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1 Preface

One of the most established theory of space is classical Euclidean geometry. This
theory considers point as a primitive notion. In contrast, Alfred Whitehead mentions
in his book ”The Organization of Thought”[5] that the point should be definable in
terms of the relations between material things. The reason behind it is that points
are too abstract and they do not have representation in the real world. So that, the
point-free approach to the theory of space started. It is developed on the primitive
notion region and two binary relations between regions, part-of and contact. Usually
regions are considered to be elements from a Boolean algebra of regular closed sets
in a topological space. The contact relation is defined as a non-empty set-theoretic
intersection. In such contact logics Boolean terms are interpreted as regions. There
are also two predicates (a ≤ b) and C(a, b) which express the relations a is a part-of
b and region a is in contact with region b respectively.

In this study we define a contact logic with the qualitative measure. In such way
both types of information topological and size information could be expressed. We
introduce a new atomic formula to the standard language of contact logics: a ≤µ b.
The intended meaning is the size of region a is less than or equal to the size of region
b. We interpreted formulae from our language in the following type of structures
〈〈B, C〉, µ〉 where 〈B, C〉 is contact algebra and µ is a positive measure on B. Our
intended structure will be all polytopes over R+ with the Lebesgue measure on R+.
The current work has the following structure:

• Section 2 reminds the needed notions and well-known results from Propositional
Logic and contact algebras. We also explore an algorithm for solving system of
linear inequalities with rational coefficients. At the end of this section we give
alternative definition for connected graph and show that it is equivalent to the
most common one.

• Section 3 defines the language L that we will use in this work. We examine a
couple of ways for interpreting formulae from our language. We also introduce
the notion for contact algebra with measure and define some conditions that the
measure function has to satisfy.

• Section 4 focuses on the axiomatic system LHL. We also define the notion for
Sn-system. We explore an algorithm for solving such systems as well as describing
how to construct formula from L that corresponds to a Sn-system.

• Section 5 shows that a given Sn-system has a solution exactly when the corre-
sponding formula from L is satisfiable in finite relational HL-structure.

• In Section 6 we prove the soundness and completeness theorems with respect to
the finite relational HL.

• Section 7 describes a procedure to associate polytopes to a given tree-like Kripke
structure.
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2 Preliminaries

In this introductory section we will recall some well-known entities and results related
with them which will be used later in this work.

2.1 Facts about Propositional logic

The Formal Systems (FS) has three parts - language, axioms and rules. Every rule
has the form ϕ1,ϕ2,...,ϕn

ϕ where ϕ1, ϕ2, . . . ϕn, ϕ are formulae from the language of the
FS.

Definition 2.1 (Formal proof). A finite sequence ϕ1, ϕ2, . . . , ϕn of formulae such
that every ϕi is either an axiom or is obtained by applying a rule of inference on one
or more elements with indices less than i is called a formal proof .

Definition 2.2 (Formal theorem). A formula ϕ is called a formal theorem if it is
last formula of some formal proof.

Definition 2.3. Let F be a FS. We could define the notion formal theorems of F
in the following inductive way:

(i) Every axiom is a theorem.

(ii) If ϕ1, ϕ2, . . . , ϕn are theorems of F and ϕ1,ϕ2,...,ϕn

ϕ is a rule of F, then ϕ is
also a theorem. We write ` ϕ.

We will consider the following Shoenfield-style FS for Propositional Logic:

Language

(i) Propositional variables: p0, p1, p2, . . .

(ii) Logical symbols: ¬ and ∨
(iii) Auxiliary symbols: ) and (

We will define formula in the language inductively:

(i) Every propositional variable is a formula

(ii) If ϕ is a formula, then ¬ϕ is a formula

(iii) If ϕ and ψ are formulae, then (ϕ ∨ ψ) is a formula

Axioms
The axioms of Propositional Logic are defined through the following scheme - for
every formula ϕ, the formula ¬ϕ ∨ ϕ is an axiom.

Rules

(R1)

ϕ

ψ ∨ ϕ (ER)
for any formulae ϕ and ψ
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(R2)
ϕ ∨ ϕ
ϕ (CR) for any formula ϕ

(R3)

ϕ1 ∨ (ϕ2 ∨ ϕ3)

(ϕ1 ∨ ϕ2) ∨ ϕ3
(AR)

for any formulae ϕ1, ϕ2 and ϕ3

(R4)
ϕ1 ∨ ϕ2, ¬ϕ1 ∨ ϕ3

ϕ2 ∨ ϕ3
(Cut) for any formulae ϕ1, ϕ2 and ϕ3

We accept the standard rules in First-order logic for omission of brackets. Addition-
ally, we will use the following common abbreviations for convenience:

(i) We will write ϕ ∧ ψ instead of ¬(¬ϕ ∨ ¬ψ)

(ii) We will write ϕ ⇒ ψ instead of ¬ϕ ∨ ψ
(iii) We will write ϕ ⇔ ψ instead of (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

Lemma 2.4 (Commutative). If ` ϕ ∨ ψ, then ` ψ ∨ ϕ.

Lemma 2.5 (Modus Ponnens). If ` ϕ and ` ϕ⇒ ψ, then ` ψ.

Lemma 2.6. ` ϕ⇒ ψ ⇒ ϕ ∧ ψ

Lemma 2.7. ` (ϕ⇔ ψ)⇔ (¬ϕ⇔ ¬ψ)

Definition 2.8 (Subformula). Let ϕ and ψ be formulae. We say that ϕ is a subfor-
mula of ψ if ψ has the syntactical representation ϕ1ϕϕ2. The word ϕ is an infix of
ψ.

Theorem 2.9. Let ϕ, ϕ′ and ψ be formulae. Let by ψ′ denote any formula obtained
from ψ by substituting zero, one, many or all instances of ϕ as a subformula of ψ by
ϕ′. Then if ` ϕ⇔ ϕ′, then ` ψ ⇔ ψ′.

Definition 2.10 (Valuation, Assignment). By valuation V we mean an assignment
to every boolean variable to either T or F.

Remark. We could extend the valuation V to the propositional formulae using truth
functions H¬ and H∨.

Definition 2.11 (Tautology). We say that ϕ is a propositional tautology if and only
in for every value function V, V(ϕ) = T.

Theorem 2.12 (Validity Theorem). If ϕ is a theorem, then ϕ is tautology.

Theorem 2.13 (Completeness Theorem). If ϕ is tautology, then ` ϕ.

Definition 2.14 (Tautological Consequence). Let for n ≥ 0 ϕ1, ϕ2, . . . ϕn, ϕ are
formulae. We say that ϕ is a tautological consequence of ϕ1, ϕ2, . . . ϕn if ϕ1 ⇒ ϕ2 ⇒
. . .⇒ ϕn ⇒ ϕ is a tautology.

Theorem 2.15 (Tautology Theorem). Let ϕ be a tautological consequence of ϕ1, ϕ2, . . . ϕn
and ` ϕ1, . . . ` ϕn. Then ` ϕ.
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2.2 Facts about Boolean and Contact algebras

A structure 〈W,≤〉, where ≤ is a binary relation on W, is called a partially ordered
set or (poset) if and only if for any x, y ∈W the following conditions hold:

(i) x ≤ x (reflexivity)

(ii) x ≤ y and y ≤ x→ x = y (antisymmetry)

(iii) x ≤ y and y ≤ z → x ≤ z (transitivity)

The relation ≤ is called a partial order on W . Let A be a non-empty subset of
W. An element a ∈ W is called an upper bound of A if (∀x ∈ A) : (x ≤ a). The
element a is called least upper bound of A if a is an upper bound of A and for all
other upper bounds b of A we have that a ≤ b. We could define the dual notions
of lower bound of A and greatest lower bound of A. An element a ∈ W such that
(∀x ∈ W )(x ≤ a) is called the greatest element of W. Similarly, an element a ∈ W
such that (∀x ∈W ) : (a ≤ x) is called the smallest element of W.

Definition 2.16 (Lattice). The partially ordered set 〈W,≤〉 is called a lattice if
every two-element subset of W has greatest lower bound and least upper bound.
We will denote greatest lower bound of {a, b} with a u b and the least upper bound
of {a, b} with a t b. The structure 〈W,≤,u,t〉 will also be called lattice.

Definition 2.17 (Bounded Lattice). A lattice which has a greatest element and a
smallest element will be called a bounded lattice. We will denote such lattices with
〈W,≤, 0, 1,u,t〉, where 0 is the smallest and 1 is the greatest element.

Definition 2.18 (Distributive Lattice). A lattice is called distributive lattice if it
satisfies the following additional conditions (distributive laws):

(D) a u (b t c) = (a u b) t (a u c)
(D̂) a t (b u c) = (a t b) u (a t c)

Definition 2.19 (Boolean algebra). Let B = 〈B, 0B, 1B,uB,tB, ∗B〉 be a structure
where (B,≤, 0B, 1B,uB,tB) is bounded distributive lattice and the complementation
operation ∗B satisfies the following axioms:

(*1) a tB a∗B = 1B

(*2) a uB a∗B = 0B

Then B is called Boolean algebra.

Definition 2.20. Let B = 〈B, 0B, 1B,uB,tB, ∗B〉 be a Boolean algebra. If 0B 6= 1B
then B is called a nondegenerate Boolean algebra.

Definition 2.21 (Atom). Let B = 〈B, 0B, 1B,uB,tB, ∗B〉 be a Boolean algebra. An
element b ∈ B is called an atom if and only if b 6= 0 and for any a ∈ B such that
a ≤ b we have a = 0 or a = b. So that, the atoms are exactly the minimal elements
among the non-zero elements of a Boolean algebra.

5



Definition 2.22 (Atomic Boolean Algebra). Let B be a Boolean algebra and let A
be the set of its atoms. We say that B is atomic if and only if for every non-zero
element b ∈ B, there exists a ∈ A such that a ≤ b. Equivalently, every element b ∈ B
is the sum of the atoms a such that a ≤ b.

Definition 2.23 (Precontact algebra). Let 〈B, C〉 be a structure such that B =
〈B, 0B, 1B,uB,tB, ∗B〉 is a nondegenerate Boolean algebra and the relation C ⊆
B ×B satisfies the following axioms:

(C1) C(a, b)→ a 6= 0 and b 6= 0

(C2) C(a, b), a ≤ a′ and b ≤ b′→ C(a′, b′)

(C3) C(a, b tB c)→ C(a, b) or C(a, c)

(C3′) C(a tB b, c)→ C(a, c) or C(b, c)

Then the relation C is called a precontact relation on B and the structure 〈B, C〉 is
called a precontact algebra.

Definition 2.24 (Contact algebra). Let 〈B, C〉 be a precontact algebra where the
precontact C satisfies the additional axioms:

(C4) C(a, b)→ C(b, a)

(C5) a uB b 6= 0→ C(a, b)

Then C is called a contact relation and 〈B, C〉 is called a contact algebra.

Remark. If C satisfies (C4), only one of the axioms (C3) and (C3′) is needed. Also,
(C5) is equivalent to (C5′) a 6= 0→ C(a, a).

Definition 2.25 (Connected contact algebra). A contact algebra is called connected
contact algebra if it satisfies connectedness axiom:

(Con) (a 6= 0) ∧ (a 6= 1)→ C(a, a∗)

2.3 Algorithm for solving systems of linear inequalities with ratio-
nal coefficients

In this section we will examine an algorithm for solving systems of linear inequalities
with rational coefficients. We will consider systems of the following type:

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
. . .

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

where aij , bi ∈ Q, for i ∈ {1, 2, . . .m} and j ∈ {1, 2, . . . n}. We will apply Fourier-
Motzkin elimination as a method for finding a solution for such system. The idea
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of the algorithm is intuitive. It is a procedure which reduces the n-variable problem
to an equivalent (n-1)-variable one. We repeat these steps eliminating variables one
at a time. Eventually, we will end-ip with 1-variable problem which is easy to solve.
We will be able to trace back using the solution for 1-varaible problem to find a
solution for 2-variable, 3-variable and finally to n-variable problem.
We suppose that x1, x2, . . . xn are all variables from the system and we want to
eliminate xn. For each inequality

∑
1≤i≤n aixi ≤ b we will get one of the follow-

ing two inequalities: xn ≤ b
an
−

∑
1≤i≤n−1

ai
an
xi or xn ≥ b

an
−

∑
1≤i≤n−1

ai
an
xi de-

pending on whether an > 0 or an < 0. We will end up with xn ≥ L1, xn ≥ L2

, . . . , xn ≥ Lp, xn ≤ U1, xn ≤ U2, . . . , xn ≤ Uq inequalities which are considered
as a lower and upper bounds for xn. Each Li and Uj are expressions with vari-
ables among x1, x2, . . . , xn−1. It is possible to choose a value for xn if and only if
max{L1, L2, . . . Lp} ≤ min{U1, U2, . . . Uq}. So we replace in the original system all
inequalities which contain xn with these p.q new inequalities - L1 ≤ U1, L1 ≤ U2,
. . . , L1 ≤ Uq, L2 ≤ U1, L2 ≤ U2 , . . . , Lp ≤ U1, . . . , Lp ≤ Uq. The result system
is with variables x1, x2, . . . , xn−1. We could apply the same procedure to eliminate
xn−1.

2.4 Connected graphs

Later in this study we deal up with graphs that correspond to contact relation. So,
in this section we will give two well-known definitions for connected graph and we
will show that they are equivalent. Therefore, we will use later in this work more
convenient one.

Definition 2.26 (Undirected Graph). A graph is a pair 〈V,E〉 where V is a set of
elements called vertices and E is a binary relation E ⊆ V × V which elements are
called edges. A graph is said to be undirected if the relation E is symmetric.

Remark. We will consider only undirected graphs in this study. So, from now on
we will call them only graphs.

Definition 2.27 (Path). A path in a graph G between two distinct vertices v and
w is a finite sequence of edges from E 〈v1, v2〉, . . . , 〈vn−1, vn〉 such that:

(i) v1 = v and vn = w

(ii) v1, v2, . . . vn ∈ V
(iii) v1, v2, . . . vn are different

Definition 2.28 (Path). Let G = 〈V,E〉 be a graph. A path between two dis-
tinct vertices v and w from G is a k-sequence {xi}i<k which satisfies the following
conditions:

(i) k > 0

(ii) for each i < k − 1 〈xi, xi+1〉 ∈ E and xi 6= xi+1
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(iii) v = x0 and w = xk−1

Definition 2.29 (Connected Graph). A graph G = 〈V,E〉 is said to be connected
if there is a path between every pair of different vertices.

Lemma 2.30. Let G = 〈V,E〉 be a graph. Then the following two conditions are
equivalent:

(i) G is connected

(ii) ∀A(A ⊆ V ∧A 6= ∅ ∧ V \A 6= ∅ ⇒ (∃〈v1, v2〉 ∈ E)(v1 ∈ A ∧ v2 ∈ V \A))

Proof. (i)⇒(ii) Let G = 〈V,E〉 be connected graph. We will prove this direction by
reductio ad absurdum. So let us suppose A is a non-empty subset of V such that
V \A 6= ∅ and there is no edge 〈v1, v2〉 ∈ E such that v1 ∈ A and v2 ∈ V \A. We get
a vertex v from A and a vertex w from V \ A. Since there is no edge connecting A
and V \A all accessible vertices from v are from A. Similarly, all accessible vertices
from w are from V \A. So there is no path between v and w which is a contradiction
with G is a connected graph.

(ii)⇒(i) We will also prove this direction by reductio ad absurdum. So let (ii) be
true and G is not connected. Then, there are two vertices v and w such that there
is no path between them. Let A be the set of all vertices accessible from v. It is
a non-empty subset of V because at least v ∈ A. The set V \ A is also non-empty
because at least w ∈ V \ A. Then by the condition (ii) there is an edge 〈v′, w′〉
between A and V \ A. Since v′ is accessible from v then it follows that w′ is also
accessible from v. Therefore, w′ ∈ A, which is a contradiction with w′ ∈ V \A.

3 Contact logics with measure - language and semantics

3.1 Language and notions

We consider first-order language L without formal equality containing the following
symbols:

(i) a countable set BoolV ars of Boolean variables

(ii) boolean constants - 0 and 1

(iii) function symbols - u, t and ∗
(iv) predicate symbols - ≤, ≤µ and C

(v) propositional connectives - ¬, ∧ and ∨
(vi) brackets - ) and (

We will define the notions of term and formula in standard way:

Definition 3.1 (Term). The terms in our language L are constructed from Boolean
variables, Boolean constants and function symbols in the following way:

8



(i) boolean constants 0 and 1 are terms

(ii) every boolean variable p ∈ BoolV ars is a term

(iii) if a and b are terms, then a∗, a u b and a t b are also terms

Definition 3.2 (Atomic Formula). Let a and b be terms. Then a ≤ b, a ≤µ b and
C(a, b) are atomic formulae.

Definition 3.3 (Formula). Formulae in our language are defined as follows:

(i) ⊥ and > are formulae

(ii) atomic formulae are formulae

(iii) if ϕ and ψ are formulae, then ¬ϕ, ϕ ∧ ψ and ϕ ∨ ψ are also formulae

Remark. We accept the standard rules in First-order logic for omission of brackets.
Additionally, we will use the following abbreviations for convenience

(i) a = b
def
= (a ≤ b) ∧ (b ≤ a)

(ii) a =µ b
def
= (a ≤µ b) ∧ (b ≤µ a)

(iii) a <µ b
def
= ¬(b ≤µ a)

(iv) ϕ ⇒ ψ
def
= ¬ϕ ∨ ψ

(v) ϕ ⇔ ψ
def
= (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

3.2 Semantics

In this section we will examine a couple of ways for interpreting the statements from
our language into different semantic structures.

3.2.1 Algebraic semantics

We start with algebraic semantics for the language L. Let B = 〈B, 0B, 1B,uB,tB, ∗B〉
be a Boolean algebra and C be a contact relation on B. So, the pair 〈B, C〉 is a con-
tact algebra. We need a way for interpreting formulae like (a ≤µ b). So, we will be
interested in measure function µ that satisfies the following conditions:

(i) µ is a positive measure - µ : B → [0,+∞]

(ii) µ(a) = 0 if and only if a = 0B
(iii) µ(1B) = +∞
(iv) µ is additive - if a u b = 0B then µ(a tB b) = µ(a) + µ(b)

(v) µ is countably additive - if B1 is at most countable family of pairwise disjoint
elements of B, supB1 exists and supB1 ∈ B then µ(B1) =

∑
b∈B1

µ(b)

Remark. We extend the set R+ with one more symbol +∞. For any x ∈ R we have
that x < +∞ and algebraic operations with +∞ are defined in standard way [4].
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We are interested in such structures C = 〈〈B, C〉, µ〉 where 〈B, C〉 is a contact algebra
and µ satisfies the above conditions. Let V be a valuation V : BoolV ars → B. It is
extended to all terms of L in the following way:

V(0) = 0B
V(1) = 1B
V(a∗) = (V(a))∗B

V(a u b) = V(a) uB V(b)

V(a t b) = V(a) tB V(b)

We will call the pair M = 〈C, V〉 a model. The truth of a formula ϕ in M is denoted
by M |= ϕ. Similarly, we will use M 6|= ϕ to denote the falsehood of the formula ϕ
in M. We will define the conditions for truth of atomic formulae of L:

M |= (a ≤ b) if and only if V(a) ≤B V(b)

M |= C(a, b) if and only if C(V(a), V(b))

M |= (a ≤µ b) if and only if µ(V(a)) ≤ µ(V(b))

For complex formulae, the definition is extended in the following way:

M |= > and M 6|= ⊥
M |= ¬ϕ if and only if M 6|= ϕ

M |= ϕ ∧ ψ if and only if M |= ϕ and M |= ψ

M |= ϕ ∨ ψ if and only if M |= ϕ or M |= ψ

We say that a formula ϕ is true in structure C (C |= ϕ) if for all valuations V in C

we have 〈C, V〉 |= ϕ.

3.2.2 Relational semantics

In this section we will explore one special case of Algebraic semantics given by terms
of Kripke frame 〈W,R〉 where W 6= ∅, R is reflexive and symmetric relation and
R ⊆ W × W . We start with defining the Boolean algebra of all subsets of W :
B = 〈P(W ), ∅,W,∩,∪, \〉. We will define the contact relation CR for a, b ⊆W in the
following way: CR(a, b) if and only if (∃x ∈ a)(∃y ∈ b)R(x, y). As in the previous
section, we will examine the tuple C = 〈〈B, CR〉, µ〉 where 〈B, CR〉 is a contact
algebra and µ satisfies the defined conditions for measure. So, C is a structure for
L. Let V : BoolV ars → P(W ) be a valuation which is extended for all terms as
follows:

V(0) = ∅
V(1) = W

V(a∗) = W \ V(a)

V(a u b) = V(a) ∩ V(b)

V(a t b) = V(a) ∪ V(b)

10



We will consider the model M = 〈C, V〉 and define the conditions for truth of atomic
formulae of L:

M |= (a ≤ b) if and only if V(a) ⊆ V(b)

M |= C(a, b) if and only if CR(V(a), V(b))

M |= (a ≤µ b) if and only if µ(V(a)) ≤ µ(V(b))

It is extended for complex formulae as in the previous section.

We say that a formula ϕ is true in structure C (C |= ϕ) if for all valuations V in C

we have 〈C, V〉 |= ϕ.

3.2.3 Intended Model

Definition 3.4 (Basis Polytopes). Intervals from the type finite interval [m;n]
where 0 ≤ m < n and infinite interval [m; +∞) where 0 ≤ m are called basis
polytopes.

Definition 3.5 (Polytope). Polytope is a finite union of basis polytopes. We denote
the set of polytopes in R+ with Pol(R+).

Remark. ∅ ∈ Pol(R+)

We will consider the following tuple B = 〈Pol(R+), ∅,R+,uB,tB, ∗B〉 and we will
define the operations uB, tB and ∗B as follows:

a uB b
def
= Cl(Int(a ∩ b)) for a, b ∈ Pol(R+)

a tB b
def
= a ∪ b for a, b ∈ Pol(R+)

a∗B
def
= Cl(R+ \ a) for a ∈ Pol(R+)

The contact relation C is defined for the elements in Pol(R+) in the following way:
C(a, b) if and only if a∩b 6= ∅. These definitions of B and C give us a contact algebra
〈B, C〉. It is a sub-algebra of regular-closed sets in R+.
In our case we consider µ to be the Lebesgue measure on R+. Since intervals in R+

are Lebesgue measurable the measure µ satisfies the conditions in Section 3.2.1. So
we will define µ : Pol(R+)→ [0; +∞] as follows:

µ(a) =

{∑
[i;j]∈a(j − i) , if a contains only finite intervals

+∞ , if a contains infinite interval
As we already mentioned µ is additive and countably additive. So,

• If a uB b = ∅, then µ(a tB b) = µ(a) + µ(b).

• Let I ⊆ ω, for each i ∈ I ai ∈ Pol(R+), for each i, j ∈ I, i 6= j, ai uB aj = ∅
and

⊔
i∈I ai ∈ Pol(R+). Then µ(

⊔
i∈I ai) =

∑
i∈I µ(ai).

Remark. By a Birkhoff theorem, does not exist countably additive measure on
regular closed sets.
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Similarly to previous section C = 〈〈B, C〉, µ〉 is a structure for L. We will remind
the definition of valuation V : BoolV ars → Pol(R+) and the way it is extended to
all terms of L as follows:

V(0) = ∅
V(1) = R+

V(a∗) = V(a)∗B

V(a u b) = V(a) uB V(b)

V(a t b) = V(a) tB V(b)

Now we will remind the truth of atomic formulae in the model M = 〈C, V〉:

M |= (a ≤ b) if and only if V(a) ⊆ V(b)

M |= C(a, b) if and only if C(V(a), V(b))

M |= (a ≤µ b) if and only if µ(V(a)) ≤ µ(V(b))

It is extended for the complex formulae on the standard way.

We say that a formula ϕ is true in structure C (C |= ϕ) if for all valuations V in
C we have 〈C, V〉 |= ϕ. We are interested in all valid formulae in the structure of
polytopes.

4 Axiomatization

We follow the idea for our axiomatic system from Section 3 from [1]. So that, our
axiomatic system for L will contain one rule for inference - Modus Ponens (MP).
We will take as axioms the complete set of formulae which are substitution instances
of tautologies of classical prepositional logic, modification of axioms for Boolean
algebra, axioms for contact algebra, measure axioms and axioms for systems of linear
inequalities. We denote the set of these axioms with LHL.

4.1 Axiomatic System LHL

Axioms

(i) all formulae which are substitution instances of tautologies of classical propo-
sitional logic

(ii) a set of axiom schemes for Boolean algebra

(B1) a ≤ a
(B2) 0 ≤ a
(B3) a ≤ 1

(B4) a∗∗ ≤ a
(B5) a u (b t c) ≤ (a u b) t (a u c)
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(B6) (a ≤ b) ∧ (b ≤ c)⇒ (a ≤ c)
(B7) (a t b) ≤ c⇔ (a ≤ c) ∧ (b ≤ c)
(B8) c ≤ (a u b)⇔ (c ≤ a) ∧ (c ≤ b)
(B9) (a u b∗ ≤ 0)⇔ (a ≤ b)
(B10) ¬(0 = 1)

(iii) axiom schemes for contact C

(C1) (a 6= 0)⇔ C(a, a)

(C2) C(a, b t c)⇔ C(a, b) ∨ C(a, c)

(C3) C(a, b)⇒ C(b, a)

(Con) (a 6= 0) ∧ (a 6= 1)⇒ C(a, a∗)

(iv) axioms for measure

(M1) (a ≤µ b) ∧ (b u d = 0)⇒ (a t d) ≤µ (b t d)

(M2) (a u d = 0) ∧ (b u d = 0) ∧ (d <µ 1)⇒ ((a ≤µ b)⇔ (a t d ≤µ b t d))

(M3) (a u d = 0) ∧ (b u d = 0) ∧ (d <µ 1)⇒ ((a <µ b)⇔ (a t d <µ b t d))

(M4) a =µ 1 ∨ a∗ =µ 1

(M5) a =µ 1 ∧ b =µ 1⇒ a u b =µ 1

(M6) a = 0⇔ a =µ 0

(v) We add the set of axioms M7n for each natural number n as described in
Section 4.3.

Rules of inference.

ϕ, (ϕ⇒ ψ)

ψ
(MP )

4.2 Substitution

We do not have Uniform Substitution in our axiomatic system. However, we could
prove that rule.

Lemma 4.1 (Uniform Substitution). Let ϕ be a formula from L and p1, p2, . . . , pn
be all propositional variables from ϕ. Let t1, t2, . . . , tn be terms from L. If ` ϕ, then
` ϕ[p1/t1, p2/t2, . . . , pn/tn].

Proof. Let ϕ be a theorem of AxM . Then there exists finite sequence ϕ1, ϕ2, . . . , ϕk
where ϕk = ϕ. We will prove by induction on i - each formula ϕi in this sequence is
either axiom or obtained by applying (MP) on formulae with indices smaller than i.
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Case 1: ϕi is an axiom. In this case when we substitute propositional variables
p1, p2, . . . , pn for terms t1, t2, . . . tn in an axiom then we obtain an instance of the
same axiom. We will consider the following axiom p1 t p2 t . . .t pn t pn+1 t . . .t
pn+l ≤ p1tp2t . . .tpntpn+1t . . .tpn+l and when we apply Uniform Substitution
we obtain t1 t t2 t . . . t tn t pn+1 t . . . t pn+l ≤ t1 t t2 t . . . t tn t pn+1 t . . . t
pn+l and it is an instance of the axiom a ≤ a where a is a term. So if ` ϕi,
then ` ϕi[p1/t1, p2/t2, . . . , pn/tn]. We could prove that substituting propositional
variables with term in the axiom is actually an instance of the same axiom.

Case 2: ϕi is obtained by applying the (MP) on some formulae with indices smaller
than i. Then there are formulae with indices j, ` < i such that ϕ` = ϕj ⇒ ϕi and
for these formulae the induction hypothesis holds then ` ϕj [p1/t1, p2/t2, . . . , pn/tn]
and ` ϕ`[p1/t1, p2/t2, . . . , pn/tn]. So, we have ` ϕj [p1/t1, p2/t2, . . . , pn/tn], `
ϕj [p1/t1, p2/t2, . . . , pn/tn] ⇒ ϕi[p1/t1, p2/t2, . . . , pn/tn] and by applying (MP) we
obtain ` ϕi[p1/t1, p2/t2, . . . , pn/tn].

4.3 Set of axioms M7n

In this section we will describe a special type of linear inequalities systems that will
be studied. We will explain how to associate a formula ΦS from our language L to
an Sn-system. We also will prove that an Sn-system has a solution is equivalent to
its corresponding ΦS formula to be satisfiable. At the end we will form set of axioms
for an Sn-system M7n.

4.3.1 Notion

Definition 4.2 ((n,≤)-type inequality). Let x1, x2, ..., xn be variables for real num-
bers and I`, Ir ⊆ {1, 2, . . . , n}. Then an expression of the type∑

i∈I`

xi ≤
∑
i∈Ir

xi

is called (n,≤)-type inequality.

Definition 4.3 ((n,<)-type inequality). Let x1, x2, ..., xn be variables for real num-
bers and I`, Ir ⊆ {1, 2, . . . , n}. Then an expression of the type∑

i∈I`

xi <
∑
i∈Ir

xi

is called (n,<)-type inequality.

Remark. We will denote such inequalities with σ.
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First of all we consider the following system:

∑
i∈I1`

xi ≤
∑

i∈I1r xi

. . .∑
i∈Ip`

xi ≤
∑

i∈Ipr xi∑
i∈Ip+1

`
xi <

∑
i∈Ip+1

r
xi

. . .∑
i∈Iq`

xi <
∑

i∈Iqr xi

We are interested whether there exists an algorithm which determines for finite
number of steps if such system has a solution with exactly one variable equal to +∞
if such exists. We will explore such an algorithm in the next section.

4.3.2 Algorithm for solving systems of (n,≤)-type and (n,<)-type in-
equalities

Lemma 4.4. There exists an algorithm which for any system S containing only
(n,≤)-type and (n,<)-type inequalities finds a solution with exactly one variable
equal to +∞ if such exists or returns ∅ otherwise. The algorithm finishes for finite
number of steps.

Proof. Let S be a system and σ1, σ2, . . . , σm be all inequalities of that system. So,
any of σi for i ∈ {1, 2, . . . ,m} is either (n,≤)-type inequality or (n,<)-type one. We
will describe an algorithm which reduces the system to another system S′ such that
the new system has n− 1 variables and less inequalities. We will prove that a non-
negative solution for S′ could be extended to a non-negative solution with exactly
one component equal to +∞ for S. On each iteration we consider a new variable
and give it value +∞ so on i-th iteration we assign +∞ to xi, and then decide which
inequalities have to be included in S′. If we are in the case when the new system
could not be constructed when xi = +∞ we continue with xi+1, for i+ 1 ≤ n. Now
we will describe the algorithm solve+∞Sn

in more details - we assume we are on the
i-th iteration and we assign xi = +∞. We will apply the following rules on every
inequality of S in order to construct S′:

Case 1: Current inequality σj is of (n,≤)-type (Def 4.2). Then σj has the
following representation:

∑
i∈I` xi ≤

∑
i∈Ir xi.

Case 1.1: If i ∈ I` and i /∈ Ir then S has no solution with xi = +∞ so we
continue with xi+1.

Case 1.2: If i ∈ Ir then we skip this inequality.

Case 1.3: If i /∈ I` and i /∈ Ir then we include σj in S′.

Case 2: Current inequality σj is of (n,<)-type (Def 4.3). Then σj has the
following representation:

∑
i∈I` xi <

∑
i∈Ir xi.
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Case 2.1: If i ∈ I` then S has no solution with xi = +∞ so we continue with
xi+1.

Case 2.2: If i /∈ I` and i ∈ Ir then we skip this inequality.

Case 2.3: If i /∈ I` and i /∈ Ir then we include σj in S′.

In case the algorithm could not construct a system S′, it indicates with ∅ that
no solution of desired type exists. So, S′ is constructed by the above procedure
without xi for i ∈ [1, n]. If we are in the case when all inequalities from S con-
tain xi, then S′ does not have any inequalities left. So, every list of real numbers
(r1, . . . , ri−1,+∞, ri+1, . . . , rn) is a solution for S and the algorithm finishes with
this result. The other case is when S′ is not empty, then we apply the algorithm for
solving system of linear inequalities described in the Section 2.3. If it does not find
a solution then the solve+∞Sn

finishes with returning ∅. Let the algorithm from Sec-
tion 2.3 finds (r1, . . . , ri−1, ri+1, . . . , rn) which is a non-negative solution for S′. We
will check what will happen with all inequalities which contain xi when substitute
variables with (r1, . . . , ri−1, ri+1, . . . , rn):

Case 1: If we perform the above operation on (n,≤)-type:

Case 1.1: In the skipped inequality only Ir contains i. Then
∑

s∈I` rs ≤∑
t∈Ir\{i} rt+(+∞). This is equivalent to

∑
s∈I` rs ≤ +∞ which is correct

inequality.

Case 1.2: In the skipped inequality both I` and Ir contain i. Then
∑

s∈I`\{i} rs+
(+∞) ≤

∑
t∈Ir\{i} rt + (+∞). This is equivalent to +∞ ≤ +∞ which is

correct inequality.

Case 2: If we perform the above operation on (n,<)-type. Then
∑

s∈Il rs <∑
t∈Ir\{i} rt + (+∞). It is equivalent to

∑
s∈I` rs < +∞. So, we get correct

inequality.

We have just proved that (r1, . . . , ri−1, ri, ri+1, . . . , rn) where ri = +∞ is a solution
for the skipped inequalities. We know that it is a solution for all inequalities from S

which does not contain xi. Then (r1, r2, . . . , rn) is a non-negative solution such that
exactly one component is equal to +∞.
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4.3.3 Sn-systems

Definition 4.5 (Sn-system). A system S of the type

∑
i∈I1`

xi ≤
∑

i∈I1r xi

. . .∑
i∈Ip`

xi ≤
∑

i∈Ipr xi∑
i∈Ip+1

`
xi <

∑
i∈Ip+1

r
xi

. . .∑
i∈Iq`

xi <
∑

i∈Iqr xi

0 ≤ x1
0 ≤ x2
. . .

0 ≤ xn

is called Sn-system.

4.3.4 Associate formula form L to Sn-system

First of all we will show how to associate formulae to both types of inequalities. Let
p1, p2, . . . , pn ∈ BoolV ars. For inequality of (n,≤)-type (Def. 4.2):⊔

i∈I`

pi ≤µ
⊔
i∈Ir

pi

Using the same idea ⊔
i∈I`

pi <µ
⊔
i∈Ir

pi

corresponds to the inequality of (n,<)-type (Def. 4.3). For such formulae we will use
ϕσ. So that, we associate ϕσi with the i-th inequality of a given Sn-system. Thus,
for any Sn-system S we have

ϕS =
∧

1≤i≤m
ϕσi

We need to add two more conditions

ΦS =
∧

1≤i<j≤n
(pi u pj = 0) ∧ (

⊔
1≤i≤n

pi = 1) ∧ ϕS

Remark. To the discussed so far systems we added n new inequalities which ensure
non-negative solution.

Remark. We will consider
∑

i∈∅ xi as abbreviation for 0. So, 0 ≤ xi is a (n,≤)-type
inequality where I` = ∅ and Ir = {i}.

Remark. The algorithm described in Lemma 4.4 could be applied on Sn-systems
and finds whether it has solution with exactly one component equals to +∞.
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4.3.5 Set of axioms for Sn-system

We proved so far:

(i) We could determine in finitely many steps whether a given system has a solu-
tion with exactly one variable equal to +∞ - the result from Lemma 4.4.

(ii) For a given n, Sn-systems are finitely many. First of all we will consider (n,≤)-
type inequality

∑
i∈I` xi ≤

∑
i∈Ir xi and I`, Ir ⊆ {1, 2, . . . , n}. Since the sets

I`, Ir are subsets of the numbers {1, 2, . . . , n} then all (n,≤)-type inequalities
for given n are 22n. We apply the same argument for (n,<)-type inequality
and evaluate that for fixed n the number of all inequalities of both types is
22n+1. Finally, all Sn-systems for given n are 22

2n+1
.

So, for each n ∈ N for all Sn-systems S that do not have a solution with one
component equal to +∞ we associate the following formula:

Φax
S =

∧
1≤i<j≤n

(pi u pj = 0) ∧ (
⊔

1≤i≤n
pi = 1)⇒ ¬ϕS

We take all substitution instances of Φax
S as axioms. That is Φax

S [p1/t1, p2/t2, . . . , pn/tn]
where t1, t2, . . . , tn are terms.

4.4 Equivalences with the classic set of axioms for Boolean algebras

In this section we will show that with the axioms (B1)÷(B10) we could prove the
standard axioms for Boolean algebra.

Lemma 4.6. Let a,b and c be terms from L. Then:

(1) ` a u a = a

(1′) ` a t a = a

(2) ` a ≤ a t b

(2′) ` b ≤ a t b

(3) ` a u b ≤ a

(3′) ` a u b ≤ b

(4) ` a u b = b u a

(4′) ` a t b = b t a

(5) ` a t 0 = a

(5′) ` a u 0 = 0

(6) ` a t 1 = 1

(6′) ` a u 1 = a

(7) ` a u (b u c) = (a u b) u c

(7′) ` a t (b t c) = (a t b) t c

(8) ` a u (b t c) = (a u b) t (a u c)

(8′) ` a t (b u c) = (a t b) u (a t c)

(9) ` (a t b)∗ = a∗ u b∗

(9′) ` (a u b)∗ = a∗ t b∗

(10) ` a t a∗ = 1

(10′) ` a u a∗ = 0
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(11) ` a ≤ b⇔ b∗ ≤ a∗

(12) ` a = a∗∗

(13) ` 0∗ = 1

(14) ` 1∗ = 0

Proof. We will show a proof for some of them and the others could be proved using
similar arguments.

(1) We need to prove ` a u a ≤ a and ` a ≤ a u a since = is abbreviation.

(1.1) We will prove ` a ≤ a u a. We start with an instance of axiom (B8):
` a ≤ (a t a) ⇔ (a ≤ a) ∧ (a ≤ a). We use that ”⇔” is abbreviation and the
tautology ϕ ∧ ψ ⇒ ϕ to infer ` (a ≤ a) ∧ (a ≤ a) ⇒ a ≤ (a t a). We consider
that ` (a ≤ a)⇒ (a ≤ a)⇒ (a ≤ a)∧ (a ≤ a), a ≤ a is an instance of (B1) and
(MP) so we obtain ` (a ≤ a) ∧ (a ≤ a). Thus, ` a ≤ (a t a).

(1.2) The other direction is ` a u a ≤ a and we start with an instance of (B1):
` aua ≤ aua. We apply the axiom (B8) ` aua ≤ aua⇔ (aua ≤ a)∧(aua ≤ a).
Similarly to (1.1) using that ”⇔” is abbreviation, the axiom ` a u a ≤ a u a
and (MP) we obtain ` (a u a ≤ a) ∧ (a u a ≤ a). From here and the tautology
` (a u a ≤ a) ∧ (a u a ≤ a)⇒ a u a ≤ a we infer ` a u a ≤ a.

(2) We will prove a ≤ a t b but using exactly the same proof except the last step
where we use the tautology ϕ∧ψ ⇒ ϕ. If we use ϕ∧ψ ⇒ ψ, then it will be a proof
for (3′). We start with the axiom (B7): ` at b ≤ at b⇔ (a ≤ at b)∧ (b ≤ at b).
From here and using that ”⇔” is an abbreviation, ` a t b ≤ a t b and (MP) we
infer ` (a ≤ a t b) ∧ (b ≤ a t b). Here is the step where we use the tautology
ϕ ∧ ψ ⇒ ϕ and obtain ` a ≤ a t b. If we use ϕ ∧ ψ ⇒ ψ then we infer ` b ≤ a t b
which is a proof for (3′).

(3) Similarly to (2) the proof for (3) is the same as the proof for 3′ except the last
step. We start with an instance of the axiom (B8): ` a u b ≤ a u b ⇔ (a u b ≤
a)∧ (au b ≤ b). We infer ` (au b ≤ a)∧ (au b ≤ b) from the tautology ϕ∧ψ ⇒ ϕ,
the axiom a u b ≤ a u b and (MP). We will use one more time that tautology and
obtain ` a u b ≤ a. If we consider the tautology ϕ ∧ ψ ⇒ ψ then we will infer
` a u b ≤ b.

(4′) We will prove ` at b ≤ bt a and ` bt a ≤ at b. We will show a proof only for
` at b ≤ bt a because the other direction is the same. We know that ` a ≤ bt a
and ` b ≤ b t a. We use that ` a ≤ b t a⇒ b ≤ b t a⇒ (a ≤ b t a) ∧ (b ≤ b t a)
and (MP) to infer ` (a ≤ b t a) ∧ (b ≤ b t a). From the axiom (B7) we obtain
` (a ≤ b t a) ∧ (b ≤ b t a)⇒ a t b ≤ b t a. From here and (MP) ` a t b ≤ b t a.
Similarly, we obtain ` b t a ≤ a t b and so ` a t b = b t a.

(9) We will prove ` (a t b)∗ ≤ a∗ u b∗ and ` a∗ u b∗ ≤ (a t b)∗.

(9.1) We start with ` a ≤ a t b ⇔ (a t b)∗ ≤ a∗. So, we infer ` a ≤ a t b ⇒
(a t b)∗ ≤ a∗. We proved in (2) that ` a ≤ a t b and using (MP) we obtain
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(atb)∗ ≤ a∗. Similarly, we infer (atb)∗ ≤ b∗. From here and using the tautology
ϕ ⇒ ψ ⇒ ϕ ∧ ψ we prove ` (a t b)∗ ≤ a∗ ∧ (a t b)∗ ≤ b∗. Now we consider an
instance of the axiom (B8): ` (at b)∗ ≤ a∗ u b∗ ⇔ (at b)∗ ≤ a∗ ∧ (at b)∗ ≤ b∗.
So we infer ` (a t b)∗ ≤ a∗ ∧ (a t b)∗ ≤ b∗ ⇒ (a t b)∗ ≤ a∗ u b∗. By (MP)
` (a t b)∗ ≤ a∗ u b∗.

(9.2) We start with ` a∗ u b∗ ≤ a∗. We infer ` a∗∗ ≤ (a∗ u b∗)∗ from the last
formula, (MP) and ` a∗ub∗ ≤ a∗ ⇔ a∗∗ ≤ (a∗ub∗)∗. We consider the following
tautology a ≤ a∗∗ ⇒ a∗∗ ≤ (a∗ u b∗)∗ ⇒ a ≤ (a∗ u b∗)∗ and using (MP) two
times we get ` a ≤ (a∗ u b∗)∗. Analogously, we obtain ` b ≤ (a∗ u b∗)∗. From
the last two formulae and the propositional tautology ϕ⇒ ψ ⇒ ϕ ∧ ψ we infer
` a ≤ (a∗ u b∗)∗ ∧ b ≤ (a∗ u b∗)∗. Now we use an instance of the axiom (B7)
` a t b ≤ (a∗ u b∗)∗ ⇔ a ≤ (a∗ u b∗)∗ ∧ b ≤ (a∗ u b∗)∗. Then from the tautology
ϕ ∧ ψ ⇒ ϕ follows ` a ≤ (a∗ u b∗)∗ ∧ b ≤ (a∗ u b∗)∗ ⇒ a t b ≤ (a∗ u b∗)∗. So we
infer ` atb ≤ (a∗ub∗)∗. We have proved that ` atb ≤ (a∗ub∗)∗ ⇔ (a∗ub∗)∗∗ ≤
(a t b)∗. From the last two formulae we obtain ` (a∗ u b∗)∗∗ ≤ (a t b)∗. The
formula a∗ u b∗ ≤ (a t b)∗ is a tautological consequence of the last formula and
a∗ u b∗ ≤ (a∗ u b∗)∗∗. Thus, ` a∗ u b∗ ≤ (a t b)∗.

(9′) We have to prove ` (a u b)∗ ≤ a∗ t b∗ and ` a∗ t b∗ ≤ (a u b)∗.

(9′.1) The direction ` a∗tb∗ ≤ (aub)∗ is similar to (9.1) so it is briefly mentioned.
We start with ` aub ≤ a and infer ` a∗ ≤ (aub)∗. From here and ` b∗ ≤ (aub)∗
we obtain ` a∗ ≤ (a u b)∗ ∧ b∗ ≤ (a u b)∗. From the axiom (B7) we get that
` a∗ ≤ (a u b)∗ ∧ b∗ ≤ (a u b)∗ ≤ (a u b)∗ ⇒ (a∗ t b∗) ≤ (a u b)∗. Thus,
` a∗ t b∗ ≤ (a u b)∗.

(9′.2) Analogously, the direction (a u b)∗ ≤ a∗ t b∗ is similar to (9.2). We start
with ` a∗ ≤ a∗ t b∗. We infer ` (a∗ t b∗)∗ ≤ a as a tautological consequence of
a∗∗ ≤ a and (a∗ t b∗)∗ ≤ a∗∗. Similarly we obtain ` (a∗ t b∗)∗ ≤ b so we have
` (a∗ t b∗)∗ ≤ a ∧ (a∗ t b∗)∗ ≤ b. From the axiom (B8) and (MP) we derive
` (a∗ t b∗)∗ ≤ a u b. We will use (11) and infer ` (a u b)∗ ≤ (a∗ t b∗)∗∗. We
obtain ` (au b)∗ ≤ a∗t b∗ as a tautological consequence of the last formula and
(a∗ t b∗)∗∗ ≤ a∗ t b∗.

(10′) We will prove ` a u a∗ ≤ 0 because we have an axiom ` 0 ≤ a u a∗. We start
with the axiom (B9): ` a ≤ a ⇔ a u a∗ ≤ 0. Then we obtain ` a u a∗ ≤ 0 from
` a ≤ a ⇔ a u a∗ ≤ 0, the axiom a ≤ a and (MP). So, we have ` a u a∗ ≤ 0 and
` 0 ≤ a u a∗. Thus, ` a u a∗ = 0.

(11) We have to prove ` a ≤ b⇒ b∗ ≤ a∗ and ` b∗ ≤ a∗ ⇒ a ≤ b.

(11.1) In order to prove ` a ≤ b ⇒ b∗ ≤ a∗ we start with the axiom (B9):
` a ≤ b⇔ a u b∗ ≤ 0 and we obtain ` a ≤ b⇒ a u b∗ ≤ 0. We also proved that
` a u b∗ = b∗ u a. The formula a ≤ b ⇒ b∗ u a ≤ 0 is tautological consequence
from the last two formulae so that ` a ≤ b⇒ b∗ u a ≤ 0 . We infer analogously
` a ≤ b⇒ b∗ua∗∗ ≤ 0 as tautological consequence from last formula and ` a =
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a∗∗. Now we use an instance of the axiom (B9) ` b∗ u a∗∗ ≤ 0⇔ b∗ ≤ a∗. From
here and Theorem 2.9 we obtain ` (a ≤ b⇒ b∗ ≤ a∗)⇔ (a ≤ b⇒ b∗ua∗∗ ≤ 0).
Thus, we infer ` a ≤ b⇒ b∗ ≤ a∗ using that ”⇔” is an abbreviation, (MP) and
the propositional tautology ` ϕ ∧ ψ ⇒ ϕ.

(11.2) The proof for ` b∗ ≤ a∗ ⇒ a ≤ b starts with the following instance of the
axiom (B9) ` b∗ ≤ a∗ ⇔ b∗ u a∗∗ ≤ 0 and the other steps are similar.

(12) We have to prove ` a∗∗ = a. We start with the axiom (B9): ` a∗∗ ≤ a ⇔
a∗∗ u a∗ ≤ 0. We obtain ` a∗∗ u a∗ ≤ 0 using that ”⇔” is an abbreviation, the
axiom a∗∗ ≤ a and (MP). We also have that ` 0 ≤ a∗∗ u a∗. Then, ` a∗∗ u a∗ = 0.
We consider the following tautology a∗∗ u a∗ = 0⇒ au a∗ = 0⇒ a∗∗ = a. Hence,
we infer ` a∗∗ = a.

5 Sn-systems and HL-structures

In this section we will describe HL-structures. We will prove that the Sn-system S

has a solution and ΦS is satisfiable in HL-structure are equivalent. We start with
giving some definitions that will be used later in this study.

5.1 HL-structures

Definition 5.1 (HL-measure). A measure µ on Boolean algebra B = 〈B, 0B, 1B,uB,tB, ∗B〉
is an HL-measure if:

(i) µ is positive, i.e. µ(a) = 0 if and only if a = 0B
(ii) µ(1B) = +∞
(iii) if µ(a) = µ(b) = +∞ then µ(a uB b) = +∞

Remark. If µ(a) = +∞ and µ(a) ≤ µ(b), then µ(a) = µ(b).

Remark. If B is a finite Boolean algebra then a measure µ on B is an HL-measure
if and only if the following conditions are satisfied:

(i) for all atoms a, µ(a) > 0

(ii) for exactly one atom b, µ(b) = +∞

Definition 5.2 (HL-structure). A structure C = 〈〈B, C〉, µ〉 is an HL-structure when
〈B, C〉 is a contact algebra and µ is an HL-measure.

Remark. The tuple 〈〈B, C〉, µL〉 where 〈B, C〉 is the contact algebra of polytopes
in R+ and µL is the Lebesgue measure is an HL-structure.

Definition 5.3 (Finite Relational HL-structure). Let R ⊆ W × W be reflexive
and symmetric relation and let the graph 〈W,R〉 be connected. Then a structure
C = 〈〈B, C〉, µ〉 is a finite relational HL-structure if:
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(i) B = 〈P(W ), ∅,W,∩,∪, \〉
(ii) C ⊆ P(W )×P(W ) and C(a, b)↔ (∃x ∈ a)(∃y ∈ b)(R(x, y))

(iii) µ is an HL-measure

5.2 Soundness of ΦS

Proposition 5.4. Let S be an Sn-system of inequalities. Then the following two
conditions are equivalent:

(i) S has a solution (r1, r2, ..., rn) where ri = +∞ for exactly one i ∈ [1, n]

(ii) ΦS is satisfiable in finite relational HL-structure C = 〈〈B, C〉, µ〉.

Proof. (i⇒ ii) Let (r1, r2, ..., rn) be a solution of S and exactly one ri, 1 ≤ i ≤ n is
equal to +∞. Let (ri1 , ri2 , . . . rit) be all numbers from the solution (r1, r2, ..., rn)
that are different from 0 and let denote the set of their indices with I = {i1, i2, . . . , it}.
Let a1, a2, . . . , at be different objects and let denote this set with A = {a1, a2, . . . , at}.
We will define a Boolean algebra B = 〈P(A), ∅, A,∩,∪, \〉. The contact relation C
is defined in arbitrary way through reflexive and symmetric R ⊆ A × A such that
the graph 〈A,R〉 is connected. We will define a measure µ in the following way:

µ({aj})
def
= rij , for j = 1, 2, . . . , t and µ(∅) def

= 0. If A1 ⊆ A, then µ(A1) =
∑

a∈A1
µ(a).

We will prove that µ is an HL-measure:

(i) If A1, A2 ∈ P(A) and A1 ∩A2 = ∅, then µ(A1 ∪A2) = µ(A1) + µ(A2)

(ii) Exactly one element from the list (r1, r2, ..., rn) is equal to +∞. Since it is
non-zero it is mapped to aj for some j, 1 ≤ j ≤ t. So that, µ returns +∞ for
exactly one atom.

(iii) A1, A2 ∈ P(A) and µ(A1) = µ(A2) = +∞ then both sets contain aj such
that µ({aj}) = rij = +∞. Thus, aj ∈ A1 ∩A2 and µ(A1 ∩A2) = +∞

The measure µ satisfies the three conditions for HL-measure. So that, the tuple
C = 〈〈B, C〉, µ〉 is an HL-structure. We will define valuation V from BoolV ars∪{0, 1}
on the domain of our Boolean algebra in the following way:

• V(pij ) =

{
{aj}, if ij ∈ I
∅, otherwise

• V(0) = ∅
• V(1) = A

It is extended for terms in standard way:

• V(a∗) = A \ V(a)

• V(a u b) = V(a) ∩ V(b)

• V(a t b) = V(a) ∪ V(b)
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We have to prove that M |= ΦS where M = 〈C, V〉. The formula ΦS has the following
representation: ∧

1≤i<j≤n
(pi u pj = 0) ∧ (

⊔
1≤i≤n

pi = 1) ∧ ϕS

We start proving M |=
∧

1≤i<j≤n(pi u pj = 0). By definitions for truth in model
and our valuation we get the following M |= pi u pj = 0 ↔ V(pi u pj) = V(0) ↔
V(pi) ∩ V(pj) = ∅. We chose elements of A to be different. Then in the case when
V(pi) = {ai} and V(pj) = {aj} we have that V(pi) ∩ V(pj) = {ai} ∩ {aj} = ∅.
In the other cases when V(pi) = ∅ or V(pj) = ∅ or V(pi) = V(pj) = ∅ it is clear
that V(pi) ∩ V(pj) = ∅. We proved that for an arbitrary conjunct pi u pj = 0 that
M |= pi u pj = 0 so using similar arguments we could show the same for the others.
Therefore, M |=

∧
1≤i<j≤n(pi u pj = 0).

We continue with M |=
⊔

1≤i≤n pi = 1. We have to prove that V(p1) ∪ V(p2) ∪
. . . ∪ V(pn) = A. Since t ≤ n it follows that I ⊆ {1, 2, . . . , n}. So, V(pj) = {aj}
for all j ∈ I and in the case when t < n we will have V(pj) = ∅ where j /∈ I but
j ∈ {1, 2, . . . , n}. Thus, V(p1) ∪ V(p2) ∪ . . . ∪ V(pn) = {ai1} ∪ {ai2} ∪ . . . ∪ {ait} ∪ ∅ ∪
. . . ∪ ∅ = {ai1 , ai2 . . . ait} = A.

We have to prove M |= ϕS and we use that ϕS =
∧

1≤i≤m ϕσi . So that, our
goal is to show M |=

∧
1≤i≤m ϕσi . We know from the previous section that each

ϕσi corresponds to a formula of (n,≤)-type or (n,<)-type inequalities. We will
prove for inequality of (n,≤)-type and it is analogous for the other type. Let as-
sume ϕσj =

⊔
i∈Ij`

pi ≤µ
⊔
i∈Ijr pi. Then we will apply valuation V and measure

µ and get the following result: M |=
⊔
i∈Ij`

pi ≤µ
⊔
i∈Ijr pi ↔ µ(

⋃
i∈Ij`

V(pi)) ≤
µ(
⋃
i∈Ijr V(pi)) ↔ Σ

i∈Ij`
µ(V(pi)) ≤ Σ

i∈Ijrµ(V(pi)) ↔ Σ
i∈Ij`

ri ≤ Σ
i∈Ijr ri. The formula

ϕσj corresponds to the σj inequality Σ
i∈Ij`

xi ≤ Σ
i∈Ijl

xi from the system S. We know

that (r1, r2, . . . , rn) is a solution for the system. So, when we substitute xi variables
with the corresponding numbers from the solution in Σ

i∈Ij`
ri ≤ Σ

i∈Ijr ri it has to be

correct inequality. Therefore, σj is correct inequality. Thus, M |= ϕσj . Therefore,
we have M |=

∧
1≤i≤m ϕσi . The formula ΦS is conjuction of three formulae and we

have proved that every conjuction member of ΦS is true in M = 〈C, V〉 then M |= ΦS.
(ii⇒ i) Let M = 〈C, V〉 where C = 〈〈B, C〉, µ〉 is a finite relational HL-structure

and V is valuation from BoolV ars on the domain of the Boolean algebra B and
M |= ΦS. We use that ΦS is a conjuction of three formulae. We start with
formula ϕS which is also a conjuction of formulae corresponding to all inequali-
ties of S. We consider the formula ϕσj which corresponds to the σj inequality
of S. We know that M |= ϕσj and similarly to the other direction we will ap-
ply valuation V, measure µ and truth in model: M |=

⊔
i∈Ijl

pi ≤µ
⊔
i∈Ijr pi ↔

Σ
i∈Ij`

µ(V(pi)) ≤ Σ
i∈Ijrµ(V(pi)). The last is correct inequality because M is a model

for ΦS. We could prove (µ(V(p1)), µ(V(p2)), . . . , µ(V(pn))) is a solution for the in-
equalities σ1, σ2, . . . , σm using mentioned argument. We need to prove that there
is exactly one element V(pi) which has measure +∞. From M |= ΦS follows
M |=

⊔
1≤i≤n pi = 1. We develop the formula and obtain V(p1) tB V(p2) tB . . . tB
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V(pn) = V(1) = 1B. Now we check the measures and consider that all V(pi) are
pair-wise disjoint (it comes from M |=

∧
1≤i<j≤n(pi u pj = 0)). So, we have

µ(V(p1)) + µ(V(p2)) + · · · + µ(V(pn)) = µ(1B) = +∞. Then at least one of these
elements has a measure +∞. In fact, it is only one. Let us assume there are two
such elements. Then by the third condition for HL-measure their intersection has
also measure +∞. On the other hand, we have that M |=

∧
1≤i<j≤n(pi u pj = 0).

So, we obtain that 0 =µ 1 which is a contradiction.

6 Soundness and Completeness

In this section we will prove Soundness and Completeness theorems with respect to
the finite relational HL-structures.

6.1 Soundness

Lemma 6.1. All axioms from our axiomatic system LHL are true in the class of
HL-structures CHL.

Proof. Let M = 〈C, V〉 be a model where C = 〈〈B, C〉, µ〉 is an HL-structure and V is
an arbitrary valuation from BoolV ars to the Boolean algebra. We will begin with
the axioms for measure:

1. ((a ≤µ b) ∧ (b u d = 0))⇒ (a t d) ≤µ (b t d)
Let M |= ((a ≤µ b) ∧ (b u d = 0)) which is equivalent to M |= (a ≤µ b) and
M |= (b u d = 0). It follows that µ(V(a)) ≤ µ(V(b)) and V(b) uB V(d) = 0B.
We continue with the right side of the axiom: µ(V(a t d)) ≤ µ(V(b t d)) ↔
µ(V(a) tB V(d)) ≤ µ(V(b) tB V(d)) using the result V(b) uB V(d) = 0B we get
µ(V(a)tBV(d)) ≤ µ(V(b))+µ(V(d)). We do not know whether V(a)uBV(d) = 0B
or V(a) uB V(d) 6= 0B but in both cases µ(V(a) tB V(d)) ≤ µ(V(a)) + µ(V(d)).
Thus, µ(V(a) tB V(d)) ≤ µ(V(a)) + µ(V(d)) ≤ µ(V(b)) + µ(V(d)). So that,
M |= (a t d) ≤µ (b t d).

2. ((a u d = 0) ∧ (b u d = 0) ∧ (d <µ 1))⇒ ((a ≤µ b)⇔ (a t d ≤µ b t d))
Let M |= ((aud = 0)∧(bud = 0)∧(d <µ 1)). It is equivalent to V(a)uB V(d) =
0B and V(b) uB V(d) = 0B and µ(V(d)) < +∞. Later in this proof we will use
µ(V(d)) < +∞ which means that µ(V(d)) is a real number.

(⇒) Let M |= (a ≤µ b) which is equivalent to µ(V(a)) ≤ µ(V(b)). We will
add µ(V(d)) to both sides µ(V(a)) + µ(V(d)) ≤ µ(V(b)) + µ(V(d))) and let
denote this inequality with (ineq-1). We know from the premise of the
axiom V(a) uB V(d) = 0B and V(b) uB V(d) = 0B then (a t d ≤µ b t d) ↔
µ(V(a)) + µ(V(d)) ≤ µ(V(b)) + µ(V(d)) which is correct inequality due to
(ineq-1). So that, M |= (a t d ≤µ b t d).

(⇐) Let M |= (atd ≤µ btd) then it follows µ(V(a)tB V(d)) ≤ µ(V(b)tB V(d))
and using the result from the premise of the axiom µ(V(a)) + µ(V(d)) ≤
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µ(V(b)) + µ(V(d)). We use that µ(V(d)) is a real number and remove it
from both sides. So we obtain a correct inequality µ(V(a)) ≤ µ(V(b)) and let
denote this inequality with ineq-2. We will develop a ≤µ b which is equivalent
to µ(V(a)) ≤ µ(V(b)). The last is correct inequality using the result ineq-2.
Thus, M |= (a ≤µ b).

3. ((a u d = 0) ∧ (b u d = 0) ∧ (d <µ 1))⇒ ((a <µ b)⇔ (a t d <µ b t d))
The proof is almost the same as previous one.

4. a =µ 1 ∨ a∗ =µ 1
We have to prove that M |= (a =µ 1 ∨ a∗ =µ 1). It is equivalent to M |=
(a =µ 1) or M |= (a∗ =µ 1). Let develop the first formula µ(V(a)) = µ(1B) ↔
µ(V(a)) = +∞. The other formula µ(V(a∗)) = µ(1B)↔ µ(1B\V(a)) = µ(1B)↔
µ(1B \ V(a)) = +∞. Now we use at a∗ = 1 which comes from the Lemma 4.6.
We apply the definitions and get that µ(V(a)) + µ(V(a∗)) = µ(V(1)) = µ(1B) =
+∞. We further know that 0 ≤ µ(V(a)), µ(V(a∗)). So, we have that at least
one of V(a) and V(a∗) has measure +∞. In order to prove that exactly one has
measure +∞ we use axiom (M5) and a result from Lemma 4.6 a u a∗ = 0. If
we assume that both a =µ 1 and a∗ =µ 1 then au a∗ =µ 1. On the other hand
a u a∗ = 0 and we obtain that 0 =µ 1 which is contradiction.

5. a =µ 1 ∧ b =µ 1⇒ a u b =µ 1
Let M |= a =µ 1 ∧ b =µ 1 then it follows M |= a =µ 1 and M |= b =µ 1.
We apply the definitions: µ(V(a)) = µ(V(1))↔ µ(V(a)) = +∞. We know that
µ is defined to give +∞ for 1B and so 1B ∈ V(a). Using the same arguments
1B ∈ V(b). Then 1B ∈ V(a) uB V(b). So that, µ(V(a) uB V(b)) = +∞.

6. a = 0⇔ a =µ 0
We start with the implication a = 0 ⇒ a =µ 0 and apply the definitions
M |= a = 0 ↔ V(a) = V(0) = 0B. Now we develop the conclusion of the
implication µ(V(a)) = µ(V(0)). We know that V(a) = V(0) = 0B. Then,
M |= a =µ 0. We consider the opposite direction a =µ 0 ⇒ a = 0 and
again apply the definitions M |= a =µ 0 ↔ µ(V(a)) = µ(V(0)). We further
develop the right-hand side of the equality and obtain µ(V(0)) = µ(0B) = 0
and so µ(V(a)) = 0. We use that µ is an HL-measure and get that V(a) = 0B.
Therefore, M |= a = 0.

Now we will prove that the axioms for Sn-system are true in M. So, we have to show
M |=

∧
1≤i<j≤n(ti u tj = 0) ∧ (

⊔
1≤i≤n pi = 1)⇒ ¬ϕS. Since it is an axiom then the

system that corresponds to ϕS does not have a solution with exactly one component
equals to +∞. So from the Proposition 5.4 we get that M 6|= ϕS. Since the axiom
is an implication then it is enough to prove that the conclusion is true so the whole
implication is also true. We need to prove that M |= ¬ϕS which by definition is
equivalent to M 6|= ϕS. According to the above proposition then we have M |= ¬ϕS.
The other axioms could be proved using similar arguments.
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Lemma 6.2. Modus Ponens (MP ) preserves validity in the class of HL-structures
CHL.

Proof. We need to prove that whenever the premise of the rule is true in HL-
structures then the conclusion is also true. Let C = 〈〈B, C〉, µ〉 be an HL-structure.
Assume that 〈C, V〉 |= ϕ and 〈C, V〉 |= ϕ ⇒ ψ. When the implication is true
and the premise of that implication is true then the conclusion is also true. So,
〈C, V〉 |= ψ.

Theorem 6.3 (Soundness theorem). All theorems of LHL are true in the class of
HL-structures CHL.

Proof. Let ϕ be a theorem of LHL. Then there exists finite sequence ϕ1, ϕ2, . . . , ϕn
where ϕn = ϕ. We will prove by induction on i that ϕi is true in the class of HL-
structures CHL. The first member of the proof ϕ1 has to be an axiom. Then from
(Lemma 6.1) it follows that ϕ1 is true in CHL. Let suppose that the statement is
true for i = 1, 2, . . . , k and k < n. We will check for k + 1 ≤ n:

Case 1: ϕk+1 is an axiom. Then the statement is true by (Lemma 6.1).

Case 2: ϕk+1 is obtained by applying (MP) on some formulae ϕl and ϕj = ϕl ⇒ ϕk+1

where j, l < k + 1. By the induction hypothesis they are true in HL-structures
and by (Lemma 6.2) it follows that the statement is true for ϕk+1.

6.2 Completeness

We will introduce the abbreviation for pε where p is a boolean variable and ε is a

number such that ε ∈ {0, 1} in the following way: pε =

{
p, if ε = 0

p∗, if ε = 1

Definition 6.4. Let p1, p2, . . . , pk be Boolean variables. Then the term of the fol-
lowing type pε11 u p

ε2
2 u . . . u p

εk
k is called k-monom.

Remark. All k-monoms that could be constructed with boolean variables p1, p2, . . . , pk
are 2k.

Definition 6.5. We define
⊔
i∈I ti for every finite set I and a family of terms {ti}i∈I :

Case 1: I = ∅ then
⊔
i∈I ti = 0

Case 2: I = {i1} for some natural number i1 then
⊔
i∈I ti = ti1

Case 3: I = {i1, i2} for some natural numbers i1 and i2 then
⊔
i∈I ti = ti1 t ti2

Case 4: I = I1 ∪ {i0} for some set I1 and natural number i0 then
⊔
i∈I ti =

(
⊔
i∈I1 ti) t ti0

Remark. The above definition is correct because of associativity and commutativity
of t.
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Lemma 6.6. Let p1, p2, . . . , pk be propositional variables. We construct all 2k

m1,m2, . . . ,m2k k-monoms. Then ` (
⊔

1≤i≤2k mi) = 1.

Proof. We will prove the lemma by induction on k, the number of propositional
variables.

• Let k = 1. Then we have m1 = p1 and m2 = p∗1. So ` p1 t p∗1 = 1

• Let the lemma be true for some k. So `
⊔

1≤i≤2k mi = 1.

• We will prove the proposition for k+1. We have to add the new propositional
variable pk+1 to the constructed so far k-monoms. By the induction hypothesis
we have `

⊔
1≤i≤2k mi = 1 and as in the base case ` pk+1 t p∗k+1 = 1. The

formula (
⊔

1≤i≤2k mi) u (pk+1 t p∗k+1) = 1 is tautological consequence of the
above two formulae and so ` (

⊔
1≤i≤2k mi)u (pk+1 t p∗k+1) = 1. Now we apply

the axiom (B5) and get ` (
⊔

1≤i≤2k mi u pk+1) t (
⊔

1≤i≤2k mi u p∗k+1) = 1. We
use the symmetry of u and axiom (B5) and get the following: ` (m1 u pk+1)t
. . .t (m2k u pk+1)t (m1 u p∗k+1)t . . .t (m2k u p∗k+1) = 1. Actually, (mi u pk+1)
is a term that looks like pε11 u . . . u p

εk
k u pk+1. It is true for all other terms.

There are 2k+1 terms in the above sum. So they are (k+1)-monoms and we
denote them with m′. So, `

⊔
1≤i≤2k+1 m′i = 1.

Lemma 6.7. Let p1, p2, . . . , pk for k ≥ 1 be different boolean variables and let
m1,m2,m3, . . . ,m2k be all k − monoms for these variables. Then there exists an
algorithm which for every boolean term a containing variables among p1, p2, . . . , pk
returns another term which is the representation of the original term as a sum of
monoms mi1 tmi2 t . . . tmis .

Proof. Let p1, p2, . . . , pk for k ≥ 1 be different boolean variables and let m1,m2,m3

. . . ,m2k be all k − monoms for these variables. Let the term a contains proposi-
tional variables among p1, p2, . . . , pk. We will prove the lemma by induction on the
construction of a:

Case 1: The term a is a propositional variable pi for some 1 ≤ i ≤ k. Let
denote with Ipi the indices of all k-monoms which contain pi. According to
Remark 6.2, there are 2(k−1) such k-monoms and the term

⊔
j∈Ipi

mj is the

representation of term a as a sum of k-monoms.

Case 2: The term a = a1 t a2 and terms
⊔
i∈Is mi,

⊔
i∈It mi where Is, It ⊆

{1, 2, . . . , 2k} are the representations as a sum of k-monoms for terms a1 and
a2 respectively. We construct Iu = Is ∪ (It \ (Is ∩ It)). So,

⊔
l∈Iu ml is the

representation of a as a sum of k-monoms.

Case 3: The term a = a1 u a2 and terms
⊔
i∈Is mi,

⊔
i∈It mi where Is, It ⊆

{1, 2, . . . , 2k} are the representations as a sum of k-monoms for terms a1 and
a2 respectively. Then

⊔
i∈Is,j∈It mi u mj is a representation of a. We will

consider that mi umj = 0 for i 6= j and mi umj = mi for i = j. In this case
Iu = Is ∩ It and

⊔
i∈Iu mi is the representation of a.
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Case 4: The term a = a∗1 and a1 =
⊔
i∈I mi where the set I ⊆ {1, 2, 3, . . . , 2k}.

Let J = {1, 2, 3, . . . , 2k} \ I and now we define a∗1 =
⊔
j∈J mj . We have that

I ∪ J = {1, 2, 3, . . . , 2k} so according to Lemma 6.6 we get that a1 t a∗1 = 1.
We want to prove that a1 u a∗1 = 0. We have a1 u a∗1 =

⊔
i∈I mi u

⊔
j∈J mj =⊔

i∈I,j∈J mi umj . We consider an arbitrary mi such that i ∈ I and mj , j ∈ J .
We know that I ∩ J = ∅ so that mi and mj are different k-monoms. Then
there is an index l such that pl is in mi and p∗l is in mj . We use that plup∗l = 0
so mi umj = 0. Then a1 u a∗1 =

⊔
i∈I,j∈J mi umj = 0.

Definition 6.8 (Negation Normal Form (NNF)). We say that formula ϕ is in Nega-
tion Normal Form or NNF if all connectives are ∧, ∨, ¬ and ¬ occurs only in front
of atomic formulae.

Definition 6.9 (Complexity of formula). We will define complexity of formula ϕ
and we denote it with |ϕ|:

|ϕ| =


1 , if ϕ is atomic

|ϕ1|+ 1 , if ϕ = ¬ϕ1

|ϕ1|+ |ϕ2|+ 1 , if ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2

Lemma 6.10 (Negation Normal Form Lemma). Let ϕ be a formula from L. There
exists an algorithm which constructs a formula ϕ′ in NNF for finite number of steps
and ` ϕ⇔ ϕ′.

Proof. We will prove the lemma by induction on n = |ϕ|. We start with n = 1 then
ϕ is atomic and ϕ is NNF. So ` ϕ⇔ ϕ′. Let the proposition is true for all formulae
with complexity less than or equal to n and we will prove for formula |ϕ| = n + 1:

Case 1: The formula ϕ = ¬ϕ1. We will consider all cases for ϕ1:

Case 1.1: ϕ1 is atomic. Then the negation is in front of atomic formula and
ϕ is in NNF. So, ` ϕ⇔ ϕ′.

Case 1.2: ϕ1 = ¬ϕ2. We will check the complexities |ϕ2| < |ϕ1| and |ϕ1| <
|ϕ| = n+ 1. So, by the induction hypothesis ` ϕ2 ⇔ ϕ2

′ and we also have
ϕ = ¬¬ϕ2. We will consider the propositional tautology ` ¬¬ψ ⇔ ψ then
we could infer ` ϕ⇔ ϕ2. Thus, ` ϕ⇔ ϕ2

′ and ϕ2
′ is in NNF.

Case 1.3: ϕ1 = ϕ2∧ϕ3. We will consider the propositional tautology ` ¬(ψ1∧
ψ2) ⇔ ¬ψ1 ∨ ¬ψ2 and we infer ` ϕ ⇔ ¬ϕ2 ∨ ¬ϕ3. We will check the
complexities |¬ϕ2| = |ϕ2|+ 1 < |ϕ2|+ |ϕ3|+ 1 = |ϕ1| < |ϕ| = n+ 1. So,
|¬ϕ2| < n and by induction hypothesis ϕ2

′ is in NNF and ` ¬ϕ2 ⇔ ϕ2
′.

Similarly, we could infer ` ¬ϕ3 ⇔ ϕ3
′. So, ` ϕ⇔ ϕ2

′ ∨ ϕ3
′ and ϕ2

′ ∨ ϕ3
′

is in NNF.
Case 1.4: ϕ1 = ϕ2 ∨ ϕ3. We will use propositional tautology ` ¬(ψ1 ∨ ψ2)⇔

¬ψ1 ∧ ¬ψ2 and infer that ` ϕ⇔ ϕ2
′ ∧ ϕ3

′ and the formula ϕ2
′ ∧ ϕ3

′ is in
NNF.
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Case 2: ϕ = ϕ1 ∧ ϕ2. We will check the complexities |ϕ1|+ |ϕ2| < |ϕ| = n+ 1.
Hence, |ϕ1| + |ϕ2| ≤ n, |ϕ1|, |ϕ2| < n. By the induction hypothesis we have
` ϕ1 ⇔ ϕ1

′ and ` ϕ2 ⇔ ϕ2
′ where ϕ1

′ and ϕ2
′ are in NNF. Thus, ` ϕ⇔ ϕ1

′∧ϕ2
′

and formula ϕ1
′ ∧ ϕ2

′ is in NNF.

Case 3: ϕ = ϕ1 ∨ ϕ2. We will prove that ` ϕ⇔ ϕ1
′∨ ϕ2

′ and formula ϕ1
′∨ ϕ2

′

is in NNF using the same arguments as in previous case.

Later in this study we will need ` C(
⊔
i∈I ti,

⊔
j∈J sj) ⇔

∨
i∈I,j∈J C(ti, sj). We will

start with some lemmas to help us to prove it.

Lemma 6.11. Let for n ≥ 0 t1, t2, . . . , tn, s are terms of L and let denote with
I = {1, 2, . . . , n}. Then, ` C(s,

⊔
i∈I ti)⇔

∨
i∈I C(s, ti).

Proof. We will prove the lemma by induction on m = |I|.

Case 1: I = ∅ then by definition
⊔
i∈I ti = 0. So we have ` C(s, 0)⇔ C(s, 0).

Case 2: I = {i1} for some natural number 1 ≤ i1 ≤ n then by definition
⊔
i∈I ti

= ti1 . Hence, ` C(s, ti1)⇔ C(s, ti1).

Case 3: I = {i1, i2} for some natural numbers i1 and i2 such that 1 ≤ i1 ≤ n
and 1 ≤ i2 ≤ n. Then,

⊔
i∈I ti = ti1 t ti2 . We have ` C(s, ti1 t ti2) ⇔

C(s, ti1) ∨ C(s, ti2) from the axiom (C2).

Case 4: Let the lemma is true for all sets I ⊆ {1, 2, . . . , n} such that |I| ≤ m.
Now we will prove the lemma for |I| = m+1. We have I = (I \{i0})∪{i0} and
|I \ {i0}| < m+ 1. So by definition

⊔
i∈I ti = (

⊔
i∈I\{i0} ti)t ti0 . Then we have

C(s,
⊔
i∈I ti) = C(s, (

⊔
i∈I\{i0} ti)t ti0). This is an instance of the axiom (C3),

then ` C(s, (
⊔
i∈I\{i0} ti)t ti0)⇔ C(s,

⊔
i∈I\{i0} ti)∨C(s, ti0). Since |I \{i0}| <

m+ 1 by the induction hypothesis ` C(s,
⊔
i∈I\{i0} ti)⇔

∨
i∈I\{i0}C(s, ti). So

we have ` C(s,
⊔
i∈I ti)⇔

∨
i∈I C(s, ti).

Lemma 6.12. Let for n ≥ 0 t0, t1, t2, . . . , tn be terms of L and let denote with
I = {1, 2, . . . , n}. Then, ` C(

⊔
i∈I ti, t0)⇔

∨
i∈I C(ti, t0).

Proof. Follows from Lemma 6.11 and ` C(a, b)⇒ C(b, a).

Lemma 6.13. Let for n ≥ 0 t1, t2, . . . , tn and for m ≥ 0 s1, s2, . . . , sm be terms.
Then, ` C(

⊔
i∈I ti,

⊔
j∈J sj)⇔

∨
i∈I,j∈J C(ti, sj).

Proof. We apply Lemma 6.11 and Lemma 6.12.

Lemma 6.14. Let for n ≥ 1 t1, t2, . . . , tn be terms from our language L. Then
`
⊔
i∈{1,2,...,n} ti ≤ 0⇔

∧
i∈{1,2,...,n}(ti = 0).

Proof. We will prove the lemma by induction on the number of terms n.
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Case 1: In this case we will prove the lemma for n = 1 so ` t1 ≤ 0 ⇔ t1 = 0.
We will show ` t1 ≤ 0 ⇒ t1 = 0 and ` t1 = 0 ⇒ t1 ≤ 0. We have that
0 ≤ t1 ⇒ (t1 ≤ 0 ⇒ t1 = 0) is a tautology, then from Theorem 2.13 ` 0 ≤
t1 ⇒ (t1 ≤ 0 ⇒ t1 = 0). We will use that ` 0 ≤ t1 and (MP) so we infer
` t1 ≤ 0 ⇒ t1 = 0. We continue with the other direction and the tautology
t1 = 0 ⇒ t1 ≤ 0 because t1 = 0 is an abbreviation for (t1 ≤ 0) ∧ (0 ≤ t1).
Hence, we derive ` t1 = 0⇒ t1 ≤ 0 again from Theorem 2.13.

Case 2: Let n ≥ 1 be a natural number and the lemma holds for all numbers
≤ n.

Case 3: We will prove the lemma for n + 1. The term
⊔
i∈{1,2,...,n+1} ti ≤ 0 is

equal by definition to (
⊔
i∈{1,2,...,n+1}\{i0} ti)tti0 ≤ 0 for some i0 ∈ {1, 2, . . . , n+

1}. Then we use the axiom (B7) and we get ` (
⊔
i∈{1,2,...,n+1}\{i0} ti) t ti0 ≤

0 ⇔ (
⊔
i∈{1,2,...,n+1}\{i0} ti ≤ 0) ∧ (ti0 ≤ 0). By the induction hypothesis we

have `
⊔
i∈{1,2,...,n+1}\{i0} ti ≤ 0 ⇔

∧
i∈{1,2,...,n+1}\{i0}(ti = 0) and from the

base case we get that ` ti0 ≤ 0 ⇔ ti0 = 0. So from the result of Theorem 2.9
` (

⊔
i∈{1,2,...,n+1}\{i0} ti) t ti0 ≤ 0⇔

∧
i∈{1,2,...,n+1}\{i0}(ti = 0) ∧ ti0 = 0. Thus,

by the definitions ` (
⊔
i∈{1,2,...,n+1} ti ≤ 0⇔

∧
i∈{1,2,...,n+1}(ti = 0).

We will introduce some convenient abbreviations which will be used later in this
section. We start with a formula which determines whether k-monom is 0 or not:

ϕP =
∧

i∈Ipos
(mi = 0) ∧

∧
i∈Ineg

¬(mi = 0)

We know that all k-monoms with k boolean variables are 2k so for each i = 1, 2, 3, . . . , 2k

i belongs to exactly one of Ipos or Ineg. The next abbreviation is for a formula that
gives us contacts between monoms:

ϕC =
∧

(i,j)∈Jpos

C(mi,mj) ∧
∧

(i,j)∈Jneg

¬C(mi,mj)

Similarly, for each pair (i, j) we have either C(mi,mj) or ¬C(mi,mj). It determines
whether mi and mj are in contact. The formula might contain contradictions - when
for fixed i and j we have in the formula C(mi,mj) but ¬C(mj ,mi) which breaks
the symmetry of contact relation C. We will explain how to handle such situations
later.

Definition 6.15 (Good elementary formula). We say a formula is good elementary
formula if it has the following type ϕP ∧ϕC∧ϕM where ϕP and ϕC are the explained
above formulae and the formula ϕM is a boolean combination of formulae of the type
a ≤µ b. We denote such good elementary formula with ψE .

We will develop an algorithm that takes as an input a formula ϕ from our language
L and returns another formula which is disjunction of good elementary formulae.
We will prove that this formula is equivalent to the input one using the definitions
and lemmas above.
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Proposition 6.16. There exists an algorithm which takes a formula ϕ from our
language L and returns a formula ΨE

ϕ = ψE1 ∨ ψE2 ∨ . . . ∨ ψE` where for each i =

1, 2, . . . , ` the formula ϕEi is a good elementary formula. The input formula ϕ is
equivalent to the output formula ΨE

ϕ in the sense ` ϕ⇔ ΨE
ϕ . The algorithm finishes

for finite number of steps.

Proof. We will start developing such an algorithm and prove that on each step the
input formula and the result formula are equivalent. So the final formula will be
obtained from the original formula only applying operations that preserve validity.
Let the original formula be ϕ and let p1, p2, . . . , pk be all boolean variables from ϕ.

Step 1: On this step we will push the negation connective ¬ to be only in front
of atomic formulae. The result formula is ϕ1 and it is in NNF. According to
(Lemma 6.10) ` ϕ⇔ ϕ1.

Step 2: All sub-formulae from ϕ1 which have the type a ≤ b are substituted
with au b∗ = 0. In this way we obtain ϕ2. We have that ` a ≤ b⇔ au b∗ = 0.
So, by the Theorem 2.9 ` ϕ1 ⇔ ϕ2.

Step 3: We construct m1,m2, . . . ,m2k all k −monoms from p1, p2, . . . , pk and
substitute every term a in ϕ2 with its representation of a sum of k−monoms
(Lemma 4.1 and Lemma 6.7). We will denote the result formula ϕ3 and
` ϕ2 ⇔ ϕ3.

Step 4: As a result of the above substitution ϕ3 might contain atomic formulae
from the following type - C(mi1tmi2 ,t . . .tmis ,mj1tmj2 ,t . . .tmjt). Based
on the result from (Lemma 6.13) each of these formulae could be replaced with∨

1≤x≤s,1≤y≤tC(mix ,mjy). So we obtain ϕ4 from ϕ3 applying this operation
and due to the same lemma ` ϕ3 ⇔ ϕ4.

Step 5: Again as a result from the substitution from Step 3 ϕ4 might contain
atomic formulae from the type: (m1tm2t . . .tmn ≤ 0). These formulae have
to be replaced with (m1 = 0) ∧ (m2 = 0) ∧ . . . ∧ (mn = 0) (Lemma 6.14). We
denote this new formula with ϕ5 and we have ` ϕ4 ⇔ ϕ5

Step 6: After the previous steps ϕ5 is constructed from - mi = 0, C(mi,mj) and
mi1 tmi2 t . . .tmis ≤µ mj1 tmj2 t . . .tmjs using the connectives ¬, ∧ and ∨.
We will add to ϕ5 formulae (mi = 0 ∨ ¬(mi = 0)), (C(mi,mj) ∨ ¬C(mi,mj))
and (0 ≤µ 1). We proved that the original formula is equivalent to the result
formula - so at the end of each sub-step we will obtain a new formula equivalent
to the input one. We apply the following sub-steps consequently:

Step 6.1: If the k-monom mi for i = 1, 2, 3, . . . 2k is missing we add (mi =
0∨¬(mi = 0)) to ϕ5 and apply distributive law. We perform this operation
until in all disjunctive members all k −monoms are included with either
mi = 0 or ¬(mi = 0). We have to prove that ` ϕ5 ⇔ ϕ5∧(mi = 0∨¬(mi =
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0)). The formula mi = 0∨¬(mi = 0)⇒ (ϕ5 ⇔ ϕ5∧(mi = 0∨¬(mi = 0)))
is tautology. Since mi = 0∨¬(mi = 0) is an axiom and by (MP) we infer
` ϕ5 ⇔ ϕ5 ∧ (mi = 0 ∨ ¬(mi = 0)). The result formula is ϕ6.1 and
` ϕ5 ⇔ ϕ6.1.

Step 6.2: We add to each disjunctive member (C(mi,mj) ∨ ¬C(mi,mj)) for
each missing pair (i, j) and apply distributive law. After this operation
every disjunctive member will contain all possible pairs (i, j), for i =
1, 2, 3, . . . , 2k and j = 1, 2, 3, . . . , 2k either as C(mi,mj) or ¬C(mi,mj).
We prove that ϕ6.1 ⇔ ϕ6.1 ∧ (C(mi,mj) ∨ ¬C(mi,mj)) similarly as in
(Step 6.1). We denote the result formula with ϕ6.2 and ` ϕ6.1 ⇔ ϕ6.2.

Step 6.3: Our goal after this step is all disjunctive members to be good ele-
mentary formulae. So that, if there is a member which does not contain
formula from the type: mi1 tmi2 t . . .tmis ≤µ mj1 tmj2 t . . .tmjs we
add to it 0 ≤µ 1. Similarly to (Step 1), we prove ` ϕ6.2 ⇔ ϕ6.2∧ (0 ≤µ 1).
We apply this operation until all disjunctive members could be repre-
sented as ϕP ∧ ϕC ∧ ϕM . So, the result of this step is a formula ΨE

ϕ =

ψE1 ∨ ψE2 ∨ . . . ∨ ψEl .

On each step we applied an operation which infer syntactically result formula from
the input formula. So, ` ϕ⇔ ΨE

ϕ .

Lemma 6.17. Let ψE be a good elementary formula. Then there exists an algorithm
which processes ψE syntactically and returns ` ¬ψE or a model for ψE over finite
relational HL-structure. The algorithm finishes for finite number of steps.

Proof. The formula ψE is a good elementary formula so ψE = ϕP ∧ ϕC ∧ ϕM . The
algorithm checks the following conditions:

Case 1: ϕP =
∧

1≤i≤2k(mi = 0). According to Lemma 6.14 we have ` m1 t
m2t . . .tm2k = 0⇔ (m1 = 0)∧ (m2 = 0)∧ . . .∧ (m2k = 0). We also proved in
Lemma 6.6 that ` m1tm2t . . .tm2k = 1. From the above formulae we obtain
` (m1tm2t. . .tm2k = 1)∧(m1tm2t. . .tm2k = 0)⇒ (0 = 1). We have that
` ¬(0 = 1) and ` m1tm2t . . .tm2k = 1. Hence, ` ¬(m1tm2t . . .tm2k = 0).
Now we will use the propositional tautology (ϕ⇔ ψ)⇔ (¬ϕ⇔ ¬ψ) and infer
` ¬ϕP . So that, ` ¬(ϕP ∧ ϕC ∧ ϕM ) and the algorithm ends.

Case 2: ϕP =
∧
i∈Ipos(mi = 0) ∧

∧
i∈Ineg ¬(mi = 0) and Ipos ∪ Ineg = {1, 2, 3,

. . . , 2k} and Ipos∩Ineg = ∅ and ϕC =
∧

(i,j)∈Jpos C(mi,mj)∧
∧

(i,j)∈Jneg ¬C(mi,mj).

Case 2.1: There is an index i0 ∈ Ineg and (i0, i0) ∈ Jneg. So, we have a
subformula ¬(mi0 = 0) ∧ ¬C(mi0 ,mi0). We will consider an instance of
the axiom (C1): ¬(mi0 = 0)⇒ C(mi0 ,mi0). Since the ”⇒” symbol is an
abbreviation for (mi0 = 0) ∨ C(mi0 ,mi0), the subformula ¬(mi0 = 0) ∧
¬C(mi0 ,mi0) is a negation of that instance of the axiom (C1). Hence, we
have proof of ` ¬(¬(mi0 = 0)∧¬C(mi0 ,mi0)). From here we obtain that
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` ¬(¬(mi0 = 0) ∧ ¬C(mi0 ,mi0)) ∧
∧
i∈Ipos\{i0}(mi = 0) ∧

∧
i∈Ineg ¬(mi =

0) ∧
∧

(i,j)∈Jpos C(mi,mj) ∧
∧

(i,j)∈Jneg\{(i0,i0)}) ¬C(mi,mj) ∧ ϕM . Thus,

` ¬ψE and the algorithm finishes.

Case 2.2: There are two indices i0, j0 ∈ Ineg such that (i0, j0) ∈ Jpos and
(j0, i0) ∈ Jneg. We have subformula ¬(mi0 = 0)∧¬(mj0 = 0)∧C(mi0 ,mj0)∧
¬C(mj0 ,mi0). We consider the axiom (C3): C(mi0 ,mj0)⇒ C(mj0 ,mi0).
We will use again that the ”⇒” symbol is an abbreviation for ¬C(mi0 ,mj0)∨
C(mj0 ,mi0). Hence, the subformula C(mi0 ,mj0)∧¬C(mj0 ,mi0) is a nega-
tion of the axiom (C3). Thus, ` ¬(¬C(mi0 ,mj0) ∨ C(mj0 ,mi0)). Using
the same idea as in previous case - when we find a proof for negation
of one conjunction member it is a proof for the negation of the whole
conjunction, we infer ` ¬ψE . So, the algorithm stops.

If ψE does not satisfy any of the above conditions we will show how to construct a
model for it. The formula ϕM corresponds to a system. In order to transform it to
an Sn-system, we possibly need to add inequalities of the following type 0 ≤µ mi for
all k-monoms mi such that mi is a member of ϕM and there is no such inequality.
We also substitute mi with xi and t with +. It is how we obtain S from ϕM . We
use solve+∞Sn

to find a solution for S because it is a Sn-system. If the result from the

solve+∞Sn
is ∅ then ϕM corresponds to an Sn-system which does not have a solution

with +∞ for only one variable. Then we have an axiom of the form θ ⇒ ¬ϕM . So,
we get that (θ ⇒ ¬ϕM )⇒ (ψE ⇒ ⊥) is a tautology. From here we infer ` ψE ⇒ ⊥
and we use that ”⇒” is an abbreviation to obtain ` ¬ψE . The other case is when
the system has a solution of desired type and let (r1, r2, . . . , rs) be such solution and
without loss of generality r1 = +∞. Let M = {M1,M2, . . .Ms} be a set of s different
objects where |Ineg| = s. Then B = 〈P(M), ∅,M,∩,∪, \〉 is a Boolean algebra of all
subsets of the set M. We will define the contact relation in terms of Kripke semantics:
(j, k) ∈ Jpos ↔ R(Mj ,Mk). Now we are ready to define CR ⊆ P(M) × P(M) and
C(a, b) ↔ (∃Mj ∈ a)(∃Mk ∈ b)(R(Mj ,Mk)). Now we will prove that this definition
of CR satisfies the axioms (C1)÷(C3):

(C1): a 6= 0⇒ C(a, a). In this case the premise says that there exists point Mj

such that Mj ∈ a, and we will use that R is reflexive (Case 2.1 ). So R(Mj ,Mj)
and then CR(a, a).

(C2): CR(a, btc)⇔ CR(a, b)∨CR(a, c). We start with ”⇒” direction. Here we
have Mj ∈ a, Mk ∈ b t c such that R(Mj ,Mk). There are two cases - Mk ∈ b
then CR(a, b) and the second case Mk ∈ c then CR(a, c). In both cases the
conclusion is true. The opposite direction ”⇐” could be proved using similar
arguments.

(C3): CR(a, b)⇒ CR(b, a). In this case we use that the relation R is symmetric.
We proved that if (j, k) ∈ Jpos then also (k, j) ∈ Jpos (Case 2.2 ). From the
premise follows Mj ∈ a, Mk ∈ b such that R(Mj ,Mk) and by the symmetry of
R Mk ∈ b, Mj ∈ a such that R(Mk,Mj) which is the definition for CR(b, a).
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Then 〈B, CR〉 is a contact algebra. Next step is to define the measure µ : P(M) →
[0,+∞]:

• µ({Mi}) = ri, µ(∅) = 0, µ(M) = +∞
• Let A ⊆M then µ(A) =

∑
a∈A µ(a)

We need to check that µ is HL-measure - µ is positive and for exactly one atom M1

we have that µ({M1}) = r1 = +∞. We will verify the last condition - µ(a) = µ(b) =
+∞ from here we have that M1 ∈ a and M1 ∈ b so M1 ∈ a u b. It follows that
µ(a u b) = +∞. Then µ is HL-measure. So C = 〈〈B, C〉, µ〉 is a HL-structure. Now
we need to define valuation V : BoolV ars→ P(M):

• V(0) = ∅, V(1) = M

• V(p) = {Mi | k-monom mi contains p}

For this definition of V we have: V(mi) =

{
{Mi}, if i ∈ Ineg

∅, if i ∈ Ipos
In order to show it we will check the value for an arbitrary k-monom mi 6= 0 V(mi) =
V(p1)

ε1 ∩ V(p2)
ε2 ∩ . . . ∩ V(pk)

εk . We start with proving that Mi ∈ V(p1)
ε1 . We have

to consider two cases:

• mi = p1 u pε22 u . . . u p
εk
k then by definition Mi ∈ v(p1)

• mi = p∗1 u p
ε2
2 u . . . u p

εk
k then we have that Mi 6∈ V(p1) so Mi ∈ M \ V(p1)

which by definition is the value for V(p∗1)

So, we proved that in both cases Mi ∈ V(p1)
ε1 . Using the same arguments for other

propositional variables we will show that Mi ∈ V(mi). The next step is to prove
that the set V(mi) contains only one element Mi. We will use similar approach let
Mj ∈M and let a k-monom mj be different from mi we have that Mj ∈ V(mj). Now
we will prove that Mj 6∈ V(mi). We know that mj 6= mi then they are different at
some position l. We assume that pl is in mj and p∗l is in mi. Then Mj ∈ V(pl) and
Mj 6∈ M \ V(pl). So, Mj 6∈ V(mi). We proved that for an arbitrary object Mj ∈ M .
Therefore, V(mi) = {Mi}. We need to prove that if mi = 0, then V(mi) = ∅. Let
mi = 0 and mj 6= 0 so V(mj) = {Mj}. We have that mi 6= mj and let they differ at
position l. Suppose that mj contains pl and mi contains p∗l . Then Mj ∈ V(pl) and
Mj 6∈M \ V(pl).
We have one more case when the algorithm finds a proof for ¬ψE . It is when the
graph corresponding to the contact relation CR is not connected. Let assume that
the graph corresponding to CR is not connected. So, there is a set A ⊆M , A 6= ∅ and
also M \A 6= ∅ and there is no edge between them. We associate a term to the set A
in the following way: A = V(a), so a =

⊔
i∈I mi where I = {i | Mi ∈ A}. Similarly,

a∗ =
⊔
j∈J mj where J = Ineg \ I corresponds to M \ A. So, (a 6= 0) ∧ (a 6= 1) and

by (Con) axiom CR(a, a∗). But by our assumption there is no edge between A and
M \A. So we have (a 6= 0)∧ (a 6= 1)∧¬CR(a, a∗). Thus, ` ψE ∧ (Con)⇒ ⊥ and we
obtain ` (Con) ⇒ (ψE ⇒ ⊥). From the last formula and (MP) we infer ψE ⇒ ⊥.
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We use that ⇒ is abbreviation for ¬ψE ∨ ⊥. Hence, we get ¬ψE .
We need to check that M |= ψE . By definition ψE = ϕP ∧ϕC ∧ϕM so we show that
M |= ϕP , M |= ϕC and M |= ϕM :

• The formula ϕP has subformulae of the type mi = 0 and ¬(mi = 0). We
show that for all indices in i ∈ Ipos V(mi) = ∅ and for all indices i ∈ Ineg

V(mi) = {Mi}. So, V(mi = 0) is equivalent to V(mi) = V(0) = ∅. Similarly, for
i ∈ Ineg ¬({Mi} = ∅) which is correct. Hence, M |= ϕP .

• The formula ϕC has subformulae C(mi,mj) and ¬C(mi,mj). Let us calculate
V(C(mi,mj)) - by definition it is CR(V(mi), V(mj)) ↔ R(Mi,Mj) ↔ (i, j) ∈
Jpos. We obtain ¬CR(mi,mj) for indices (i, j) ∈ Jneg. Therefore, M |= ϕC .

• We need to prove that M |= ϕM . The proof is similar to the one we did in
Lemma 5.4. So, it is briefly mentioned. The formula is a boolean combination
of formulae like mi1t. . .tmis ≤µ mj1t. . .tmjt . So we get

∑
1≤x≤s µ({Mix}) ≤∑

1≤y≤t µ({Mjy}). It is equivalent to
∑

1≤x≤s rix ≤
∑

1≤y≤t rjy . It is correct
inequality since (r1, r2, . . . , rl) is a solution of the corresponding Sn-system.
Then, M |= ϕM .

So, we have that M |= ψE .

Proposition 6.18. There exists an algorithm which takes as input an arbitrary
formula ϕ from our language L and returns a model for ϕ over a finite relational
HL-structure or a proof for ¬ϕ for a finite number of steps.

Proof. Let ϕ be a formula from L and let p1, p2, . . . , pk be all propositional variables
in ϕ. According to the result from (Proposition 6.16) we have ` ϕ ⇔ ΨE

ϕ where

ΨE
ϕ = ψE1 ∨ ψE2 ∨ . . . ∨ ψEl and for i = 1, 2, . . . , l ψEi is a good elementary formula.

So, each ψEi has the following representation ϕPi ∧ϕCi ∧ϕMi . If we construct a model
for one ψEi , it will be a model for the whole ΨE

ϕ . We will process each disjunctive
member one by one and check whether we could create a model for it or we will find
a proof for its negation. We will apply Lemma 6.17 on each ψEi and as a result we
get M model for ψEi or ` ¬ψEi . We have two cases for each ψEi :

Case 1: The Lemma 6.17 gives us a model M for ψEi . So, M |= ψEi . Since we
have a model for one disjunctive member then we have a model for the whole
disjunction M |= ψEi ∨ ψE2 ∨ . . . ∨ ψEl . Thus, M |= ΨE

ϕ and the algorithm
finishes.

Case 2: The Lemma 6.17 gives us a proof αi for ` ¬ψEi . Then the algorithm
continues with the next ψEi if such exists.

The algorithm did not construct a model for any of ψEi so we have α1, α2, . . . , αl
proofs for each ¬ψEi . From here we consider the following propositional tautology
ψ1 ⇒ ψ2 ⇒ ψ1∧ψ2 we obtain that ¬ψE1 ∧¬ψE2 ∧. . .∧¬ψEl is tautological consequence
of ¬ψE1 , ¬ψE2 , . . . , ¬ψEl . By Tautology Theorem ` ¬ψE1 ∧ ¬ψE2 ∧ . . . ∧ ¬ψEl . It is
actually ` ¬ΨE

ϕ . From the propositional tautology (ψ1 ⇔ ψ2) ⇔ (¬ψ1 ⇔ ¬ψ2)

follows that ` ¬ϕ⇔ ¬ΨE
ϕ .
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Theorem 6.19 (Completeness Theorem). Let ϕ be an arbitrary formula from L.
Then the following conditions are equivalent:

(i) ϕ is a theorem of L

(ii) ϕ is valid in any HL-structure

(iii) ϕ is valid in any finite relational HL-structure

Proof. The direction from (i) to (ii) follows from Theorem 6.3. The direction from
(ii) to (iii) is clear because the finite relational HL-structures are subset of all HL-
structures. We will prove the direction from (iii) to (i) by contraposition. So, we
will suppose that 6` ϕ. We construct ΨE

¬ϕ which is disjunction of good elementary

formulae. From Proposition 6.16 we have ` ¬ϕ⇔ ΨE
¬ϕ. Now we apply the algorithm

from Proposition 6.18 and it finishes with one of two possible results:

1. a proof of ` ¬ΨE
¬ϕ. From tautology ` (¬ϕ ⇔ ΨE

¬ϕ) ⇔ (¬¬ϕ ⇔ ¬ΨE
¬ϕ)

and (MP) we obtain ` (¬ϕ ⇔ ΨE
¬ϕ) ⇒ (¬¬ϕ ⇔ ¬ΨE

¬ϕ). From here we use

` ¬ϕ ⇔ ΨE
¬ϕ and (MP) to infer ` ¬¬ϕ ⇔ ¬ΨE

¬ϕ. From the last formula we

obtain ` ¬ΨE
¬ϕ ⇒ ¬¬ϕ. Now we use the result of the algorithm and (MP)

and infer ` ¬¬ϕ. From here and the propositional tautology ` ϕ ⇔ ¬¬ϕ we
have a proof of ` ϕ. It contradicts with our assumption. So, this result is not
possible.

2. a model M such that M |= ΨE
¬ϕ. We infer ` ΨE

¬ϕ ⇒ ¬ϕ from ` ¬ϕ ⇔ ΨE
¬ϕ

and (MP). So that, we obtain M |= ΨE
¬ϕ ⇒ ¬ϕ from the Soundness Theorem

6.3. The algorithm found a model for ΨE
¬ϕ. Therefore, we get M |= ¬ϕ using

that ”⇒” is an abbreviation and the definition for truth in a model. Again we
apply the definition for truth in a model and get M |= ¬ϕ↔M 6|= ϕ.

7 Finite Relational Structures and Polytopes

In this section we recall of the properties of p-morphisms. We define this notion for
models of the desired type where the underlying Kripke frame is finite and connected.
We also describe a mechanism which produces finite, connected and acyclic Kripke
structure with HL-measure for a given finite, connected and cyclic one. At the end we
describe a procedure that constructs polytopes for a given tree-like Kripke structure
with HL-measure.

7.1 Notions

Definition 7.1. (P-morphism) Let F = 〈W,R〉 and F′ = 〈W ′, R′〉 be Kripke struc-
tures. Let f be a surjection from W onto W ′. We say that f is p-morphism from F

to F′ if the following two conditions are satsified:
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(p1) (∀x ∈W )(∀y ∈W )(R(x, y)→ R′(f(x), f(y)))

(p2) (∀x′ ∈ W ′)(∀y′ ∈ W ′)(R′(x′, y′) → (∃x ∈ W )(∃y ∈ W )(f(x) = x′ ∧ f(y) =
y′ ∧R(x, y)))

Definition 7.2. If there exists a p-morphism from frame F to frame F′ then F is
called p-morphic preimage of F′ and F′ is said to be p-morphic image of F.

Remark. Composition of p-morphisms is also a p-morphism.

Definition 7.3. Let M = 〈〈〈B, CR〉, µ〉, V〉 and M′ = 〈〈〈B′, C ′R〉, µ′〉, V′〉 be a Kripke
models where 〈〈B, CR〉, µ〉 and 〈〈B′, C ′R〉, µ′〉 are set-theoretic Contact algebras with
measure obtained from Kripke frames F and F′ accordingly. Both µ and µ′ satisfy
the conditions for HL-measure (Def. 5.1). We say that f is p-morphism from M to
M′ when the following conditions are satisfied:

(i) f is p-morphism from F to F′

(ii) (∀p ∈ BoolV ars)(∀w ∈W )(w ∈ V(p)↔ f(w) ∈ V
′(p))

(iii) µ(V(p)) = µ′(V′(p))

In such cases, we will say that M is p-morphic preimage of M′.

Lemma 7.4. Let F = 〈W,R〉 be a Kripke frame and C = 〈B, CR〉 be the set-
theoretic contact algebra obtained from F. Then the following two conditions are
equivalent:

(i) C is connected

(ii) F is connected

Proof. (i) ⇒ (ii) Let C be connected. Let x and y be elements from W such that
there is no path in W between them. Let XR and YR be all vertices accessible from
x and y in W respectively. Let X = XR ∪ {x} and Y = YR ∪ {y}. Both sets X and
Y are not empty because x ∈ X and y ∈ Y . We have X ∩ Y = ∅ since there is no
path between x and y. Now we will use that C is connected so, CR(X,W \X). In
other words (∃x0 ∈ X)(∃y0 ∈W \X)(R(x0, y0)). The vertex x0 is accessible from x
and there is an edge between x0 and y0 so y0 ∈ X. It is a contradiction, then F is
also connected.

(ii) ⇒ (i) Let assume that C is not connected. Then there is a subset of W such
that X 6= ∅ and X 6= W and ¬CR(X,W \X). So, (∀x ∈ X)(∀y ∈W \X)(¬R(x, y)).
Let x and y be arbitrary elements from X and W \X accordingly. Let {vi}i<k be
a path from x to y where v0 = x and vk−1 = y. There exists such path since F

is connected. We chose element x ∈ X so vi ∈ X for i < k. Then also y ∈ X
which is a contradiction. Thus, there is index i < k − 1 such that vi ∈ X, vi+1 ∈
W \X and R(vi, vi+1). The last contradicts to ¬CR(X,W \X). Therefore, C is also
connected.

Remark. We will use the standard notion for preimage f−1[A] to denote the set
{x | f(x) ∈ A}.
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We will define some notions from the graph theory for such Kripke structures with
measure. We will use the definitions for path and connected graph from Section 2.4.
Let F = 〈W,R〉 be a Kripke structure. We will define simple path in F as a path
and each node in this path appears only once. A simple cycle in F is a simple path
{xi}i<k such that k > 2 and 〈x0, xk−1〉 ∈ R.

7.2 Untying

Let 〈W,R〉 be a finite connected Kripke structure and C = 〈〈B, CR〉, µ〉 be the set-
theoretic contact algebra with measure obtained from F. We proved in the previous
section that C is also connected. In this study we are interested in models from
the following type M = 〈C, V〉 where C is a finite connected contact algebra with
HL-measure. Through this section we will consider the tuple F = 〈W,R, µ, V〉 and
M as interchangeable. We will examine some of its properties.

Definition 7.5. (Untying Step) Let π be a simple cycle in F. Let π contains a and
µ(a) 6= +∞. Let the node b be one of the two adjecent to a nodes and the element
a′ 6∈W .

W ′
def
= W ∪ {a′}

R′
def
= (R \ {〈a, b〉, 〈b, a〉}) ∪ {〈a′, b〉, 〈b, a′〉, 〈a′, a′〉}

µ′({x}) =

{
µ({x}), if x 6∈ {a, a′}
µ({a})

2 , otherwise

V
′(p) =

{
V(p), if a 6∈ V(p)

V(p) ∪ {a′}, otherwise

We say that F′ = 〈W ′, R′, µ′, V′〉 is obtained from F after applying untying step.

Remark. If µ is an HL-measure, then µ′ is also an HL-measure.

Definition 7.6. (Untying) Let {Fi}i<ω be a sequence of finite connected Kripke
models with HL-measure and valuation defined by the following procedure:

Base: F0
def
= F

Step: Fk+1
def
= Fk, if Fk is acyclic. Otherwise, we apply untying step over Fk to

obtain Fk+1 by breaking a simple cycle.

We will call such a sequence {Fi}i<ω untying of F.

Lemma 7.7. Let {Fi}i<ω be untying of F. Let Fk and Fk+1 for k < ω be a
consecutive elements in that sequence. If Fk has a cycle, then Fk+1 has strictly less
simple cycles than Fk. Moreover, for each F there exists the least natural number
K such that FK is acyclic.
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Proof. Let Fk+1 be obtained from Fk by applying untying step and breaking the
simple cycle π. Then, it does not appear in Fk+1. We have to show that untying
step does not introduce new cycles. Since the element a′ is adjecent only to b it
cannot appear in a simple cycle. So, every simple cycle of Fk+1 is a simple cycle for
Fk. So that, on each untying step we remove an edge which is an element of at least
one simple cycle. Hence, there is the least K ∈ N such that FK is acyclic.

Remark. We will use {Fi}i<K to denote untying of F where K is the number from
Lemma 7.7.

Lemma 7.8. Let {Fi}i<K be untying of F and let F be connected. Then, for any
k ≤ K Fk is connected.

Proof. We will prove the lemma by induction on k. The base case is F0 = F so F0

is connected. Let for all i ≤ k < K Fi is connected:

Fk+1 = 〈Wk+1, Rk+1, µk+1, Vk+1〉 is obtained by applying untying step on Fk
and a vertex a. Let (v1, v2, . . . , vj , a, b, vj+1, . . . , vm) be the cycle we broke
during the untying step. Let x and y are arbitrary distinct elements from
Wk+1:

Case 1: Let x 6= a′ and y 6= a′. Vertices x and y are elements of Wk so,
they are connected. Let {xi}i<` be the path from x to y. If a and b do
not appear as consecutive elements in this path (we do not use the edge
〈a, b〉), then clearly {xi}i<` is also a path in Fk+1. We will consider the
other case when the edge 〈a, b〉 is used in the path {xi}i<`. So {xi}i<` =
{x0, x1, . . . , a, b, . . . x`−1}. We will substitute in that path the edge 〈a, b〉
with the path (a, vj , vj−1, . . . v1, vm, . . . , vj+2, vj+1, b). Therefore, we ob-
tain {xi}i<`′ = {x0, x1, . . . , a, vj , vj−1, . . . v1, vm, . . . , vj+2, vj+1, b, . . . x`′−1}
is a path from x to y in Fk+1.

Case 2: Either x or y is a′. We will consider the case x = a′. We have
〈a′, b〉 ∈ Rk+1. We use the fact that y, b ∈ Wk and the (IH), thus y and
b are connected. Therefore, a′ and y are also connected. We could apply
similar arguments in case when y = a′.

Lemma 7.9. (P-morphism, 1) Let Fk and Fk+1 be consecutive elements from un-
tying of F. Then, Fk+1 is a p-morphic preimage of Fk.

Proof. Let Fk+1 be obtained by applying untying step for Fk and vertex a. We will
define the following surjective function f : Wk+1 →Wk and f = {〈a′, a〉}∪{(x, x)|x ∈
Wk}. We have to check that f satisfies the conditions for p-morphism:

(p1) Let x and y be arbitrary elements from Wk+1 and x, y 6∈ {a, a′} so, x
and y are also elements of Wk. Then, f(x) = x and f(y) = y. Thus, from
the definition of Rk+1 follows that Rk+1(x, y) → Rk(x, y). We will consider
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the cases when x = a then using the definition of f we get that f(x) = a and
f(y) = y. Clearly by the definition of Rk+1 we have that Rk+1(a, y)→ Rk(a, y).
In the case when x = a′ f(x) = a. In Fk+1 there is only one element b such that
Rk+1(a

′, b). Now we use the definition of f and obtain Rk+1(a
′, b)→ Rk(a, b).

(p2) Let x and y be arbitrary elements from Wk. If x = a, y = b, and Rk(x, y)
(or the other way around), then we have elements a′, b ∈ Wk+1 such that
f(a′) = a, f(b) = b and Rk+1(a

′, b). For the rest of the elements of Wk

f(x) = x and f(y) = y so, Rk+1(x, y)→ Rk(x, y).

Now we have to prove that f−1[Vk(p)] = Vk+1(p) and µk(Vk(p)) = µk+1(Vk+1(p)). We
start with f−1[Vk(p)] = Vk+1(p). Let suppose that a 6∈ Vk(p) then from the definition
of Vk+1 we have Vk+1(p) = Vk(p). So, f−1[Vk(p)] = Vk+1(p). The other case is when
a ∈ Vk(p). Again using the definition we have that Vk+1(p) = Vk(p) ∪ {a′}. Thus,
f−1[Vk(p)] = Vk(p) ∪ {a′} = Vk+1(p). We noticed that for any p ∈ BoolV ars either
a, a′ ∈ Vk+1(p) or a, a′ 6∈ Vk+1(p).
Now we will show that µk(Vk(p)) = µk+1(Vk+1(p)). Let a, a′ 6∈ Vk+1(p). Then it is
easy to see that µk(Vk(p)) = µk+1(Vk+1(p)) is true. Let assume that a, a′ ∈ Vk+1(p).
So, Vk+1(p) = {a, a′, x1, . . . , x`}. We know that the elements of that set are different
and their singletons are pairwise disjoint so that, we could apply the additivity of the
measure. Therefore, µk+1(Vk+1(p)) = µk+1({a}) + µk+1({a′}) + µk+1({x1}) + · · · +
µk+1({x`}). We apply the definition and obtain µk+1(Vk+1(p)) = µk({a})

2 + µk({a})
2 +

µk({x1}) + · · ·+ µk({x`}) = µk({a}) + µk({x1}) + · · ·+ µk({x`}) = µk(Vk(p)).

Lemma 7.10. Every finite connected Kripke structure with HL-measure is a p-
morphic preimage of finite connected acyclic Kripke structure with HL-measure.

Proof. The proof follows from the above lemmas.

Lemma 7.11. (P-morphism, 2) Let t be a term from L and let f be a p-morphism
from Fk+1 to Fk. Then:

(i) f−1[Vk(t)] = Vk+1(t)

(ii) µk(Vk(t)) = µk+1(Vk+1(t))

Proof. (i) We will prove by induction on the construction of terms. The base of the
induction is when t = p and p ∈ BoolV ars then it is true by Lemma 7.9. We check
the cases when t = 0 and t = 1:

In the case when t = 0 we have that Vk(0) = ∅ we also defined that Vk+1(0) = ∅.
In the other case when t = 1 we have that Vk(1) = Wk. We also defined that
Vk+1(1) = Wk+1.

We continue with considering the case t = t1 t t2, t = t1 u t2 and t = t∗1 and for t1
and t2 (IH) holds.
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We start with t = t1tt2. We will use the definitions for preimage and valuation
f−1[Vk(t1 t t2)] = f−1[Vk(t1) ∪ Vk(t2)] = f−1[Vk(t1)] ∪ f−1[Vk(t2)] = Vk+1(t1) ∪
Vk+1(t2) = Vk+1(t).

The case t = t1 u t2 is similar to the first one.

We consider the case when t = t∗1. We will apply the definitions f−1[Vk(t
∗
1)] =

f−1[Wk \ Vk(t1)] = f−1[Wk] \ f−1[Vk(t1)] = Wk+1 \ Vk+1(t1) = Vk+1(t).

(ii) Let Fk+1 be obtained by applying untying step on Fk and vertex a. First of
all we will check the measures when t = 0 and t = 1:

In the case when t = 0 we have that Vk(0) = ∅ and so µk(∅) = 0. Similarly, we
defined Vk+1(0) = ∅ and µk+1(∅) = 0.

The other case when t = 1 we have that Vk(1) = Wk so, µk(Wk) = +∞. So
that, Vk+1(1) = Wk+1 and µk+1(Wk+1) = +∞.

We consider the following cases:

If a 6∈ Vk(t) then a, a′ 6∈ Vk+1(t). Then by definitions of Vk+1 and µk+1 we
obtain that Vk(t) = Vk+1(t) and mk(Vk(t)) = µk+1(Vk+1(t)).

If a ∈ Vk(t) then a, a′ ∈ Vk+1(t). Without loss of generality we will consider that
Vk(t) = {a, x1, . . . , x`}. So, Vk+1(t) = {a, a′, x1, . . . , x`}. We calculate the mea-
sure of Vk+1(t): µk+1(Vk+1(t)) = µk+1({a, a′, x1, . . . , x`}). We again use that
the elements of that set are different and their singletons are pairwise disjoint so
that, we could apply the additivity of the measure: µk+1({a, a′, x1, . . . , x`}) =
µk+1({a}) + µk+1({a′}) + µk+1({x1}) + · · · + µk+1({x`}). It follows from the
definition of µk+1 that:

µk+1({xi}) = µk({xi}), for i from 1 to `
µk+1({a}) + µk+1({a′}) = µk({a})

Then, µk(Vk(t)) = µk+1(Vk+1(t)).

Lemma 7.12. (P-morphism, 3) Let s and t be terms of L and let for some k Fk+1

be p-morphic preimage of Fk. Relations CRk
and CRk+1

are defined in standard way
in terms of Rk and Rk+1. Then:

(i) Vk(s) ⊆ Vk(t) ↔ Vk+1(s) ⊆ Vk+1(t)

(ii) CRk
(Vk(s), Vk(t)) ↔ CRk+1

(Vk+1(s), Vk+1(t))

(iii) µk(Vk(s)) ≤ µk(Vk(t)) ↔ µk+1(Vk+1(s)) ≤ µk+1(Vk+1(t))

Proof. Let f be p-morphism from Fk+1 to Fk.
(i) We consider the direction ”→”. We use that Vk(s) ⊆ Vk(t) so, f−1[Vk(s)] ⊆
f−1[Vk(t)]. Using the result from Lemma 7.11 we obtain Vk+1(s) ⊆ Vk+1(t). The
opposite direction Vk+1(s) ⊆ Vk+1(t) → Vk(s) ⊆ Vk(t). We assume that Vk+1(s) =
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{x1, x2, . . . , x`−1} and Vk+1(t) = {x1, x2, . . . , x`−1, x`}. So, {f(x1), f(x2), . . . , f(x`−1)} ⊆
{f(x1), f(x2), . . . , f(x`−1), f(x`)}. Therefore, Vk(s) ⊆ Vk(t).
(ii) We consider the direction ”→”. Then, (∃x ∈ Vk(s))(∃y ∈ Vk(t))(Rk(x, y)). We
use the condition (p2) so, there exist x′ and y′ in Wk+1 such that f(x′) = x, f(y′) = y
and Rk+1(x

′, y′). We use that x′ ∈ Vk+1(s) it follows from x ∈ Vk(s), x
′ ∈ f−1[Vk(s)]

and Lemma 7.11. We could prove y′ ∈ Vk+1(t). Therefore, CRk+1
(Vk+1(s), Vk+1(t)).

The opposite direction ”←”. We use the definitions for CRk+1
(Vk+1(s), Vk+1(t)) and

obtain that x ∈ Vk+1(s) ⊆ Wk+1, y ∈ Vk+1(t) ⊆ Wk+1 and Rk+1(x, y). Then, by
condition (p1) Rk(f(x), f(y)). As in the other direction f(x) ∈ Vk(s) and f(y) ∈
Vk(t). Therefore, CRk

(Vk(s), Vk(t)).
(iii) In Lemma 7.11 we proved that for an arbitrary term t from L such that µk(Vk(t))
= µk+1(Vk+1(t)). We will apply this result in the following way:

µk(Vk(t)) = µk+1(Vk+1(t))

µk(Vk(s)) = µk+1(Vk+1(s))

If we have that µk(Vk(s)) ≤ µk(Vk(t)), then it is also true that µk+1(Vk+1(s)) ≤
µk+1(Vk+1(t)) and vice versa.

Lemma 7.13. (P-morphism, 4) Let ϕ be a formula of L and let for some k the
model Fk+1 be p-morphic preimage of the model Fk. Then, Fk |= ϕ↔ Fk+1 |= ϕ.

Proof. The proof follows from Lemma 7.12.

7.3 Finite connected acyclic Kripke structures and polytopes

In this section we will explore an algorithm which associates each node from the finite
connected acyclic Kripke structure F = 〈W,R, µ〉 with HL-measure to a polytope.

For this section we assume that v0 is the unique vertex from W which has a measure
+∞ (µ({v0}) = +∞). We start with introducing the following abbreviation Lnv0 . It
is the set of all vertices reachable from v0 with simple path with length n. We will
also use LNv0 to denote all vertices reachable from v0 with path with length N and
vertices from LNv0 do not have any other directly accessible vertices except the ones
from LN−1v0 .

Construction 7.14. (Weight Function) We define inductively weight function LM :
W → R+ in the following way:

• For v ∈ LNv0 , LM (v) = µK({v})
• Let v ∈ Lnv0 and V ′ = {v1, v2, . . . , vs} be all vertices from Ln+1

v0 which are
directly accessible from v. Then LM (v) =

∑
v′∈V ′ LM (v′) + µK({v}).

• LM (v0) = +∞

Next step is to develop a procedure which constructs a corresponding polytope for
a vertex. Since we have two different types of vertices we will show two procedures.
We will give one method for the vertex v with measure +∞. The other one will be
for vertex v with measure positive real number.
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Construction 7.15. Let F = 〈W,R, µ〉 be a finite acyclic Kripke structure with
HL-measure. Let the vertex v0 from W has a measure +∞ and let the vertex v
from W be different from v0 and is with measure positive real number. We show the
constructions for both vertices:

Construction for v0: We will construct from v0 corresponding polytope Pv0 as
a finite union of basis polytopes (Def. 3.4). We use the following procedure:

Base: Without loss of generality we will assume that all vertices directly ac-
cessible from v0 are {v1, v2, . . . , vs} given by the abbreviation L1

v0 . We
further use two variables left and right with indices to denote the begin-
ing and the end of intervals which will be included in the corresponding
polytope to v0. We start with initializing left0 = 0 and right0 = 1.

Step: We are processing a vertex vi which is an element from L1
v0 . We calculate

an interval that will be included in the representation of v0 as polytope:

lefti = righti−1 + LM (vi)

righti =

{
lefti + 1, i < s

+∞, i = s

We apply these steps for all s elements in L1
v0 . We define Pv0 as follows:

Pv0 =

{
[0,+∞), s = 0⋃s−1
i=0 [lefti; righti] ∪ [rights; +∞), s > 0

The polytope Pv0 corresponds to v0.

Construction for v: The procedure works over a fixed interval [left; right] with
length LM (v). We will show a mechanism to build its corresponding polytope
Pv:

Base: Without loss of generality we assume that v appears in some level Lnv0
for n >= 1 and V ′ = {v1, v2, . . . , vs} are all vertices from Ln+1

v0 which are
directly accessible from v. We initialize step = µK({v})/(s+ 1). We also
initialize left0 = left and right0 = left0+step. Similarly to the previous
procedure we define P 0 = [left0; right0].

Step: We are processing a vertex vj which is an element from V ′. We define
an interval that will be included in the corresponding to v polytope:

leftj = rightj−1 + LM (vj)
rightj = leftj + step

We apply these steps for all elements in V ′. So, we obtain the polytope
Pv =

⋃s
i=0[lefti; righti] We constructed the polytope Pv corresponding

to the vertex v.

So that, we have a map from a vertex v to the corresponding polytope Pv. Thus,
this map is from W onto Pol(R+) such that:

(i) Int(Pv) 6= ∅
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(ii) R(v1, v2)↔ C(Pv1 , Pv2)

(iii) µ(v) = µL(v)

(iv) v1 6= v2 → Pv1 ∩ Pv2 is finite set of real numers

Remark. We remind that the contact relation for polytopes is defined as non-empty
set-theoretic intersection and mL is the Lebesgue measure.

By means of this map we define a function h : P(W )→ Pol(R+) as follows:

h(A) =
⊔
v∈A Pv

Since W is finite function h is well-defined. It is easy to prove the basic properties
of h summarized in the following lemma:

Lemma 7.16. Let A, A1 and A2 be subsets of W. Then:

(i) h(∅) = ∅
(ii) h(W ) = R+ (= [0; +∞))

(iii) h(W \A) = (h(A))∗

(iv) h(A1 ∪A2) = h(A1) t h(A2)

(v) A1 6= A2 → h(A1) 6= h(A2)

(vi) A1 ⊆ A2 ↔ h(A1) ⊆ h(A2)

(vii) CR(A1, A2)↔ C(h(A1), h(A2)) (↔ h(A1) ∩ h(A2))

(viii) µ(A) = µL(h(A))

Proof. The proof is straightforward verification.

Now we are ready to prove the main theorem:

Theorem 7.17. Let B be the contact algebra of polytopes in R+ and µL be the
Lebesgue measure on R. For any formula ϕ from L the following conditions are
equivalent:

(i) LHL ` ϕ
(ii) 〈B, µL〉 |= ϕ

Proof. (i)⇒ (ii) We have already mentioned that 〈B, µL〉 is an HL-structure. There-
fore, 〈B, µL〉 |= ϕ by the Theorem 6.3.

(ii) ⇒ (i) We prove this direction by contraposition. So, we assume that ϕ is
not a theorem of LHL, 6` ϕ. Then, there exist a finite connected acyclic Kripke
frame F = 〈W,R〉 and an HL-measure µ such that 〈F, µ〉 6|= ϕ. Let V be a valuation
such that 〈〈F, µ〉, V〉 |= ¬ϕ. Now we consider a valuation V

′ in 〈B, µL〉 defined as
V
′(p) = h(V(p)) for any variable p ∈ BoolV ars. Then by the results from Lemma

7.16 for all Boolean terms a and b it follows:
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• 〈〈F, µ〉, V〉 |= (a ≤ b) ↔ V(a) ⊆ V(b) ↔ h(V(a)) ⊆ h(V(b)) ↔ V
′(a) ⊆ V

′(b) ↔
〈〈B, µL〉, V′〉 |= (a ≤ b)
• 〈〈F, µ〉, V〉 |= C(a, b)↔ CR(V(a), V(b))↔ C(h(V(a)), h(V(b)))↔ C(V′(a), V′(b))↔
〈〈B, µL〉, V′〉 |= C(a, b)

• 〈〈F, µ〉, V〉 |= (a ≤µ b) ↔ µ(V(a)) ≤ µ(V(b)) ↔ µL(h(V(a))) ≤ µL(h(V(b))) ↔
µL(V′(a)) ≤ µL(V′(b))↔ 〈〈B, µL〉, V′〉 |= (a ≤µ b)

Now an induction on the construction of the formulae shows that for any formula ψ
it holds:

〈〈F, µ〉, V〉 |= ψ ↔ 〈〈B, µL〉, V′〉 |= ψ

Therefore, 〈〈B, µL〉, V′〉 |= ¬ψ. Hence, 〈〈B, µL〉, V′〉 6|= ψ.

8 Open problems

We would like to mention some problems that had not been part of this study:

• Is it possible to find a finite axiomatic system equivalent to LHL?

• What is the complexity of LHL? Tip: Our conjecture is PSpace-complete.
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