Utr(a1...an)) = Utr(a1...an)

(ix) If c1, . . . , cn, d ∈ UTR, c∗1...c
∗
n.a 6= 0 and c∗1...c

∗
n.a ≤ d, then d 6∈ {c1, . . . , cn}

(x) If c1, . . . , cn ∈ UTR and c1 + . . .+ cn = 1, then UTR = {c1, . . . , cn}

Proof. (i) Let d = Utr(c). By (TRUtr1) we have that c ≤ d, d ∈ UTR and by
Lemma 2.3(iv) c = d.
(ii) Follows directly from (i).
(iii) Let c, d ∈ TR. Suppose cCtd. From here, c ≤ Utr(c) and d ≤ Utr(d), by
the contact axioms we have that Utr(c)CtUtr(d) and from Lemma 2.3(v) we have
Utr(c) = Utr(d). Now suppose, c ≤ d. Since c, d ∈ TR we have that c, d 6= 0 and
considering c ≤ d we have that c·d 6= 0 and then cCtd which brings us to the previous
case. For the last case, let c+d ∈ TR. Since c ≤ c+d, d ≤ c+d, reasoning the same
way as in the second case, we get cCt(c + d) and dCt(c + d) and since c + d ∈ TR
we get cCtd which reduces this case to the first one.
(iv) This follows easily from axiom (TR∪) for BDCA.
(v) Let’s take a look at arbitrary elements ci, cj . Since ci 6= 0, ci ≤ d, cj 6= 0, cj ≤ d
and d ∈ TR by BDCA axiom (TR ≤) we get that ci, cj ∈ TR. Since ci, cj 6= 0 and
ci ≤ d, cj ≤ d, d ∈ TR we have ciC

tcj . From (iii) we get that Utr(ci) = Utr(cj).
(vi) This is clear by Lemma 2.3 (v).
(vii). By axiom (TRUtr1) we have Utr(a · b) ∈ UTR (and also Utr(a · b) ∈ TR)
and a · b ≤ Utr(a · b). Since a · b ≤ a we get a · b ≤ (Utr(a · b)) · a and because
a · b 6= 0 we get (Utr(a · b)) · a 6= 0. We also have that Utr(a · b) · a ≤ Utr(a · b). But
Utr(a · b) ∈ TR, (Utr(a · b)) · a 6= 0 and (Utr(a · b)) · a ≤ Utr(a · b) imply by axiom
(TR≤) that (Utr(a ·b)) ·a ∈ TR. Using the facts that a ·b ≤ (Utr(a ·b)) ·a, a ·b ∈ TR
and (Utr(a · b)) · a ∈ TR by (iii) we get that Utr(a · Utr(a · b)) = Utr(a · b).
(viii) The proof is analogous to that of (vii).
(ix) Suppose d = ci, 1 ≤ i ≤ n. Then c∗1...c

∗
n.a ≤ ci and multiplying both sides of

the inequality by c∗i we get c∗1...c
∗
n.a ≤ 0 - a contradiction.

(x) Let d ∈ UTR, then d = d.1 = d.(c1 + . . .+cn) 6= 0. So there exists 1 ≤ i ≤ n such
that d.ci 6= 0 which by (vii) implies that d = ci and that UTR = {c1, . . . , cn}.
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3.2 UTR-finite basic DCAs

Lemma 3.2 (x) suggests to introduce the following definition.

Definition 3.3 (UTR-finite basic DCA). Let B be a basic DCA. B is called a UTR-
finite basic dynamic contact algebra if there is a finite subset {u1, . . . , un} ⊆ UTR(B)
such that u1 + . . .+ un = 1.

Lemma 3.4. Let B be a UTR-finite basic DCA and c ∈ B be such that c 6= 0.
Then there exists u ∈ UTR such that c.u 6= 0

Proof. Let B be a UTR-finite basic DCA. By definition, there exists a finite subset
{u1, . . . , un} of different elements of UTR such that u1 + . . .+un = 1. By Lemma 3.2
(x) UTR = {u1, . . . , un}, meaning that each UTR member is one of ui, i = 1, . . . , n.
Let c 6= 0. We have c = c.1 = c.(u1 + . . . + un) = c.u1 + . . . + c.un, so there exists
i = 1, ...n such that c.ui 6= 0.

Lemma 3.5. Every UTR-finite basic DCA is a weak DCA.

Proof. Let B be a UTR-finite basic DCA and let {u1, . . . , un} be a finite subset of
different elements of UTR such that u1 + . . . + un = 1. We have that each UTR
member is one of ui, i = 1, . . . , n. Since B is a basic DCA we know that it satisfies
the universal axioms of WDCA. We shall verify that B satisfies the non-universal
axioms of weak DCA as well.

Firstly, for the backward direction of (TR1), let c 6= 0 and let for all a, b ∈ B:
aCtc and bCtc impy aCtb. We’ll show that c ∈ TR. This would indeed be the case if
there exists ui ∈ UTR such that c ≤ ui. Suppose the contrary, i.e. for all ui ∈ UTR
we have c 6≤ ui and hence c · u∗i 6= 0 and u∗iC

tc. Since c 6= 0, by Lemma 3.4 we
obtain that there exists uj ∈ UTR such that c · uj 6= 0 and hence ujC

tc. We also
have u∗jC

tc and by the premise of the claim we obtain ujC
tu∗j which contradicts the

fact that uj ∈ UTR.
Next, for (TRCt) let aCtb - we want to show that there exists u ∈ UTR such

that aCtu and bCtu. Let’s rewrite the premise a bit - aCtb iff (a · 1)Ct(b · 1) iff
a · (u1 + . . .+ un)Ct(b · (u1 + . . .+ un) iff (a · u1 + . . .+ a · un)Ct(b · u1 + . . .+ b · un)
iff there exists i, j, 1 ≤ i ≤ j ≤ n such that a ·uiCtb ·uj . This implies uiC

tuj and by
Lemma 2.3(v) we get ui = uj and i = j. Thus, there exists i : 1 ≤ i ≤ n such that
a · uiCtb · ui. This, by the axioms of contact, means that aCtui and bCtui. Axioms
(TRCs)can be verified in a similar way.

Finally, for (TRB3), let aBb - we want to show that there is u ∈ UTR such that
uBb and uCta. Again, aBb iff (a · 1)B(b · 1) iff a · (u1 + . . .+ un)B(b · (u1 + . . .+ un)
iff (a · u1 + . . .+ a · un)B(b · u1 + . . .+ b · un) iff there exists i, j, 1 ≤ i ≤ j ≤ n such
that a · uiBb · uj . Since a · ui ≤ ui and b · uj ≤ b we have uiBb. Also by precontact
axioms we have a ·ui 6= 0 and hence aCtui. Axiom (TRB4) can be shown in a similar
manner.
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3.3 Finite generation lemma

Lemma 3.6 (Finite Generation Lemma). Let B = (B,Ct, Cs, B, TR, UTR, NOW ,
Utr) be a basic DCA and let A = {a1, . . . , an} be a finite subset of B containing
NOW. Then there exists a finite subalgebra B0 of B containing A.

Proof. In order to make the proof easy to follow we will prove the statement for the
following special representative case: let A = {u, v, c, d} where u, v are two different
elements of UTR one of which is NOW and c, d are two different elements of B
which are different from 0 and 1 and are not from UTR. Since u 6= v, u, v ∈ UTR
by Lemma 3.2(vi) we have u · v = 0 and hence u.v∗ 6= 0 and u∗.v 6= 0. The case
u∗ · v∗ = 0 implies that u+ v = 1 which by Lemma 3.2 (x) shows that the only UTR
elements of B are u and v. In this case take the Boolean subalgebra B0 generated
by the set A and consider it with the same contacts Ct, Cs and the precontact B.
Define UTRB0 = {u, v} = UTRB, TRB0 = {a ∈ B0 : a ∈ UTRB} and UtrB0 to be
the restriction of UtrB to B0. Obviously UtrB0 is defined for the elements of TRB0

and takes values in UTRB0 , so B0 is a basic DCA which is a subalgebra of B.
Let’s now consider the case u∗.v∗ 6= 0. Take a look at the following 16 elements

of B grouped in the following 4 groups:
(I) u · v · c · d, u · v · c · d∗, u · v · c∗ · d, u · v · c∗ · d∗,
(II) u · v∗ · c · d, u · v∗ · c · d∗, u · v∗ · c∗ · d, u · v∗ · c∗ · d∗,
(III) u∗ · v · c · d, u∗ · v · c · d∗, u∗ · v · c∗ · d, u∗ · v · c∗ · d∗,
(IV) u∗ · v∗ · c · d, u∗ · v∗ · c · d∗, u∗ · v∗ · c∗ · d, u∗ · v∗ · c∗ · d∗

Note that all elements from the group (I) are 0 because u.v = 0 (u and v are two
different elements of UTR, see Lemma 3.2(vi)). We claim that it is not possible
for all elements from group (II) to be equal to 0. Suppose that this is so, then we
get the following: 0 = u · v∗ · c · d + u · v∗ · c · d∗ + u · v∗ · c∗ · d + u · v∗ · c∗ · d∗ =
u · v∗ · (c · d+ c · d∗+ c∗ · d+ c∗ · d∗) = u · v∗ · 1, hence u.v∗ = 0 which is not true. In a
similar way we show that not all members from the groups (III) and (IV) are equal
to 0 (for (III) we use the fact that u∗.v 6= 0 and for (IV) that u∗.v∗ 6= 0).

Now, consider all possible sums of the members of the above groups. In par-
ticular, some of these sums are equal to the elements u, v, c, d and the sum of the
members of all groups gives the element 1 (these are basic facts from the theory of
Boolean algebras). They form a Boolean subalgebra of B which may not be closed
with respect to the operation Utr, which is different from 0 only on members which
are from the set TR. We claim that all non-zero elements from groups (II) and
(III) (and such exist) are members of TR. Let’s take a look, for instance, at the first
member of (II) u · v∗ · c · d 6= 0. We have that u · v∗ · c · d ≤ u ∈ UTR which implies
by axioms (TR≤) and (TR2) that u · v∗ · c · d ∈ TR. For this member we have
Utr(u · v∗ · c · d) = u and similarly for the other members of groups (II) and (III).

Other candidates for TR from the groups above are the non-zero members of
group (IV) (such elements exist) and we look in the algebra B for UTR-witnesses of
those elements. Let, for simplicity, all members from group (IV) be members of TR.
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3.3 Finite generation lemma

Applying to them the function Utr we find four elements w1, w2, w3, w4 from UTR
such that the following holds:
(#) u∗ · v∗ · c · d ≤ w1, u∗ · v∗ · c · d∗ ≤ w2, u∗ · v∗ · c∗ · d ≤ w3, u∗ · v∗ · c∗ · d∗ ≤ w4.

We’ll show that w1, w2, w3, w4 are different from u and v. Suppose, for example,
that w1 = u - then we have u∗ ·v∗ · c ·d ≤ u. Multiplying both sides of this inequality
with u∗ we obtain u∗ · v∗ · c · d = 0 which is impossible, because u∗ · v∗ · c · d ∈ TR.
We arrive at the same conclusion if w1 = v. So, w1, w2, w3, w4 are new members
which we should include in the subalgebra we are looking for. For that purpose we
consider the group (V) of the following elements:

(1) w1 · w∗2 · w∗3 · w∗4, (2) w∗1 · w2 · w∗3 · w∗4, (3) w∗1 · w∗2 · w3 · w∗4,
(4) w∗1 · w∗2 · w∗3 · w4, (5) w∗1 · w∗2 · w∗3 · w∗4

Next, form the meets (multiplications) of each element from the groups (I) - (IV) with
each element from the set (V) and then consider all possible joins (sums) between
these newly formed elements. They generate a new finite Boolean subalgebra of B,
denoted by B0, containing the elements u, v, c, d and w1, w2, w3, w4. We are interested
if this subalgebra is closed under the operation Utr applied to members of B0 which
are members of TR. In order to verify this, let’s inspect the members of TR in this
subalgebra and if their UTR-witnesses are in the set u, v, w1, w2, w3, w4. Note that
all multiplications of the members from groups (II) and (III) with elements (1), (2),
(3) and (4) from the group (V) are equal to 0, because they contain two different
elements from UTR. So the only possible non-zero multiplications from these groups
are with element (5) w∗1 · w∗2 · w∗3 · w∗4. For instance, for the first member of (II) the
result is u · v∗ · c · d ·w∗1 ·w∗2 ·w∗3 ·w∗4 ≤ u. If it is non-zero then it is a member of TR
with UTR-witness u. The other possible members of TR from these multiplications
will have as UTR-witness either u or v.

Now, let’s consider possible multiplications of the members from group (IV) with
the elements from the group (V). The member u∗ · v∗ · c · d can have possible non-
zero multiplication only with element (1) w1 · w∗2 · w∗3 · w∗4 and as a result we get
u∗ · v∗ · c · d · w1 · w∗2 · w∗3 · w∗4 ≤ w1. If it is non-zero then it is a member of TR
with UTR-witness w1. Why do the other combinations give zero multiplication?
Consider, for instance, the multiplication of u∗ · v∗ · c · d with (2) - the result is
u∗ · v∗ · c · d ·w∗1 ·w2 ·w∗3 ·w∗4. This element is ≤ w1 and ≤ w∗1 which implies that it is
equal to 0. We obtain the same result by multiplying u∗ · v∗ · c · d with the elements
(3), (4) and (5). This shows that the possible TR-members from the multiplications
of the group (IV) and (V) have UTR-witnesses from the set w1, w2, w3, w4.

Lastly, we need to check if the sums of the newly formed elements can form new
TR elements and what their UTR-witnesses would be. If a sum d = a1 + . . . + ak
of non-zero members of the above considered groups is a member of TR, then by
Lemma 3.2 (v) we may conclude that all ai are also members of TR and the UTR-
witness of the sum d and all ai are equal. So it is possible to have new TR members
but their UTR-witnesses are from the set u, v, w1, w2, w3, w4 which are contained in
the finite Boolean subalgebra generated by u, v, c, d plus w1, w2, w3, w4. This shows
that this finite Boolean subalgebra is also closed with respect to the function Utr
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3.4 Relational models for basic dynamic contact algebras

applied for the members of B0 which are members of TR.
We consider Ct

B0
, Cs

B0
, BB0 , TRB0 and UTRB0 to be the restrictions of the

corresponding relations from B in the set B0, then this makes B0 a finite basic DCA
which is a subalgebra of B. Let us note that the proof of the general case can go in
the same way.

Let us note that we may consider basic DCAs satisfying some of the time axioms
(rs), (ls), (up dir), (down dir), (dens), (ref), (irr), (lin), (tri), (tr). However, we
can not state that the Translation Lemma (see Lemma 2.6) which holds for weak
DCAs is true for basic DCAs. The proof of this lemma for weak DCA essentially uses
the non-universal axioms which are excluded from the definition of basic DCA. Note,
however, that all time axioms except (irr) and (tr) are universal statements. Since
universal statements are preserved under subalgebras, we can obtain the following
version of Lemma 3.6 as a simple corollary.

Corollary 3.7. Let B = (B,Ct, Cs,B, TR,UTR,NOW,Utr) be a basic DCA and
let A = {a1, . . . , an} be a finite subset of B containing NOW. Suppose, in addition,
that B satisfies a set Θ of universal time axioms. Then there exists a finite subalgebra
B0 of B containing A and satisfying the axioms from Θ.

3.4 Relational models for basic dynamic contact algebras

In this section we will introduce a generalization of relational dynamic spaces which
were introduced with Definition 2.5.

Definition 3.8 (Basic dynamic relational space). By a basic dynamic relational
structure or basic dynamic relational space we mean any relational system W =
(W,W 0, Rt, Rs,≺, now) such that W 6= ∅, W 0 is a subset of W containing now and
the following additional conditions are satisfied:

(i) Rt is a symmetric and reflexive relation in W

(ii) Rt is an equivalence relation in W 0

(iii) If x ∈W 0 and xRty, then y ∈W 0

(iv) Rs is a reflexive and symmetric relation included in Rt

(v) If xRty, y ∈W 0 and y ≺ z, then x ≺ z
(vi) If x ≺ y, y ∈W 0 and yRtz, then x ≺ z

The subsystem (W,W 0, Rt,≺, now) is called the time substructure of the basic dy-
namic relational space.

We’ll denote the class of all basic dynamic relational spaces by ∆basic. Let Ω be a
subset of time conditions (special conditions on the relation ≺, as shown in section
2.1). Then ∆Ω

basic denote the class of all basic dynamic relational spaces satisfying
the conditions from Ω.

Obviously, W 0 with the restriction of all relations to W 0 is a dynamic relational
space, so if we add the additional condition that W 0 = W then the system coincides
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3.5 P-morphisms between basic relational dynamic spaces

with the system of dynamic relational spaces. This shows that, indeed, Definition
3.8 is more general than Definition 2.5 and that all dynamic relational spaces are
basic dynamic relational spaces, so ∆rel ⊆ ∆basic.

Let W be a basic dynamic relational space. We associate a structure B(W )
to W via the following constructions. Define the contact relations Ct, Cs and the
precontact B as this is done for dynamic relational spaces in Section 2.2. Define
UTR(W ) to be the set of equivalence classes of W 0 under the relation Rt and
TR(W ) to be the set of nonempty subsets of the equivalence classes in W 0. Define
NOW to be the equivalence class containing now. Finally, for a ∈ TR(W ) define
Utr(a) to be the unique equivalence class containing a.

Lemma 3.9. B(W ) is a basic DCA.

Proof. The BDCA axioms can be verified easily using the properties of the basic
dynamic relational structure. For demonstration, suppose c is an equivalence class -
we want to show that it satisfies cCc∗. Suppose the contrary, i.e. that cCtc∗. Then
there exist x ∈ c and y 6∈ c such that xRty, Since c ⊆ W0 then x ∈ W 0. Then xRty
implies, by Definition 3.8 (iii), that y ∈ W 0 and since c is equivalence class, that
y ∈ c - a contradiction.

The analog of Lemma 2.11 has the same formulation and the same proof.

Lemma 3.10. Let α be any formula from the list of time axioms - (rs), (ls), (updir),
(downdir), (dens), (ref), (irr), (lin), (tri), (tr) and let A be the corresponding
formula from the list of time conditions - (LS)W , (RS)W , (UpDir)W , (DownDir)W ,
(Dens)W , (Ref)W , (Irr)W , (Lin)W , (Tri)W , (Tr)W (see Section 2.1). Then A is
true in W if α is true in B(W ).

3.5 P-morphisms between basic relational dynamic spaces

In this section we will study p-morphisms between basic dynamic relational spaces.
We’ll use the following fact: if f is a p-morphism from a a basic dynamic relational
space W 1 onto a basic dynamic relational space W 2 then f−1 is an isomorphic
embedding of the basic DCA over W 2 into the basic DCA over W 1. Using p-
morphisms we will prove that every basic DCA over a basic dynamic relational
space can be embedded into a strong DCA.

Definition 3.11. Let W1 = (W1,W
0
1 , R

s
1, R

t
1,≺1, now1) and W2 = (W2, W 0

2 , Rs
2,

Rt
2, ≺2, now2) be basic dynamic relational structures. A surjection f : W1 � W2

is called a p-morphism from W1 to W2 if for any x1, y1 ∈ W1 and x2, y2 ∈ W2 the
following conditions are satisfied:

(i) if x1R
t
1y1 then f(x1)Rt

2f(y1)

(ii) if x2R
t
2y2 then (∃x1, y1 ∈W1)(x2 = f(x1), y2 = f(y1), x1R

t
1y1)

(iii) if x1R
s
1y1 then f(x1)Rs

2f(y1)

(iv) if x2R
s
2y2 then (∃x1, y1 ∈W1)(x2 = f(x1), y2 = f(y1), x1R

s
1y1)
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3.5 P-morphisms between basic relational dynamic spaces

(v) if x1 ≺1 y1 then f(x1) ≺2 f(y1)

(vi) if x2 ≺2 y2 then (∃x1, y1 ∈W1)(x2 = f(x1), y2 = f(y1), x1 ≺1 y1)

(vii) Let W 0
i be the restriction of the system W i to the set W 0

i , i = 1, 2. Then
f is an isomorphism from W 0

1 onto W 0
2. In particular we have f(now1)=now2

The system W 2 is called a p-morphic image of W 1 and W 1 is called a p-morphic
preimage of W 2.

Let f be a p-morphism from W1 to W2. Define g : W2 → 2W1 as follows: g(x) =
{y|y ∈W1 and f(y) = x}. Since f is a surjection then g is a total function such that
g(x) 6= ∅ for all x. Let B2 be the basic DCA over W2 and B1 be the basic DCA over
W1. Define hf : B2 → B1 in the following way: hf (a) = f−1(a) =

⋃
x∈a

g(x). Then

the following holds:

Lemma 3.12. Let a, b ∈ B2. Then:

(i) a ⊆ b iff h(a) ⊆ h(b)

(ii) aCs
2b iff h(a)Cs

1h(b)

(iii) aCt
2b iff h(a)Ct

1h(b)

(iv) aB2b iff h(a)B1h(b)

Proof. (i) The forward direction is obvious since h is union of g(x), x ∈ a ⊆ b. For
the backward direction reason by contraposition. Let a * b so ∃x ∈ a, x /∈ b. Since
g(x) 6= ∅ pick y ∈ g(x) ⊆ h(a). Suppose that y ∈ h(b). Then y ∈ g(z) for some
z ∈ b. By the definition of g, z = f(y) = x. So x ∈ b - contradiction.
(ii) (⇒) Let a, b ∈ B2 be such that aCs

2b. By definition, ∃x2 ∈ a,∃y2 ∈ b such that
x2R

s
2y2. Since f is a p-morphism between W1 and W2 we have that ∃x1, y1 ∈W1 such

that f(x1) = x2, f(y1) = y2 and x1R
s
1y1. Since x2 ∈ a we have that g(x2) ⊆ h(a).

From here and the fact that f(x1) = x2 we get that x1 ∈ h(a). Similarly y1 ∈ h(b).
Since x1R

s
1y1 we conclude that h(a)Cs

1h(b).
(⇐) Let h(a)Cs

1h(b). Then ∃x1 ∈ h(a),∃y1 ∈ h(b) such that x1R
s
1y1. By the p-

morphism definition we get that f(x1)Rs
2f(y1). Since x1 ∈ h(a) then x1 ∈ g(x2) for

some x2 ∈ a and hence f(x1) = x2. Similarly f(y1) = y2 for some y2 ∈ b. Therefore
aCs

2b. The rest follows in a similar way.

Lemma 3.13 (P-morphism Lemma). Let Wi = (Wi,W
0
i , R

t
i, R

s
i ,≺i,nowi), i = 1, 2

be two basic dynamic relational spaces and let f : W1 →W2 be a p-morphism from
W1 onto W2. Let B(Wi) be the basic DCA over the space Wi, i = 1, 2. Then hf is
an isomorphic embedding of B(W2) into B(W1).

Proof. To show that hf preserves Boolean and precontact relations we can reason as
in Lemma 3.12. In order to assert that hf preserves TR and UTR sets, NOW and the
function Utr we just have to use condition (vii) from the p-morphism definition.
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3.5 P-morphisms between basic relational dynamic spaces

In Section 3.5.1 we will show that each basic dynamic relational space is a p-morphic
image of a basic dynamic relational space with Rt being equivalence relation on the
whole set W . In Section 3.5.2 we will show that each basic dynamic relational space
with Rt an equivalence relation is a p-morphic image of a dynamic relational space.
This will imply what we need, namely that every basic DCA over a basic dynamic
relational space can be embedded into a strong DCA.

3.5.1 The first p-morphism

Lemma 3.14. Let W1 = (W1,W
0
1 , R

t
1, R

s
1,≺1, now1) be a basic dynamic relational

space. Then there exist a basic dynamic relational space W2 = (W2,W
0
2 , R

t
2, R

s
2,≺2

, now2) with Rt
2 being an equivalence relation and a p-morphism f1 from W2 onto

W1.

Proof. Let W 0
2 = W 0

1 , W2 = W 0
1 ∪{(x, α) : x ∈ α and α = {u, v}, uRtv, α∩W 0

1 = ∅}.
Define Rt

2 in W2 by cases as follows:

1. x, y ∈W 0
1 : xRt

2y iff xRt
1y

2. (x, α)Rt
2(y, β) iff α = β

3. x ∈W 0
1 : xR

t
2(y, β), (y, β)R

t
2x

Definition of Rs
2:

1. x, y ∈W 0
1 : xRs

2y iff xRs
1y

2. (x, α)Rs
2(y, β) iff xRs

1y and α = β

3. x ∈W 0
1 : xR

s
2(y, β), (y, β)R

s
2x

Definition of ≺2:

1. x, y ∈W 0
1 : x ≺2 y iff x ≺1 y

2. (x, α) ≺2 (y, β) iff x ≺1 y

3. x ∈W 0
1 : x ≺2 (y, β) iff x ≺1 y, (y, β) ≺1 x iff y ≺1 x

now2 =def now1.
The first p-morphism, denoted by f1, is defined as follows:

f1(x) = x, for x ∈W 0
2

f1((x, α)) = x, for (x, α) ∈W2 \W 0
2

Verifying the six conditions from the basic dynamic relational space definition (see
Def. 3.8) is straightforward and confirms that W2 is indeed a basic dynamic relational
space. Rt

2 is, obviously, an equivalence relation by the given definition. Let’s check
that f1 is indeed a p-morphism, by following Definition 3.11:
(i) Suppose aRt

2b - we want to show that f1(a)Rt
1f1(b). In case, a, b ∈ W 0

2 we have
this by the definition of Rt

2. If a, b ∈ W2 \W 0
2 , then a = (x, α) and b = (y, β) - we

want to show that xRt
1y. Since aRtb we have α = β and by the definition of W2 we

have that x ∈ α, y ∈ β and xRty.
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3.5 P-morphisms between basic relational dynamic spaces

(ii) Suppose xRt
1y - we want to show that there are elements a, b ∈ W2 such that

f1(a) = x, f1(b) = y and aRt
2b. Consider the following three cases:

Case 1: x, y ∈W 0
1 . Take a = x, b = y.

Case 2: x, y 6∈W 0
1 . Take α = {x, y}, a = (x, α), b = (y, α).

Case 3: x ∈ W 0
1 and y 6∈ W 0

1 , or x 6∈ W 0
1 and y ∈ W 0

1 . This case is impossible
because if xRt

1y and x ∈ W 0
1 , then y ∈ W 0

1 (by the definition of basic dynamic
relation space) and similarly for the second case.
(iii) This is obvious by the given definition of Rs

2.
(iv) In the same way as (ii) using the fact that Rs

1 is included in Rt
1.

(v) Follows directly from the given definition of ≺2.
(vi) Suppose x ≺1 y and consider the three cases for x and y as in (ii). Case 1 is
obvious. For case 2 take α = {x} and β = {y} (by reflexivity we have xRt

1x, so
(x, α) is correctly defined and similarly for (y, β)). Then obviously (x, α) ≺2 (y, β)
and f1((x, α)) = x and f1((y, β)) = y. We reason in a similar way for case 3.
(vii) This is obvious because f1 acts as the identity function on W 0

2 and W 0
2 = W 0

1

and now2 = now1 by definition.

3.5.2 The second p-morphism

Lemma 3.15. Let W1 = (W1,W
0
1 , R

t
1, R

s
1,≺1, now1) be a basic dynamic relational

space such that Rt
1 is an equivalence relation. Then there exist a dynamic relational

space W2 = (W2,W
0
2 , R

t
2, R

s
2,≺2, now2) and a p-morphism f2 from W2 onto W1.

Proof. Let W 0
2 = W 0

1 and W2 = W 0
1 ∪ {(x, i) : x 6∈W 0

1 and i ∈ {1, 2}}.
Define Rt

2 in W2 by cases as follows:

1. x, y ∈W 0
1 : xRt

2y iff xRt
1y

2. (x, i)Rt
2(y, j) iff xRt

1y and (i = j = 1 or i = j = 2 and x = y)

3. x ∈W 0
1 : xR

t
2(y, j), (y, j)R

t
2x

Definition of Rs
2:

1. x, y ∈W 0
1 : xRs

2y iff xRs
1y

2. (x, i)Rs
2(y, j) iff xRs

1y and (i = j = 1 or i = j = 2 and x = y)

3. x ∈W 0
1 : xR

s
2(y, j), (y, j)R

s
2x

Definition of ≺2:

1. x, y ∈W 0
1 : x ≺2 y iff x ≺1 y

2. (x, i) ≺2 (y, j) iff x ≺1 y and i = j = 2

3. x ∈W 0
1 : x ≺2 (y, j) iff x ≺1 y and j = 2, (y, j) ≺1 x iff y ≺1 x and j = 2

Also define now2 =def now1. The second p-morphism, denoted by f2, is defined as
follows:

f2(x) = x, for x ∈W 0

f2((x, i)) = x, for (x, i) ∈W2 \W 0
2
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3.5 P-morphisms between basic relational dynamic spaces

Verifying that W2 is a dynamic relational space is straightforward and should be
fairly obvious from the way elements are structured in W2. The verification of p-
morphism conditions for f2 can be done in the same way as for f1.

As a consequence of Lemma 3.14 and Lemma 3.15 we obtain the following corollary.

Corollary 3.16. Every basic relational dynamic space is a p-morphic image of a
relational dynamic space.

Proof. Let W1 be a basic dynamic relational space. By Lemma 3.14 there exists a
basic dynamic relational space W2 in which the relation Rt

2 is an equivalence relation
and a p-morphism f1 from W2 onto W1. By Lemma 3.15 there exist a dynamic
relational space W3 and a p-morphism f2 from W3 onto W2. Then the composition
f = f2 ◦ f1 of the two p-morphisms is a p-morphism from W3 onto W1.

Lemma 3.17. Let W be a basic dynamic relational structure and let B(W ) be the
basic DCA over W . Then there exists a strong DCA B and an isomorphic embedding
of B(W ) into B.

Proof. Let W be a basic dynamic relational space and let B(W ) be the basic DCA
over W . By Corollary 3.16 there exists a dynamic relational space W ′ and a p-
morphism f from W ′ onto W . Let B(W ′) be the strong DCA over W ′. Then the
mapping hf (see Lemma 3.13) is an embedding from the basic DCA B(W ) into the
strong DCA B(W ′).

Definition 3.18. Let W1 and W2 be basic dynamic relational spaces, f be a p-
morphism from W1 onto W2 and A be a time condition from the list (LS)W , (RS)W ,
(UpDir)W , (DownDir)W , (Dens)W , (Ref)W , (Irr)W , (Lin)W , (Tri)W , (Tr)W (see
Section 2.1). We say that f preserves A if the following holds: W2 satisfies A
whenever W1 satisfies A.

Most of the time conditions state that every element of the structure has some kind of
a preceding or a succeeding element with respect to the ≺ relation. Unfortunately,
the second p-morphism makes the elements of the first copy of W \ W0 have no
≺-related element, thus not preserving those time conditions. The lemma below
lists the conditions that are actually preserved through the two p-morphisms. The
verification of this lemma is trivial.

Lemma 3.19. The first and second p-morphisms from Lemma 3.14 and Lemma
3.15 preserve time conditions (Dens)W , (Irr)W and (Tr)W .

Corollary 3.20. Let W be a basic dynamic relational space satisfying some (or
all) of the time conditions (Dens)W , (Irr)W and (Tr)W and let B(W ) be the basic
DCA over W . Then there exists a strong DCA B satisfying the corresponding time
axioms and an isomorphic embedding of B(W ) into B.

Proof. The proof follows by a modification of the proof of Lemma 3.17 using Lemma
3.19 and Lemma 3.10.
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3.6 Relational representation theory for finite basic DCAs

3.6 Relational representation theory for finite basic DCAs

In this section we will focus on proving a representation theorem for finite basic
DCAs asserting that every finite basic DCA is isomorphic with a basic DCA over
a finite basic dynamic relational space. We do not know, unfortunately, if such a
representation theorem holds for arbitrary basic DCAs.

3.6.1 Canonical basic dynamic relational space over a finite basic DCA

Let B be a finite basic DCA. Since B is a finite Boolean algebra by Lemma 1.6 we
have that it is atomic. Let At(B) be the set of atoms of B. Define a relational
system W (B) = (W,W 0, Rt, Rs,≺, now) associated with B as follows: W = At(B),
W 0 = {a ∈ At(B) : a ∈ TR(B)}, for a, b ∈ At(B) define aRtb iff aCtb, aRsb iff aCsb
and a ≺ b iff aBb. To define now consider the region NOW . Since NOW 6= ∅ and
B is atomic, then there is at laest one atom a ∈ At(B) such that a ≤ NOW and
and let now be one of them. By axiom (TR≤) now ∈ TR(B) and hence now ∈W 0.

Lemma 3.21. W (B) = (W,W 0, Rt, Rs,≺, now) is a basic dynamic relational space.

Proof. The only nontrivial part of the proof is to verify that condition (iii) of Defi-
nition 3.8 holds, that is, if a ∈W 0, b ∈W and aRtb, then b ∈W 0. From a ∈W 0 we
get a ∈ TR(B). Let c = Utr(a) so c ∈ UTR and a ≤ c. By definition aRtb means
aCtb and by a ≤ c we obtain cCtb. By Lemma 2.3 (ii) we get c.b 6= 0. Then there
exists an atom d such that d ≤ (c.b). From here we get d ≤ b and since d and b are
atoms, then d = b, hence b ≤ (c.b) ≤ c. But c ∈ UTR, so c ∈ TR and b ≤ c. Since
b is an atom, then b 6= 0 which together with b ≤ c imply (by axiom TR ≤) that
b ∈ TR(B), hence b ∈W 0.

The relational system W (B), as defined above, is called the canonical basic dynamic
relational space over the finite basic DCA B.

Lemma 3.22. Let B be a finite basic DCA and let W (B) = (W,W 0, Rt, Rs, ≺,
now) be the canonical basic dynamic relational space over B. Let α be any formula
from the list of time axioms (rs), (ls), (updir), (downdir), (dens), (ref), (irr),
(lin), (tri), (tr) and A be its corresponding formula from the list of time conditions
(LS)W , (RS)W , (UpDir)W , (DownDir)W , (Dens)W , (Ref)W , (Irr)W , (Lin)W ,
(Tri)W , (Tr)W . Then A is true in W (B) iff α is true in B.

Proof. By the canonical construction we have that W is the set At(B) of the atoms
of B and let At(B) = {a1, . . . , an}. We will illustrate the proof by considering the
case (Dens)W ⇔ (dens). All other cases can be proved in a similar way working
with atoms.

(⇒) Suppose that (Dens)W is true. In order to prove (dens) suppose aBb. We
have to show that for all p we have aBp or p∗Bb. Let us assume that a = ai1 +. . .+aik
and b = aj1 + . . . + ajl (since B is atomic). Then by the distribution axioms of
precontact relation we obtain from aBb that aisBajt for some s ≤ k and t ≤ l (we
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3.6 Relational representation theory for finite basic DCAs

have ais ≤ a and ajt ≤ b). This shows that ais ≺ ajt in W (B). By (Dens)W there
exists an atom am such that ais ≺ am ≺ ajt i.e. aisBam and amBajt . Let p be an
arbitrary element of B. There are two cases for the atom am: am ≤ p or am ≤ p∗.

Case 1: am ≤ p. Then from ais ≤ a, aisBam, by precontact axioms, we get aBp.
Case 2: am ≤ p∗. From this and amBajt , ajt ≤ b we obtain p∗Bb.
(⇐) Suppose that (dens) is true. Let ak and al be two atoms and suppose ak ≺ al

(i.e. akBal). We have to show that there exists an atom am such that ak ≺ am ≺ al
i.e. akBam and amBal. Suppose the contrary, namely

(]) for all am: either akBam or amBal.

Since ak 6= 0 and al 6= 0, then by (dens) we have that the following holds:

(\) For all p ∈ B: either akBp or p∗Bal.
Let P be the set of all atoms am such that akBam and let p be their sum. Then by
the distributivity axioms of precontact we get akBp and by (\) we get that p∗Bal.
Obviously p∗ will be the sum of all elements from the complement of P for which we
have: akBam. But by (]) we obtain that for these elements we have amBal and for
their sum p∗ that p∗Bal which contradicts p∗Bal.

3.6.2 The isomorphism theorem for finite basic DCAs

Lemma 3.23 (Relational representation lemma for finite basic DCAs). Let B be a
finite basic DCA and let W (B) be the canonical basic dynamic relational space over
B. Denote by B(W ) the basic DCA over W (B). Then:

(i) B is isomorphic with B(W )

(ii) If B satisfies some of the time axioms then B(W ) satisfies the same axioms

Proof. (i) Because B is a finite Boolean algebra then there is a Boolean isomorphism
h of B with the Boolean algebra of subsets of W (B) (remember that the elements
of W (B) are the atoms of B), namely h(a) = {c ∈ At(B) : c ≤ a}. Let h(a) =
{c1, · · · , ck}. We have that a = c1 + · · · + ck. Using this, it can be easily shown
that h preserves the relations Ct, Cs,B, the sets TR(B) and UTR(B), and that
h(NOW (B)) = NOW (B(W )). As an example, let’s verify that a ∈ UTR(B) iff
h(a) ∈ UTR(B(W )).

(⇒) Suppose that a ∈ UTR(B) and let a = c1+· · ·+ck where h(a) = {c1, · · · , ck}.
Then we have c1 + · · ·+ ck ≤ a and also a ∈ TR. By Lemma 3.2 (v) we have ciC

tcj
(hence ciR

tcj ) for all i, j ≤ k and ci ∈ TR(B) for all i ≤ k. We will show that
the set {c1, · · · , ck} is an Rt-equivalence class. Suppose that b ∈ W and that c1R

tb.
Then c1C

tb. Since c1 ≤ a we have aCtb. Since c1 ∈ W 0 and c1R
tb then b ∈ W 0, so

b ∈ TR(B). We will show that b ≤ a. Suppose not, i.e. b 6≤ a. Then a∗.b 6= 0 and
a∗Ctb. Then from a∗Ctb, aCtb and b ∈ TR(B) we get that aCta∗ which contradicts
a ∈ UTR. So we have that b ≤ a = c1 + · · · + ck. This implies that there exists
i ≤ k such that b = ci (since b is an atom) which completes the proof that h(a) is
an equivalence class with respect to Rt and hence h(a) ∈ UTR(B(W )).
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3.6 Relational representation theory for finite basic DCAs

(⇐) Suppose that h(a) ∈ UTR(B(W )) i.e. that (by definition) h(a) = {c1, · · · , ck}
is an equivalence class with respect to Rt. First we show that a ∈ TR. We have that
for all i, j ≤ k ciR

tcj . Then by Lemma 3.2 (iv) a = c1 + · · · + ck ∈ TR. It remains

to show that aC
t
a∗. Suppose for the sake of contradiction that aCta∗. So a∗ 6= 0.

Let h(a∗) = {d1, . . . , dl}. Then h(a) ∩ h(a∗) = ∅ (h is a Boolean isomorphism)
and consequently dj /∈ {c1, . . . , ck}, j ≤ l. However, aCta∗ implies that for some
i, j : i ≤ k and j ≤ l we have that ciC

tdj , i.e. ciR
tdj and since h(a) is an equivalence

class, then dj ∈ h(a) - a contradiction.
(ii) Let B satisfy some of the time axioms. Then by Lemma 3.22 the canonical

space W (B) satisfies the corresponding time conditions. Applying Lemma 3.10 we
get that B(W ) satisfies the considered time axioms.

Theorem 3.24. Every finite basic DCA B can be isomorphically embedded into a
strong DCA B̂. Furthermore, if B satisfies some (or all) of the axioms (dens), (irr)
and (tr), then B̂ can be chosen to satisfy the same axioms.

Proof. The theorem follows directly from Lemma 3.23 and Lemma 3.17.
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4 Quantifier-free logics for space and time

In this work we’ve considered several classes of DCAs - dynamic contact algebras
(Def. 1.15), basic DCAs (Def. 3.1), weak DCAs (Def. 2.2) and strong DCAs (Def.
2.1). All these types of DCAs are based on the same first-order language except the
language of basic DCA which contains the additional function Utr. This function is,
however, definable in the other kinds of DCAs so we may assume that all four types
of DCAs are based on one and the same language.

In this section we’ll present minimal quantifier-free logics for the four studied
classes of DCAs. We’ll denote the logics in the following way, Lmin

basic for the logic of
basic DCAs, Lmin

weak for weak DCAs, Lmin
DCA for DCAs and Lmin

strong for strong DCAs.
We assert the completeness of these logics in their respective classes of DCAs and use
the completeness results along with the results from previous sections to conclude
some interesting metalogical properties of the proposed systems. This section closely
follows Section 3 from [2]. A lot of the statements will be similar to those in [2] and
hence their proofs will be either shortly mentioned or skipped whatsoever as the
proof ideas remain the same.

4.1 Language and notation

We consider a first-order language L without quantifiers containing the following
symbols:

(i) a denumerable set V ar of Boolean variables

(ii) constants - 0, 1 and NOW

(iii) functional symbols - +, ·, ∗, Utr
(iv) predicate symbols - ≤, Cs, Ct, B, TR, UTR

(v) connectives - ¬, ∧, ∨, ⇒, ⇔
(vi) brackets - ) and (

The notions of term and formula are standard:

Definition 4.1 (Term). The terms in our language are defined from Boolean vari-
ables and constants using functional symbols as follows:

(i) every Boolean variable v ∈ V ar is a term

(ii) the constants 0, 1 and NOW are terms

(iii) let a and b be terms. Then a+ b, a · b, a∗ and Utr(a) are also terms.

Definition 4.2 (Atomic formula). The atomic formulae of our language are formulae
of the following types: a ≤ b, aCsb, aCtb, aBb, TR(a), UTR(a) where a and b are
terms.

Definition 4.3 (Formula). The formulae in the language are defined in the following
way:
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4.2 Semantics

(i) atomic formulae are formulae

(ii) if A is a formula then ¬A is also a formula

(iii) if A and B are formulae then A ⇒ B, A ⇔ B , A ∨ B and A ∧ B are also
formulae

We adopt the standard rules in first-order logic for omission of brackets. Additionally,
we’ll use the following abbreviations for convenience:

(i) a = b
def
= (a ≤ b) ∧ (b ≤ a)

(ii) a 6= b
def
= ¬(a = b)

(iii) a � b
def
= ¬(a ≤ b)

(iv) aCsb
def
= ¬aCsb

(v) aCtb
def
= ¬aCtb

(vi) aBb
def
= ¬aBb

(vii) ⊥ def
= (a � a)

4.2 Semantics

In this section we’ll explore a couple of ways for interpreting the statements of our
language into different semantic structures.

4.2.1 Algebraic semantics

First, we introduce algebraic semantics for the language L. Let B be a DCA of one
of the four types. We define a mapping (valuation) V : V ar → B which is extended
for terms in the following way:

V(a+ b) = V(a) + V(b)

V(a · b) = V(a) · V(b)

V(a∗) = V(a)∗

V(Utr(a)) = Utr(V(a))

V(0) = 0

V(1) = 1

V(NOW ) = NOW (B)

We’ll call the pair M = (B, V) an algebraic model (or simply a model). The truth
of a formula α in M = (B, V) is denoted by V(α) = 1 or M |= α. Similarly, the
falsehood of a formula will be denoted by V(α) = 0 orM 6|= α. We’ll use the following
conditions to determine the truth of an atomic formulae of L:

V(a ≤ b) = 1 if and only if V(a) ≤ V(b)

V(aCsb) = 1 if and only if V(a)Cs
V(b)
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4.2 Semantics

V(aCtb) = 1 if and only if V(a)Ct
V(b)

V(aBb) = 1 if and only if V(a)BV(b)

V(TR(a)) = 1 if and only if V(a) ∈ TR
V(UTR(a)) = 1 if and only if V(a) ∈ UTR

For complex formula, the definition is extended in the standard way:

V(¬α) = 1 if and only if V(α) = 0

V(α ∧ β) = 1 if and only if V(α) = 1 and V(β) = 1

V(α ∨ β) = 1 if and only if V(α) = 1 or V(β) = 1

V(α⇒ β) = 1 if and only if V(α) = 0 or V(β) = 1

V(α⇔ β) = 1 if and only if V(α⇒ β) = 1 and V(β ⇒ α) = 1

We say that M is a model of a formula α (or M models α) if M |= α. We say that
a formula α is true in a dynamic contact algebra B if for every structureM = (B, V)
we have that M |= α. If Σ is a class of dynamic contact algebras we say that α is
true in Σ if it is true in all DCAs from Σ. By L(Σ) we’ll denote the set of formulae
which are true in Σ and we will call this set the logic of Σ.

If Σ is a class of DCAs, denote by Σfin the set of finite members of Σ. We use the
following notation for the different classes of DCAs: Σbasic for basic DCAs, Σweak for
weak DCAs, ΣDCA for DCAs and Σstrong for strong DCAs. We have the following
inclusions: Σbasic ⊇ Σweak ⊇ ΣDCA ⊇ Σstrong. Let Θ be a set of time axioms - we
denote by ΣΘ the class of all members of Σ satisfying the axioms of Θ. We have also
the following inclusions: ΣΘ

basic ⊇ ΣΘ
weak ⊇ ΣΘ

DCA ⊇ ΣΘ
strong. The following lemma is

obvious:

Lemma 4.4. Let Σ1 and Σ2 be two classes of dynamic contact algebras and Σ1 ⊆ Σ2.
Then L(Σ2) ⊆ L(Σ1).

Proposition 4.5. Let Θ be a set of time axioms which are universal sentences, i.e.
Θ does not contain irr and tr. Then L(ΣΘ

basic) = L(Σfin,Θ
basic ).

Proof. (⊆) Since Σfin,Θ
basic ⊆ ΣΘ

basic by Lemma 4.4 we get L(ΣΘ
basic) ⊆ L(Σfin,Θ

basic ).

(⊇) Suppose, towards contradiction that L(Σfin,Θ
basic ) * L(ΣΘ

basic). There there is

a formula A ∈ L(Σfin,Θ
basic ) such that A /∈ L(ΣΘ

basic). This means that there is
a basic DCA B and a valuation V such that (B, V) 6|= A. Let a1 . . . an be the
Boolean variables which occur in the formula A. Take a look at the set C =
{V(a1), V(a2) . . . V(an), NOW (B)}. By Corollary 3.7 there is a finite subalgebra B0 of

B containing C and satisfying the axioms from Θ, i.e. B0 ∈ Σfin,Θ
basic . Let V

′ be some
modification of V on the set B0 which preserves the values for the variables a1 . . . an.
Then obviously (B0, V′) 6|= A which is a contradiction with A ∈ L(Σfin,Θ

basic ).

Proposition 4.6. L(Σfin
basic) = L(Σstrong)
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Proof. (⊆) By Lemma 4.4 we have that L(Σbasic) ⊆ L(Σstrong) and by Proposition

4.5 we have L(Σfin
basic) ⊆ L(Σstrong).

(⊇) Towards contradiction, suppose that the converse inclusion does not hold. Then

there is a formula A ∈ L(Σstrong) and an algebra B ∈ Σfin
basic and a model (B, V)

such that (B, V) 6|= A. By Theorem 3.24 there is a strong DCA B̂ and an isomorphic
embedding h of B into B̂. Let V

′ = h ◦ V be the composition of h and V. Then
obviously (B̂, V′) 6|= A contrary to the fact that A ∈ L(Σstrong).

Proposition 4.7. L(Σbasic) = L(Σstrong)

Proof. Follows from Proposition 4.5 and Proposition 4.6.

Theorem 4.8. The logics L(Σbasic), L(Σweak), L(ΣDCA) and L(Σstrong) are equal.

Proof. By Proposition 4.4 and Proposition 4.7 we have L(Σbasic) ⊆ L(Σweak) ⊆
L(ΣDCA) ⊆ L(Σstrong) = L(Σbasic), which implies the required equality.

Theorem 4.9. Let Θ be a set of time axioms. Then the logics L(ΣΘ
weak), L(ΣΘ

DCA),
L(ΣΘ

strong) are equal.

Proof. We have ΣΘ
strong ⊆ ΣΘ

DCA ⊆ ΣΘ
weak. By Lemma 4.4 we obtain L(ΣΘ

weak) ⊆
L(ΣΘ

DCA) ⊆ L(ΣΘ
strong). By Theorem 2.19 we obtain L(ΣΘ

strong) ⊆ L(ΣΘ
weak) which

combined with the previous inclusions implies the equality of the three logics.

A stronger form of Proposition 4.7 is the following.

Proposition 4.10. Let Θ be a set consisting of some (or of all) of the time axioms
(dens), (irr) and (tr). Then L(ΣΘ

basic) = L(ΣΘ
strong).

Proof. The proof follows from Lemma 4.4, Theorem 3.24 and Proposition 4.5.

Corollary 4.11. Let Θ be a set consisting of some (or all) of the time axioms (dens),
(irr) and (tr). Then the logics L(ΣΘ

basic), L(ΣΘ
weak), L(ΣΘ

DCA), L(ΣΘ
strong) are equal.

4.2.2 Relational semantics

Let ∆basic be the class of all basic dynamic relational spaces and ∆rel be the class
of all dynamic relational spaces. Note that ∆rel ⊆ ∆basic. Relational (Kripke style)
semantics for L can be defined as follows. Let W be a basic dynamic relational space
and B(W ) be the DCA over W . Let V be a function associating to each variable a
a subset V(a) ⊆ W . The pair (W, V) is called a relational model or Kripke model.
We say that a formula A is true in the relational model (W, V) if it is true in the
algebraic model (B(W ), V), and similarly for the notions ”true in a space W” and
”true in a class of spaces”. Let ∆ be a class of basic dynamic relational spaces and
denote by L(∆) the set of all formulas true in ∆ - call this set the logic of ∆. If
∆ is a class of basic dynamic relational spaces we denote by Σ(∆) the class of all
DCAs over the members of ∆. Obviously, we have L(∆) = L(Σ(∆)). Thus, all
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notions related to Kripke semantics can be reduced to corresponding notions related
to algebraic semantics. It is easy to see that interesting statements concerning logics
of some classes of algebraic models can be easily transformed into statements about
logics of some classes of dynamic relational spaces. Because of this, further in this
paper we’ll be focusing on algebraic semantics.

4.3 Axiomatization

In this section we’ll take a look at the axiomatizations of the minimal logics for the
four DCA classes and their extensions with time axioms and rules.

4.3.1 Axiomatization of the minimal logic for basic DCAs

The axiomatic system for Lmin
basic will be based on Modus Ponens. We’ll take as axioms

the complete set of axioms for classical propositional logic, all first-order axioms for
Boolean algebra and all axioms for basic DCAs plus an additonal rule to handle the
Utr operation. Note that all of these are universal statements. A more detailed list
is given below.

Axioms.

(i) the complete set of axiom schemes for classical propositional logic

(ii) the full set of axioms of Boolean algebra, e.g. a ≤ a (poset), a · (b + c) =
(a · b) + (a · c) (distributive lattice), a+ a∗ = 1 (boolean algebra) etc.

(iii) axioms for Cs and Ct

(Cs1) aCsb⇒ (a 6= 0) ∧ (b 6= 0)

(Cs2) (aCsb∧a ≤ a′∧b ≤ b′)⇒ a′Csb′

(Cs3) aCs(b+ c)⇒ aCsb ∨ aCsc

(Cs3′) (a+ b)Csc⇒ aCsc ∨ bCsc

(Cs4) aCsb⇒ bCsa

(Cs5) a · b 6= 0⇒ aCsb

(Cs5′) a 6= 0⇒ aCsa

(Ct1) aCtb⇒ (a 6= 0) ∧ (b 6= 0)

(Ct2) (aCtb∧a ≤ a′∧b ≤ b′)⇒ a′Ctb′

(Ct3) aCt(b+ c)⇒ aCtb ∨ aCtc

(Ct3′) (a+ b)Ctc⇒ aCtc ∨ bCtc

(Ct4) aCtb⇒ bCta

(Ct5) a · b 6= 0⇒ aCtb

(Ct5′) a 6= 0⇒ aCta

(Cs ⇒ Ct) aCsb⇒ aCtb

(iv) axioms for B

(B1) aBb⇒ (a 6= 0) ∧ (b 6= 0)

(B2) (aBb ∧ a ≤ a′ ∧ b ≤ b′)⇒ a′Bb′

(B3) aB(b+ c)⇒ aBb ∨ aBc
(B3′) (a+ b)Bc⇒ aBc ∨ bBc
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(v) axioms for TR and UTR

(TR1) TR(c)⇒ c 6= 0 ∧ (aCtc ∧ bCtc⇒ aCtb)

(TR2) UTR(c)⇔ TR(c) ∧ cCt
c*

(TRB1) TR(c) ∧ cBb ∧ aCtc⇒ aBb

(TRB2) TR(d) ∧ aBd ∧ bCtd⇒ aBb

(TR≤) TR(c) ∧ d ≤ c ∧ d 6= 0⇒ TR(d)

(TR∪) TR(c) ∧ TR(d) ∧ cCtd⇒ TR((c+ d))

(UTRNOW) UTR(NOW )

(vi) axioms for Utr

(TRUtr1) TR(c)⇒ UTR(Utr(c)) ∧ c ≤ Utr(c)

(TRUtr2) ¬TR(c)⇒ Utr(c) = 0

(Utr-Replacement) a = b⇒ Utr(a) = Utr(b)

Rules of inference.

The only rule of inference of the minimal logic for basic DCA will be Modus Ponens:

A, (A⇒ B)

B
(MP )

4.3.2 Non-standard rules of inference

The minimal logic Lmin
weak for weak DCAs can be obtained as an extension of the logic

Lmin
basic. Inspecting the definitions of basic DCAs and weak DCAs notice that the

additional axioms for weak DCAs are all non-universal statements. Also note, that
all of these statements can be tranformed in the following special form:

(z) (∀b1, . . . , bm)A(a1, . . . , an, b1, . . . , bm)⇒ B(a1, . . . , an)
where a1, . . . , an are terms, b1, . . . , bm are Boolean variables which are not included in
the formulaB(a1, . . . , an), and the terms a1, . . . , an. Also, the notationA(a1, ..., an,b1,
..., bm) means that a1, . . . , an, b1, . . . , bm are the only terms included in A (respec-
tively the same for B(a1, . . . , an)). We transform a formula of type (z) into the
following quantifier-free rule of inference

C ⇒ A(a1, . . . , an, b1, . . . , bm)

C ⇒ B(a1, . . . , an)
(zR)

which is subject to the following constraints: a1, . . . , an are terms, b1, . . . , bm are
Boolean variables which are not included in the formulas C, B(a1, . . . , an), and
consequently in the terms a1, . . . , an. The formula C ⇒ A(a1, . . . , an, b1, . . . , bm)
is called the premise of the rule and the formula C ⇒ B(a1, . . . , an) is called the
conclusion of the rule. We’ll call rules of type (zR) non-standard rules of inference.
Non-standard rules of inference are studied in [1] and [2].
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As already mentioned, all non-universal axioms for weak DCAs can be tranformed
into formulae of type z. As an example, we will do this for the forward direction of
(UTRB11) (see Definition 1.15). The forward direction of (UTRB11) can be written
as the following first-order formula:
(1) (UTR(c) ∧ UTR(d) ∧ (∀p)(pBc ∨ p∗Bd))⇒ ((∃e)(UTR(e) ∧ eBc ∧ eBd))
Rewritting the implications and moving the negations through the brackets we ob-
tain:
(2) ¬(UTR(c) ∧ UTR(d)) ∨ (∃p)¬(pBc ∨ p∗Bd) ∨ (∃e)(UTR(e) ∧ eBc ∧ eBd)
which is the same as
(3) (∃p)¬(pBc ∨ p∗Bd) ∨ (∃e)(UTR(e) ∧ eBc ∧ eBd) ∨ ¬(UTR(c) ∧ UTR(d))
This can be transformed into the following implication:
(4) (∀p)(pBc ∨ p∗Bd) ∧ (∀e)¬(UTR(e) ∧ eBc ∧ eBd)⇒ ¬(UTR(c) ∧ UTR(d))
Finally, we can move the quantifier (∀e) trough (pBc ∨ p∗Bd) and obtain a formula
which is in the shape of (z):
(5) (∀p)(∀e)((pBc ∨ p∗Bd) ∧ ¬(UTR(e) ∧ eBc ∧ eBd))⇒ ¬(UTR(c) ∧ UTR(d)).
The corresponding rule is the following:

C ⇒ (pBc ∨ p∗Bd) ∧ ¬(UTR(e) ∧ eBc ∧ eBd)

C ⇒ ¬(UTR(c) ∧ UTR(d))
(UTRB11R)

, where p and e are
variables not occurring in the terms c, d and the formula C.

Thus, the axiomatization of the minal logic Lmin
weak for weak DCAs can be obtained

by adding the following non-standard rules of inference to Lmin
basic:

Rules for TR.

C ⇒ ¬UTR(p) ∨ aCtp ∨ bCtp

C ⇒ aCtb
(TRCtR)

C ⇒ ¬UTR(p) ∨ (a · p)Csb

C ⇒ aCsb
(TRCsR)

C ⇒ ¬UTR(p) ∨ pBb ∨ aCtp

C ⇒ aBb
(TRB3R)

C ⇒ ¬UTR(p) ∨ aBp ∨ bCtp

C ⇒ aBb
(TRB4R)

The TR rules above have the following constraint - p is a Boolean variable which
does not occur in C, a and b.

From DCA axiom (TR1) we get the following rule, where p and q are Boolean
variables that do not occur in C and c:

C ⇒ c 6= 0 ∧ (pCtc ∧ qCtc⇒ pCtq)

C ⇒ TR(c)
(TR1R)

45



4.3 Axiomatization

Rules for UTR.

C ⇒ (pBc ∨ p∗Bd) ∧ ¬(UTR(e) ∧ eBc ∧ eBd)

C ⇒ ¬(UTR(c) ∧ UTR(d))
(UTRB11R)

C ⇒ (pBc ∨ dBp∗) ∧ ¬(UTR(e) ∧ eBc ∧ dBe)
C ⇒ ¬(UTR(c) ∧ UTR(d))

(UTRB12R)

C ⇒ (cBp ∨ p∗Bd) ∧ ¬(UTR(e) ∧ cBe ∧ eBd)

C ⇒ ¬(UTR(c) ∧ UTR(d))
(UTRB21R)

C ⇒ (cBp ∨ dBp∗) ∧ ¬(UTR(e) ∧ cBe ∧ dBe)
C ⇒ ¬(UTR(c) ∧ UTR(d))

(UTRB22R)

In all of the UTR rules above p and e are Boolean variables that do not occur in C,
a and b.

Similarly, the minimal logic Lmin
DCA for DCAs can be obtained as an extension

of Lmin
weak with the following non-standard rule of inference which corresponds to the

Efremovich axiom:
C ⇒ aCtp ∨ p∗Ctb

C ⇒ aCtb
(CtER)

, where p does not occur in C, a and b
Finally, the minimal logic Lmin

strong for the class of strong DCA can be obtained as an
extension of Lmin

DCA with the following non-standard rules of inference, corresponding
to conditions (CtB) and (BCt) (see Def. 2.1) respectively:

C ⇒ aCtp ∨ p∗Bb
C ⇒ aBb

(CtBR)
, where p does not occur in C, a and b

C ⇒ aBp ∨ p∗Ctb

C ⇒ aBb
(BCtR)

, where p does not occur in C, a and b

4.3.3 Extensions with time axioms and rules

In the context of logics time axioms will be called the conditions (rs), (ls), (updir),
(downdir), (dens), (ref), (lin), (tri) from Section 1.3.2 but written in the language
L. The remaining two conditions (irr) and (tr) are non-universal statements:

(irr) aBb→ (∃c, d)(c 6= 0 ∧ d 6= 0 ∧ c ≤ a ∧ d ≤ b ∧ cCt
d),

(tr) aBb→ (∃c)(aBc ∧ c∗Bb).
These two formulas can easily be transformed in the form of (z):

(irr′) (∀c, d)¬(c 6= 0 ∧ d 6= 0 ∧ c ≤ a ∧ d ≤ b ∧ cCt
d)⇒ aBb,

(tr′) (∀c)(aBc ∨ c∗Bb)⇒ aBb.
Thus, we obtain the following two non-standard rules of inference corresponding to
(irr) and (tr) respectively:

C ⇒ ¬(c 6= 0 ∧ d 6= 0 ∧ c ≤ a ∧ d ≤ b ∧ cCt
d)

C ⇒ aBb
(irrR)

, where c, d are variables not
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occurring in the terms a, b and the formula C.

C ⇒ aBc ∨ c∗Bb
C ⇒ aBb

(trR)
, where c does not occur in a, b and the formula C.

The above two rules replace the time axioms (irr) and (tr) and will, henceforth, be
called time rules. We may consider extensions of the minimal logics with some time
axioms and some of the rules (irrR) and (trR).

4.4 Soundness

Definition 4.12 (Proof). A finite sequence P1, P2, ..., Pn of formulae such that every
Pi is either an axiom or is obtained by applying a rule of inference on one or more
elements with indices less than i is called a proof.

Definition 4.13 (Theorem). A formula A is called a theorem if it is the last formula
of some proof.

Lemma 4.14. Let L be any of the logics Lmin
basic, Lmin

weak, Lmin
DCA or Lmin

strong possibly
extended with some time axioms. Then the axioms of L are true in the respective
class of DCAs satisfying the corresponding time axioms.

Proof. This is easy to see since the axioms of any of the mentioned logics and any
additional time axioms are just the respective DCA or time axioms rewritten in the
language of our logic.

Lemma 4.15. Every non-standard rule of inference of the form (zR) preserves the
validity in any class of DCAs satisfying the non-universal axiom (z) corresponding
to the rule.

Proof. Consider the non-standard rule in the form
C ⇒ A(a1, . . . , an, b1, . . . , bm)

C ⇒ B(a1, . . . , an)
(zR)

, where a1, . . . , an are terms and b1, . . . , bm
are Boolean variables which are not included in the formulas C, B(a1, . . . , an), and
consequently in the terms a1, . . . , an. Let

(z) (∀b1, . . . , bm)A(a1, . . . , an, b1, . . . , bm)⇒ B(a1, . . . , an)
be the formula corresponding to this rule. Let Σ be a class of DCAs which satisfies the
condition (z). We’ll show that whenever the premise C ⇒ A(a1 . . . an, b1 . . . bm) is
true in Σ, then the conclusion C ⇒ B(a1, . . . , an) is also true in Σ. Suppose that this
is not so. Then the premise C ⇒ A(a1, . . . , an, b1, . . . , bm) is true in Σ and there is an
algebra B ∈ Σ and a model (B, V) such that (B, V) 6|= C ⇒ B(a1, . . . , an). This means
that (B, V) |= C and (B, V) 6|= B(a1, . . . , an), so B(V(a1), . . . , V(an))(let’s denote this
way the interpretation of the formula B in B under V) is not true B. Since B satisfies
condition (z), there are c1 . . . cm ∈ B such that A(V(a1), . . . , V(an), c1 . . . cm) is not
true in B. Define V

′ for the variables b1, . . . , bn as follows V
′(b1) = c1, . . . , V′(bm) = cm.

Let V
′ act as V for the variables in C and a1, . . . , an. By the constraints on b1, . . . , bm

we obtain that V
′(a1) = V(a1),... V

′(an) = V(an) and (B, V′) |= C. Substituting in
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A we get: A(V′(a1), . . . , V′(an), V′(b1), . . . , V′(bm)) is not true in B. Since (B, V′) |= C
we obtain that (B, V′) 6|= C ⇒ A(a1, . . . , an, b1, . . . , bm), contrary to the assumption
that C ⇒ A(a1, . . . , an, b1, . . . , bm) is true in Σ.

Lemma 4.16. Let L be any of the logics Lmin
basic, Lmin

weak, Lmin
DCA or Lmin

strong possibly
extended with some time axioms and rules. Then the rules of inference of L preserve
the validity in the respective class Σ of DCAs, in the sense that whenever the premise
of the rule is true in Σ then so is the conclusion of that rule.

Proof. Follows from the fact that Modus Ponens preserves the validity and Lemma
4.15.

Theorem 4.17 (Soundness theorem). Let L be any of the logics Lmin
basic, Lmin

weak,
Lmin
DCA or Lmin

strong possibly extended with some time axioms and time rules. Then all
theorems of L are true in the respective class of DCAs Σ satisfying the corresponding
time axioms.

Proof. Let A be a theorem of L and let B1, B2, ..., Bn, where Bn = A, be the proof
of A. By induction on i = 1, ..., n we’ll show that Bi is true in Σ. For i = 1, the first
member of the proof B1 must be an axiom. From Lemma 4.14 it follows that B1 is
a true in Σ. Suppose that for i = 1...k, k < n the statement is true. Let’s check for
k + 1 ≤ n:

Case 1: Bk+1 is an axiom. Then the statement follows from Lemma 4.14.

Case 2: Bk+1 is obtained by using a rule of inference on some formulae of the proof
with indices < k + 1. By the induction hypothesis these formulae are true in Σ
and by Lemma 4.16 so is Bk+1.

4.5 Completeness

In this section we’ll prove the completeness theorems with respect to the algebraic
semantics of the minimal logics Lmin

basic, Lmin
weak, Lmin

DCA, Lmin
strong and their extensions with

time axioms and rules. The method is based on a version of the canonical model
construction which is a modification of Henkin’s completeness proof for classical first-
order logic. In the context of logics for region-based theories of space this method
was applied for the first time in [1] for relational and topological models and in [2]
for algebraic semantics. This section closely follows [1] and [2] and will use slightly
modified constructions and lemmas suitable for our purposes. The proofs will be easy
modifications of the ones in [1] and [2] and as such will either be briefly mentioned
or entirely skipped.
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4.5.1 Canonical models

Let L be any of the minimal logics Lmin
basic, Lmin

weak, Lmin
DCA, Lmin

strong possibly extended
with some new time axioms and rules. A pair T = (T1, T2) is called an L-theory (or
simply a theory) if T1 is a set of variables and T2 is a set of formulae satisfying the
following conditions:

(i) All theorems of L belong to T2

(ii) If A and A⇒ B belong to T2 then B belongs to T2

(iii) Let (zR) be any of the non-standard rules of inference of L and suppose that
the premise C ⇒ A(a1, . . . , an, b1, . . . , bm) belongs to T2 for some variables
b1, . . . , bm not belonging to T1 and to the conclusion C ⇒ B(a1, . . . , an). Then
the conclusion C ⇒ B(a1, . . . , an) also belongs to T2

The variables in T1 are called free variables of T and the members of T2 are called
formulae of T . We say that a formula A belongs to T and write A ∈ T if A ∈ T2. We
say that T is included in T ′ if T1 ⊆ T

′
1 amd T2 ⊆ T

′
2. We say that T is a consistent

theory if ⊥ /∈ T2. If T is not consistent then it is called inconsistent. A set of
formulae is consistent if it is contained in a consistent theory. A theory T is called a
complete theory if it is a consistent theory and for any formula A either A ∈ T2 or
¬A ∈ T2. A theory T is called a good theory if out of T1 there are infinitely many
Boolean variables. T is called a rich theory if for any non-standard rule of the logic
(say (zR)) the following holds: if the conclusion C ⇒ B(a1, . . . , an) does not belong
to T2, then the premise C ⇒ A(a1, . . . , an, b1, . . . , bm) does not belong to T2 for some
variables b1, . . . , bm not included in a1, . . . , an.

Lemma 4.18 (Lindenbaum lemma). Every good consistent L-theory T = (T1, T2)
can be extended into a complete rich L-theory T ′ = (T

′
1, T

′
2).

Proof. The proof is similar to the proof of Lemma 7.10 from [1].

Lemma 4.19 (Conservativeness Lemma). Every consistent L-theory can be ex-
tended into a good consistent L-theory by a possible extensions of the language with
a countably infinite set of new Boolean variables.

Proof. The proof is similar to the proof of Lemma 7.11 from [1].

Let T = (V, S) be a complete rich L-theory. Define the following relation between
the terms in our language:

a ≡ b⇔ a = b ∈ S

Since ≡ is an equivalence relation depending on S, let’s consider equivalence classes
of Boolean terms |a| = {b : a ≡ b}. Define the structure Bs = (B,≤, 0, 1, ·,+, ∗,
Cs, Ct,B, TR,UTR,NOW,Utr) over S like follows:
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• B = equiv. classes of ≡

• 0 = |0|

• 1 = |1|

• |a| · |b| = |a · b|

• |a|+ |b| = |a+ b|

• |a|∗ = |a∗|

• Utr(|a|) = |Utr(a)|

• |a| ≤ |b| ⇔ a ≤ b ∈ S

• |a|Cs|b| ⇔ aCsb ∈ S

• |a|Ct|b| ⇔ aCtb ∈ S

• |a|B|b| ⇔ aBb ∈ S

• |a| ∈ TR⇔ TR(a) ∈ S

• |a| ∈ UTR⇔ UTR(a) ∈ S

• NOW = |NOW |

Let’s also define the valuation Vs for Boolean variables in the following way: Vs(p) =
|p|, extended for terms in a standard way: Vs(a) = |a|. We’ll call the pair Ms =
(Bs, Vs) the canonical model over S.

Lemma 4.20. Bs is a Boolean algebra.

Proof. This is easy to see since the axioms of Boolean algebra are part of the ax-
iomatization of the logic L. For example, look at |a|, |b| and |c| in B. We have that
a, b, c are terms and we that the Boolean algebra axiom a · (b+ c) ≤ a · b+ a · c is in
S. By the definition if ≤ we get that |a · (b+ c)| ≤ |a · b+a · c|. This can be rewritten
as |a| · (|b+ c|) ≤ |a · b|+ |a · c|. Finally, rewritting as |a| · (|b|+ |c|) ≤ |a| · |b|+ |a| · |c|
we get the distributive lattice rule in Bs.

Lemma 4.21. Bs is a basic dynamic contact algebra.

Proof. By Lemma 4.20 we have that Bs is a Boolean algebra. We have to show that
Cs and Ct are contact relations and B is a precontact relation. We also have to show
that the TR axioms for basic DCA hold as well as the axioms for Utr.

We’ll only assert that Cs is a contact relation (in the same way we can check
that Ct is a contact relation and B is a precontact relation). We’ll follow the points
of the contact definition (see Def. 1.12). (i) Suppose |a|Cs|b| but |a| = |0| or |b| = |0|
(where = in Bs is defined in a standard way). Without loss of generality suppose
that |a| = |0|. So we have that |a| ≤ |0| and |0| ≤ |a|, or equivalently a ≤ 0 ∈ S and
b ≤ 0 ∈ S. Hence a = 0 ∈ S. To reach a contradiction let’s look at |a|Cs|b|. By
definition, we have that aCsb ∈ S and by the L axiom aCsb⇒ (a 6= 0) ∧ (b 6= 0) we
have a 6= 0 ∈ S. This is a contradiction. (ii) Let |a|Cs|b| and |a| ≤ |a′| and |b| ≤ |b′| -
we need to show that |a′| ≤ |b′|. From the premises we get that aCsb ∈ S, a ≤ a′ ∈ S
and b ≤ b′ ∈ S and hence the formula aCsb∧ a ≤ a′∧ b ≤ b′ ∈ S. From here and the
L axiom (aCsb∧ a ≤ a′∧ b ≤ b′)⇒ a′Csb′ we conclude that a′Csb′ ∈ S. Thus we get
|a′| ≤ |b′|. (iii) Let |a|Cs(|b|+ |c|) - we have to show that |a|Cs|b| or |a|Cs|c|. We can
rewrite |a|Cs(|b|+ |c|) as |a|Cs(|b+ c|) which implies that aCs(b+ c) ∈ S. From here
and the L axiom aCs(b+c)⇒ aCsb∨aCsc we get that aCsb∨aCsc ∈ S. This means
that aCsb ∈ S or aCsc ∈ S (as a more general statement. for a complete L-theory S if
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A∨B ∈ S then at least one of A ∈ S or B ∈ S should be true - assuming the contrary
quickly produces a contradiction with the consistency of S). But from here we get
that |a|Cs|b| or |a|Cs|c| which is what we are trying to prove. (iv) Let |a|Cs|b| - we’ll
show that |b|Cs|a|. This is easy to see by considering the L axiom aCsb⇒ bCsa and
the fact that aCsb ∈ S. (v) Assume that |a| · |b| 6= |0| - we have to show that |a|Cs|b|.
From the assumption we get that |a·b| 6= |0| which is the case only when ¬(|a·b| ≤ |0|)
or ¬(|0| ≤ |a ·b|). Without loss of generality, assume that ¬(|a ·b| ≤ |0|). This means
that a · b ≤ 0 /∈ S and by the completess of S we have that ¬(a · b ≤ 0) ∈ S. By this
and the propositional axiom ¬(a · b ≤ 0)⇒ ¬(a · b ≤ 0) ∨ ¬(0 ≤ a · b) (A⇒ A ∨B)
we get that ¬(a · b ≤ 0) ∨ ¬(0 ≤ a · b) ∈ S. But this is simply a · b 6= 0 and from
the L axiom a · b 6= 0⇒ aCsb we conclude that aCsb ∈ S. Therefore |a|Cs|b|. Also,
let’s see that axiom (Cs ⇒ Ct), establishing the connection between space and time
contact, does indeed hold in the structure Bs. Let |a|Cs|b|. But this means that
aCsb ∈ S and from the L axiom aCsb⇒ aCtb we have that aCtb ∈ S. Thus |a|Ct|b|
and hence the axiom holds.

For axiom (TR1) let |c| ∈ TR - we want to show that |c| 6= |0| and for any |a|
and |b|, |a|Ct|c| and |b|Ct|c| implies |a|Ct|b|. From |c| ∈ TR we get that TR(c) ∈ S
and combining this with the L axiom TR(c)⇒ c 6= 0∧ (aCtc∧ bCtc⇒ aCtb) we get
that c 6= 0 ∈ S and aCtc∧bCtc⇒ aCtb ∈ S which can easily be translated into what
we are trying to prove. The same kind of reasoning can be applied for the other TR
axioms as well as the Utr axioms of basic DCAs.

Lemma 4.22. If L contains a non-standard rule of inference then Bs satisfies the
non-universal axiom corresponding to the rule.

Proof. Consider, for example, the rule

C ⇒ ¬(c 6= 0 ∧ d 6= 0 ∧ c ≤ a ∧ d ≤ b ∧ cCt
d)

C ⇒ aBb
(irrR)

, where c, d are variables not
occurring in the terms a, b and the formula C. The rule corresponds to the time axiom

(irr) aBb→ (∃c, d)(c 6= 0 ∧ d 6= 0 ∧ c ≤ a ∧ d ≤ b ∧ cCt
d)

Suppose |a|B|b|, then aBb ∈ S. Since S is a complete theory this is equivalent to
aBb 6∈ S. Since S is a rich theory, then for some variables c, d we have the following:
¬(c 6= 0 ∧ d 6= 0 ∧ c ≤ a ∧ d ≤ b ∧ cCt

d) 6∈ S
Again by the completeness of S this is equivalent to the following:

c 6= 0 ∈ S and d 6= 0 ∈ S and c ≤ a ∈ S and d ≤ b ∈ S and cC
t
d ∈ S

This, by the definitions of the canonical relations is equivalent to: there are |c|, |d|∈ B
such that |c|, |d| 6= |0|, |c| ≤ |a|, |d| ≤ |b| and |c|Ct|d| which shows that axiom (irr)
holds in Bs. The statement can be shown for the other non-standard rules in the
same way using the completeness and richness of S.

Lemma 4.23 (Canonical structure). Let T = (V, S) be a complete rich L-theory
and let Ms = (Bs, Vs) be the canonical model over S. Then Bs is dynamic contact
algebra of the type L corresponds to. If L contains some of the time axioms or rules
then Bs also satisfies the corresponding time axioms.
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Proof. Follows from Lemma 4.21 and Lemma 4.22.

Lemma 4.24 (Truth lemma). Let T = (V, S) be a complete rich L-theory and
Ms = (Bs, Vs) be the canonical model over S. Then for any formula α we have that
(Bs, Vs) |= α⇔ α ∈ S.

Proof. (⇐) By induction on the complexity of the formula α. For the base case,
consider the case when α ∈ S is an atomic formula, that is a formula of one the
following forms a ≤ b, aCsb, aCtb, aBb, TR(a) or UTR(a) where a and b are terms.
We need to show that (Bs, Vs) |= α, or equivalently, Vs(α) = 1. This is immediate
by the definition of the canonical model, the definition of the canonical valuation Vs

and the way it interprets truthfulness in the structure.
Let A and B be formulae for which the statement is true. We need to show that

for complex formulae the statement holds. Let’s review the complex formulae in our
language and prove the statement separately for each:

1. Let ¬A ∈ S. Since S is complete we have that A /∈ S and hence by the
induction hypothesis we have that Vs(A) = 0. By the defintion of Vs we have
that Vs(¬A) = 1.

2. Let A ∧ B ∈ S. Since S is an L-theory it contains the propositional axioms
A ∧ B ⇒ A and A ∧ B ⇒ B and hence A ∈ S and B ∈ S. By the induction
hypothesis we have that Vs(A) = 1 and Vs(B) = 1 and by the definition of Vs

we have that Vs(A ∧B) = 1.

3. Let A ∨ B ∈ S. Suppose that A /∈ S and B /∈ S. Since S is complete we have
that ¬A ∈ S. Also note that A ∨B can be rewritten as ¬A⇒ B ∈ S. Since S
is an L-theory we have that B ∈ S which contradicts that assumption. So it
must be the case that at least one of A or B is in S. Without loss of generality
suppose that A ∈ S. Then by the induction hypothesis we get that Vs(A) = 1
and hence Vs(A ∨B) = 1 by the definition of Vs.

4. Let A ⇒ B ∈ S. This can be rewritten as ¬A ∨ B ∈ S and by (3) we get
that Vs(¬A ∨ B) = 1. This, by the defintion of Vs, means that Vs(¬A) = 1
or Vs(B) = 1 and further, Vs(A) = 0 or Vs(B) = 1. But this is exactly when
Vs(A⇒ B) = 1.

(⇒) Can be proven again by induction using similar arguments.

Lemma 4.25. The following conditions are equivalent for any formula A:

(i) A is a theorem of L
(ii) A is true in all canonical models Ms of L

Proof. (i) → (ii). Let A be a theorem of L and let Ms be a canonical model over
some complete rich L-theory T = (V, S). Since T is an L-theory we have that A ∈ S
and by the Truth Lemma we have that Ms |= A.
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(ii) → (i) We’ll prove the contraposition. Suppose that A is not a theorem of
L. Take the minimal L-theory T0 = (∅,Γ0) where Γ0 is the set of all theorems of
L. We have that A /∈ Γ0 (since A is not a theorem). This means extending T0 with
¬A produces the good consistent L-theory T1. By the Lindembaum Lemma T1 can
be extended into a complete rich DCA-theory T = (V, S). Since T is complete and
¬A ∈ S we have that A /∈ S. By the Truth Lemma we get that A is falsified in the
canonical model over S.

4.5.2 Completeness theorems and their implications

In this section we’ll look at the weak and strong completeness theorems for the
minimal logics Lmin

basic, Lmin
weak, Lmin

DCA, Lmin
strong and their extensions with time axioms

and rules. If Θ is a set of some time axioms and rules and L is any of the minimal
logics, then LΘ will denote the extension of L with the axioms and rules from Θ.

Theorem 4.26 (Weak completeness for the minimal logics). Let L be any of the
minimal logics and let Σ be the corresponding class of DCAs for L. Then the
following conditions are equivalent for any formula A:

(i) A is a theorem of L
(ii) A is true in the class Σ of DCAs corresponding to L

Proof. (i)→ (ii) This is the Soundness Theorem (Theorem 4.17).

(ii)→ (i) Let A be true in the class Σ. By definition, this means that A is true in all
models M = (B, V) where B is a DCA of the corresponding type and, in particular,
all canonical models of L. By the Lemma 4.25 we have that A is a theorem of L.

Corollary 4.27. The completeness theorem for the minimal logics yields the fol-
lowing results:

(i) All four minimal logics have equal sets of theorems which coincide with the
set of theorems of Lmin

basic.

(ii) Theorems of the minimal logics do not depend on the non-standard rules of
inference, that is, the non-standard rules of inference are admissible.

(iii) The set of theorems of the minimal logics is decidable.

Proof. (i) Follows from Theorem 4.26 and Theorem 4.8.
(ii) Since Lmin

basic does not have non-standard rules of inference the statement follows
from (i).

(iii) By Proposition 4.5 we have L(Σfin
basic) = L(Σbasic), which together with the

completeness theorem implies that the set of theorems of Lmin
basic (and hence for the

other minimal logics) is decidable.
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Theorem 4.28 (Weak completeness for extensions with time axioms and rules).
Let LΘ be any of the minimal logics extended with a set Θ of additional time axioms
and rules and let ΣΘ be the corresponding class of DCAs satisfying the respective
time axioms. Then the following conditions are equivalent for any formula A:

(i) A is a theorem of LΘ

(ii) A is true in ΣΘ

Proof. The proof is similar to the one of Theorem 4.26.

Corollary 4.29. The completeness theorem for extensions of the minimal logics
with time axioms and rules yields the following results:

(i) Let Θ be a set of time axioms. Then the logic LΘ
basic is decidable.

(ii) Let Θ be a set of time axioms and rules. Then the sets of theorems of LΘ
weak,

LΘ
DCA and LΘ

strong coincide.

(iii) Let Θ be a set consisting of some (or all) of the time axiom (dens) and
time rules (irrR) and (trR). Then the logics LΘ

basic, LΘ
weak, LΘ

DCA, LΘ
strong have

equal sets of theorems.

Proof. (i) By Theorem 4.28 the set of theorems of LΘ
basic coincides with L(ΣΘ

basic).

By Proposition, 4.5 L(ΣΘ
basic) = L(Σfin,Θ

basic ), which implies the decidability of LΘ
basic.

(ii) The statement follows from Theorem 4.28 and Theorem 4.9.
(iii) The proof follows from Theorem 4.28 and Corollary 4.11.

Let Ψ be a set of formulae and Σ be a class of DCAs. We say that Ψ has a model in
Σ if there is a model (B, V) such that B ∈ Σ and for any A ∈ Ψ we have (B, V) |= A.
In such a case we write (B, V) |= Ψ.

Theorem 4.30 (Strong completeness). Let LΘ be any of the the minimal logics
extended with a set Θ of additional time axioms and rules and let ΣΘ be the corre-
sponding class of DCAs. Then the following conditions are equivalent for any set of
formulas Ψ:

(i) Ψ is a consistent set of formulae

(ii) Ψ has a model in ΣΘ

Proof. (i) → (ii). Let Ψ be a consistent set of formulae. Then by Lemma 4.19 and
Lemma 4.18 Ψ can be extended into a complete and rich theory T = (V, S) in a
possible extension of the language with new variables. Then the canonical model
based on T is a model for Ψ by Lemma 4.24.
(ii)→ (i) Let Ψ have a model (B, V) in ΣΘ. Let Γ be the set of all formulae A such
that (B, V) |= A. Obviously Ψ is included in Γ and T = (∅,Γ) is a consistent theory,
so Ψ is a consistent set of formulae.
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5 Conclusion and open problems

With regards to open problems, firstly, we would like an extension of Corollary 3.7
to be true for basic DCAs satisfying the non-universal axioms irr and tr. Another
thing would be to show coincidence of the extensions of the minimal logics with
arbitrary time axioms and rules (or at least for some interesting combinations), i.e.
to obtain various extensions of Corollary 4.11. This corollary depends essentially on
the properties of the p-morphisms developed in Section 3.5.1 and Section 3.5.2 and,
more precisely, on which of time conditions are preserved by these p-morphisms.
Studying modifications of these p-morphisms that preserve important sets of time
conditions would be one of the possible advancements on the topic.
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