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Introduction

Region-based theory of space is an alternative to the standard point-based theory of space. It
originates from the philosophical argument, proposed by Whitehead, de Laguna and others,
that the notion of a point is too abstract to be taken as primitive. They reasoned that the
primitive ontological notion of geometry should, instead, resemble spatial bodies, for which
the name region has been chosen, and that the notion of a point should be defined in terms
of the notions of region and basic relational notions such as part-of and contact.

Different objects could be taken as regions. A standard choice is the regular closed sets
of suitable topological spaces, e.g. Euclidean spaces. But such sets can have very exotic
properties, like, for instance, some fractals. One possible restriction to more tame sets, which
presumably better resemble spatial bodies, are the polytopes – a special kind of regular closed
in Euclidean spaces sets. Also, different kinds of contact can be considered. Here we propose
a new kind of contact relation between polytopes.

1 Preliminaries

1.1 Boolean Algebras

Let A be a nonempty set, − be a unary operation in A, + and · be binary operations in A
and 0 and 1 be two distinct elements of A. Let for any elements x, y and z of A the following
conditions be satisfied:

x+ (y + z) = (x+ y) + z (associativity) x · (y · z) = (x · y) · z
x+ y = y + x (commutativity) x · y = y · x
x+ (x · y) = x (absorption) x · (x+ y) = x

x · (y + z) = (x · y) + (x · z) (distributiviy) x+ (y · z) = (x+ y) · (x+ z)
x+ (−x) = 1 (complementation) x · (−x) = 0

Then A = 〈A,−,+, ·, 0, 1〉 is called a Boolean algebra and −, +, ·, 0 and 1 are called re-
spectively the complement, join, meet, bottom element (or zero), and top element (or unit) of
A. The binary relation≤ in A, such that x ≤ y iff x+y = y, is called the Boolean ordering of A.

By the complementation equalities and the known fact that the complement, join and
meet satisfy de Morgan’s laws, any Boolean algebra is determined by its carrier, complement
and join. That is why when we say ”the Boolean algebra 〈A,−,+〉” we mean the unique
Boolean algebra with carrier A, complement − and join +.

Let W be a nonempty set. Then the power set P(W ) of W is the carrier of a Boolean
algebra with complement the set-theoretic complement W \ to W and join the set-theoretic
union ∪. In other words 〈P(W ),W \ ,∪〉 is a Boolean algebra. We shall designate it by B(W )
and call it the set-theoretic Boolean algebra over W . Its meet, zero, unit and ordering are
respectively the set-theoretic intersection ∩, the empty set ∅, the set W and the set-theoretic
inclusion ⊆.

Let A = 〈A,−,+〉 be a Boolean algebra. If B is a closed with respect to − and +
nonempty subset of A, we say that B = 〈B,−,+〉 is a subalgebra of A. Clearly a subalgebra B
of a Boolean algebra A is itself a Boolean algebra and its meet, zero and unit are respectively
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the meet, zero and unit of A.

The notions of join and meet are generalised to arbitrary nonempty subsets of the car-
rier of a Boolean algebra. Let A be a Boolean algebra with carrier A and ordering ≤.
Let B be a nonempty subset of A. An element +B of A is said to be the join in A of
B iff (∀b ∈ B)(b ≤ +B) and (∀a ∈ A)((∀b ∈ B)(b ≤ a) → +B ≤ a). Analog-
ically, an element ·B of A is said to be the meet in A of B iff (∀b ∈ B)(·B ≤ b) and
(∀a ∈ A)((∀b ∈ B)(a ≤ b) → a ≤ ·B). A Boolean algebra is said to be complete iff its carrier
contains the join and meet of each of its nonempty subsets.

1.2 Contact Relations and Contact Algebras

Let A be a Boolean algebra with carrier, complement, join, meet, zero, unit and ordering
respectively A, −, +, ·, 0, 1 and ≤.

A binary relation C in A is called a contact relation in A iff, for any elements x, y and z
of A, the following conditions are satisfied:

(C1) ¬C(0, x)
(C2) C(x, y + z)↔ (C(x, y) or C(x, z))
(C3) C(x, y)→ C(y, x)
(C4) x 6= 0→ C(x, x)

If A is a Boolean algebra and C is a contact relation in A, then 〈A, C〉 is called a contact
algebra.

Example. We say that two elements x and y of A overlap iff their meet is not the bottom
element, i.e. x · y 6= 0. It is easy to see that the overlap relation in any Boolean algebra is a
contact relation in it.

Let W be a nonempty set and R be a binary relation in W . Let CR be the binary relation
in P(W ) such that for any subsets a and b of W we have CR(a, b) iff (∃x ∈ a)(∃y ∈ b)xRy. It is
easy to see that 〈B(W ), CR〉 is a contact algebra iff R is reflexive and symmetric. If that is the
case, we call F = 〈W,R〉 an adjacency space, we call the elements of W cells of F , we call R the
adjacency relation of F and we say that the contact algebra 〈B(W ), CR〉 is induced by F . We
call a contact algebra which is induced by some adjacency space a set-theoretic contact algebra.

The following properties of contact relations are well-known and follow easily from the
conditions (C1) to (C4).
A contact relation is monotone with respect to the Boolean ordering, i.e.

x ≤ x′ → (y ≤ y′ → (C(x, y)→ C(x′, y′))) .

A contact relation is an extension of the overlap relation, i.e. if two elements overlap, they
are in contact, i.e.

x · y 6= 0→ C(x, y) .
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1.3 Topological Contact

Let T = 〈X, τ〉 be an arbitrary topological space.

Let Int, Cl and ∂ designate respectively the interior, closure and boundary operators. Let
u designate the binary operation, called regularised intersection, such that for any subsets A
and B of X we have AuB � Cl(Int(A∩B)). Let ∗ designate the unary operation such that
for any subset A of X we have A∗ � Cl(X \A).

A subset A of X is called regular closed in T iff A = Cl(Int(A)). We designate the set
{A ⊆ X | A = Cl(Int(A))} of the regular closed in T sets by RC(T ). It is known, for instance
from [2], that RC(T ) � 〈RC(T ), ∗,∪〉 is a complete Boolean algebra with meet, zero, unit
and ordering respectively u, ∅, X and ⊆. Moreover, the join and meet of a set A of regular
closed sets equal Cl(∪A) and Cl(Int(∩A)) respectively. In particular, if A = {a1, ..., ak} is a
finite set of regular closed sets, we have a1 u ...u ak = ((...((a1 u a2)u a3)u ...)u ak−1)u ak =
Cl(Int(∩A)) = ((...((a1 ∩ a2)∩ a3)∩ ...)∩ ak−1)u ak, which we shall designate by uA and call
the regularised intersection of A.

Let us point out that, since for any set B in a topological space we have ∂Cl(B) ⊆ ∂B,
we have that the boundary points of a regular closed set A are boundary points of its interior
and thus any open neighbourhood of such a point contains not only points of A but points of
Int(A) as well.

Let A and B be regular closed in T sets. We say that A and B are in topological contact
iff A∩B 6= ∅. We shall designate this binary relation by CT . It is easy to verify that CT is a
contact relation in RC(T ).

2 Strong Contact

Let T = 〈X, τ〉 be a topological space. We say that an open in T set is connected iff it cannot
be represented as the union of two disjoint open sets. Let us define the binary relation SCT

in P(X) as follows: for any subsets A and B of X, let SCT (A,B) iff there exists a connected
and open subset E of A∪B such that E∩A 6= ∅ and E∩B 6= ∅. We shall omit the superscript
when it is clear from the context.

Obviously SC is symmetric and ¬SC(∅, A) for any A. Also, evidently (SC(A,B) or
SC(A,D)) implies SC(A,B ∪D).

We shall consider the SC relations for Euclidean spaces. Let for any positive natural
number n, Rn be the set of n-tuples of real numbers, T n be the natural topology on Rn and
Rn = 〈Rn, T n〉.

Lemma (Strength, upward). SCR
n

is an extension of the overlap relation in RC(Rn).

Proof. Let A and B be overlapping sets in Rn, i.e. A u B 6= ∅, i.e. Cl(Int(A ∩ B)) 6= ∅,
thus Int(A ∩ B) 6= ∅. Let x ∈ Int(A ∩ B). Evidently, any open ball with centre x, contained
in Int(A ∩B) is a witness to SC(A,B).
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Corollary. Evidently, for any nonempty regular closed set A, we have SC(A,A).

Lemma (Strength, downward). Let A and B be closed in Rn sets such that SC(A,B).
Then A ∩B 6= ∅.

Proof. Let E be a witness to SC(A,B). Suppose A ∩ B = ∅. Since Rn is a normal
topological space, let A′ and B′ be open sets such that A ⊆ A′, B ⊆ B′ and A′ ∩ B′ = ∅.
Then E ⊆ A∪B ⊆ A′∪B′, so E = (E ∩A′)∪ (E ∩B′). Thus E is the union of two nonempty
disjoint open sets, i.e. E is not connected, which is a contradiction. �

We shall show that the relation SCR
n

is not distributive over the set-theoretic union for
regular closed sets, by showing a counterexample in RC(R1). We shall use the partitioning
of the closed interval [0, 1] by the sequence of the negative integer powers of 2. Let for any
natural number k, Sk designate the closed interval [2−k−1, 2−k].

Let B � Cl(∪{S2k | k < ω}) be the closure of the union of those line segments Sk with
even indices and D � Cl(∪{S2k+1 | k < ω}) – of those with odd indices. B and D are defined
as the joins in RC(R1) of {S2k | k < ω} and {S2k+1 | k < ω} thus B and D are regular closed
in R1 sets.

The point 0 is an accumulation point of both B and D, thus 0 ∈ Cl(B) = B and
0 ∈ Cl(D) = D. Clearly B ∪D = [0, 1]. Let also A� [−1, 0].

The open interval (−1, 1) is a witness to SC(A,B ∪D). But ¬SC(A,B) because no open
interval (connected and open in R1 set) which has nonempty intersection with both A and
B is contained in A ∪ B. Analogically ¬SC(A,D). Thus SC is not distributive over ∪ for
regular closed sets in R1, thus SCR

1
is not a contact relation in RC(R1).

2.1 Polytopes

We shall now define a particular kind of regular closed in Euclidean spaces sets, which we
shall call polytopes.

A regularised intersection of finitely many closed half-spaces of Rn is called a basic polytope
in Rn. A finite union of basic polytopes in Rn is called a polytope in Rn. We shall designate
the set of polytopes in Rn by Pn.

Remark. Notice that ∅ and Rn are polytopes in Rn, since for any closed half-space α we
have that α∗ is also a closed half-space and α u α∗ = ∅ and α ∪ α∗ = Rn. Notice also that
polytopes are regular closed.

A set A in an Euclidean space is called convex, iff each line segments with endpoints be-
longing to A is a subset of A.

We shall use the following well-known, described, for instance in [5], results about convex
sets in Euclidean spaces: a closed half-space of a Euclidean space is convex; the intersec-
tion of any set of convex sets is convex; if A is a convex set with nonempty interior, then
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Cl(A) = Cl(Int(A)). Using these results we immediately obtain the following

Lemma (Basic polytopes). If A = uB is a nonempty basic polytope, then ∩B =
Cl(∩B) = Cl(Int(B)) = uB.

We shall now show that the polytopes in Rn form a Boolean subalgebra of RC(Rn), i.e.
that Pn is closed with respect to the operations ∗ and ∪. Clearly the union of two polytopes
is a polytope.

Let A be a polytope. We shall show that A∗ is also a polytope. Let A = ∪qi=1Ai =
∪qi=1(u

pi
j=1αij), where all αij are closed half-spaces and thus all Ai are basic polytopes.

By de Morgan’s laws we have that A∗ = (∪qi=1Ai)
∗ = uqi=1(A

∗
i ) = uqi=1((u

pi
j=1αij)

∗) =
uqi=1(∪

pi
j=1(α

∗
ij)). So A∗ is a finite regularised intersection of finite unions of closed half-

spaces. Thus it is a finite regularised intersection of finite unions of basic polytopes, i.e. a
finite regularised intersection of polytopes. We shall prove that a regularised intersection of
any finite number q of polytopes is a polytope by induction on q.

Let every regularised intersection of q polytopes be a polytope. Let A∗ = BuD1uD2u...u
Dq be a regularised intersection of q+ 1 polytopes. If q = 0, then A∗ = B is obviously a poly-
tope, so let q > 0. Since B and D1 are polytopes, let B = B1 ∪ ...∪Bs and D1 = G1 ∪ ...∪Gt
for some basic polytopes B1,..., Bs, G1,...,Gt. Using simple properties of Boolean operations
we obtain BuD1 = Bu (G1∪ ...∪Gt) = (BuG1)∪ ...∪ (BuGt) = ((B1∪ ...∪Bs)uG1)∪ ...∪
((B1∪ ...∪Bs)uGt) = (B1uG1)∪ ...∪ (B1uGt)∪ ...∪ (BsuG1)∪ ...∪ (BsuGt). Thus BuD1

is a finite union of regularised intersections of basic polytopes, thus is a finite union of basic
polytopes, thus is a polytope. Then A∗ = B uD1 uD2 u ... uDq = (B uD1) uD2 u ... uDq,
is a regularised intersection of q polytopes and by the induction hypothesis is a polytope.

We shall designate the Boolean algebra 〈Pn, ∗,∪〉 by Pn.

2.2 The One-dimensional Case

By the downward strength lemma we have that for any closed in R1 sets A and B we have
that SCR

1
(A,B) implies CR

1
(A,B). We shall now show that if A and B are polytopes in R1

we also have that CR
1
(A,B) implies SCR

1
(A,B).

Polytopes in R1 are finite unions of closed intervals (with nonzero length) and/or rays.
Let A and B be such and let x ∈ A∩B. Let A′ and B′ be closed intervals (each with nonzero
length) contained in A and B respectively such that x is an endpoint of both. Let a and b be
their other endpoints. Without loss of generality (WLoG) let a ≤ b. If x is between a and b,
then the open interval (a, b) is a witness to SC(A,B). If a ≤ b < x, then the open interval
(b, x) is a witness to SC(A,B).

Thus for polytopes in R1 the relations CR
1

and SCR
1

coincide. Thus SCR
1

is a contact
relation in P1.
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2.3 The Two-dimensional Case

It is easy to see that there are polytopes in Rn which have nonempty intersection but are not
in the SCR

n
relation – for instance a pair of vertical (opposite) angles in R2.

Lemma (Crossing). Let T = 〈X, τ〉 be a topological space, A be a closed in T set,
a ∈ Int(A), b /∈ A and γ be a curve in T connecting a and b (γ : [0, 1] −→ X, γ(0) = a and
γ(1) = b). Then Range(γ) ∩ ∂A 6= ∅.

Proof. Let B � Cl(X \ A) = (X \ Int(A)). We will recursively define a sequence {xi}i<ω
of points on [0, 1], as follows:
Base: x0 � 0
Recursion step:
If γ(xi) ∈ A \B, then let xi+1 � xi + 2−i.
If γ(xi) ∈ B \A, then let xi+1 � xi − 2−i.
If γ(xi) ∈ A ∩B, then let xi+1 � xi.

Notice that, since x0 = 0, we have γ(x0) ∈ A \ B, so x1 = 1, so there exists i such that
γ(xi) ∈ B \A.

Case 1: ∃i(xi+1 = xi). Let k be such. Then γ(xk) ∈ A ∩B = ∂A.
Case 2: ∀i(xi+1 6= xi). Then ¬∃i(γ(xi) ∈ A ∩B)
Suppose that only finitely many elements of {γ(xi) | i < ω} belong to A\B and let γ(xk)

be the last such (i.e. the one with the greatest index). Then (∀j > k)(γ(xj) ∈ B \ A). Then
xk+1 = xk − 2−k and for each i > k, we have xi+1 = xi + 2−i. Then

lim
i→ω

xi = xk +

(
1

2

)k
−
(

1

2

)k+1

−
(

1

2

)k+2

− ... = xi +

(
1

2

)k
−

ω∑
i=1

(
1

2

)k+i
= xk

By the continuity of γ, every open neighbourhood of γ(xk) contains a point γ(xk+i) of B,
thus γ(xk) ∈ Cl(B) = B, which contradicts γ(xk) ∈ A\ B. Thus, infinitely many elements
of {γ(xi) | i < ω} belong to A\ B. Analogically, infinitely many elements of {γ(xi) | i < ω}
belong to B\A.

Since any series
∑

i<ω(−1)ε(i)2−i, where ε : ω −→ {0, 1}, of the powers of 1
2 is absolutely

convergent, the sequence {xi}i<ω converges. Let x � limi→ω xi. Since γ is continuous, we
have that limi→ω γ(xi) = γ(limi→ω xi) = γ(x). Let {ai}i and {bi}i be the subsequences of
{xi}i of those xi which are elements of A \ B and those which are elements of B \ A respec-
tively. Then xk is a point of accumulation of both of them. Then every open neighbourhood
of γ(xk) contains points form A and points from B. Thus γ(xk) ∈ Cl(A) ∩ Cl(B) = ∂A. �

We shall use the following theorem, proven, for instance, in [4].

Theorem (Hyperplane intersection). The intersection of two hyperplanes in Rn with
dimensions k′ and k′′ is either the empty set or a hyperplane of dimension equal to at least
k′ + k′′ − n.

Lemma (Point dodging). Let a and b be two distinct points in R2 and A be a finite set
of points in R2 not containing a and b. Then there exists a simple curve in R2 with endpoints
a and b, which is incident with no point of A.
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Proof. Let {Ux | x ∈ A} be a family of mutually disjoint closed disks none of which
contains a or b and for each x ∈ A the centre of Ux is x. Let B � {x ∈ A | x ∈ [a, b]} be the
set of those points of A that lie on the line segment [a, b]. Let x ∈ B. Notice that [a, b]∩Ux is
a diameter of Ux. Let ax and bx be its endpoints. Let γ be the curve obtained from the line
segment [a, b] by substituting each such diameter [ax, bx] with some arc of Ux with endpoints
ax and bx. Evidently γ is a curve with the desired property. �

Lemma (Point dodging in connected open sets). Let E be a connected and open in
R2 set, a and b be two distinct points in E and A be a finite set of points in R2 not containing
a and b. Then there exists a curve contained in E with endpoints a and b which is not incident
with any point in A.

Proof. We know that a connected open in R2 set is homeomorphic to R2. Let φ be such
a homeomorphism. By the point dodging lemma, let γ be a curve in R2 with endpoints φ(a)
and φ(b) which is not incident with any point of φ[A] = {φ(x) | x ∈ A}. Then evidently the
curve γ̃ � {〈r, φ−1(γ(r))〉 | r ∈ Dom(γ) = [0, 1]} is a curve with the desired property. �

Lemma (Dodging). Let n ≥ 2 and A be a finite set of (n− 2)-dimensional hyperplanes
in Rn. Let E be an open in Rn set and a and b be two points in E \ (∪A). Then there exists
a simple curve contained in E which is not incident with any element of A.

Proof. Induction on n.

Base: n = 2. This is the point dodging in connected open sets lemma.

Induction hypothesis: Let the claim be true for dimensions k such that 2 ≤ k < n.

Induction step: Let A be a finite set of (n− 2)-dimensional hyperplanes in Rn and a and
b be points in Rn such that a /∈ ∪A and b /∈ ∪A. Let L be the set of all (n− 1)-dimensional
hyperplanes in Rn containing (the straight line connecting) a and b. Clearly |L| ≥ ℵ0.

Let α ∈ A and λ ∈ L. Consider what α ∩ λ could be. By the hyperplane intersection
theorem, α∩λ is either empty or a hyperplane of dimension n−2 or a hyperplane of dimension
n−3. Evidently, since α is (n−2)-dimensional, α∩λ is a hyperplane of dimension n−2 iff α ⊆ λ.

We will show that for each α ∈ A there is at most one λ ∈ L such that α ⊆ λ. Suppose
the contrary. Let α, λ1 and λ2 be such. Then α ⊆ λ1 ∩ λ2. Since λ1 6= λ2, by hyperplane
intersection theorem λ1 ∩ λ2 has dimension n− 2. Thus α = λ1 ∩ λ2. But a ∈ λ1 ∩ λ2, which
contradicts a /∈ ∪A.

Thus only finitely many elements of L have (n − 2)-dimensional intersection with some
element of A. But L is infinite, so let λ be an element of L such that B = {α∩λ | α ∈ A}\{∅}
is a finite set of (n− 3)-dimensional hyperplanes.

By the induction hypothesis, let γ be a simple curve in E ∩ λ with endpoints a and
b which is not incident with any element of B, i.e. such that Range(γ) ∩ (∪B) = ∅. Then
γ is a simple curve in Rn with endpoints a and b which is not incident with any element of A.�
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Lemma (Infinity). Let n ≥ 2, A be a polytope in Rn and E be a connected open set
such that E ∩ ∂A 6= ∅. Then |E ∩ ∂A| ≥ ℵ0.

Proof. Suppose |E ∩ ∂A| < ℵ0. Then E ∩ ∂A is a finite set of isolated points. Let
x ∈ E ∩ ∂A. Since A is regular closed, let a ∈ E ∩ Int(A) and b ∈ E \ A. By the dodging
lemma, there exists a simple curve contained in E with endpoints a and b which is not incident
with any point of E ∩ ∂A. Let γ be such. Then Range(γ) ∩ ∂A = ∅, which contradicts the
crossing lemma. Thus indeed |E ∩ ∂A| ≥ ℵ0. �

Lemma (Distributivity). Let A, B and D be polytopes in R2 and SC(A,B∪D). Then
SC(A,B) or SC(A,D).

Proof.

Case 1 : A u (B ∪ D) 6= ∅. I.e. A and B ∪ D overlap. Since the overlap relation is a
contact relation, it is distributive over the join ∪. Thus A u B = ∅ or A uD = ∅. Then, by
the upward strength lemma, SC(A,B) or SC(A,D).

Case 2 : A u (B ∪D) = ∅.

Let us designate B∪D by G. Then Cl(Int(A∩G)) = ∅, thus Int(A∩G) = Int(A)∩Int(G) =
∅. Let E be a witness to SC(A,G).

Since a polytope in R2 is a finite union of finite regularised intersections of closed half-
planes, let A = ∪i uj αij , B = ∪i uj βij and D = ∪i uj δij , where the various αij , βij
and δij are closed half-planes and the indices vary through some six finite index sets. Let
PA � {αij | i, j}, PB � {βij | i, j}, PD � {δij | i, j} and P � PA ∪ PB ∪ PD. Let
QA � {∂αij | i, j}, QB � {∂βij | i, j}, QD � {∂δij | i, j} and Q � QA ∪ QB ∪ QD. Then
QA, QB, QD and Q are finite sets of lines.

Let us point out that ∂A = ∂(∪i uj αij) ⊆ ∪i ∂(ujαij) = ∪i ∂(Cl(Int(∩jαij))) ⊆ ∪i
∂(Int(∩jαij)) ⊆ ∪i ∂(∩jαij) ⊆ ∪i ∪j∂αij = ∪QA and analogically for B and D.

In the first half of the remaining part of the proof, we will show that there exists a point in
E ∩ ∂A which is incident with exactly one element of Q. In the second half we will construct
a sufficiently small open disk with centre such a point and will show that it is a witness to
SC(A,B) or to SC(A,D).

First, we shall prove that (E ∩∂A)∪ (E ∩∂G) 6= ∅. Suppose the contrary, i.e. E ∩∂A = ∅
and E ∩ ∂G = ∅. Since E ⊆ A ∪ G, we obtain E = E ∩ (A ∪ G) = (E ∩ A) ∪ (A ∩ G) =
(E∩(Int(A)∪∂A))∪(E∩(Int(G)∪∂G)) = (E∩Int(A))∪(E∩Int(G))∪(E∩∂A)∪(E∩∂G) =
(E ∩ Int(A)) ∪ (E ∩ Int(G)). But since Int(A ∩ G) = ∅, we have that E ∩ Int(A ∩ G) =
E ∩ (Int(A) ∩ Int(G)) = (E ∩ Int(A)) ∩ (E ∩ Int(G)) = ∅. Thus we obtained that E is the
union of two open disjoint sets, i.e. that E is not connected, which is a contradiction. Thus
indeed (E ∩ ∂A) ∪ (E ∩ ∂G) 6= ∅.

Now we shall prove that E ∩ ∂A = E ∩ ∂G. Let x ∈ E ∩ ∂G. Since G is regular closed,
let a ∈ E \ G and b ∈ E ∩ Int(G). Since E ⊆ A ∪ G, we have a ∈ A. Suppose b ∈ A. Let
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U be an open neighbourhood of b contained in Int(G). Since A is regular closed, we have
U ∩ Int(A) ∩ Int(G) 6= ∅, which contradicts Int(A) ∩ Int(G) = ∅. Thus b /∈ A. Then a and b
are witnesses to the fact that x ∈ E ∩ ∂A. But x was an arbitrary element of E ∩ ∂G, thus
we conclude that E ∩ ∂G ⊆ E ∩ ∂A. Analogically we obtain that E ∩ ∂A ⊆ E ∩ ∂G. Thus
indeed E ∩ ∂A = E ∩ ∂G 6= ∅.

We shall now prove that there exists µ ∈ QA such that |E ∩ µ ∩ ∂A| ≥ ℵ0. Suppose the
contrary, i.e. suppose (∀µ ∈ QA)(|E ∩ µ ∩ ∂A| < ℵ0). We have that |E ∩ (∪QA) ∩ ∂A| =
|∪{E∩µ∩∂A | µ ∈ QA}| ≤ Σµ∈QA |E∩µ∩∂A|. But the last is a finite sum of natural numbers,

thus is finite. Thus |E∩(∪QA)∩∂A| < ℵ0. But ∂A ⊆ ∪QA, thus (E∩(∪QA)∩∂A) = (E∩∂A).
Thus |E ∩ ∂A| < ℵ0 which contradicts the infinity lemma. Thus there indeed exists µ ∈ QA
such that |E ∩ µ ∩ ∂A| ≥ ℵ0. Let ∂α be such.

Let Qα � Q \ {∂α, ∂α∗} = Q \ {∂α} and A(α) � E ∩ ∂α ∩ ∂A.

We shall prove that there exists a point of A(α) which belong to no element of Q other than
∂α. I.e. that (∃y ∈ A(α))(¬∃µ ∈ Qα)(y ∈ µ), i.e. that A(α) * ∪Qα. Suppose the contrary.
I.e. suppose (∀y ∈ A(α))(∃µ ∈ Qα)(y ∈ µ). LetM be a choice function that provides witnesses
to these existences, i.e. letM : A(α) −→ Qα such that (∀y ∈ A(α))(M(y) ∈ Qα & y ∈M(y)).

We shall prove that M is injective. Let y1, y2 ∈ A(α) and y1 6= y2. Suppose M(y1) =
M(y2) 
 µ. Then µ is the unique straight line incident with both y1 and y2. But y1
and y2 are elements of A(α) = E ∩ ∂α ∩ ∂A, thus they both lie on the line ∂α. Thus
∂α = µ = M(y1) = M(y2). But µ ∈ Qα = Q \ {∂α}, thus µ 6= ∂α, which is a contradiction.
Thus M is indeed injective.

But the injectivity of M implies that |A(α)| ≤ |Qα|, which is a contradiction because
|A(α)| ≥ ℵ0 and Qα is finite. Thus the assumption that A(α) ⊆ ∪Qα is not true. So let x be
such that x ∈ A(α) = E ∩ ∂α ∩ ∂A and (∀µ ∈ Qα)(x /∈ µ). In other words, x is a point of
E ∩ ∂A which belongs to exactly one element of Q – the element ∂α.

Let ρ be the Euclidean distance in R2. Let R � {ρ(x, µ) | µ ∈ Qα}. Notice that since
x is not incident with any line in Qα, R is a finite set of strictly positive numbers, thus
has a nonzero minimum. Let e � ρ(x, ∂E). Since x ∈ E and E is an open set, e is also
nonzero. Let r � 1

2min(R ∪ {e}) and U be the open disk with centre x and radius r. Let
p � ∂α ∩ U . Clearly p is a diameter of U . Let U1 and U2 be the two open half-disks that p
divides U into. Clearly p, U1 and U2 are disjoint and U = p∪U1 ∪U2. By the definition of U ,
we have that (∪Qα)∩U = ∅. And then, since p ⊆ µ = ∂α, we have (∪Q)∩U1 = (∪Q)∩U2 = ∅.

We have that x ∈ ∂A, U is an open neighbourhood of x and A is regular closed, so let
a ∈ U ∩ Int(A). Since p ⊆ ∂A and ∂A and Int(A) are disjoint, a /∈ p, thus a ∈ U1 or a ∈ U2.
WLoG let a ∈ U1.

Suppose U1 * Int(A). Let a′ ∈ U1 and a′ /∈ Int(A). Then by the crossing lemma
[a, a′]∩∂A 6= ∅, where [a, a′] is the line segment with endpoints a and a′. Let a′′ ∈ [a, a′]∩∂A.
Since U1 is a half-disk, it is convex, and thus [a, a′] ⊆ U1, so a′′ ∈ U1. Thus U1 ∩ ∂A 6= ∅,
contradicts (∪Q) ∩ U1 = ∅, because ∂A ⊆ ∪QA ⊆ ∪Q. Thus U1 ⊆ Int(A).

Since U is an open neighbourhood of x and x ∈ ∂A, there exists a point in U that is not
an element of A. Let b be such. Since U1 ⊆ Int(A) ⊆ A and p ⊆ ∂A ⊆ A, we have that
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b ∈ U2. Since b ∈ U2 ⊆ U ⊆ E ⊆ A ∪G and b /∈ A, we have that b ∈ G. But G = B ∪D, so
b ∈ B or b ∈ D. WLoG let b ∈ B.

We obtain that U2 ⊆ Int(B) analogically to the way we obtained that U1 ⊆ Int(A).

We already know that U1 ⊆ A, U2 ⊆ B and p ⊆ ∂A ⊆ A. Thus, since U = p ∪ U1 ∪ U2,
we have that U ⊆ A ∪ B. Moreover a and b are witnesses to U ∩ A 6= ∅ and U ∩ B2 6= ∅
respectively. And obviously U , being an open disk, is connected and open. Thus U is a
witness to SC(A,B). �

Thus SCR
2

is indeed distributive over the join ∪ in P2. We have obtained that SCR
2

satisfies all of the conditions for being a contact relation in P2. Thus 〈P2, SCR
2〉 is a contact

algebra.

2.4 Higher Dimensions

Let us suppose that throughout this section n is a fixed natural number greater than 2,
V = 〈V, τ〉 is an n-dimensional Euclidean space and Int, Cl and u designate the interior,
closure and regularised intersection operators in V. We shall use subscripts to designate the
corresponding operators in other topological spaces.

Recall that if A = uB is a nonempty basic polytope for some finite set B of closed half-
spaces of an Euclidean space, we have A = uB = ∩B.

Lemma (Division). Let A be a finite set of closed half-spaces of V and x ∈ Int(∩A).
Let β be a closed half-space of V such that x ∈ ∂β. Let A1 � A ∪ {β} and A2 � A ∪ {β∗}.
Then uA1 and uA2 are nonempty and x ∈ ∂(uA1) and x ∈ ∂(uA2).

Proof. Let ρ be the Euclidean distance in V and let r � 1
2min{ρ(x, ∂α) | α ∈ A}. Since A

is finite and x /∈ ∂α for any α ∈ A, we have that r is positive. Let U be the open n-dimensional
ball with centre x and radius r. Evidently ∂β divides U into two (nonempty) half-balls, i.e.
U1 � U ∩ Int(β) and U2 � ∩Int(β∗) are open hlaf-balls such that U1 ⊆ Int(∩A1) ⊆ uA1 and
U1 ⊆ uA2. Evidently x ∈ ∂(uA1) and x ∈ ∂(uA2). �

Corollary. If A is a finite set of closed half-spaces of V, and α is a half-space of V, then
∂α ∩ Int(∩A) ⊆ ∂(∩(A ∪ {α})) and ∂α ∩ Int(∩A) ⊆ ∂(∩(A ∪ {α∗})).

To prove that SCR
n

is distributive over ∪ for polytopes in Rn, we shall use a representation
of the boundaries of polytopes, which we shall describe in this section. We shall prove that
the boundary ∂A of a polytope A in an n-dimensional Euclidean space can be represented as
a union (∪S) ∪K where S is a finite set of open (n − 1)-dimensional sets and K is a subset
of a finite union of (n− 2)-dimensional hyperplanes in Rn.

Let φ be a finite set of (n − 1)-dimensional hyperplanes in V. We shall call such a set a
set of cuts in V. Let µ be a cut in V. There exist exactly two half-spaces α and α∗ of V such
that µ = ∂α = ∂α∗. We shall call α and α∗ the V-sides of µ.
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By φ̄ we shall designate the set of the V-sides of the elements of φ. We shall refer to the
elements of φ̄ as φ-V-sides. Evidently (∀α ∈ φ̄)(α∗ ∈ φ̄) and |φ̄| = 2|φ|.

Let s be a nonempty set of φ-V-sides. We shall say that s is φ-admissible iff us 6= ∅.
Notice that this implies that (∀α ∈ s)(α∗ /∈ s) and us = ∩s. We shall designate by φa the set
of φ-admissible sets.

We shall call a set s of φ-V-sides a φ-alternative iff s is φ-admissible and (∀α ∈ φ̄)(α ∈
s or α∗ ∈ s). Evidently a φ-alternative is a set of exactly |φ| half-spaces of V. We shall
designate by φA the set of φ-alternatives.

For each φ-admissible set s we shall call ∩s a φ-block. By φb we shall designate the set
∩[φa] = {∩s | s ∈ φa} of φ-blocks.

For each φ-alternative s we shall call ∩s a φ-brick. By φB we shall designate the set
∩[φA] = {∩s | s ∈ φA} of φ-bricks.

For each φ-block s we shall call Int(s) a φ-core. By φC we shall designate the set
Int[φB] = {Int(s) | s ∈ φB} of φ-bricks. Notice that each φ-core is nonempty.

It is easy to see that each φ-core is the interior of a unique φ-brick, which is the (regu-
larised) intersection of a unique φ-alternative.

Lemma. All φ-cores are mutually disjoint.

Proof. Let A and B be φ-cores and A′ and B′ the φ-alternatives such that A = Int(∩A′) =
∩Int[A′] and B = Int(∩B′) = ∩Int[B′]. Let A 6= B. Let α be a witness to this inequality.
WLoG, let α ∈ A′ and α /∈ B′. Then α∗ /∈ A′ and α∗ ∈ B′. Then A ⊆ Int(α) and B ⊆ Int(α∗).
Thus A ∩B = ∅. �

Lemma (Building Bricks). Each φ-block is the union of a unique set of φ-bricks.

Proof. Let ∩A be a φ-block for some φ-admissible set A. Induction on q = |φ| − |A|.

Base: q = |φ| − |A| = 0. Then |A| = |φ|, thus A is a φ-alternative and, thus ∩A is itself
a φ-brick.

Induction hypothesis: Let the claim be true for any φ-admissible setB such that |φ|−|B| ≤
q.

Induction step: Let A be a φ-admissible set such that |φ| − |A| = q + 1. Then |A| =
|φ| − q − 1, thus |A| < |φ|. Then ∂[A] $ φ. Let ∂α be a witness to this, i.e. ∂α ∈ φ and
∂α /∈ ∂[A]. Then α /∈ A and α∗ /∈ A.

Evidently ∩A = uA = Cl(Int(uA)) = Cl(Int((uA) ∩ (α ∪ α∗))) = (uA) u (α ∪ α∗) =
((uA) u α) ∪ ((uA) u α∗) = (u(A ∪ {α})) ∪ (u(A ∪ {α∗})).

Let us designate A ∪ {α} and A ∪ {α∗} by B1 and B2 respectively. By the choice of α we
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have that |B1| = |B2| = |A|+ 1, and thus |φ| − |B1| = |φ| − |B2| = q.

Case 1: Exactly one of uB1 and uB2 is empty. WLoG let uB1 6= ∅. Then by the
induction hypothesis uB1 = ∪b = ∪{ub1, ...,ubt} for some φ-alternatives b11, ..., b

t1
1 and

uA = (uB1) ∪ ∅ = uB1 = ∪{ub1, ...,ubt}.

Case 2: None of uB1 and uB2 is empty. Then by the induction hypothesis uB1 = ∪b1 =
∪{ub11, ...,ub

t1
1 } and uB2 = ∪b2 = ∪{ub12, ...,ub

t2
2 } for some φ-alternatives b11, ..., b

t1
1 , b

1
2, ..., b

t2
2 .

Then uA = (uB1)∪(uB2) = (∪b1)∪(∪b2) = ∪(b1∪b2) = ∪({ub11, ...,ub
t1
1 }∪{ub12, ...,ub

t2
2 }) =

∪{ub11, ...,ub
t1
1 ,ub12, ...,ub

t2
2 }. �

Evidently, for any finite set φ of cuts in V, we have (∪φ) ∩ (∪φC) = ∅. Moreover, if
x ∈ V \ (∪φ), then x ∈ φC . Thus we have V = (∪φ) ∪ (∪φC). So V is the union of the
disjoint sets ∪φ and ∪φC .

Let µ be an arbitrary element of the set φ of cuts in V. Let µ designate the topological
space with universe µ and topology – the induced by V topology on µ. Then µ is an (n− 1)-
dimensional Euclidean space.

Consider the intersections of the elements of φ with µ. Let ν ∈ φ \ {µ}. If µ and ν are
not parallel, then µ ∩ ν is an (n − 2)-dimensional hyperplanes in V, thus is a (dim(µ) − 1)-
dimensional hyperplane in µ. And if µ ‖ ν, then µ ∩ ν = ∅. Let φµ designate the set
{µ ∩ ν | ν ∈ φ & ν ∦ µ}. Clearly φµ is a set of cuts in µ.

Consider the intersections of the elements of φ̄ with µ. Let α ∈ φ̄. If µ ∦ ∂α, then µ∩α is
a closed (in µ) half-space of µ with boundary (in µ) µ∩ ∂α. If µ ‖ ∂α, then either µ = ∂α, or
µ is disjoint with one of the sides of ∂α and is a subset of the interior if the other. Evidently
the set {µ ∩ α | α ∈ φ̄ & ∂α ∦ µ} is the set of φµ-µ-sides.

We shall designate by φµ, φµa , φµA, φµb , φµB and φ
µ
C the sets of φµ-µ-sides, φµ-admissible

sets, φµ-alternatives, φµ-blocks, φµ-bricks and φµ-cores respectively.

Let s be a φµ-core for some element µ of φ. Then we shall say that s is a φ-sheet. We
shall designate by φS the set ∪{φµC | µ ∈ φ} of all φ-sheets.

By φL we shall designate the set ∪{φµ | µ ∈ φ} of all (n− 2)-dimensional hyperplanes in
V which are intersections of elements of φ. We shall call them φ-intersections.

Let µ ∈ φ and s ∈ φ
µ
a . By ŝ we shall designate the set {α ∈ φ̄ | µ ∩ α ∈ s}. By š we

shall designate the set {α ∈ φ̄ | µ ⊆ Int(α)} of those V-sides of the parallel to µ elements of
φ which contain µ in their interiors. Finally, by ṡ we shall designate ŝ ∪ š.

Let µ ∈ φ and s ∈ φ
µ
A. Let s1 � {µ1} ∪ ṡ and s2 � {µ2} ∪ ṡ, where µ1 and µ2 are the V-

sides of µ. Evidently s1 and s2 are φ-alternatives, thus ∩s1 = us1 and ∩s2 = us2 are φ-bricks.
We shall call us1 and us2 the s-toasts. We have (us1)∪(us2) = (u(ṡ∪{µ1}))∪(u(ṡ∪{µ2})) =
((uṡ) u µ1) ∪ ((uṡ) u µ2) = (uṡ) u (µ1 ∪ µ2) = uṡ. By the division lemma we immediately
obtain the following
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Lemma (Boundary sheets). Any φ-sheet is a subset of the boundaries of its toasts.

Lemma (Containment). Any φ-sheet is disjoint with any φ-brick other than its toasts.

Proof. Let µ ∈ φ, s ∈ φ
µ
C and ∩s1 and ∩s2 be the s-toasts. Let x ∈ s. Let t be a

φ-alternative other than s1 and s2. Let α be a witness to their inequality, i.e. let α ∈ s1,
α ∈ s2 and α /∈ t. Then α∗ /∈ s1, α∗ /∈ s2 and α∗ ∈ t. Evidently α 6= µ1 and α 6= µ2. Thus
α ∈ ŝ ∪ š.

Case 1: α ∈ š. Then s ⊆ Int(α) and ∩t = ∩(t ∪ {α∗}) ⊆ α∗.
Case 2: α ∈ ŝ. We have s = Intµ(uµ{µ ∩ β | β ∈ ŝ}) = Intµ(∩{µ ∩ β | β ∈ ŝ}) =

∩Intµ[{µ ∩ β | β ∈ ŝ}]. Then s ⊆ Intµ(µ ∩ α) = µ ∩ Int(α) ⊆ Int(α). And again ∩t ⊆ α∗. �

Lemma (Entirety). Let A be a finite set of φ-bricks and s be a φ-sheet. Then either
s ⊆ ∂A or s ∩A = ∅.

Proof. Let B be the set of φ-alternatives such that A = ∪(∩[B]). Let ∩s1 and ∩s2 be the
s-toasts.

Case 1: s1 /∈ B and s2 /∈ B. By the containment lemma, s is disjoint with any element of
∩[B], thus s is disjoint with A.

Case 2: s1 ∈ B and s2 ∈ B. Then ∩s1 ∈ ∩[B] and ∩s2 ∈ ∩[B]. Then (∩s1) ∪ (∩s2) ⊆ A.
But (∩s1)∪ (∩s2) = ∩ṡ, so ṡ ⊆ A and thus Int(∩ṡ) ⊆ Int(A). By the corollary to the division
lemma we have s ⊆ Int(∩ṡ). Then s ⊆ Int(A). Thus s ∩ ∂A = ∅.

Case 3: s1 ∈ B and s2 /∈ B. Evidently any open neighbourhood of any point of s contains
interior points of ∩s1 and of ∩s2. Since all φ-cores are mutually disjoint, it contains point
from A and points exterior to A. Thus s ⊆ ∂A. �

Since the boundaries of unions and of intersections are subsets of the unions of the bound-
aries of the respective sets, we have that the boundary of a union of φ-bricks is a subset of
∪φ. Also, ∪φ = ∪{µ | µ ∈ φ} = ∪{(∪φµC) ∪ (∪φµ) | µ ∈ φ} = (∪{φµC | µ ∈ φ}) ∪ (∪{φµ |
µ ∈ φ}) = (∪φS) ∪ (∪φL).

Let B be a finite set of φ-bricks and A = ∪B. By the entirety lemma, let S � {s ∈ φS |
s ⊆ ∂A} and S′ � φS \ S = {s ∈ φS | s ∩ A = ∅}. Then ∂A ⊆ (∪S) ∪ (∪φL) and ∪S ⊆ ∂A.
Let K � (∂A) \ (∪S). Then K ⊆ ∪φL and ∂A = (∪S) ∪K.

We have just obtained a representation of the boundary of an arbitrary finite union of
φ-bricks as a finite union of φ-sheets plus some subset of the union of the φ-intersections.
We shall call this representation the φ-representation of ∂A.

Distributivity in Higher Dimensions

It is known, for instance from [4], that a finite set of (n− 1)-dimensional hyperplanes in an n-
dimensional Euclidean space has no interior points. Thus a finite union of (n−1)-dimensional
hyperplanes cannot be a superset of an open in Rn set. We shall call this result the covering
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lemma.

Lemma (Distributivity). Let n > 2. Let A, B and D be polytopes in Rn such that
SC(A,B ∪D). Then SC(A,B) or SC(A,D).

Proof. Let us designate B ∪D by G. Let E be a witness to SC(A,G). If AuG 6= ∅, then
the proof is trivial as in the two-dimensional case with overlapping. So let AuG = ∅. Analog-
ically to the two-dimensional case without overlapping, we have that E ∩ ∂A = E ∩ ∂G 6= ∅.
Let a and b be points in E such that a ∈ Int(A) and b ∈ Int(G).

Let A = ∪i uj αij for some closed half-spaces αij of Rn. Let φ � ∪{∂αij | i, j} be the set
of the boundaries of those half-spaces and φ̄ be the set of all half-spaces of Rn the boundaries
of which are elements of φ. Evidently φ is a set of cuts in Rn and φ̄ is the set of φ-Rn-sides.
Then A is a finite union of φ-blocks (the blocks {ujαij | i}), so by the building bricks lemma,
A is a finite union of φ-bricks.

Let ∂A = (∪S) ∪ K be the φ-representation of the boundary of A. Then S is a finite
set of subsets of (n− 1)-dimensional hyperplanes in Rn which are open in the induced by Rn
topology on them and K is some subset of the finite union ∪φL of (n− 2)-hyperplanes in Rn.

By the dodging lemma there exists a curve contained in E with endpoints a and b which
does not intersect ∪φL. Let γ be such. By the crossing lemma, Range(γ) ∩ ∂A 6= ∅. Then
Range(γ) ∩ (∪S) 6= ∅. Let s ∈ S such that Range(γ) ∩ s 6= ∅.

Let µ be the (n− 1)-dimensional hyperplane containing s and µ be the topological space
with carrier µ and topology the induced by Rn topology on µ. Then E∩ s is an open in µ set.

Let B = ∪i uj βij and D = ∪i uj δij for some half-spaces βij , δij of Rn. Let χ � {∂αij |
i, j} ∪ {∂βij | i, j} ∪ {∂δij | i, j}. Let X = {µ1 ∩ µ2 | µ1 ∈ χ & µ2 ∈ χ & µ1 6= µ2} \ {∅} be
the set of intersections of the nonparallel boundaries of the half-spaces by which A, B and D
are constructed. Then X is a finite set of (n− 2)-dimensional hyperplanes in Rn.

By the covering lemma we have (E ∩ s) * ∪X. Let x be a witness to this. Then x ∈ E
and µ is the only element of χ to which x belongs.

Now, analogically to the two-dimensional case, we obtain that the open ball with centre
x and radius 1

2min{ρ(x, ν) | ν ∈ χ ∪ {∂E} \ {µ}} is a witness to SC(A,B) or SC(A,D). �

Thus for any n > 0, SCR
n

is a contact relation in Pn. We shall call it strong contact. We
shall designate the contact algebra 〈Pn, SCRn〉 by PSCn and shall call it the strong-contact
algebra of polytopes in Rn.

2.5 Connectedness

We say that a contact algebra is connected iff any element a of its carrier other than the zero
and the unit is in contact with its complement.
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Theorem. The strong-contact algebras of polytopes are connected.

Proof. Let A be a polytope in Rn such that A 6= ∅ and A∗ 6= ∅. Obviously Rn itself is a
witness to SC(A,A∗). �

3 The Logic of the Strong Contact

3.1 A Formal System

We shall describe a standard formal system F for connected contact algebras.

Let the alphabet of the language L of F consist of: a countable set Ind of individual
variables, the equality symbol ≡, the symbols ¬ and ∨ for the logical operators negation
and disjunction respectively, the unary and binary function symbols − and + respectively for
the Boolean complement and join, and the binary predicate symbol C for the contact relation.

The terms in L are finite words defined recursively as follows: the individual variables are
terms and if a and b are terms, then −a and a · b are terms.

The formulas in L are finite words defined recursively as follows: if a and b are terms,
then a ≡ b and C(a, b) are formulas; if ϕ and ψ are formulas, then ¬ϕ and ϕ∨ψ are formulas.

Let us introduce some abbreviations of terms and formulas.

If ϕ and ψ are formulas in L:
let ϕ ∧ ψ abbreviate ¬((¬ϕ) ∨ (¬ψ))
let ϕ⇒ ψ abbreviate (¬ϕ) ∨ ψ
let ϕ⇔ ψ abbreviate (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

If a and b are terms in L:
let a ≤ b abbreviate a+ b ≡ b
let a · b abbreviate −((−a) + (−b))
let 0 abbreviate a · (−a)
let 1 abbreviate −0
let a 6≡ b abbreviate ¬(a ≡ b)
let > abbreviate a ≡ a
let ⊥ abbreviate a 6≡ a

Let F have only one rule of inference - modus ponens (MP).

Let F have the following axiom schemes:

(1) A complete set of axiom schemes for the classical propositional logic

(2) A set of axiom schemes for Boolean algebras

(3) A set of axiom schemes for contact relations: if a, b and c are terms of L, then the
following formulas are axioms of F:
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¬C(0, a)
C(a, b+ c)⇔ (C(a, b) ∨ C(a, c))

C(a, b)⇒ C(b, a)
a 6≡ 0⇒ C(a, a)

(4) The axiom scheme of connectedness: if a is a term in L, then the following is an axiom
of F:

a 6≡ 0 ⇒ (a 6≡ 1 ⇒ C(a,−a))

3.2 Semantics

A structure for L consists of a nonempty set A, called the carrier of A or the universe of
A, functions −′ : A −→ A and +′ : A × A −→ A and a binary relation C ′ ⊆ A × A, called
interpretations in A of −, + and C respectrively. The logical symbol ≡ is interpreted as the
equality.

Let A be a structure for L with carrier A and interpretations of −, + and C respectively
−′, +′ and C ′. A valuation of L in A is a function v : Ind −→ A extended to all terms and
formulas in L by recursion on their construction in the following way:
If a and b are terms in L, then let

v(−a) = −′(v(a))
v(a+ b) = v(a) +′ v(b)
v(a ≡ b) = T iff v(a) = v(b)
v(C(a, b)) = T iff C ′(v(a), v(b)) ;

if ϕ and ψ are formulas in L, then let:
v(¬ϕ) = T iff v(ϕ) = F
v(ϕ ∨ ψ) = T iff v(ϕ) = T or v(ψ) = T ,

where T and F are special sets chosen to designate truth and falsity.

Let A be a structure for L, −′, +′ and C ′ be the interpretations in A of −, + and C re-
spectively, v be a valuation of L in A and ϕ be a formula in L. Let the expression 〈A, v〉 � ϕ
abbreviate v(ϕ) = T. We will read this as ’ϕ is true in A under v’. If for every valuation
v′ of L in A we have 〈A, v′〉 � ϕ, then we say that ϕ is true in A, which we designate by A � ϕ.

A structure for L in which all axioms of F are true is called a model of F. The models of
F are, by the choice of axioms, the connected contact algebras.

Kripke semantics

We shall pay special attention to the particular case of set-theoretic contact algebras, because
the adjacency spaces that induce them have some important properties of Kripke frames. In
fact they are often called Kripke frames.

Let A be the set-theoretic contact algebra, induced by the adjacency space F = 〈W,R〉.
Recall that this implies that R is reflexive and symmetric. If v is a valuation of L in A, we
also say that v is a valuation of L in F and call 〈F , v〉 a Kripke model. We introduce the
expressions 〈F , v〉 � ϕ and F � ϕ, which we read as ’ϕ is true in F under v’ and ’ϕ is true in
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F ’, as abbreviations for 〈A, v〉 � ϕ and A � ϕ respectively.

Let F = 〈W,R〉 and F ′ = 〈W ′, R′〉 be adjacency spaces and f be a surjective function
from W onto W ′. We say that f is a p-morphism from F to F ′ if the following conditions are
satisfied:

(p1) (∀x, y ∈W )(xRy → f(x)R′f(y))
(p2) (∀x′, y′∈W ′)(x′R′y′ → (∃x, y ∈W )(f(x) = x′ & f(y) = y′ & xRy))

If there exists a p-morphism from F to F ′, then F is said to be a p-morphic preimage of
F ′ and F ′ – to be a p-morphic image of F . It is easy to see that a composition of p-morphisms
is a p-morphism.

Let 〈F , v〉 and 〈F ′, v′〉 be Kripke models. We say that f is a p-morphism from 〈F, v〉 to
〈F ′, v′〉 iff f is a p-morphism from F to F ′ and for every variable p ∈ Ind and every element x
of W we have x ∈ v(p) iff f(x) ∈ v′(p). In such a case we shall say that 〈F, v〉 is a p-morphic
preimage of 〈F ′, v′〉. Known results are the following lemmas.

Lemma (p-morphism), first. Let 〈F , v〉 and 〈F ′, v′〉 be Kripke models and f be a
p-morphism from 〈F , v〉 to 〈F ′, v′〉. Then for every formula ϕ in L, we have 〈F , v〉 � ϕ iff
〈F ′, v′〉 � ϕ.

Lemma (p-morphism), second. Let F and F ′ be adjacency spaces, f be a p-morphism
from F to F ′ and v′ be a valuation of L in F ′. Then there exists a valuation v in F such that
〈F , v〉 is a p-morphic preimage of 〈F ′, v′〉.

Corollary. If a formula ϕ in L is not true in an adjacency space F ′, then ϕ is not true
in any p-morphic preimage F of F ′.

We shall make crucial use of the following

Theorem (Completeness, general). Let ϕ be a formula in L. Then the following are
equivalent:

(1) ϕ is a theorem of F
(2) ϕ is true in all connected adjacency spaces
(3) ϕ is true in all finite connected adjacency spaces

This theorem is proved in the paper [1], where the authors consider a formal system which
is clearly equivalent to F.

We shall define some graph-theoretic notions for adjacency spaces. Let F = 〈W,R〉 be an
adjacency space. A k-sequence {xi}i<k of cells of F such that k > 0 and for each i < k − 1,
xiRxi+1 and xi 6= xi+1 is called a path in F (from x0 to xk−1). A simple path in F is a path
in F which is an injection. A simple cycle in F is a simple path {xi}i<k in F such that k > 2
and x0Rxk−1. A cycle in F is a path {xi}i<k in F such that x0Rxk−1 and which contains a
subsequence which is a simple cycle.

Two cells are called connected in F iff there exists a path in F from one of them to the
other. An adjacency space is called connected iff any two of its cells are connected.

17



Lemma (Connectedness). A finite adjacency space is connected iff the induced by it
set-theoretic contact algebra is connected.

Proof. Let F = 〈W,R〉 be an adjacency space and A = 〈P(W ),W\,∪〉 be the induced by
F set-theoretic contact algebra.

Suppose A is connected. Let x and y be cells of F . Suppose there is no path in F from
x to y. Let R′(x) and R′(y) be the sets of cells to which there are paths in F from x and
y respectively and let R(x) � R′(x) ∪ {x} and R(y) � R′(y) ∪ {y}. Obviously x ∈ R(x),
x /∈ R(y), y ∈ R(y) and y /∈ R(x), thus neither of R(x) and R(y) is empty or equal to W .
Clearly R(x)∩R(y) = ∅. Then R(y) ⊆W \R(x). Since A is connected, CR(R(x),W \R(x)),
i.e. (∃u ∈ R(x))(∃v ∈ R(y))uRv which is a contradiction.

Suppose A is not connected. Let a be a nonempty subset of W unequal to W , such that
¬CR(a,W \ a), i.e. (∀x ∈ a)(∀y ∈ W \ a)xRy. Let x and y be arbitrary elements of a and
W \ a respectively. Suppose π = (x, ..., y) is a path in F from x to y. We will show that there
exists i ∈ Dom(π)− 1 = k − 1 such that π(i) ∈ a and π(i+ 1) /∈ a. Suppose the contrary, i.e.
that for each i < k − 1, either both π(i) and π(i + 1) are in a or both are in W \ a. Since
π(0) = x ∈ a we can obviously prove by induction that y ∈ a, which would be a contradiction.
Thus there exists i < k − 1 such that π(i) ∈ a and π(i+ 1) ∈W \ a. But since π is a path in
F , this means that π(i)Rπ(i+ 1), which contradicts ¬CR(a,W \ a). �

Let π be a simple cycle in F and a be an element of Range(π). Clearly there are exactly
two elements b1 and b2 of Range(π) other than a such that aRb1 and aRb2. We shall call
them the adjacent to a cells in π.

Let F = 〈W,R〉 be an adjacency space, π be a cycle in F and (a, b) be a subpath of π, i.e.
π = (u1, ..., ui, a, b, v1, ..., vj) for some cells u1,..., ui, v1,..., vj of F . By πab and πba we will
designate the cycles in F (a, ui, ..., u1, vj , ..., v1, b) and (b, v1, ..., vj , u1, ..., ui, a) respectively.
Clearly πab and πba are paths in F from a to b and from b to a respectively.

3.3 Completeness

3.3.1 Untying

We shall suppose that throughout this section a finite connected adjacency space F = 〈W,R〉
is fixed, and we shall examine some of its properties.

Let F have cycles and π be a simple cycle in F . Let a appear in π and b be one of the
two adjacent to a cells in π. Let a′ /∈W . Let

W ′ � W ∪ {a′}
R′ � (R \ {〈a, b〉, 〈b, a〉}) ∪ {〈a′, b〉, 〈b, a′〉, 〈a′, a′〉}

We call G = 〈W ′, R′〉 the obtained from F by breaking π at a next to b adjacency space.

Let G be obtained from F by breaking π at a next to b. Let µ be a path in F from
x to y, i.e. µ = (x, u1, ..., ui, y) for some cells u1,...,ui of F . By µ̃ we shall designate the
sequence obtained from µ by substituting all subpaths (a, b) and (b, a) of µ with πab and πba
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respectively. Clearly µ̃ is a path in G from x to y.

Let {Gi}i<ω be a sequence of adjacency spaces defined by the following recursion:
Base: G0 � F
Recursion step: If Gk is acyclic, let Gk+1 � Gk. If Gk contains a cycle, choose a simple

cycle π in Gk, choose an element a of Range(π) and one of the two adjacent to a cells in π,
which we shall designate by b. Then let Gk+1 be the adjacency space obtained from F by
breaking π at a next to b.

We shall call such a sequence an untying of F . Clearly an untying is a sequence of finite
adjacency spaces. We will prove some additional properties of untyings.

Lemma (Untying, first). Let {Gi}i<ω be an untying of F . Then, for any k < ω, if Gk
has a cycle, Gk+1 has strictly less simple cycles than Gk.

Proof. Let k < ω, Gk have a cycle and Gk+1 be obtained from Gk by breaking π at a next
to b. Then π is a simple cycle in Gk but not in Gk+1. It remains to show that no new simple
cycles have been added, i.e. that each simple cycle in Gk+1 is a simple cycle in Gk. Let µ be
a simple cycle in Gk+1. We will show that µ is a simple cycle in Gk. Since a′ is adjacent to
only one cell – b, it cannot appear in any simple cycle. Thus a′ does not appear in µ. Then
it is obvious from the definition of Rk+1 that µ is a simple cycle in Gk. �

Corollary. The number of simple cycles in an untying is strictly decreasing until at some
point an acyclic adjacency space is constructed. Then, by the construction, all consecutive
adjacency spaces are equal to it. Thus any untying of a finite connected adjacency space
converges. We shall call the limit of an untying of F an untied version of F . Thus an un-
tied version of a finite connected adjacency space is a finite connected acyclic adjacency space.

Lemma (Untying, second). Let {Gi}i<ω be an untying of F . Then, for any k < ω, Gk
is connected.

Proof. Induction on k. Base: G0 = F is connected.
Induction hypothesis: Let Gk be connected.
Induction step: If Gk+1 = Gk the claim is trivially true. Let Gk+1 = 〈Wk+1, Rk+1〉 be

obtained from Gk by breaking the simple cycle π at a next to b. Let x and y be elements of
Wk+1. We will show that x and y are connected in Gk+1

Case 1: None of x and y equals a′. Then x and y are both elements of Wk. Since Gk is
connected, let µ be a path in Gk from x to y. Then µ̃ is a path in Gk+1 from x to y.

Case 2: One of x and y equals a′. WLoG let x = a′ Let µ be a path in Gk from b to y
Then the concatenation (a′)∗ µ̃ of (a′) and µ̃ is a path in Gk+1 from a′ to y, i.e. from x to y.�

Corollary. An untied version of a finite connected adjacency space is connected.

Lemma (Untying, third). Let {Gi}i<ω be an untying of F . Then, for any k < ω, Gk+1

is a p-morphic preimage of Gk.

Proof. Let k < ω. If Gk is acyclic, then Gk+1 = Gk, the claim is true for trivial reasons, so
let Gk+1 is obtained from Gk by breaking π at a next to b. Let f = IdW ∪ {〈a′, a〉}, We will
show that f is a p-morphism from Gk+1 to Gk, i.e. that f satisfies the following conditions:
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(p1) (∀x, y ∈Wk+1)(〈x, y〉 ∈ Rk+1 → 〈f(x), f(y)〉 ∈ Rn)
(p2) (∀x, y ∈Wk)(〈x, y〉 ∈ Rk →

(∃x′, y′ ∈Wk+1)(f(x′) = x & f(y′) = y & 〈x′, y′〉 ∈ Rk+1))

Clearly (p1) is satisfied. For (p2), if x = a and y = b, or vice versa, then a′ and b are wit-
nesses to what we want to prove. For any other x and y, x′ = x and y′ = y are such witnesses.�

Corollary. An untied version of a finite connected adjacency space F is a p-morphic
preimage of F .

Theorem (Untying). Every finite connected adjacency space is a p-morphic image of a
finite connected acyclic adjacency space.

Proof. Let G be an untied version of F . By the corollaries to the first, second and third
untying lemmas, G is a finite connected reflexive and symmetric p-morphic preimage of F . �

3.3.2 Projection

We shall suppose that throughout this section a finite connected acyclic adjacency space
F = 〈W,R〉 is fixed, and we shall examine some of its properties. Let also an arbitrary cell α
of F be fixed.

Let L′ = {Li}i<ω be the sequence defined by the following recursion:
Base: Let L0 � {α} contain only the element α.
Recursion step: Let Lk+1 � {x ∈ W \ ∪{Li | i ≤ k} | (∃y ∈ Lk)xRy} be the set of those

elements of W that do not appear in Li for any i ≤ k and which are adjacent to some element
of Lk.

We call the nonempty elements of the sequence L′ α-levels of F .

The connectedness of F ensures that each cell of F appears in some level. The very
construction of L′ ensures that no cell appears in two distinct levels. Since F is finite, the
ω-sequence L′ has a finite initial segment of nonempty elements (levels), followed only by
empty ones. Let L be that initial segment.

We shall call L the α-hierarchy of levels of F . If x is a cell of F , by lα(x) we will designate
the unique natural number k such that x ∈ Lk.

We call # an α-numeration of F , if # : W �� |W | and for any elements x and y of W ,
lα(x) < lα(y) implies #(x) < #(y). If # is an α-numeration of F , we call the inverse function
#−1 of # an α-listing of F . We say that a function is a numeration of F it is an x-numeration
of F for some cell x of F . Analogically for listings.

Lemma (about numerations). Let # be an α-numeration of F . Then (∀x ∈ W )(x 6=
α → (∃!y ∈W )(#(y) < #(x) & xRy)).

Proof. Induction on #(x). Base: #(x) = 0, thus x = α, thus the implication is trivially
true.
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I.h.: Let the claim be true for all x′ such that #(x′) < #(x).

I.s.: Let x 6= α. Then x ∈ Lj for some j 	 0. By the construction of the hierarchy L of
levels, (∃y ∈ Lj−1)(xRy). Let y be such. Then lα(y) < lα(x). Since # is an α-numeration of
F , #(y) < #(x). Thus y is a witness to the existence.

Now suppose y and y′ be two distinct such cells, i.e. let y′ also be such that #(y′) < #(x)
and xRy′. Then, by the induction hypothesis, we can construct paths from y1 and from
y2 to α. Let π ∗ (α) = (y1, ..., α) and µ ∗ (α) = (y2, ..., α) be such. Let µ′ be the path µ in
the reverse direction. Then evidently π∗(α)∗µ′∗(x) is a cycle in F , which is a contradiction.�

Lemma (about paths). Let x be a cell of F , other than α. Then there exists a unique
simple path π in F from α to x. Moreover, if # is an α-numeration of F , no cell y of π is
such that #(x) < #(y).

Proof. Let # be an α-numeration of F . Let ∈W \ {α}. Induction on #(x). Let the claim
be true for all cells x′ of F such that x′ 6= α and #(x′) < #(x).

By the lemma about numerations, let y be the unique cell of F such that #(y) < #(x) and
xRy. By the induction hypothesis let π = (α, ..., y be the unique simple path from α to y. By
the induction hypothesis we also have that for every cell z in π, we have #(z) ≤ #(y) � #(x).
Then π ∗ (x) is evidently a simple path of the kind we need.

Now suppose π ∗ (x) is not unique. Let µ ∗ (x) be another such simple path. Let µ′ be
the path µ in the reverse direction. Then evidently π ∗ (x) ∗ µ′ is a cycle in F , which is a
contradiction. �

Let # be an α-listing of F and let w designate |W |. We will recursively define a sequence
{Ji}i<ω of sequences of cells of F , called a #-arrangement sequence of F such that for each
k, Jk is a sequence with domain the smaller of 2k + 1 and 2w + 1 and contains the elements
of Range(# � (k+ 1)) = {#(0), ...,#(k)}, i.e. Jk : min{2k+ 1, 2w+ 1}� Range(# � (k+ 1)).

Base: Let J0 � (α) = {〈0, α〉} be a sequence of only one element - α. Clearly, J0 : {0}�
{α}, and since

Dom(J0) = {0} = 1 = min{2.0 + 1, 2w + 1} and
Range(J0) = {α} = {#(0)} = Range(# � 1) = Range(# � (0 + 1)) , indeed
J0 : min{2.0 + 1, 2w + 1}� Range(# � (0 + 1)) .

Recursion hypothesis: Let Jk be defined such that Jk : (2k + 1) ∩ (2w + 1) � Range(# �
(k + 1)).

Recursion step: Case 1: k ≥ w. Then

Dom(Jk) = min{2k + 1, 2w + 1} = 2w + 1 , and
Range(Jk) = Range(# � (w + 1)) = {#(0),#(1), ...,#(w)}) = W . Then
Jk : (2w + 1) �W . Then let Jk+1 � Jk.

Case 2: k ≤ w. Then min{2(k + 1) + 1, 2w + 1} = 2(k + 1) + 1. Let b � #(k + 1).
Let a be the unique element of W such that #(a) � #(b) and aRb. Since #(a) � #(b),
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a ∈ Range(# � (k + 1)). By the induction hypothesis Range(Jk) = Range(# � (k + 1)), thus
a ∈ Range(Jk). Choose i such that Jk(i) = a.

Then define Jk+1 to be the sequence with length lh(Jk) + 2 = (2k + 1) + 2 = 2(k + 1) + 1
obtained from Jk by substituting the chosen occurrence of a with consecutive occurrences of
a, b and a again. More explicitly, if

Jk = (α, u1, ..., ui−1, a, ui+1, ..., uj), then let
Jk+1 � (α, u1, ..., ui−1, a, b, a, ui+1, ..., uj).

I.e. if

Jk = {〈0, α〉, 〈1, u1〉, ..., 〈i− 1, ui−1〉, 〈i, a〉, 〈i+ 1, ui+1〉, ..., 〈j, uj〉}, then let
Jk+1 � {〈0, α〉, 〈1, u1〉, ..., 〈i− 1, ui−1〉, 〈i, a〉, 〈i+ 1, b〉, 〈i+ 2, a〉, 〈i+ 2, ui+1〉, ..., 〈j + 2, uj〉}.

Obviously, Jk+1 : (2(k + 1) + 1) ∩ (2w + 1) � Range(# � ((k + 1) + 1))

SinceW is finite, the sequence {Ji}i<ω converges. Let J � limk→ω Jk. Then J : (2w+1) �
W . We call J a #-arrangement of F . We call a surjection J ′ : (2w+ 1) �W an arrangement
of F iff it is a #-arrangement of F for some listing # of F .

Lemma (Adjacency, first). Let # be an α-listing of F and {Ji}i<ω be a #-arrangement
sequence of F . Then

∀k(∀x, y ∈ Range(Jk))(x 6= y → (xRy ↔ ∃i({Jk(i), Jk(i+ 1)} = {x, y}))) .

Proof. Induction on k. Base: k = 0. The claim is trivially true because no two elements
of Range(J0) = {α} are unequal.

I.h.: Let the claim be true for all k′ ≤ k.

I.s.: Case 1: k ≥ w. Then Jk+1 = Jk and by the induction hypothesis the claim is true.

Case 2: k < w. Let b � #(k + 1). Then Range(Jk+1) = Range(Jk) ∪ {b}. Let a be
the unique, according to the lemma about numerations, element of Range(Jk) = Range(# �
(k + 1)) such that aRb. Let the chosen on the (k + 1)’th recursion step occurrence of a
to be substituted with (a, b, a) be on j’th place, i.e. let j be such that Jk(j) = a and
Jk+1(j) = Jk+1(j + 2) = a and Jk+1(j + 1) = b, and ∀i(j < i ≤ 2w → Jk+1(i+ 2) = Jk(i)).
Let x, y ∈ Range(Jk+1).

Case 2.1: None of x and y equals b. Then x, y ∈ Range(Jk).

(→) : Suppose xRy. By the induction hypothesis let i be such that {Jk(i), Jk(i + 1)} =
{x, y}. By the construction of Jk+1 it is clear that, if i < j, then Jk+1(i) = Jk(i) and
Jk+1(i + 1) = Jk(i + 1) and thus {Jk+1(i), Jk+1(i + 1)} = {Jk(i), Jk(i + 1)} = {x, y}.
Since none of x and y equals b, we have i 6= j and i 6= j + 1. If i ≥ j + 2, then by
the construction of Jk+1 we have Jk+1(i + 2) = Jk(i) and Jk+1(i + 3) = Jk(i + 1), thus
{Jk+1(i + 2), Jk+1(i + 3)} = {Jk(i), Jk(i + 1)} = {x, y}. Thus in all possible cases we have a
witness i to what we need.
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(←) : The proof in this direction in this case is completely analogical to the proof in the
other direction that has just been carried out.

Case 2.2: One of x and y equals b. WLoG let y = b. Then, since x 6= y = b and
x ∈ Range(Jk+1) = Range(Jk) ∪ {b}, x ∈ Range(Jk).

(→) : Let xRy, i.e. xRb. By the lemma about numerations and since Range(Jk+1) =
Range(#(k + 2)) we obtain that x = a. Obviously by the construction of Jk+1 we have
{Jk+1(j), Jk+1(j + 1)} = {a, b} = {x, y}.

(←) : Let xRy, i.e. xRb. Then x 6= a. Since b has only one occurrence in Jk+1 and it is
surrounded by two occurrences of a, obviously ¬∃i({Jk+1(i), Jk+1(i+1)} = {x, b} = {x, y}). �

Let # be an α-listing of F and J be an #-arrangement of F .

Let f ′ be the function with domain W mapping each element x of W to the union of
exactly those closed intervals [k, k + 1] = {u ∈ R1 | k ≤ u ≤ k + 1} such that J(k) = x. I.e.
for each element x of W , let f ′(x) = ∪{[k, k + 1] | J(k) = x}.

Let f be the function with domain W such that, for each element x of W \{α}, f(x) = f ′(x)
and f(α) = f ′(α)∪ (R1 \ (∪Range(f ′))) = (−∞, 0)∪ f ′(α)∪ (2w+ 2,+∞). We shall call such
a function the J-projection of F onto R1. We call a function a projection of F onto R1 if it
is the J-projection of F onto R1 for some arrangement J of F .

Let fn be the function with domain W such that for each element x of W , fn(x) =
f(x) × Rn−1 be the cylindrification of f(x) to Rn−1. We shall call such a function the J-
projection of F onto Rn. We call a function a projection of F onto Rn if it is the J-projection
of F onto Rn for some arrangement J of F .

Remark (on interiors). It is obvious by the definition of f , that for any integer k, the
open interval (k, k+1) has nonempty intersection with the image f(x) of precisely one element
x of W and, moreover, that it is its subset. Analogically for the cylinders (k, k + 1) ×Rn−1
and fn.

Lemma (Adjacency, second). Let f be a projection of F onto R1. Then for any cells
x and y of F , xRy iff SC(f(x), f(y)).

Proof. Let J be an arrangement of F such that f is a J-projection of F onto R1. Evidently
if x = y then we have both xRy and SC(f(x), f(y)). So suppose x 6= y.

Let xRy. By the first adjacency lemma, WLoG let i be such that J(i − 1) = x and
J(i) = y. Then, since f is a J-projection, [i − 1, i] ⊆ f(x) and [i, i + 1] ⊆ f(y). Clearly
[i− 1

2 , i+ 1
2 ] is a witness to SC(f(x), f(y)).

Let SC(f(x), f(y)). Then, by the upward strength lemma, f(x)∩f(y) 6= ∅. Let u ∈ f(x)∩
f(y). We have u ∈ f(x) = ∪{[k, k + 1] | J(k) = x} and u ∈ f(y) = ∪{[k, k + 1] | J(k) = y}.
Let u ∈ [kx, kx + 1] ⊆ f(x) and u ∈ [ky, ky + 1] ⊆ f(y). Since x 6= y and J is a function,
we have kx 6= ky. WLoG let kx < ky. Since [kx, kx + 1] ∩ [ky, ky + 1] 6= ∅, we conclude that
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kx + 1 = ky = u. Then, by the first adjacency lemma, xRy. �

Corollary. It is clear that this result holds for projection onto Rn as well. The witnesses
there can be taken to be cylinders

[
u− 1

2 , u+ 1
2

]
×Rn−1, or the open balls with centre u and

radius 1
2 , instead of the open intervals

[
u− 1

2 , u+ 1
2

]
.

We shall call an adjacency space with carrier of which is the range of a projection onto
Rn of a finite connected acyclic adjacency space and the adjacency relation of which is SCR

n

an n-polytope adjacency space.

Theorem (Projection). Every finite connected acyclic adjacency space is isomorphic to
an n-polytope adjacency space.

Proof. Let F = 〈W,R〉 be a finite connected acyclic adjacency space and f be a projection
of F onto Rn. Then f is an injection of W into H. By the corollary to the second adjacency
lemma, for any elements x and y of W , xRy iff SCR

n
(f(x), f(y)). Thus F is isomorphic to

the n-polytope adjacency space 〈Range(f), SCR
n〉. �

3.3.3 Merging

Let F = 〈W,R〉 be an n-polytope adjacency space. Let A = 〈B(W ), CR〉 be the induced
by F contact algebra. We want to construct an isomorphic to A strong-contact algebra of
polytopes in Rn. We will show that the set-theoretic union ∪ maps A to such an algebra. Let
us designate the image ∪[P(W )] of P(W ) under ∪ by B.

Lemma (Bijectivity). ∪ is bijective from P(W ) to B.

Proof. B is defined such that the surjectivity is obvious, thus we only have to show that
it is injective. Let a and b be unequal subsets of W . Let x be a witness to this inequality.
WLoG let x ∈ a and x /∈ b. By the remark on interiors, let k be such that (k, k + 1) ⊆ f(x)
and (k, k + 1) ∩ (Rn \ f(x)) = ∅. Clearly k + 1

2 ∈ ∪a and k + 1
2 /∈ ∪b, thus ∪a 6= ∪b. �

Lemma (Complement). Let a be a subset of W . Then ∪(W \ a) = (∪a)∗.

Proof. Let us designate W \a by b. Since W is finite, a and b are finite. Let a = {x1, ..., xk}
and b = {y1, ..., ym}. Then ∪a = x1 ∪ ... ∪ xk and ∪b = y1 ∪ ... ∪ ym are polytopes. Obviously
∂(∪a) = ∂(∪b). It is clear from the definition of a projection that Int(∪a), ∂(∪a) and Int(∪b)
are disjoint and their union is Rn. Then ∪(W \ a) = ∪b = ∂(∪b) ∪ Int(∪b) = Rn \ Int(∪a) =
Cl(Rn \ (∪a)) = (∪a)∗. �

Lemma (Contact). For any subsets a and b of W , CR(a, b) iff SC(∪a,∪b).

Proof. Let a and b be elements of P(W ). Then a and b are finite sets of polytopes, thus
∪a and ∪b are polytopes.

Suppose CR(a, b), i.e. (∃x ∈ a)(∃y ∈ b)xRy. Let x and y be witnesses to this, i.e. x ∈ a,
y ∈ b and xRy, i.e. SC(x, y). Then x ⊆ ∪a and y ⊆ ∪b and by the monotony of SC with
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respect to ⊆ we obtain SC(∪a,∪b).

Now suppose SC(∪a,∪b). Let a = {x1, ..., xp} and b = {y1, ..., yq}. By the distributivity
of the strong contact over ∪, we obtain SC(x1, y1) or ... or SC(x1, yq) or .... or SC(xp, y1)
or ... or SC(xp, yq). Let SC(xi, yj) for some i < p and j < q. Then xi and yj are witnesses
to CR(a, b). �

Theorem (Merging). Every finite contact algebra induced by an n-polytope adjacency
space is isomorphic to a strong-contact algebra of polytopes in Rn.

Proof. Let F = 〈W,R〉 be an n-polytope adjacency space and A = 〈〈P(W ),W \ ,∪〉, CR〉
be the contact algebra induced by it. Trivially, for any sets A and B we have ∪(A ∪ B) =
(∪A)∪ (∪B). By this, the bijectivity lemma, the complement lemma and the contact lemma,
∪ is an isomorphism from A = 〈〈P(W ),W \ ,∪〉, CR〉 to 〈〈∪[P(W )], ∗,∪〉, SC〉. �

3.3.4 Completeness

Theorem (Subalgebra). Let A and B be connected contact algebras and A be a sub-
algebra of B. Let ϕ be a formula in L. Then, if ϕ is not true in A, then ϕ is not true in B.

Proof. Let v be a witness that ϕ is not true in A, i.e. let v be a valuation of L in A such
that 〈A, v〉 2 ϕ. Then v is also a valuation of L in B. It is obvious that by induction on the
construction of ϕ we can obtain that 〈B, v〉 2 ϕ. Thus ϕ is not true in B. �

Theorem (Completeness). Let ϕ be a formula in L which is true in PSCn. Then ϕ is
a theorem of F.

Proof. Suppose ϕ is not a theorem of F. By the general completeness theorem, there exists
a finite connected adjacency space in which ϕ is not true. Let F be such. By the untying
theorem, there exists a finite connected acyclic adjacency space which is a p-morphic preimage
of F . Let G be such. By the corollary to the second p-morphism lemma, ϕ is not true in
G. By the projection theorem, there exists an isomorphic to G n-polytope adjacency space.
Let H be such. Then ϕ is not true in H. Let A be the induced by H set-theoretic contact
algebra. Then ϕ is not true in A. By the merging theorem, there exists an isomorphic to A
strong-contact algebra of polytopes in Rn. Let B be such. Then ϕ is not true in B. Then, by
the subalgebra theorem, ϕ is not true in PSCn. �

4 Conclusion

We have defined a contact relation between polytopes, which is strictly stronger than the stan-
dard topological contact and strictly weaker than the overlap relation. We have proven that
the universal fragment of the logics of the resulting contact algebras for arbitrary dimensions
coincide with the set of theorems of the standard quantifier-free formal system for connected
contact algebras.
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List of some of the used abbreviations

〈a0, ...an−1〉 designates the ordered n-tuple of a0, ..., an−1 in the given order.

B(W ) designates the set-theoretic Boolean algebra 〈P(W ),W \ ,∪〉 over the nonempty
set W .

(a0, a1, ..., an−1) designates the n-sequence {〈0, a0〉, 〈1, a1〉, ..., 〈n− 1, an−1〉} of the sets a0,
a1,..., an−1.

|A| designates the cardinality of the set A.

f [A] designates the image {f(x) | x ∈ A} under the (class-)function f of the subset A of
the domain Dom(f) of f .

aRb expresses that a is not in the binary relation R with b

π ∗ µ designates the concatenation of the sequences π and µ.
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