
Софийски Университет „Св. Климент Охридски”
Факултет по Математика и Информатика

Димитър Тодоров Георгиев

Алгоритмични методи
за некласически логики

ДИСЕРТАЦИЯ

за присъждане на образователна и
научна степен „Доктор”

Професионално направление: 4.5 „Математика”
Докторска програма „Математическа логика”

Научен ръководител:
проф. д-р. Тинко Тинчев

София, 2017

Sofia University “St. Kliment Ohridski”
Faculty of Mathematics and Informatics

Dimiter Todorov Georgiev

Algorithmic Methods for
Non-Classical Logics

DISSERTATION

A thesis presented for the degree of
Doctor of Philosophy

in Mathematics,
scientific speciality Mathematical Logic

Scientific adviser: prof. dr. Tinko Tinchev

Sofia, 2017

Table of Contents

Abstract

Structure

Thanks and Acknowledgements

1 Introduction 1

2 Preliminaries 4
2.1 Modal Languages . 4
2.2 Kripke Semantics of Modal Languages 6
2.3 Modal Formulas as Operators 7
2.4 First-Order Languages . 7
2.5 Decidability and Complexity . 8
2.6 The Correspondence Problems 8
2.7 Standard Translation . 9
2.8 P-Morphisms, Disjoint Unions, and Generated Subframes . . . 9
2.9 General Frames . 10
2.10 D-Persistence and Di-Persistence 11
2.11 Normal Modal Logics, Completeness and Canonicity 12
2.12 Finite Model Property . 22
2.13 Decidability of Normal Modal Logics 22

3 Deterministic SQEMA 23
3.1 Introduction to Deterministic SQEMA 23
3.2 Strategy of Deterministic SQEMA 24
3.3 Deterministic SQEMA Overview 28
3.4 Correctness of the SQEMA Rules 31
3.5 The Algorithm Deterministic SQEMA 42
3.6 Examples . 50

3.6.1 (𝑐1 → ¬♦𝑐1) . 51
3.6.2 ((�♦𝑝→ ♦�𝑝) ∨ (�𝑝→ ♦𝑝)) 51
3.6.3 (⟨𝑈⟩𝑝→ ⟨𝑈⟩♦𝑝) . 52
3.6.4 ((♦�(𝑝→ 𝑞) ∧ ♦�(𝑞 → 𝑝)) → ♦�(𝑝↔ 𝑞)) 53
3.6.5 More Examples . 57

3.7 Sahlqvist Formulas . 58
3.8 Example Runs with Sahlqvist Formulas 64

3.8.1 (��𝑝→ ♦𝑝) . 64
3.8.2 (�(�𝑝→ ⊥) ∨ ((⊤ → �♦(𝑝 ∧ 𝑞)) ∨�(�𝑞 → ⊥))) 65
3.8.3 (♦𝑝→ �♦𝑝) . 66
3.8.4 (��𝑝→ �𝑝) . 66

3.9 Inductive Formulas . 67
3.10 Example Runs with Inductive Formulas 74

3.10.1 (𝑝1 ∨�¬𝑝2 ∨ ♦(¬𝑝1 ∧ 𝑝2)) 74
3.10.2 (�♦¬𝑝 ∨ (�♦(𝑝 ∧ 𝑞) ∨�♦¬𝑞)) 76
3.10.3 More Examples . 77

3.11 Pre-Contact Logics . 77
3.12 Example Runs with PCL Formulas 80

3.12.1 ((0 ̸= 𝑝) → 𝐶(𝑝, 1)) . 80
3.12.2 (𝐶(𝑝, 𝑞) → (𝐶(𝑝, 𝑟) ∨ 𝐶(−𝑟, 𝑞))) 81

3.13 Implementation in the Programming Language Java 83

4 ML(�) and 𝒞KD45 85
4.1 First-order Definability . 86
4.2 Modal Definability . 90

5 ML(�, [𝑈]) and 𝒞KD45 97
5.1 Modal Definability . 97
5.2 First-order Definability . 103

6 ML(�) and 𝒞K5 107
6.1 ML(�) formulas are FOL-definable over 𝒞K5 107
6.2 Undecidability of validity of FOL formulas in 𝒞K5 110
6.3 Undecidability of modal definability over 𝒞K5 113

7 Conclusion 113
7.1 Future work . 114

Authenticity Claims 114

Scientific Results 114

Referred Publications 116

Citations 116

Presentations at Conferences and Seminars 116

References 117

Abstract

The area of the dissertation is the vast family of algorithms surrounding modal
logic. The author has chosen to focus on computability and algorithms for
modal correspondence theory, or the questions of modal definability of first-
order formulas and first-order definability of modal formulas.

The scope of the dissertation is to define a deterministic version of the
SQEMA algorithm, to show that it still succeeds on the two well-known classes
of elementary modal formulas – the Sahlqvist and Inductive classes, and to
show some modal and first-order definability results for two classes of Kripke
frames, which are interesting in the area of artificial intelligence, namely, the
KD45-frames and the Euclidean frames.

The results in the dissertation can be grouped in the following groups.
1. Results about the algorithm Deterministic SQEMA, Sahlqvist

and Inductive formulas.
These include:
- Defining a new deterministic version of the SQEMA algorithm with

additional simplification rules for the universal modality.
- A proof of termination of Deterministic SQEMA.
- A new invariant for Deterministic SQEMA executions on Sahlqvist formulas.
- A proof that Deterministic SQEMA succeeds on all Sahlqvist formulas.
- A new invariant for Deterministic SQEMA executions on Inductive formulas.
- A proof that Deterministic SQEMA succeeds on all Inductive formulas.
2. Results about applying Deterministic SQEMA to formulas of

the Pre-Contact Logic language, and results about Sahlqvist PCL
formulas

- Defining a modified translation of PCL formulas into ML(�, [𝑈]).
- Proving that the above translation converts Sahlqvist PCL formulas into

Sahlqvist ML(�, [𝑈]) formulas.
- Modifying the existing Deterministic SQEMA implementation at http://

www.fmi.uni-sofia.bg/fmi/logic/sqema to accept PCL formulas and succeed
on all
Sahlqvist PCL formulas by using the modified translation.

3. Computability and complexity results about the correspondence
problems in the class of all KD45 Kripke frames

The results of this group are:
- A proof that all modal formulas of the basic modal language are first-order

definable in the class of all KD45 frames.
- A proof that the problem of deciding whether first-order formulas are

modally definable in the basic modal language in the class of KD45 frames is
PSPACE-complete.

http://www.fmi.uni-sofia.bg/fmi/logic/sqema
http://www.fmi.uni-sofia.bg/fmi/logic/sqema

- A proof that all modal formulas of the basic modal language extended
with the universal modality are first-order definable in the class of all KD45
frames.

- A proof that the problem of deciding modal definability in the basic modal
language extended with the universal modality of first-order formulas in the
class of KD45 frames is PSPACE-complete.

4. Computability and complexity results about the correspondence
problems in the class of all Euclidean Kripke frames - this group
of results was examined in collaboration with Tinko Tinchev and Philippe
Balbiani.

- A proof that all modal formulas of the basic modal language have a first-
order definition in the class of all Euclidean Kripke frames.

- A proof that the problem of deciding whether a first-order formula is valid
in the class of all Euclidean Kripke frames is undecidable.

- A proof that the problem of deciding whether a first-order formula is
modally definable in the class of all Euclidean Kripke frames is undecidable.

Structure

The dissertation consists of 7 parts.
1. “Introduction” . First, there is a brief introduction, which does an

overview of the subject matter and explains briefly the referred articles with
the main results of the dissertation.

2. “Preliminaries” . Then, there is a section on preliminaries. It explains
the required background knowledge to understand the rest of the dissertation.

3. “Deterministic SQEMA” . This section describes the algorithm
Deterministic SQEMA and the main results - the invariants for Sahlqvist and
Inductive formulas and the proofs that the algorithm succeeds on both classes
of formulas. There is also a modified translation of Pre-Contact Logic formulas
into formulas that Deterministic SQEMA can work with. It is shown that thus
Deterministic SQEMA succeeds on all Sahlqvist PCL formulas.

4. “ML(�) and 𝒞KD45” . Here the definability problems in the class of all
KD45-frames are shown to be decidable. The modal definability problem is
shown to be PSPACE-complete.

5. “ML(�, [𝑈]) and 𝒞KD45” . As in the previous section, this section discusses
definability problems in the class of all KD45-frames. This time, however, the
modal language is ML(�, [𝑈]) instead of ML(�).

6. “ML(�) and 𝒞K5” . Here the author in co-authorship with Tinko Tinchev
and Philippe Balbiani shows that every modal formula has a first-order definition
over the class of all Euclidean frames. Then the authors show that the problems
of deciding first-order validity and modal definability of first-order formulas in

the class of all Euclidean frames are both undecidable.
7. “Conclusion” A summary of the results is given here.

Thanks and Acknowledgements

The author would like to thank everyone in the logic department of the
mathematical faculty of the university, for getting him interested in the topics
of mathematical logic, and especially his scientific advisor, professor Tinko
Tinchev, who painstakingly helped the author get back on his feet in the area of
logic after an eight-year hiatus. This work would not have been possible without
the author’s co-authors of [6], professor Tinko Tinchev and professor Philippe
Balbiani of IRIT, Toulouse. The author also owes a debt of gratitude towards
his scientific advisors on his master’s thesis, defended in the now distant year
of 2006, professor habil. Dimitar Vakarelov and professor Tinko Tinchev.

The author’s findings are briefly presented in the introduction below. Then
they are discussed in detail in the main body of this work. Finally, the results
are summarized in the conclusion. Authenticity claims and a list of
accompanying publications can also be found in the conclusion.

1 Introduction

The problems of modal and first-order definability are important topics in
Modal Logic. The first major result in the area was Sahlqvist’s class of first-
order definable formulas in [48]. This lead to van Benthem’s question of whether
the problems are decidable in [56][57] as well as the introduction of van
Benthem’s algorithm for finding first-order correspondents of Sahlqvist formulas.
Chagrova, at first in [12] and [13], later with Chagrov in [9], [10], and [11],
showed that the problem of first-order definability of modal formulas and the
problem of modal definability of first-order formulas are both undecidable over
the class of all Kripke frames.

Despite these findings, the two definability problems do have algorithmic
solutions for some classes of Kripke frames, such as some of those used in the
study of artificial intelligence. For example, Balbiani and Tinchev in [2] and [1]
show decidability of first-order and modal definability problems over the class
of all equivalence relations with respect to the two modal languages ML(�)
and ML(�, [𝑈]). However, in [3], Balbiani and Tinchev develop a technique for
reducing the problem of deciding the validity of first-order sentences over some
classes of frames to the problem of modal definability of first-order sentences
over the same classes of frames, thus proving the undecidability of the modal
definability problem over a large number of classes of frames.

It is also possible to find classes of modal formulas, other than the Sahlqvist
class, which have algorithmically computable first-order correspondents over
the class of all frames. For example, the class of inductive formulas, introduced
in [31][54][16][32].

There are also other algorithms for finding first-order correspondents, for
example in [23] Gabbay and Ohlbach introduced the SCAN algorithm, and in
[52], Szalas introduced DLS. SCAN is based on a resolution procedure applied
on a Skolemized translation of the modal formula into the second-order logic,
while DLS works on the same translation, but is based on a transformation
procedure using a lemma by Ackermann. Both algorithms use a procedure of
unskolemization, which is not always successful.

A new non-deterministic algorithm, SQEMA (Second-order Quantifier
Elimination using a Modal Ackermann lemma), for computing first-order
correspondents in modal logic is introduced in [17][18][19][21][20][15]. It is based
on a modal version of the well-known Ackermann Lemma. SQEMA works

1

directly on the modal formulas without translating them into the second-order
logic and without using Skolemization. Thus SQEMA succeeds not only on
all Sahlqvist formulas, but also on the class of inductive formulas mentioned
above. There are examples of modal formulas on which SQEMA succeeds, while
both SCAN and DLS fail, e.g.: (�(�𝑝 ↔ 𝑞) → 𝑝). As proved in [17][18][19]
[15] SQEMA only succeeds on d-persistent (for languages without nominals)
or di-persistent (for reversive languages with nominals) — and hence, like
in [8][16][30][32][15], canonical formulas, i.e., whenever successful, it not only
computes a local first-order correspondent of the input modal formula, but
also proves its canonicity. This extends to any set of modal formulas on which
SQEMA succeeds. Thus, SQEMA can also be used as an automated prover of
canonical model completeness of modal logics.

An implementation of SQEMA in Java was given in [25]. Some additional
simplifications were added to the implementation thanks to a suggestion by
Renate Schmidt, which helps the implementation succeed on formulas such as
((�♦𝑝→ ♦�𝑝) ∨ (�𝑝→ ♦𝑝)), by simplifying (�𝑝 ∧�¬𝑝) to �⊥.

The universal modality and nominals were introduced in [45].
In [26], the author showed a version of SQEMA that was augmented to

ML(�, [𝑈]), the basic modal language extended by adding the universal
modality.

In [18], SQEMA for a reversive language with nominals is discussed,
promising an extension with [𝑈]. In [21], SQEMA with downwards monotonicity
for Ackermann’s rule is presented. In [55][20], an extension of SQEMA for a
reversive language with [𝑈] and nominals is introduced, with the output being
in the first-order 𝜇-calculus.

In [27], the author has given a definition a deterministic and terminating
strategy for using the SQEMA rules for the language with universal modality,
at most countably infinitely many couples of converse modalities, and nominals,
ML(𝑇,𝑈). The author has shown that Deterministic SQEMA always succeeds
on all Sahlqvist and inductive formulas. The existing proof for the original
SQEMA in [17] does not hold for this version of the algorithm, for example
for the input formula (¬��𝑝∨♦𝑝). When the input contains no nominals, the
author has shown, similarly to [17], that Deterministic SQEMA succeeds on
d-persistent formulas. In the case when the input is from a hybrid temporal
language with the universal modality, like in [18], Deterministic SQEMA succeeds
on di-persistent formulas. The the axiomatic system for ML(𝑇,𝑈) and its
completeness was shown in [27], following closely [45][46][24][8]. In a similar
way to [8][30][16][53][32][18], canonicity of di-persistent formulas is shown. Also,
in this dissertation, the axiomatic system for hon-hybrid languages is shown,
following the same sources, and canonicity of d-persistent formulas is shown.
Thus Deterministic SQEMA can be used to prove canonicity of a formula.

The article [27] also shows how to extend Deterministic SQEMA to the

2

language of pre-contact logics. There, a modified form of the translation from
[5] is used. With it, we obtain Sahlqvist fromulas from Sahlqvist formulas of the
pre-contact language, as defined in [4]. This shows that Deterministic SQEMA
succeeds on them. Completeness of all pre-contact formulas is shown in [5].

In [28][29], definability questions over the class of all KD45 Kripke frames
are explored. This class is axiomaized by the canonical and decidable normal
modal logic KD45. The interest in this class has arisen from the importance
of this logic for the study of artificial intelligence. That is why KD45 has been
well-analyzed in the literature over the years. At first, it was studied as the
logic system DE4 in [37] and [49]. It was later considered as a normal extension
of K5 in [42] and [43]. The completeness and complexity of KD45 was examined
in [34] and [35], as well as systems with mixed S5 and KD45 modalities, which
can also be seen in [58], [41] and [40]. A tableau system is presented in [33]. A
good overview of the subject area can be seen in [7].

In [28][29], the author has shown that all ML(�) and ML(�, [𝑈]) formulas
are first-order definable over the class of all KD45-frames, and that the modal
definability of FOL formulas in each of the languages ML(�) and
ML(�, [𝑈]) over the class of all KD45-frames is in PSPACE. Ideas from [2]
and [1] have been used for the core of the proofs, and a technique from [3] has
been employed to show PSPACE-hardness in one case.

The modal logic K5 and the properties of its frames are examined by Nagle
in [42] and later with Thomason in [43]. These topics are also examined by
Halpern and Rêgo in [36].

In [6], Balbiani, the author and Tinchev have shown that the all ML(�)
formulas have a first-order definition over the class of all K5-frames (or,
Euclidean frames). It was also demonstrated using the main technique of [3]
that the problem of modal definability of first-order formulas over this class of
frames is undecidable.

This work summarizes the results for SQEMA and Deterministic SQEMA
in [26] and [27], and also the results of [28][29] and [6]. In Section 3 it can be seen
that Deterministic SQEMA can be extended to languages without nominals,
using the topological proof technique of [17] to show that it only succeeds on
d-persistent formulas of non-hybrid languages, thus showing that it can be
used to prove axiomatic completeness (canonicity). Thus the results of [26]
have been covered, including the rules for the universal modality, introduced
there. In the same section, the results of [27] are shown, including the extension
of Deterministic SQEMA to the language of pre-contact logics. In Section 4
and Section 5, the results of [28][29] are shown, namely decidability of the two
definability problems over the class of all KD45 frames with respect to each
of the languages ML(�) and ML(�, [𝑈]). In Section 6, the results of [6] are
discussed in detail, showing that all modal formulas of ML(�) have a first-order
definition over the class of all Euclidean frames, and that the problem of modal

3

definability of first-order formulas over this class of frames is undecidable.
Background material for first-order logic can be found in [50]; for modal

logic in [39] and [8]; for model theory in [14] and [22]; for computational
complexity in [44]. This paper uses Stockmeyer’s theorem for the complexity
of the decidability of theorems in the first-order theory of equality in [51].

2 Preliminaries

Our topics of discussion will focus on several different modal and first-order
languages.

2.1 Modal Languages

First, let us define the modal languages that we are discussing.
When speaking of words in a formal language, it helps to have a symbol

to specify that a word or a symbol occurs in another word. Here we use the
symbol →˓ in the following way. We denote by 𝑎 →˓ 𝑏 iff the word or symbol 𝑎
occurs in the word 𝑏. The negation of occurrence is denoted by ̸ →˓ .

Let us first define the symbols that we use as our modalities. Let Box =def

{�0,�1,�2, . . . } be a countably infinite set of symbols which we call boxes.
Let RevBox =def {�−1

0 ,�−1
1 ,�−1

2 , . . . } be a countably infinite set of reversed
boxes. Similarly to that, we define Diamond =def {♦0,♦1,♦2, . . . } as the set
of diamonds, and RevDiamond =def {♦−1

0 ,♦−1
1 ,♦−1

2 , . . . } as the set of reversed
diamonds. We treat the zeroth index of boxes and diamonds in a special way.
We denote �0 by [𝑈] and we call it the universal box, and we denote ♦0 by
⟨𝑈⟩, which we call the universal diamond.

Let PROP =def {𝑝1, 𝑝2, . . . } be a countably infinite set of symbols called
propositional variables. We denote propositional variables by the letters 𝑝 and
𝑞. Let NOM =def {𝑐1, 𝑐2, . . . } be a countably infinite set of nominals.

We assume that the sets PROP , NOM , Box , and RevBox are pairwise
disjoint.

We use the capital Latin letters 𝐴 and 𝐵 for modal formulas. The general
syntax of our modal languages is as follows:

𝐴 ::= ⊥ | ⊤ | 𝑝𝑖 | 𝑐𝑗 | ¬𝐴 | (𝐴 ∨𝐴) | (𝐴 ∧𝐴) | ♦𝑠𝐴 | ♦−1
𝑑 𝐴 | �𝑠𝐴 | �−1

𝑑 𝐴

where 𝑖 ∈ N, 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷, 𝐷 ⊆ 𝑆 ⊆ N, 𝑆 ̸= ∅, and also 𝐽 is either ∅
or N.

We may also use → and ↔ as defined symbols, where (𝐴→ 𝐵) stands for
(¬𝐴 ∨𝐵), and (𝐴↔ 𝐵) is the formula ((𝐴→ 𝐵) ∧ (𝐵 → 𝐴)).

We may omit braces, using the standard precedence rules.

4

We refer to propositional variables and nominals as atomic formulas, and
for simplicity, we generally do not consider ⊥ and ⊤ as atomic formulas.

A reader who is well-versed in modal logic will notice that we are using
both boxes and diamonds as our modal symbols, as well as both conjunctions
and disjunctions as our logical connectives. This is due to the fact that in our
topics of discussion below, we sometimes require the use of formulas in negation
normal form, with negations occurring only before atomic formulas, ⊥, or ⊤.

As we see below in 2.2, it is justified to use the notations
⋀︀
{𝐴1, . . . , 𝐴𝑛}

and
⋁︀
{𝐴1, . . . , 𝐴𝑛} with their usual meaning. However, when describing an

algorithm such as Deterministic SQEMA, it helps to specify the order of the
conjunctions and disjunctions, so we denote by

⋀︀
(𝐴1, . . . , 𝐴𝑛) for 𝑛 ≥ 0 and

different 𝐴𝑖 the formula (𝐴1 ∧ . . . (𝐴𝑛−1 ∧ 𝐴𝑛) . . .) if 𝑛 > 0, ⊤ otherwise;
we denote by

⋁︀
(𝐴1, . . . , 𝐴𝑛) for 𝑛 ≥ 0 and different 𝐴𝑖 the formula (𝐴1 ∨

. . . (𝐴𝑛−1 ∨𝐴𝑛) . . .) if 𝑛 > 0, ⊥ otherwise.
We say that a modal operator (a box, a reversed box, a diamond, or a

reversed diamond) occurs positively in 𝐴 iff it occurs within the scope of an
even number of negations in 𝐴. We say that a modal operator occurs negatively
in 𝐴 iff it occurs within the scope of an odd number of negations in 𝐴.

We assume that the reader knows the definition of whether a formula 𝐴 is
positive in 𝑝, negative in 𝑝. We also assume that the reader recognizes positive
and negative occurrences of propositional variables and nominals.

For this work, we assume that a formula 𝐴 is positive iff all occurrences of
propositional variables in it are positive. Here, we disregard the occurrences of
nominals. Again, we assume that a formula 𝐴 is negative iff all occurrences of
propositional variables in it are negative, again disregarding any occurrences
of nominals.

Let 𝐿 be one of the modal languages defined above. If 𝐽 = N, we say that
𝐿 is a hybrid modal language, or just a hybrid language, otherwise if 𝐽 = ∅, we
say that 𝐿 is a non-hybrid modal language, or just a non-hybrid language. If
𝐷 = 𝑆, we say that 𝐿 is a reversive language, or a temporal language. If 0 ∈ 𝑆,
we say that 𝐿 contains the universal modality.

For simplicity, if 𝐿 is a modal language and � is one of its boxes or reversed
boxes, we denote by �−1 the corresponding reversed box or box (if it is in 𝐿).
The same denotation applies to diamonds. Sometimes we treat [𝑈] and �−1

0

and also ⟨𝑈⟩ and ♦−1
0 the same way, because, as we see below, their semantics

are the same.
The basic modal language ML(�) is a modal language with 𝐽 = ∅, 𝑆 =

{1}, and 𝐷 = ∅. The basic modal language extended by adding the universal
modality, ML(�, [𝑈]), is a modal language with 𝐽 = ∅, 𝑆 = {0, 1} and 𝐷 = ∅.
We use just � and ♦ for the non-universal boxes and diamonds when discussing
these two languages.

If 𝐿 is a modal language and 𝐴 ∈ 𝐿, we say that 𝐴 is a modal formula.

5

If 𝐿 is a modal language, then NOM (𝐿) is the set of nominals, which occur
in formulas of 𝐿.

If 𝐴 is a modal formula, then PROP(𝐴) is the set of propositional variables
occurring in 𝐴, and NOM (𝐴) is the set of nominals occurring in 𝐴.

Generally, if speaking of a language, we mean a modal language.

2.2 Kripke Semantics of Modal Languages

We use the popular Kripke semantics for modal languages. A Kripke frame or
a Kripke structure is a tuple consisting of a non-empty set of possible worlds,
or states, and one or more binary accessibility relations. Often we say simply
frame instead of a Kripke frame. When discussing the languages ML(�) and
ML(�, [𝑈]), we may use Kripke frames with just one accessibility relation, but
generally if we have more than one non-universal modality in a given language,
we need Kripke frames that have as many accessibility relations as are the non-
universal modalities in the language.

Let 𝐿 be a modal language with 𝑆 being the set of indices of its boxes. We
say that the tuple F = ⟨𝑊,ℛ⟩ is a Kripke frame for 𝐿 iff 𝑊 ̸= ∅ is the universe
of F, and for all 𝑖 ∈ 𝑆, ℛ(𝑖) ⊆𝑊 ×𝑊 are the accessibility relations, where if
0 ∈ 𝑆, ℛ(0) =𝑊 ×𝑊 . If a state 𝑤 ∈𝑊 , we say that 𝑤 is in F. If 𝑆 is finite,
we may omit ℛ(0) if �0 is present in the language, and we may represent F
by the tuple ⟨𝑊,𝑅𝑖1 , . . . , 𝑅𝑖𝑛⟩, where 𝑛 > 0, 𝑊 ̸= ∅, 𝑆 = {𝑖1, . . . , 𝑖𝑛} and
𝑅𝑖1 , . . . , 𝑅𝑖𝑛 are binary relations over 𝑊 . Thus ⟨𝑊,𝑅⟩ is a Kripke frame for
ML(�) and ML(�, [𝑈]). Also if we require a Kripke frame where only two of
the relations matter, we may use the notation ⟨𝑊,𝑅1, 𝑅2⟩, etc.

Let F = ⟨𝑊,ℛ⟩ be a Kripke frame for the modal language 𝐿. A Kripke
model for 𝐿, or just a model for 𝐿, is a tuple M = ⟨F, 𝑉,𝐻⟩, where 𝑉 : PROP ↦→
P(𝑊) is a valuation, and 𝐻 : NOM (𝐿) ↦→𝑊 is an assignment. If the language
𝐿 does not contain any nominals, we may simply use the tuple ⟨F, 𝑉 ⟩ because
𝐻 would be the empty function. We say that a model M = ⟨F, 𝑉,𝐻⟩ is based
on or is over F. If 𝑤 ∈ 𝑊 , we say that 𝑤 is in M. A model for a hybrid
language M = ⟨F, 𝑉,𝐻⟩ is named iff 𝐻 is surjective. Instead of F, we may use
the sequence 𝑊,ℛ in the tuple. Thus M = ⟨𝑊,ℛ, 𝑉,𝐻⟩ is a Kripke model. For
non-hybrid languages, we may omit the valuation 𝐻 from the tuple because
there are no nominals to evaluate.

Now we inductively define the valuation, or the extension of a formula
𝐴 in a model M = ⟨𝑊,ℛ, 𝑉,𝐻⟩, denoted by [[𝐴]]M. It is assumed that M
is a model for a modal language which contains 𝐴. [[⊥]]M = ∅, [[⊤]]M = 𝑊 ,
[[𝑝]]M = 𝑉 (𝑝), [[𝑐]]M = {𝐻(𝑐)}, [[¬𝐴]]M = 𝑊 ∖ [[𝐴]]M, [[(𝐴1 ∨𝐴2)]]M = [[𝐴1]]M ∪
[[𝐴2]]M, [[(𝐴1 ∧𝐴2)]]M = [[𝐴1]]M ∩ [[𝐴2]]M, [[♦𝑖𝐴]]M = {𝑤 ∈ 𝑊 | ∃𝑣 ∈ [[𝐴]]M :
⟨𝑤, 𝑣⟩ ∈ ℛ(𝑖)}, [[♦−1

𝑖 𝐴]]M = {𝑤 ∈ 𝑊 | ∃𝑣 ∈ [[𝐴]]M : ⟨𝑣, 𝑤⟩ ∈ ℛ(𝑖)}, [[�𝑖𝐴]]M =
[[¬♦𝑖¬𝐴]]M, [[�−1

𝑖 𝐴]]M = [[¬♦−1
𝑖 ¬𝐴]]M. As promised above, we can clearly see

6

that the semantics of the modalities [𝑈] and �−1
0 are identical.

Now, some commonly used notations in modal logic. Let M be a Kripke
model for a language 𝐿 and let 𝐴 ∈ 𝐿. Let 𝑤 be in M. We say that 𝐴 is true
in M at 𝑤, denoted by M, 𝑤 𝐴, iff 𝑤 ∈ [[𝐴]]M. We say that 𝐴 is true in M,
denoted by M 𝐴, iff for all 𝑤 in M, it is the case that M, 𝑤 𝐴. Let F be a
Kripke frame for 𝐿. 𝐴 is valid in F at a state 𝑤 in F, denoted by F, 𝑤 𝐴, iff
for all models M over F, we have that M, 𝑤 𝐴. 𝐴 is valid in F, denoted by
F 𝐴, iff for all models M over F: M 𝐴 iff for all states 𝑤 in F: F, 𝑤 𝐴.
We say that 𝐴 is valid iff it is valid in the class of all frames for 𝐿.

2.3 Modal Formulas as Operators

Let 𝐿 be a modal language and let 𝐴 ∈ 𝐿. Let all propositional variables
occurring in 𝐴 be among 𝑝1 . . . 𝑝𝑛 and all nominals occurring in 𝐴 be among
𝑐1, . . . , 𝑐𝑚. Let F = ⟨𝑊,ℛ⟩ be a Kripke frame for 𝐿. We define the value of the
operator [[𝐴]], [[𝐴]](𝑠1, . . . , 𝑠𝑛, 𝑤1, . . . , 𝑤𝑚) ⊆𝑊 , for all 𝑠ℓ ⊆𝑊 and 𝑤𝑘 ∈𝑊 in
the following way:

[[𝑐𝑘]](𝑤𝑘) = {𝑤𝑘}, [[𝑝ℓ]](𝑠ℓ) = 𝑠ℓ, [[¬𝐴]](𝑠, �̄�) =𝑊∖[[𝐴]](𝑠, �̄�), [[(𝐴∨𝐵)]](𝑠, �̄�) =
[[𝐴]](𝑠, �̄�) ∪ [[𝐵]](𝑠, �̄�), [[(𝐴 ∧ 𝐵)]](𝑠, �̄�) = [[𝐴]](𝑠, �̄�) ∩ [[𝐵]](𝑠, �̄�), [[♦𝑖𝐴]](𝑠, �̄�) =
{𝑤 ∈ 𝑊 | ∃𝑣 ∈ [[𝐴]](𝑠, �̄�) : ⟨𝑤, 𝑣⟩ ∈ ℛ(𝑖)}, [[♦−1

𝑖 𝐴]](𝑠, �̄�) = {𝑤 ∈ 𝑊 | ∃𝑣 ∈
[[𝐴]](𝑠, �̄�) : ⟨𝑣, 𝑤⟩ ∈ ℛ(𝑖)}, [[�𝑖𝐴]](𝑠, �̄�) = [[¬♦𝑖¬𝐴]](𝑠, �̄�), [[�−1

𝑖 𝐴]](𝑠, �̄�) =
[[¬♦−1

𝑖 ¬𝐴]](𝑠, �̄�).
By the definition of semantics of modal formulas above, it is not hard to

check that the extension of 𝐴 in some model M depends on 𝐴, the valuations
of 𝑝1, . . . , 𝑝𝑛 and the assignments of 𝑐1, . . . , 𝑐𝑚 in M.

Thus, it is a simple check to see that if F = ⟨𝑊,ℛ⟩ is a Kripke frame
for 𝐿 and 𝐴 ∈ 𝐿, then for all 𝑠1, . . . , 𝑠𝑛 ⊆ 𝑊 and all 𝑤1, . . . , 𝑤𝑚 ∈ 𝑊 ,
[[𝐴]](𝑠, �̄�) = [[𝐴]]M, where M = ⟨F, 𝑉,𝐻⟩ is any model over F with 𝑉 (𝑝1) =
𝑠1, . . . , 𝑉 (𝑝𝑛) = 𝑠𝑛, 𝐻(𝑐1) = 𝑤1, . . . ,𝐻(𝑐𝑚) = 𝑤𝑚.

2.4 First-Order Languages

We use the standard definition of a first-order language, and a first-order
theory, as defined in [50]. In this thesis, we only work with first-order languages
with countably infinitely many individual variables VAR = {𝑥1, 𝑥2, . . . }, with
equality, without constants and without functional symbols, and only unary
({𝑃1, 𝑃2, . . . }) and infix binary ({𝑟1, 𝑟2, . . . }) predicate symbols.

Clearly for such languages if they do not contain unary predicate symbols,
Kripke frames can be used as structures, interpreting each of the symbols 𝑟𝑖
with ℛ(𝑖).

We are mainly interested in two kinds of first-order languages, although
Section 6 deals with another kind of first-order language.

7

First, we have languages with all of the above kinds of symbols, which we
call standard translation languages.

Then we have languages which have no unary predicate symbols. These
language we call the correspondence languages. Often, it is known in the context
of discussion which binary predicate symbols are in the language, and thus we
use simply the name FOL. In most of the paper, FOL is simply the language
where all possible binary predicate symbols occur. In sections 4, 5, and 6, FOL
refers to the first-order language with a single binary predicate symbol 𝑟.

We use the standard definitions of assignment, a sentence, validity, and
satisfiability. For example, if F is a Kripke frame for the basic modal language,
𝑤1, . . . , 𝑤𝑛 are states in F and 𝜓(𝑥1, . . . , 𝑥𝑛) is a FOL formula with free
variables among 𝑥1, . . . , 𝑥𝑛, we denote by F � 𝜓[𝑤1, . . . , 𝑤𝑛] iff 𝜓 is satisfied
on F with an assignment of the individual variables such that 𝑥𝑖 is assigned
to 𝑤𝑖 for every 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛. In the same case, if we need to use a
modified assignment, we denote by F � 𝜓[𝑤1, . . . , 𝑤𝑛, 𝑥𝑖 ↦→ 𝑣] where 𝑖 ≤ 𝑛 and
we have denoted the fact that F � 𝜓[𝑤1, . . . , 𝑤𝑖−1, 𝑣, 𝑤𝑖+1, . . . , 𝑤𝑛].

2.5 Decidability and Complexity

We use the standard definitions of decidability (as seen in [50]) and complexity
(see [44]).

2.6 The Correspondence Problems

The following two definitions of definability are adapted from [8], see Definition
3.2 on page 126.

Definition 1 (First-order Definability) Let 𝒞 be a class of Kripke frames.
We say that the class 𝒞′ ⊆ 𝒞 is first-order definable over 𝒞 iff there is a FOL
formula 𝜓, such that for all F ∈ 𝒞, it is the case that F ∈ 𝒞′ iff F � 𝜓. In this
case, we say that 𝜓 defines 𝒞′ over 𝒞.

Definition 2 (Modal Definability) Let 𝒞 be a class of Kripke frames for
some modal language 𝐿. We say that the class 𝒞′ ⊆ 𝒞 is modally definable over
𝒞 in 𝐿 iff there is a modal formula 𝐴 ∈ 𝐿, such that for all F ∈ 𝒞, it is the case
that F ∈ 𝒞′ iff F 𝐴. In this case, we say that 𝐴 defines 𝒞′ over 𝒞 in 𝐿.

There are two major correspondence problems, as outlined in the introductions
of [1], [2], and[10]. Here, we give them names for simplicity:

Definition 3 (First-order Definability of Modal Formulas) Let 𝐿 be a
modal language and 𝒞 be a class of frames for 𝐿. The first-order definability
problem for 𝐿 over 𝒞 is the following: Given a modal formula 𝐴 ∈ 𝐿, is there

8

a FOL formula 𝜓, such that for all F ∈ 𝒞, it is the case that F 𝐴 iff F � 𝜓?
If there is such a formula 𝜓, we say that 𝜓 is a first-order definition of 𝐴 over
𝒞. We also say that 𝐴 and 𝜓 are globally correspondent over 𝒞.

Definition 4 (Modal Definability of First-order Formulas) Let 𝐿 be a
modal language and 𝒞 be a class of frames for 𝐿. The modal definability
problem for 𝐿 over 𝒞 is the following: Given a first-order formula 𝜓 ∈ FOL, is
there a modal formula 𝐴 ∈ 𝐿, such that for all F ∈ 𝒞, it is the case that F 𝐴
iff F � 𝜓? If there is such a formula 𝐴, we say that 𝐴 is a modal definition of
𝜓 over 𝒞. We also say that 𝐴 and 𝜓 are globally correspondent over 𝒞.

Given a modal language 𝐿, we are interested in whether or not the above
two problems are decidable over certain classes of frames for 𝐿.

If the above problems are undecidable over the class of all frames for 𝐿, are
there interesting algorithms for deciding parts of some of the problems, which
succeed on as many formulas as possible?

Note that the above definitions are for global definability and global
correspondence. Sometimes it is easier to solve a definability problem about
the local version of correspondence. Local correspondence is defined later, in
Definition 36, and it can be seen that it implies global correspondence.

2.7 Standard Translation

We make use of the Standard Translation in Section 5 and Section 6 as defined
in [8], chapter 2.4, see Definition 2.45. Clearly, if the modal language contains
nominals, we require that the first-order language contains matching first-order
constant symbols. However, we do not use the regular Standard Translation
for hybrid languages, as we see below in Section 3. There we make use of a
modified standard translation for formulas without propositional variables, see
Definition 41.

2.8 P-Morphisms, Disjoint Unions, and Generated Subframes

In sections 4, 5 and 6, we make use of the following well-known model-theoretical
constructions for modal logic, see [8], pages 139–143.

Definition 5 (P-Morphic Image) If F1 = ⟨𝑊1,ℛ1⟩ and F2 = ⟨𝑊2,ℛ2⟩ are
frames for some non-hybrid modal language 𝐿, with a set of indices of its
boxes 𝑆 and a set of indices of its reversed boxes 𝐷, we say that a function
𝑓 : 𝑊1 ↦→ 𝑊2 is a p-morphism (or a bounded morphism) of F1 to F2 iff the
following conditions hold:

1. (The Forward Condition)
If 𝑖 ∈ 𝑆 and ⟨𝑥, 𝑦⟩ ∈ ℛ1(𝑖) then ⟨𝑓(𝑥), 𝑓(𝑦)⟩ ∈ ℛ2(𝑖).

9

2. (The Back Condition for Diamonds)
If 𝑖 ∈ 𝑆, 𝑥 ∈ 𝑊1, 𝑦

′ ∈ 𝑊2 and ⟨𝑓(𝑥), 𝑦′⟩ ∈ ℛ2(𝑖) then there is 𝑦 ∈ 𝑊1 such
that ⟨𝑥, 𝑦⟩ ∈ ℛ1(𝑖) and 𝑓(𝑦) = 𝑦′.

3. (The Back Condition for Reversed Diamonds)
If 𝑖 ∈ 𝐷,𝑥 ∈ 𝑊1, 𝑦

′ ∈ 𝑊2 and ⟨𝑓(𝑥), 𝑦′⟩ ∈ ℛ2(𝑖)
−1 then there is 𝑦 ∈ 𝑊1

such that ⟨𝑥, 𝑦⟩ ∈ ℛ1(𝑖)
−1 and 𝑓(𝑦) = 𝑦′.

If 𝑓 is surjective, we say that F2 is a p-morphic image of F1 (or a bounded
morphic image of F1). In this case, it can be shown by induction on 𝐴 ∈ 𝐿
that if F1 𝐴 then F2 𝐴, see [8], pages 139–143.

Definition 6 (Disjoint Union) Let 𝐿 be a non-hybrid language without the
universal modality with a set of indices of boxes 𝑆. Let 𝐼 be a non-empty index
set and let {F𝑖 | 𝑖 ∈ 𝐼} be a pairwise disjoint family of frames for 𝐿, where for
every 𝑖 ∈ 𝐼, F𝑖 = ⟨𝑊𝑖,ℛ𝑖⟩. The disjoint union

⨄︀
𝑖∈𝐼{F𝑖} = ⟨𝑊,ℛ⟩ is a frame

for 𝐿 defined by 𝑊 =def
⋃︀
𝑖∈𝐼{𝑊𝑖} and for all 𝑠 ∈ 𝑆, ℛ(𝑠) =def

⋃︀
𝑖∈𝐼{ℛ𝑖(𝑠)}.

Definition 7 (Generated Subframe) Let 𝐿 be a non-hybrid language without
the universal modality, with a set of indices of boxes 𝑆 and a set of indices of
reversed boxes 𝐷. Let F = ⟨𝑊,ℛ⟩ be a frame for a non-hybrid language and
let 𝑤 be a state in F. We say that F′ = ⟨𝑊 ′,ℛ′⟩, which is a frame for 𝐿, is the
point-generated subframe, or simply the generated subframe, of F at 𝑤 iff F′ is
such that 𝑊 ′ is the smallest set such that the following conditions hold:

1. 𝑤 ∈𝑊 ′ ⊆𝑊 ,
2. For all 𝑖 ∈ 𝑆, ℛ′(𝑖) = ℛ(𝑖) ∩ (𝑊 ′ ×𝑊 ′)
3. For all 𝑖 ∈ 𝑆, if 𝑥 ∈𝑊 ′ and ⟨𝑥, 𝑦⟩ ∈ ℛ(𝑖), then 𝑦 ∈𝑊 ′.
4. For all 𝑖 ∈ 𝐷, if 𝑥 ∈𝑊 ′ and ⟨𝑥, 𝑦⟩ ∈ ℛ(𝑖)−1, then 𝑦 ∈𝑊 ′.

It can be shown by induction on 𝐴 ∈ 𝐿 that F, 𝑤 1 𝐴 iff F′, 𝑤 1 𝐴, see [8],
pages 139–143.

2.9 General Frames

In Section 3, we make extensive use of general frames to show axiomatic
completeness of certain formulas. Background information can be seen in [8],
pages 27–29.

Definition 8 (General Frame) This is adapted from Definition 1.32 of [8],
page 29. Let F = ⟨𝑊,ℛ⟩ be a frame for a modal language 𝐿. We say that
⟨F,W⟩ is a general frame for 𝐿, iff W ⊆ P(𝑊) is non-empty and the following
conditions hold:
- W is closed under [[¬𝑝1]] (relative complement)
- W is closed under [[(𝑝1 ∨ 𝑝2)]] (union)
- W is closed under [[♦𝑝1]] for all diamonds and reversed diamonds ♦ of 𝐿.
W is the set of admissible valuations. It can be checked that 𝑊, ∅ ∈ W. A

10

frame F with universe 𝑊 can also be considered to be the full general frame
⟨F,P(𝑊)⟩. We use g for general frames, W for sets of admissible valuations. If
g = ⟨F,W⟩, then we denote by g# the underlying frame of g, F. We say that
a state 𝑤 is in g iff it is in g#. A Kripke model M = ⟨g#, 𝑉,𝐻⟩ is a model
over g iff for each propositional variable 𝑝, 𝑉 (𝑝) ∈ W. Note that we place
no restrictions on the assignments of nominals. We say that a modal formula
𝐴 ∈ 𝐿 is valid in g, denoted by g 𝐴, iff it is true in all models over g. We
say that 𝐴 ∈ 𝐿 is valid in g and a state 𝑤 in g, denoted by g, 𝑤 𝐴, iff for all
models M over g, we have that M, 𝑤 𝐴.

Definition 9 (Finite Intersection Property) Let 𝑊 be a non-empty set
and W0 ⊆ P(𝑊) be a non-empty family of subsets of 𝑊 . We say that W0 has
the finite intersection property (abbreviated as the fip) iff for every non-empty
finite subset W1 ⊆ W0, we have that

⋂︀
W1 ̸= ∅.

Definition 10 (Types of General Frames) This is an adaptation of Definition
5.65 of [8], page 308. Let 𝐿 be a modal language with 𝑆 being the set of indices
of its diamonds and 𝐷 being the set of indices of its reversed diamonds. Let
g = ⟨F,W⟩ be a general frame for 𝐿, where F = ⟨𝑊,ℛ⟩. Then g is called:
1. differentiated iff for all 𝑣, 𝑤 ∈𝑊 :

𝑣 = 𝑤 iff for all 𝑠 ∈ W: 𝑣 ∈ 𝑠⇔ 𝑤 ∈ 𝑠
2. tight iff for all 𝑣, 𝑤 ∈𝑊 , all 𝑖 ∈ 𝑆 and all 𝑗 ∈ 𝐷:

⟨𝑣, 𝑤⟩ ∈ ℛ(𝑖) iff for all 𝑠 ∈ W: 𝑤 ∈ 𝑠⇒ 𝑣 ∈ [[♦𝑖𝑝]](𝑠)
⟨𝑤, 𝑣⟩ ∈ ℛ(𝑗) iff for all 𝑠 ∈ W: 𝑤 ∈ 𝑠⇒ 𝑣 ∈ [[♦−1

𝑗 𝑝]](𝑠)
Note that the two conditions above are trivially true for ⟨𝑈⟩ and

♦−1
0 . Thus we can ignore these conditions for the universal modality.

3. compact iff
⋂︀
W0 ̸= ∅ for every subset W0 of W which has the fip (and hence,

is non-empty)
4. descriptive iff g is differentiated, tight and compact
5. discrete iff every singleton of an element of 𝑊 is admissible in g.

If g is discrete, then an induction on all 𝐴 ∈ 𝐿 shows that if M is a model
over g, then [[𝐴]]M ∈ W for any formula. If 𝐿 is a non-hybrid modal language
and g is any general frame for 𝐿, again an induction on all 𝐴 ∈ 𝐿 shows that
all extensions of 𝐴 in models over g are admissible sets.

Sometimes we may say just a descriptive frame instead of a descriptive
general frame, and just a discrete frame instead of a discrete general frame.

It can be shown that any discrete frame is differentiated and tight.

2.10 D-Persistence and Di-Persistence

Definition 11 Let 𝒞 be a class of general frames for some language 𝐿 and let
𝐴 ∈ 𝐿 be a modal formula. We say that 𝐴 is persistent with respect to the class

11

of frames 𝒞 and the language 𝐿 iff for all g ∈ 𝒞, it is the case that g# 𝐴 iff
g 𝐴. In this case, if 𝒞 is the class of all descriptive frames for 𝐿, then 𝐴 is
called d-persistent with respect to 𝐿, and if 𝒞 is the class of all discrete frames
for 𝐿, then 𝐴 is called di-persistent with respect to 𝐿.

2.11 Normal Modal Logics, Completeness and Canonicity

Here, we follow the axiomatic system for nominals and universal modality,
described in [45][46][24], with some differences in the proofs.

Let 𝐿 be a modal language with 𝐽 being the set of indices of its nominals,
𝑆 being the set of indices of its boxes, and 𝐷 being the set of indices of its
reversed boxes. In this section, we only allow 𝐿 to contain nominals if 𝐿 also
contains the universal modality. Formally, 𝐽 = N ⇒ 0 ∈ 𝑆.

We show an axiomatic system for the language 𝐿. For simplicity of the
axiomatic system, we add implications and remove diamonds, reversed diamonds,
∧, ∨, ¬ and ⊤, using them only as defined symbols, see [50]. Therefore, our
language 𝐿 for this section becomes:

𝐴 ::= ⊥ | 𝑝𝑖 | 𝑐𝑗 | (𝐴→ 𝐴) | �𝑠𝐴 | �−1
𝑑 𝐴

for all 𝑖 ∈ N, 𝑗 ∈ 𝐽 , 𝑠 ∈ 𝑆 and 𝑑 ∈ 𝐷.

Definition 12 (Admissible Form) Let # be a symbol, which is not in the
alphabet of 𝐿. # is an admissible form. If AF (#) is an admissible form, then
so are �AF (#) and (𝐴 → AF (#)) for any box or reversed box � of 𝐿 and
any formula 𝐴 ∈ 𝐿. The formula, obtained by replacing all occurrences of #
with 𝐴 ∈ 𝐿 in AF (#) is denoted by AF (𝐴).

Definition 13 (Uniform Substitution) Let 𝐴1 and 𝐴′ be modal formulas
in 𝐿. We denote by 𝐴1[𝑝/𝐴

′] the word obtained from 𝐴1, where each occurrence
of 𝑝 (if any) has been replaced with 𝐴′. According to the definition of modal
formulas, the word thus constructed is also a formula in 𝐿, 𝐴2. We call the
rule for obtaining 𝐴2 from 𝐴1 uniform substitution of 𝑝 by 𝐴′ in 𝐴1.

We use the same notation for nominal substitution, replacing a nominal
with another nominal, as the notation for uniform substitution.

Axioms: (We assume that the axioms with [𝑈] or ⟨𝑈⟩ are only used if 0 ∈ 𝑆)
The axioms of propositional calculus.
(K) (�𝑠(𝑝→ 𝑞) → (�𝑠𝑝→ �𝑠𝑞)) for every 𝑠 ∈ 𝑆
(T for 𝑈) ([𝑈]𝑝→ 𝑝)
(B for 𝑈) (𝑝→ [𝑈]⟨𝑈⟩𝑝)
(4 for 𝑈) ([𝑈]𝑝→ [𝑈][𝑈]𝑝)

12

(U) ([𝑈]𝑝→ �𝑠𝑝) for every 𝑠 ∈ 𝑆
(GP) (𝑝→ �𝑖♦−1

𝑖 𝑝) for every 𝑖 ∈ 𝐷
(HF) (𝑝→ �−1

𝑖 ♦𝑖𝑝) for every 𝑖 ∈ 𝐷
(Nom1) ⟨𝑈⟩𝑐, only if 𝐽 = N, which also implies that 0 ∈ 𝑆
(Nom2) (⟨𝑈⟩(𝑐 ∧ 𝑝) → [𝑈](𝑐→ 𝑝)), only if 𝐽 = N, which implies also 0 ∈ 𝑆

Rules:
Modus Ponens (MP):

𝐴, (𝐴→ 𝐵)

𝐵
,

Gen:
𝐴

�𝐴
for every box or reversed box �,

Uniform Substitution:
𝐴

𝐴[𝑝/𝐴′]
, Nominal Substitution:

𝐴

𝐴[𝑐′/𝑐′′]
,

Cov*:
AF (¬𝑐) for some 𝑐 ̸ →˓ AF (#)

AF (⊥)
.

See 7.3 of [8] for an alternative axiomatic system without the Cov* rule.
Clearly, we may ignore the rules Nominal Substitution and Cov* if the

language is not hybrid.
A normal modal logic for 𝐿, or just logic for 𝐿, is a set of formulas Λ ⊆ 𝐿

such that Λ contains all axioms and is closed under applications of the five
rules.

We denote by 𝐾𝐿 the smallest logic for 𝐿.
Let 𝐴 ∈ 𝐿 be a formula. We denote the smallest logic for 𝐿 which contains

𝐴 by 𝐾𝐿+𝐴, and 𝐴 is called the axiom of 𝐾𝐿+𝐴. If Γ ⊆ 𝐿 is a set of formulas,
we denote by 𝐾𝐿 + Γ the smallest logic for 𝐿 which contains Γ, and we say
that Γ is the set of axioms of 𝐾𝐿 + Γ.

Let Λ be a logic for 𝐿. We denote by ⊢Λ 𝐴 iff 𝐴 ∈ Λ. We use the capital
greek letters Γ, Δ, Σ for sets of formulas of 𝐿. A Λ-theory Γ is a set of formulas
Γ ⊆ 𝐿 such that Λ ⊆ Γ and Γ is closed under applications of MP and, only if
𝐿 is a hybrid language, also the infinitary rule Cov:

Cov:
AF (¬𝑐) for all 𝑐

AF (⊥)
.

The Λ-theory of a set of formulas Γ ⊆ 𝐿, ThΛ(Γ), is the smallest Λ-theory
such that Γ ⊆ ThΛ(Γ). Despite the infinitary rule, the deduction lemma holds:

Lemma 14 (Deduction Lemma) (𝐴 → 𝐵) ∈ ThΛ(Γ) iff 𝐵 ∈ ThΛ(Γ ∪
{𝐴}).

Proof The left to right direction is obvious. Let 𝐵 ∈ ThΛ(Γ ∪ {𝐴}) and let
Γ′ =def {𝐴′ | (𝐴 → 𝐴′) ∈ ThΛ(Γ)}. Easily, 𝐴 ∈ Γ′ and Λ ⊆ ThΛ(Γ) ⊆ Γ′.
Also, Γ′ is closed under applications of MP. If 𝐿 is a hybrid language, to see

13

that Γ′ is closed under applications of Cov, let AF (#) be an admissible form,
and suppose that for each nominal 𝑐, AF (¬𝑐) ∈ Γ′. Then, by propositional
reasoning, for each nominal 𝑐: (𝐴 → AF (¬𝑐)) ∈ ThΛ(Γ). Applying Cov to
(𝐴 → AF (#)), we get that (𝐴 → AF (⊥)) ∈ ThΛ(Γ), therefore AF (⊥) ∈ Γ′,
so Γ′ is closed under applications of Cov. Therefore, ThΛ(Γ∪{𝐴}) ⊆ Γ′, so by
the definition of Γ′, (𝐴→ 𝐵) ∈ ThΛ(Γ). �

A set of formulas Γ ⊆ 𝐿 is Λ-consistent iff ⊥ ̸∈ ThΛ(Γ), and is Λ-inconsistent,
otherwise. Γ is a complete Λ-theory, iff Γ is a Λ-consistent Λ-theory, and for
every formula 𝐴, it is the case that either 𝐴 ∈ Γ or ¬𝐴 ∈ Γ. Γ is a maximal
Λ-theory, iff Γ is a Λ-consistent Λ-theory, and for any set of formulas Σ ⊆ 𝐿
such that Γ (Σ, Σ is Λ-inconsistent.

Corollary 15 A theory is maximal iff it is complete.

Proof First, let Γ be a complete Λ-theory and let for some set Σ ⊆ 𝐿 such
that Γ ⊆ Σ, 𝐴 ∈ Σ ∖ Γ. Then ¬𝐴 ∈ Γ, so by propositional reasoning ⊥ ∈
ThΛ(Σ). Now, let Γ be a maximal Λ-theory, let 𝐴 ∈ 𝐿 and let 𝐴 /∈ Γ. Then,
⊥ ∈ ThΛ(Γ ∪ {𝐴}), so by the deduction lemma, (𝐴→ ⊥) ∈ Γ, so ¬𝐴 ∈ Γ. �

Note that the classical Lindenbaum lemma here has the following form:

Lemma 16 (Lindenbaum Lemma) Let Γ be Λ-consistent. Then Γ can be
extended to a complete Λ-theory.

Proof Let 𝐴1, 𝐴2, . . . be an enumeration of all formulas of the countable
language 𝐿, for example, the lexicographical order. We construct by induction
an infinite chain of Λ-consistent Λ-theories Γ0 ⊆ Γ1 ⊆ . . . with the property
that for every 𝑖 ≥ 1, either 𝐴𝑖 ∈ Γ𝑖 or ¬𝐴𝑖 ∈ Γ𝑖 in the following way. Let Γ0

be ThΛ(Γ). Thus Γ0 is a Λ-consistent Λ-theory. Suppose that Γ𝑖 is defined for
some 𝑖 ≥ 0.

1. If Γ𝑖 ∪ {𝐴𝑖+1} is Λ-consistent, let Γ𝑖+1 =def ThΛ(Γ𝑖 ∪ {𝐴𝑖+1}).
2. If Γ𝑖 ∪ {𝐴𝑖+1} is Λ-inconsistent, then ¬𝐴𝑖+1 ∈ Γ𝑖. There are two cases.
2.1. If 𝐿 has no nominals or if 𝐴𝑖+1 is not in the form AF (⊥), then let

Γ𝑖+1 =def Γ𝑖.
2.2. If 𝐿 is a hybrid language and 𝐴𝑖+1 is AF (⊥) for some admissible form

AF (#), then we show that there is some nominal 𝑐 such that Γ𝑖 ∪{¬AF (¬𝑐)}
is Λ-consistent. Suppose for the sake of contradiction that for all nominals
𝑐: Γ𝑖 ∪ {¬AF (¬𝑐)} is Λ-inconsistent. Then by the deduction lemma, for all
𝑐: (¬AF (¬𝑐) → ⊥) ∈ Γ𝑖, hence for all 𝑐: AF (¬𝑐) ∈ Γ𝑖. Because Γ𝑖 is a Λ-
theory, by Cov, AF (⊥) ∈ Γ𝑖, so 𝐴𝑖+1 ∈ Γ𝑖. Thus Γ𝑖 is Λ-inconsistent, which
contradicts the Λ-consistency of Γ𝑖. We conclude that there is a nominal 𝑐 such
that Γ𝑖 ∪ {¬AF (¬𝑐)} is Λ-consistent. Let Γ𝑖+1 =def ThΛ(Γ𝑖 ∪ {¬AF (¬𝑐)}).

14

According to the construction, Γ𝑖+1 is a Λ-consistent Λ-theory, which is an
extension of Γ𝑖.

Let Γ+ =def
⋃︀∞
𝑖=0 Γ𝑖.

First note that ⊥ /∈ Γ+ because for all 𝑖 ≥ 0, ⊥ /∈ Γ𝑖.
Now we show that Γ+ is closed under applications of Modus Ponens. Let

𝐴, (𝐴→ 𝐵) ∈ Γ+. Then there is a step 𝑖 ≥ 1 such that 𝐴, (𝐴→ 𝐵) ∈ Γ𝑖. But
Γ𝑖 is closed under applications of MP, so 𝐵 ∈ Γ𝑖 ⊆ Γ+.

If 𝐿 contains nominals, we show that Γ+ is closed under applications of
Cov. Let there be some AF (#) such that for all 𝑐: AF (¬𝑐) ∈ Γ+ and suppose
for the sake of contradiction that AF (⊥) /∈ Γ+. There is an index 𝑖 ≥ 1 such
that AF (⊥) is 𝐴𝑖, and by case 2.2 of the construction, there is a nominal 𝑐′ such
that ¬AF (¬𝑐′) ∈ Γ𝑖 ⊆ Γ+. By propositional reasoning, ⊥ ∈ Γ+, contradiction.
Therefore, Γ+ is closed under applications of Cov.

Because every formula of 𝐿 is 𝐴𝑖 for some 𝑖 ≥ 1, by the construction either
𝐴𝑖 ∈ Γ𝑖 or ¬𝐴𝑖 ∈ Γ𝑖. Thus Γ+ is a complete Λ-theory. �

We denote by Γ ⊢Λ 𝐴 iff 𝐴 ∈ ThΛ(Γ). Thus ∅ ⊢Λ 𝐴 iff ⊢Λ 𝐴. We denote
by M, 𝑤 Γ iff for all 𝐴 ∈ Γ, M, 𝑤 𝐴. We say that 𝐴 is a local semantic
consequence of Γ over the class 𝒞 of frames, denoted by Γ 𝒞 𝐴, or, if Γ = ∅,
as 𝒞 𝐴, iff for every frame F ∈ 𝒞, every model M over F and every state 𝑤
from F, it is the case that if M, 𝑤 Γ, then M, 𝑤 𝐴. The class of frames of
Λ, Fr(Λ), is the class 𝒞 of all frames F for 𝐿 such that F Λ. Γ is satisfiable
on 𝒞 iff there is an F ∈ 𝒞, an M over F and a 𝑤 in F such that M, 𝑤 Γ.

Our goal is to examine the relationship between ⊢ and .

Definition 17 (Weak Soundness With Respect To 𝐿) We say that a
normal modal logic Λ ⊆ 𝐿 is weakly sound with respect to 𝐿 iff ⊢Λ 𝐴 implies
Fr(Λ) 𝐴.

Proposition 18 Let F be a frame for 𝐿 which validates all premises of one
of the five finitary rules - MP, Gen, Cov*, Uniform Substitution, and Nominal
Substitution. Then F validates the conclusion of the rule.

Proof MP preserves truth in a point and a model. Gen preserves global
truth in a model. Nominal substitution trivially preserves validity in a frame.
Uniform substitution preserves validity in a frame. It remains to show that
Cov* preserves validity in a frame.

Let F 1 AF (⊥), let 𝑐 ̸ →˓ AF (#). We show that F 1 AF (¬𝑐). We do this by
showing that for all models M = ⟨F, 𝑉,𝐻⟩ and states 𝑤 of M, if M, 𝑤 1 AF (⊥),
then there is a model M′ = ⟨F, 𝑉,𝐻 ′⟩ where 𝐻 ′(𝑐) = 𝑤′ for some state 𝑤′ of
F and 𝐻 ′(𝑐′) = 𝐻(𝑐′) for any other nominal 𝑐′, denoted as M′ = M[𝑐 ↦→ 𝑤′],
such that M′, 𝑤 1 AF (¬c). The proof is by induction on AF (#).

15

Let AF (#) be #. Then M′ is M[𝑐 ↦→ 𝑤].
Let AF (#) be (𝛾 → AF ′(#)). Let M, 𝑤 𝛾 and M, 𝑤 1 AF ′(⊥). By the

induction hypothesis, there is a model M′ = M[𝑐 ↦→ 𝑤′] for some state 𝑤′ of M,
such that M′, 𝑤 1 AF ′(¬𝑐), so M′, 𝑤 1 AF (¬𝑐).

Let AF (#) be �AF ′(#) for some box or reversed box � of 𝐿. Let M, 𝑤 1
�AF ′(⊥), so there is some 𝑤1 from M, such that ⟨𝑤,𝑤1⟩ ∈ 𝑅� and M, 𝑤1 1
AF ′(⊥). By the i.h., there is a model M′ = M[𝑐 ↦→ 𝑤′] for some state 𝑤′ of M,
such that M′, 𝑤1 1 AF ′(¬𝑐). Therefore, M′, 𝑤 1 AF (¬𝑐). �

Corollary 19 Every normal modal logic for the modal language 𝐿 is weakly
sound with respect to 𝐿. �

Definition 20 (Strong Soundness With Respect To 𝐿) We say that a
normal modal logic Λ ⊆ 𝐿 is strongly sound with respect to 𝐿 iff for any set
Γ ⊆ 𝐿, Γ ⊢Λ 𝐴 implies Γ Fr(Λ) 𝐴.

Any normal modal logic for a language without nominals is strongly sound,
because Modus Ponens preserves local truth in a model at a point.

Definition 21 (Weak Completeness With Respect To 𝐿, First Form)
We say that a weakly sound with respect to 𝐿 normal modal logic Λ ⊆ 𝐿 is
weakly complete with respect to 𝐿 iff Fr(Λ) 𝐴 implies ⊢Λ 𝐴.

Definition 22 (Weak Completeness With Respect To 𝐿, Second Form)
We say that a weakly sound with respect to 𝐿 normal modal logic Λ ⊆ 𝐿 is
weakly complete with respect to 𝐿 iff {𝐴} being Λ-consistent implies that {𝐴}
is satisfiable on Fr(Λ).

Definition 23 (Strong Completeness With Respect To 𝐿, First Form)
We say that a strongly sound with respect to 𝐿 normal modal logic Λ ⊆ 𝐿 is
strongly complete with respect to 𝐿 iff for any set Γ ⊆ 𝐿, Γ Fr(Λ) 𝐴 implies
Γ ⊢Λ 𝐴.

Definition 24 (Strong Completeness With Respect To 𝐿, Second Form)
We say that a strongly sound with respect to 𝐿 normal modal logic Λ ⊆ 𝐿 is
strongly complete with respect to 𝐿 iff for any set Γ ⊆ 𝐿, Γ being Λ-consistent
implies that Γ is satisfiable on Fr(Λ).

Proposition 25 The two forms of weak completeness are equivalent. The two
forms of strong completeness are equivalent.

Proof We prove both results simultaneously. Following [8]:
Let 𝒞 =def Fr(Λ). Suppose the second form for Λ and suppose that the first

form does not hold for Λ. Then, there is a set of formulas Γ∪{𝐴} ⊆ 𝐿, such that

16

Γ 𝒞 𝐴, but Γ 0Λ 𝐴, and also if we are proving weak completeness, Γ = ∅.
Suppose that Γ ∪ {(𝐴 → ⊥)} is Λ-inconsistent. Then ⊥ ∈ ThΛ(Γ ∪ {(𝐴 →
⊥)}), and by propositional reasoning, 𝐴 ∈ ThΛ(Γ ∪ {(𝐴 → ⊥)}), so, by the
deduction lemma, ((𝐴→ ⊥) → 𝐴) ∈ ThΛ(Γ), and by propositional reasoning,
𝐴 ∈ ThΛ(Γ), contradiction. Therefore, Γ ∪ {(𝐴 → ⊥)} is Λ-consistent. But
also it is not satisfiable on (any frame of) 𝒞, contradicts the second form.

For the other direction, let the first form hold for Λ. Let Γ ⊆ 𝐿 be a
Λ-consistent set, and also if we are proving weak completeness, let Γ be a
singleton. Suppose that for all F ∈ 𝒞, for all M over F and all worlds 𝑤 in F,
there exists a formula 𝐴 ∈ Γ, such that M, 𝑤 1 𝐴, and so M, 𝑤 1 Γ. Then
Γ 𝒞 ⊥, and by the first form, Γ ⊢Λ ⊥, contradiction. �

Clearly, strong soundness implies weak soundness and strong completeness
implies weak completeness. Therefore, sometimes we speak of sound and complete
logics and we mean weakly sound and complete logics.

Here, similarly to [8][30][16][53][32][18][27], we show that:
1. For a hybrid language 𝐿 and di-persistent formula 𝐴 ∈ 𝐿, the logics 𝐾𝐿

and 𝐾𝐿 +𝐴 are weakly sound and complete with respect to 𝐿.
2. For a non-hybrid language 𝐿 and d-persistent formula 𝐴 ∈ 𝐿, the logics

𝐾𝐿 and 𝐾𝐿 +𝐴 are strongly sound and complete with respect to 𝐿.
In both cases, we show the second form of completeness, as it is the most

convenient.

Definition 26 Let � be a box or a reversed box of 𝐿. Then �Γ is the set
{𝐴 | �𝐴 ∈ Γ}.

Lemma 27 Let Γ, Σ and Δ be Λ-consistent Λ-theories. Let � be any box or
reversed box of 𝐿. Then

1. The set Γ′ =def �Γ is a Λ-theory and if for some formula 𝐴, �𝐴 /∈ Γ,
then Γ′ is Λ-consistent.

2. If 0 ∈ 𝑆, then [𝑈]Γ is Λ-consistent, [𝑈]Γ ⊆ Γ, and [𝑈]Γ ⊆ �Γ.
3. If Γ is complete, then �𝐴 /∈ Γ iff there is a complete Λ-theory Σ such

that �Γ ⊆ Σ and 𝐴 /∈ Σ.
4. For all 𝑖 ∈ 𝐷, if Γ and Σ are complete, then �𝑖Γ ⊆ Σ iff �−1

𝑖 Σ ⊆ Γ.
5. If 0 ∈ 𝑆, Γ and Σ are complete, then [𝑈]Γ ⊆ Σ iff [𝑈]Σ ⊆ Γ.
6. If 0 ∈ 𝑆, Γ, Σ and Δ are complete, [𝑈]Γ ⊆ Σ, and [𝑈]Σ ⊆ Δ, then

[𝑈]Δ ⊆ Γ.
7. If 0 ∈ 𝑆, Γ and Σ are complete, and [𝑈]Γ ⊆ Σ, then [𝑈]Γ = [𝑈]Σ.

Proof We only show 1. The proofs for the rest are standard, and follow easily
by the axioms, 1., the deduction lemma and the Lindenbaum lemma.

17

Let (𝐴 → 𝐵), 𝐴 ∈ Γ′, therefore �(𝐴 → 𝐵),�𝐴 ∈ Γ. Because of (K),
⊢Λ (�(𝐴→ 𝐵) → (�𝐴→ �𝐵)), therefore, by MP, �𝐵 ∈ Γ, so 𝐵 ∈ Γ′.

Now, let 𝐿 be a hybrid language and let for all 𝑐, AF (¬𝑐) ∈ Γ′. Then for
all 𝑐, �AF (¬𝑐) ∈ Γ, so by Cov, �AF (⊥) ∈ Γ and hence AF (⊥) ∈ Γ′.

Finally, if 𝐴 ∈ 𝐿 and �𝐴 /∈ Γ, then 𝐴 /∈ Γ′ and hence Γ′ is Λ-consistent. �

Let Λ be a logic for 𝐿. Let 𝑊 be either the set of all complete Λ-theories
Σ, such that [𝑈]Γ ⊆ Σ for a given complete Λ-theory Γ, if 𝐿 contains the
universal modality, or the set of all complete Λ-theories, otherwise. Let ℛ :
𝑆 ↦→ P(𝑊 ×𝑊) be such that if 0 ∈ 𝑆, then ℛ(0) = 𝑊 × 𝑊 , and for all
𝑖 > 0, such that 𝑖 ∈ 𝑆, ⟨Σ1,Σ2⟩ ∈ ℛ(𝑖) iff �𝑖Σ1 ⊆ Σ2. Clearly F is a frame
for 𝐿. Thus F is called either the Λ-canonical frame for Γ, if 0 ∈ 𝑆, or just the
canonical frame for Λ, or the Λ-canonical frame, otherwise.

Proposition 28 Let 𝐿 contain nominals (and hence, 𝐿 also contains the
universal modality). Let Λ be a logic for 𝐿, and let Γ be a complete Λ-theory.
If F = ⟨𝑊,ℛ⟩ is the Λ-canonical frame for Γ, then

1. for every Σ ∈𝑊 at least one 𝑐 ∈ Σ.
2. for every 𝑐 there is exactly one Σ ∈𝑊 such that 𝑐 ∈ Σ.

Proof 1. Let Σ be a complete Λ-theory. Suppose that for all 𝑐, 𝑐 /∈ Σ. Then,
by the completeness of Σ, for all 𝑐, ¬𝑐 ∈ Σ. Therefore, by Cov, ⊥ ∈ Σ,
contradiction.

2. First, we show that for every 𝑐, there is a Σ ∈ 𝑊 such that 𝑐 ∈ Σ.
Suppose this is not the case, so there is a 𝑐 such that for all Σ ∈ 𝑊 , 𝑐 /∈ Σ.
Then ¬𝑐 ∈ Σ, therefore by Lemma 27, [𝑈]¬𝑐 ∈ Γ, which contradicts axiom
(Nom1). Second, let for some 𝑐 there be Σ1,Σ2 ∈ 𝑊 , such that 𝑐 ∈ Σ1 ∩ Σ2.
Let 𝐴 ∈ Σ1. Then, (𝑐 ∧ 𝐴) ∈ Σ1. Suppose 𝐴 /∈ Σ2, then (𝑐 → ¬𝐴) ∈ Σ2.
Now, there are two cases. First, if [𝑈](𝑐 → ¬𝐴) ∈ Σ2, then because of the
definition of 𝑊 , (𝑐 → ¬𝐴) ∈ Σ1, contradiction. Second, if [𝑈](𝑐 → ¬𝐴) /∈ Σ2,
then ¬[𝑈](𝑐 → ¬𝐴) ∈ Σ2, so ⟨𝑈⟩(𝑐 ∧ 𝐴) ∈ Σ2, then because of (Nom2),
[𝑈](𝑐→ 𝐴) ∈ Σ2, but [𝑈]Σ2 ⊆ Σ2, so 𝐴 ∈ Σ2, contradiction. So, we have that
Σ1 ⊆ Σ2. The converse inclusion is proven similarly, therefore Σ1 = Σ2. �

It easily follows that all axioms of 𝐾𝐿 are valid in any Λ-canonical frame,
because they are valid on all frames for 𝐿.

We are now ready to define the Λ-canonical model for a given complete
Λ-theory Γ if 𝐿 contains the universal modality, or just the Λ-canonical model,
otherwise. Let F = ⟨𝑊,ℛ⟩ be the Λ-canonical frame (for Γ), then we define
M =def ⟨F, 𝑉,𝐻⟩, where 𝑉 (𝑝) =def {Σ ∈ 𝑊 | 𝑝 ∈ Σ}; if 𝐿 contains nominals,
𝐻(𝑐) =def Σ, where Σ is the only element of 𝑊 , such that 𝑐 ∈ Σ, or otherwise
𝐻 is the empty function. The definition of 𝐻 is correct by Proposition 28. It
follows that if 𝐿 contains nominals, then M is a named model.

18

Lemma 29 (Truth Lemma) Let M = ⟨⟨𝑊,ℛ⟩, 𝑉, 𝐴⟩ be the Λ-canonical
model for some complete Λ-theory Γ, if 𝐿 contains the universal modality,
or just the Λ-canonical model otherwise. Then for any formula 𝐴 ∈ 𝐿 and any
world Σ in M, 𝐴 ∈ Σ iff M,Σ 𝐴.

Proof Induction on 𝐴 ∈ 𝐿. For atomic 𝐴 and for ⊥, the result follows by
the definition of the canonical model. For (𝐴 → 𝐵), the result follows by the
induction hypothesis and propositional reasoning.

For �−1
𝑖 𝐴: first, let �−1

𝑖 𝐴 ∈ Σ. Let 𝑊 ′ =def {Σ′ ∈ 𝑊 | �𝑖Σ′ ⊆ Σ}. We
show that 𝑊 ′ contains all Λ-complete Λ-theories Σ′, such that �𝑖Σ′ ⊆ Σ.
This trivially holds if 𝐿 does not contain the universal modality, so let 0 ∈ 𝑆.
Because by Lemma 27, for any Λ-consistent Λ-theory Σ′, [𝑈]Σ′ ⊆ �𝑖Σ′, we
have that for all Λ-complete Σ′, such that [𝑈]Σ′ ⊆ �𝑖Σ′ ⊆ Σ, it is the case
that [𝑈]Σ′ = [𝑈]Σ = [𝑈]Γ, therefore Σ′ ∈ 𝑊 . By Lemma 27, for all Σ′ ∈
𝑊 ′, �−1

𝑖 Σ ⊆ Σ′, so 𝐴 ∈ Σ′. By the induction hypothesis, for all Σ′ ∈ 𝑊 ′:
M,Σ′ 𝐴, so, by the definition of ℛ(𝑖) and the definition of Kripke semantics,
M,Σ �−1

𝑖 𝐴. Now, let M,Σ �−1
𝑖 𝐴. Then, using the same definition of 𝑊 ′,

we have that for all Σ′ ∈ 𝑊 ′, we can use the induction hypothesis and find
that 𝐴 ∈ Σ′. Because 𝑊 ′ contains exactly all Λ-complete Λ-theories Σ′, such
that �−1

𝑖 Σ ⊆ Σ′, then it follows that �−1
𝑖 𝐴 ∈ Σ. For �𝑖𝐴, the result follows

by Lemma 27. �

Definition 30 Let Λ be a logic for 𝐿 and let Λ be valid in any Λ-canonical
frame. Then the logic Λ is canonical with respect to 𝐿. Let 𝐴 ∈ 𝐿 and let 𝐴 be
valid in any Λ-canonical frame for 𝐾𝐿+𝐴. Then we say that the formula 𝐴 is
canonical with respect to 𝐿.

Theorem 31 If a logic Λ for 𝐿 is canonical with respect to 𝐿, then it is also
weakly consistent and weakly complete with respect to 𝐿. If 𝐿 is a non-hybrid
language, then Λ is also strongly consistent and strongly complete with respect
to 𝐿.

Proof We use the second form of completeness. Like [8][30][16][53][32][18][27]:
We have already shown the soundness results above.
Now, let us show completeness.
Let Γ be a Λ-consistent set. In the case of a hybrid language, let Γ also

be a singleton. By the Lindenbaum lemma, there is a complete Λ-theory Γ+

extending Γ. Let M be the Λ-canonical model M for Γ+ if 𝐿 contains the
universal modality, or just the Λ-canonical model otherwise. Let the universe
of M be 𝑊 . By the Truth Lemma 29, Γ+ is satisfiable in M at Γ+, therefore Γ
also is. The frame of M, F, also validates Λ by the fact that Λ is canonical. If 𝐿
is hybrid, by the second form of weak completeness, Λ is weakly complete with

19

respect to 𝐿. If 𝐿 is non-hybrid, by the second form of strong completeness, Λ
is strongly complete with respect to 𝐿. �

The following theorem lists three well-known facts in literature, which we
need for our further discussions.

Theorem 32 (1) 𝐾𝐿 is a canonical logic with respect to 𝐿. (2) If 𝐿 is a
hybrid language containing the universal modality, then for any di-persistent
with respect to 𝐿 formula 𝐴 ∈ 𝐿, it is the case that 𝐾𝐿 + 𝐴 is canonical
with respect to 𝐿. (3) If 𝐿 does not contain nominals, then any logic 𝐾𝐿 + 𝐴
is canonical with respect to 𝐿 for any d-persistent with respect to 𝐿 formula
𝐴 ∈ 𝐿.

Proof For (1), we have already shown that all axioms of 𝐾𝐿 are valid on any
𝐾𝐿-canonical frame because they are valid on all frames for 𝐿.

For (2) and (3), like in [8][30][16][53][32][18][27]:
Let Λ =def 𝐾𝐿 + 𝐴. We assume that ⊥ /∈ Λ because otherwise the result

trivially holds.
Let Γ be a complete Λ-theory, let F = ⟨𝑊,ℛ⟩ be the Λ-canonical frame for Γ

(or just the Λ-canonical frame if 𝐿 does not contain the universal modality). Let
M = ⟨F, 𝑉,𝐻⟩ be the Λ-canonical model for Γ (or just the Λ-canonical model
if 𝐿 does not contain the universal modality). Now, we construct a general
frame over M in the following way. For all modal formulas 𝐵 ∈ 𝐿, denotê︀𝐵 =def {Σ ∈𝑊 | 𝐵 ∈ Σ}. Let W =def { ̂︀𝐵 | 𝐵 ∈ 𝐿} and let g =def ⟨F,W⟩.

We show that g is a general frame and g 𝐴.
The first follows directly from the Truth Lemma 29, which allows us to

check the closure conditions for W, namely, relative complement (𝑊 ∖ ̂︀𝐵 = ̂︂¬𝐵),
union (̂︁𝐵1∪̂︁𝐵2 = ̂(𝐵1 ∨𝐵2), and operator [[♦𝑝1]] for any diamond and reversed
diamond ♦ of 𝐿 ([[♦𝑝1]](̂︀𝐵) = ̂︂♦𝐵).

For the second, first note that for any complete Λ-theory Σ, 𝐴 ∈ Λ ⊆ Σ, so
by the Truth Lemma 29, M 𝐴, so [[𝐴]]M =𝑊 . Clearly M is a model over g. If
PROP(𝐴) ∪ NOM (𝐴) = ∅, then we are done. Otherwise, let all propositional
variables occurring in 𝐴 be among 𝑝1, . . . , 𝑝𝑛, and let all nominals occurring
in 𝐴 be among 𝑐1, . . . , 𝑐𝑚, where 𝑚 = 0 if 𝐿 does not contain nominals. Then
clearly for any model M′ over g, [[𝐴]]M′ = [[𝐴]](𝑠1, . . . , 𝑠𝑛, 𝑤1, . . . , 𝑤𝑚) for some
𝑠1, . . . , 𝑠𝑛 ∈ W and 𝑤1, . . . , 𝑤𝑚 ∈ 𝑊 , by the definition of W as the extensions
in M of all possible formulas, and the fact that if 𝐿 has nominals, then every
𝑤𝑖 contains a nominal, is equal to the following set:
[[𝐴[𝑝1/𝐴1, . . . , 𝑝𝑛/𝐴𝑛, 𝑐1/𝑐

′
1, . . . , 𝑐𝑚/𝑐

′
𝑚]]]M for some formulas 𝐴1, . . . , 𝐴𝑛 and

some nominals 𝑐′1, . . . , 𝑐′𝑚. However, Λ ⊆ Σ for any complete Λ-theory Σ, and Λ
is closed under applications of uniform substitution and nominal substitution.
Therefore, for all Σ ∈ 𝑊 : 𝐴[𝑝1/𝐴1, . . . , 𝑝𝑛/𝐴𝑛, 𝑐1/𝑐

′
1, . . . , 𝑐𝑚/𝑐

′
𝑚] ∈ Σ. So, by

the truth lemma, g 𝐴.

20

To prove (2), let us show that if 𝐿 is a hybrid language with the universal
modality, then g is discrete. But this follows by the fact that every nominal is
a modal formula. Thus there is a discrete general frame over F which validates
𝐴, and 𝐴 is di-persistent, therefore F 𝐴 and this makes Λ canonical.

To show (3), let 𝐿 be a non-hybrid modal language. We must show that g
is a descriptive frame. Then the result follows by the facts that g 𝐴 and 𝐴
is d-persistent.

To show that g is differentiated, let Σ and Θ be distinct complete Λ-theories
from 𝑊 . It is not hard to show that there is a formula 𝐵 ∈ Σ such that 𝐵 /∈ Θ.
Equivalently Σ ∈ ̂︀𝐵 and Θ /∈ ̂︀𝐵. Thus, we established the contrapositive for
the differentiation condition equivalence.

For tightness, let Σ and Θ be two complete Λ-theories from 𝑊 , and let for
some 𝑖 ∈ 𝑆, ⟨Σ,Θ⟩ /∈ ℛ(𝑖). Equivalently, ♦𝐵 /∈ Σ, but 𝐵 ∈ Θ for some 𝐵 ∈ 𝐿,
so equivalently, Θ ∈ ̂︀𝐵 but Σ /∈ ̂︂♦𝐵, and we’ve established the contrapositive
of the first equivalence for tightness. The second tightness condition is proved
similarly for every 𝑖 ∈ 𝐷.

For compactness, first we need a lemma on Λ-consistent Λ-theories. Let
Σ be a Λ-consistent set of 𝐿-formulas and let ⊥ ∈ ThΛ(Σ). Then there are
formulas 𝐵1, . . . , 𝐵𝑛 ∈ Σ, such that ⊢Λ ((𝐵1 ∧ · · · ∧ 𝐵𝑛) → ⊥) ∈ Λ. This can
be proven by first showing that for any formula 𝐵 ∈ ThΛ(Σ), there is a finite
sequence of formulas 𝐵1, . . . , 𝐵𝑛, such that 𝐵𝑛 is 𝐵 and each element of the
sequence is either Σ, from Λ, or is derived by an application of Modus Ponens by
preceding formulas. This follows by the fact that Modus Ponens is a finitary
rule and theories in non-hybrid languages do not have to be closed under
applications of the infinitary rule Cov. Then we can get the desired conclusion
by propositional reasoning and 𝑛 applications of the deduction lemma.

Let 𝑊0 be any non-empty family of admissible (over g) sets with the fip.
We must show that it has a non-empty intersection. But 𝑊0 =def { ̂︀𝐵 | 𝐵 ∈ Σ},
where Σ is a non-empty set of 𝐿-formulas. It follows that Σ is Λ-consistent,
because suppose for the sake of contradiction that it’s not. Then, there are
𝐵1, . . . , 𝐵𝑛 ∈ Σ: ⊢Λ (𝐵1∧· · ·∧𝐵𝑛) → ⊥. This implies that there is no complete
Λ-theory Θ such that 𝜓1, . . . , 𝜓𝑛 ∈ Θ. But then ̂︁𝜓1 ∩ · · · ∩ ̂︁𝜓𝑛 = ∅, contradicts
our assumption on 𝑊0. Now, let Δ = [𝑈]Γ if Λ has the universal modality,
or let Δ = ∅, otherwise. We show that Δ is Λ-consistent. Because ⊥ /∈ Λ, if
Δ = ∅, it is trivially Λ-consistent, so suppose that Δ ̸= ∅. By the definition of
ℛ(0) and the fact that ℛ(0) is reflexive, it follows that Δ ⊆ Γ, and therefore
Δ is Λ-consistent. Now that we know Δ is Λ-consistent, we see that the set
𝑊1 =def { ̂︀𝐵 | 𝐵 ∈ Δ} has the fip, because otherwise there are 𝐵1, . . . , 𝐵𝑚 ∈ Δ
such that ⊢Λ (𝐵1∧ · · · ∧𝐵𝑚) → ⊥, contradiction. Now, we prove that Σ∪Δ is
Λ-consistent. Suppose for the sake of contradiction that it is not, so there are
𝐴1, . . . , 𝐴𝑛 ∈ Σ and 𝐵1, . . . , 𝐵𝑚 ∈ Δ such that ⊢Λ 𝐴1∧· · ·∧𝐴𝑛∧𝐵1∧· · ·∧𝐵𝑚 →

21

⊥. Because both Σ and Δ are Λ-consistent, we have that 𝑛 ≥ 1 and 𝑚 ≥ 1.
But then ̂︁𝐴1 ∩ · · · ∩ ̂︁𝐴𝑛 ∩ ̂︁𝐵1 ∩ · · · ∩ ̂︂𝐵𝑚 = ∅. Let 𝑊 ′ = ̂︁𝐴1 ∩ · · · ∩ ̂︁𝐴𝑛, and
let 𝑊 ′′ = ̂︁𝐵1 ∩ · · · ∩̂︂𝐵𝑚. Because both 𝑊0 and 𝑊1 have the fip, both 𝑊 ′ and
𝑊 ′′ are non-empty. Let Σ0 ∈ 𝑊 ′, it follows that Σ0 /∈ 𝑊 ′′. Because of the
definitions of 𝑊 ′ and 𝑊 ′′, there are 𝑖: 1 ≤ 𝑖 ≤ 𝑛 and 𝑗: 1 ≤ 𝑗 ≤ 𝑚 such that
Σ0 ∈ ̂︁𝐴𝑖 and Σ0 /∈ ̂︁𝐵𝑗 . First, Σ0 ∈ 𝑊 , so by the definition of Δ, Δ ⊆ Σ0, and
therefore 𝐵𝑗 ∈ Σ0. Second, Σ0 /∈ ̂︁𝐵𝑗 , so therefore 𝐵𝑗 /∈ Σ0, contradiction with
𝐵𝑗 ∈ Σ0. We conclude that Σ∪Δ is Λ-consistent. Now, Σ∪Δ can be extended,
by Lindenbaum’s lemma, to a complete Λ-theory Σ+. Because of the definition
of Δ, and the fact that Δ ⊆ Σ ⊆ Σ+, Σ+ ∈ 𝑊 , and we almost immediately
obtain that Σ+ ∈

⋂︀
{ ̂︀𝐵 | 𝐵 ∈ Σ}, so 𝑊0 has a non-empty intersection. �

2.12 Finite Model Property

Definition 33 Let 𝐿 be a modal language and let 𝒞 be a class of frames for
𝐿. We say that 𝒞 has the finite model property iff for every formula 𝐴 ∈ 𝐿 such
that 𝒞 1 𝐴, there exists a finite model M over some finite frame F ∈ 𝒞 and a
state 𝑤 in 𝑀 , such that M, 𝑤 1 𝐴. If 𝐿 is such that if 𝐿 contains nominals, it
also contains the universal modality, and if Λ ⊆ 𝐿 is a normal modal logic, we
say that Λ has the finite model property iff Fr(Λ) has the finite model property.

Usually, the method of filtration is used to prove that a logic has the finite
model property, see [8]. In this work, we use that the logics S5 and KD45 in the
context of ML(�) have the finite model property. These are well-known facts
in literature, and we use Ehrenfeucht-Fräıssé games and Ehrenfeucht’s theorem
to show them, as explained in [22] - see Lemma 97 in Section 4. We show a
similar result with respect to ML(�, [𝑈]) in Section 5, using the properties of
the Standard Translation.

2.13 Decidability of Normal Modal Logics

Definition 34 Let 𝐿 be a modal language such that if 𝐿 contains nominals,
then it also contains the universal modality, and let Λ ⊆ 𝐿 be a normal modal
logic. Clearly, there can be an effective encoding of formulas 𝐴 ∈ 𝐿 as natural
numbers, so we may treat 𝐿 as a recursive set and Λ as a subset of N.

We say that Λ is decidable iff Λ is a recursive set, up to an encoding of the
formulas of 𝐿. We say that Λ is semi-decidable iff Λ is a recursively enumerable
set (up to an encoding of formulas as numbers).

If Λ = 𝐾𝐿+Γ for some set Γ ⊆ 𝐿, we say that Λ is recursively axiomatizable
iff the set of axioms Γ is recursive (up to an encoding).

Proposition 35 Let 𝐿 be a modal language such that, if 𝐿 contains nominals,
then it also contains the universal modality, and let Λ ⊆ 𝐿 be a recursively

22

axiomatizable normal modal logic with a recursive set of axioms Γ. Then Λ is
semi-decidable. Moreover, if Λ is canonical, Λ has the finite model property,
and the set of (up to isomorphism) finite models for 𝐿, which are based on
frames that validate Λ, is recursive up to an encoding of finite Kripke models,
then Λ is decidable, and the set {𝐴 ∈ 𝐿 | Fr(Λ) 𝐴} is recursive.

Proof Clearly, for every formula 𝐴 ∈ Λ, there exists a finite sequence of
formulas 𝐴1, . . . , 𝐴𝑛, which we call a proof of 𝐴 in Λ, such that 𝐴 is 𝐴𝑛 and
every 𝐴𝑖 of this sequence is either one of the axioms of 𝐾𝐿, an element of Γ,
or is derived by previous elements of the sequence by applying one of the rules
Modus Ponens, Gen, Uniform Substitution, Nominal Substitution, or Cov*.
Thus, to check whether 𝐴 ∈ Λ, it is enough to enumerate all possible finite
sequences of formulas of 𝐿, and check whether we have found a proof of 𝐴
in Λ, which is a recursive predicate because the derivation rules are finitary,
because the axioms of 𝐾𝐿 are a recursive set, and so is Γ.

Now, let Λ be canonical, let Λ have the finite model property, and let the
set of finite Kripke models for 𝐿, which are based on frames that validate Λ,
be recursive. Because Λ is canonical, Λ is weakly complete, so Λ = {𝐴 ∈ 𝐿 |
Fr(Λ) 𝐴}. Because Λ has the finite model property and because the set of
finite models for 𝐿, which are based on frames that validate Λ, is recursive, then
it is easy to obtain a semi-decidable procedure finding, given a formula 𝐴 ∈ 𝐿,
whether Fr(Λ) 1 𝐴, by generating all possible finite models for 𝐿, checking
whether they are based on frames which validate Λ, and finally checking
whether the current model invalidates 𝐴. Thus, the set 𝐿 ∖ Λ is recursively
enumerable, and so is the set Λ. Clearly, the set N ∖ Λ is also recursively
enumerable because 𝐿 is recursive. Thus Λ is recursive (decidable). �

3 Deterministic SQEMA

3.1 Introduction to Deterministic SQEMA

In our discussions here, we will reduce the modal languages that we are discussing
to only a few types.

We say that a language 𝐿 is of type 1 iff it is a non-hybrid language (either
temporal or not, either containing the universal modality or not). We say that
a language 𝐿 is of type 2 iff it is a hybrid temporal language containing the
universal modality.

In our discussion of the algorithm Deterministic SQEMA, we assume that
the language of the input formula is either of type 1 or of type 2. We make
a distinction between type 1 and type 2 languages in that, by Theorem 32,
a formula of a type 1 language 𝐿1 which is d-persistent with respect to 𝐿1 is

23

canonical with respect to 𝐿1, whereas a formula of a type 2 language 𝐿2 which
is di-persistent with respect to 𝐿2 is canonical with respect to 𝐿2.

As we see below, Deterministic SQEMA only succeeds on d-persistent with
respect to their language formulas of type 1 languages and on di-persistent
with respect to their language formulas of type 2 languages, thus we make sure
that Deterministic SQEMA can be used to prove canonicity of the formula
with respect to either a type 1 language or a type 2 language. In order to use
Deterministic SQEMA to prove canonicity of a formula with respect to another
kind of hybrid modal language, some further restrictions on the used rules are
required, as shown in [18], and is outside the scope of this work.

3.2 Strategy of Deterministic SQEMA

Definition 36 (Local Correspondence) Let 𝐿 be a modal language. We
say that a formula 𝐴 ∈ 𝐿 and a FOL formula 𝜓(𝑥) are locally correspondent
with respect to the class of frames 𝒞 for 𝐿, denoted by 𝐴 ∼ 𝜓(𝑥), iff for all
frames F ∈ 𝒞 and all states 𝑤 in F, it is the case that F, 𝑤 𝐴 iff F � 𝜓[𝑥 ↦→ 𝑤].
Clearly if 𝐴 and 𝜓(𝑥) are locally correspondent with respect to 𝒞, then they
are also globally correspondent with respect to 𝒞.

If 𝐿 is a language, denote by 𝒞𝐿 the class of all frames for 𝐿.
Our goal is to find, if possible, a local first-order correspondent of a formula

𝐴 from a language 𝐿 (of type 1 or 2), with respect to 𝒞𝐿, and at the same time
to prove that 𝐴 is canonical with respect to 𝐿.

To do that, we first extend 𝐿 to a language 𝐿′, in the following way. Let 𝑆
be the set of indices of the diamonds of 𝐿, and let 𝐷 be the set of indices of
the reversed diamonds of 𝐿. Let 𝐿′ be the temporal hybrid language with a set
of indices of diamonds and reversed diamonds 𝑆. Thus we have made sure all
modalities of 𝐿 have their corresponding reversed ones in 𝐿′ and we have also
possibly added nominals to the language. Thus the algorithm works by taking
an input in 𝐿 and working with formulas in 𝐿′. Clearly, 𝒞𝐿 = 𝒞𝐿′ , but the class
of general frames for 𝐿 is not always the class of general frames for 𝐿′. Also, if
g is a general frame for 𝐿 and M = ⟨g#, 𝑉,𝐻⟩ is a model over g for 𝐿, then it
may not always be a model for 𝐿′, because the valuation 𝐻 may be the empty
function if 𝐿 doesn’t have nominals. Still, it is possible to define the meaning
of g, 𝑤 𝐴′ for some 𝐴′ ∈ 𝐿′ in a similar way to the regular definition of local
validity in a general frame, by constructing models for 𝐿′ over g.

For denotation purposes, let 𝐿′+[𝑈] be 𝐿′ with an added universal modality,
if 𝐿′ doesn’t already have it. The algorithm does not operate on formulas of
𝐿′ + [𝑈], but it simplifies our description of the properties of the algorithm to
be able to use formulas of this language. Clearly, we may see that 𝒞𝐿 = 𝒞𝐿′ =
𝒞𝐿′+[𝑈], and also we may define local validity of formulas of 𝐿′+[𝑈] in general

24

frames for 𝐿.

Definition 37 (Relative Local Frame-Equivalence) Let 𝐿 be a modal
language, let 𝐿′ be the temporal hybrid extension of 𝐿 as defined above, and
let 𝐿′ + [𝑈] be the extension of 𝐿′ with the universal modality, as shown
above. For a given 𝑘, two formulas 𝐴 ∈ 𝐿′ + [𝑈] and 𝐵 ∈ 𝐿′ + [𝑈] are locally
frame-equivalent with respect to 𝒞𝐿 and 𝑐𝑘, denoted by 𝐴 ∼𝐿

𝑘 𝐵, iff for every
frame F for 𝐿 and every state 𝑤 in F, we have that for every model M for
𝐿′+[𝑈] over F, M, 𝑤 (𝑐𝑘 → ⟨𝑈⟩𝐴) iff for every model M for 𝐿′+[𝑈] over F,
M, 𝑤 (𝑐𝑘 → ⟨𝑈⟩𝐵). If the language 𝐿 is known in the context of discussion,
we may just write 𝐴 ∼𝑘 𝐵.

Let 𝒞 be a class of general frames for 𝐿. We say that 𝐴 and 𝐵 are locally
equivalent with respect to 𝒞 and 𝑐𝑘, denoted by 𝐴 ≈𝒞

𝑘 𝐵, iff for every general
frame g ∈ 𝒞 and every state 𝑤 in g, we have that for every model M for
𝐿′ + [𝑈] over g, M, 𝑤 (𝑐𝑘 → ⟨𝑈⟩𝐴) iff for every model M for 𝐿′ + [𝑈] over
g, M, 𝑤 (𝑐𝑘 → ⟨𝑈⟩𝐵). If the language 𝐿 is known and 𝒞 is the class of all
descriptive frames for 𝐿, then we may just write 𝐴 ≈d

𝑘 𝐵 (𝐴 and 𝐵 are locally
d-equivalent with respect to 𝑐𝑘), or if 𝒞 is the class of all discrete frames for 𝐿,
we may just write 𝐴 ≈di

𝑘 𝐵 (𝐴 and 𝐵 are locally di-equivalent with respect to
𝑐𝑘).

Let 𝑐𝑘 be a nominal. Let 𝜓(𝑥𝑘) be a FOL formula. We say that 𝐴 and 𝜓(𝑥𝑘)
are locally correspondent with respect to 𝐿 and 𝑐𝑘, denoted by 𝐴 ∼𝐿

𝑘 𝜓(𝑥𝑘) iff
for all frames F for 𝐿 and all states 𝑤 in F, it is the case that for every model
M for 𝐿′ + [𝑈] over F, M, 𝑤 (𝑐𝑘 → ⟨𝑈⟩𝐴) iff F � 𝜓[𝑥𝑘 ↦→ 𝑤]. If the language
𝐿 is known, we may simply write 𝐴 ∼𝑘 𝜓(𝑥𝑘).

An easy argument shows that if 𝑐𝑘 ̸ →˓ 𝐴, and (𝑐𝑘 ∧ 𝐴) ∼𝑘 𝜓(𝑥𝑘), then
𝐴 ∼ 𝜓(𝑥𝑘). Also, if 𝐴 ∼𝑘 𝐵, and if 𝐵 ∼𝑘 𝜓(𝑥𝑘), then 𝐴 ∼𝑘 𝜓(𝑥𝑘).

Definition 38 (Pure Formulas) A modal formula 𝐴 is called pure iff it does
not contain any occurrences of propositional variables.

Definition 39 (Deterministic SQEMA Strategy) Let 𝐿 be a modal
language of either type 1 or of type 2. Let 𝐴 ∈ 𝐿 be the input formula of
Deterministic SQEMA. Let all nominals occurring in 𝐴 be among 𝑐1, . . . , 𝑐𝑘−1.
We try to find a sequence of formulas 𝐴1, . . . , 𝐴𝑛 ∈ 𝐿′, such that 𝐴1 is (𝑐𝑘∧𝐴),
𝐴𝑛 is pure, and for all 𝐴𝑖 and 𝐴𝑗 of the sequence, it is the case that 𝐴𝑖 ∼𝑘 𝐴𝑗 .
In addition to that, if 𝐿 is a type 1 language, we require that for all 𝐴𝑖 and
𝐴𝑗 of the sequence, 𝐴𝑖 ≈d

𝑘 𝐴𝑗 (that is, with respect to all descriptive general
frames for 𝐿), and if 𝐿 is a type 2 language, we require that for all 𝐴𝑖 and 𝐴𝑗
of the sequence, 𝐴𝑖 ≈di

𝑘 𝐴𝑗 (with respect to the discrete general frames for 𝐿).

Proposition 40 Let 𝐴,𝐴1, . . . , 𝐴𝑛 be as in Definition 39.

25

(1) If 𝐿 is a type 1 language then 𝐴 is d-persistent.
(2) If 𝐿 is a type 2 language then 𝐴 is di-persistent.

Proof Let g be a general frame for 𝐿, which is descriptive if 𝐿 is a type 1
language, and which is discrete if 𝐿 is a type 2 language. Let 𝑤 be a world in
g. Then:

g, 𝑤 𝐴 iff (because 𝑐𝑘 ̸ →˓ 𝐴)
g, 𝑤 (𝑐𝑘 → ⟨𝑈⟩(𝑐𝑘 ∧𝐴)) iff (because 𝐴1 ≈d

𝑘 𝐴𝑛 or 𝐴1 ≈di
𝑘 𝐴𝑛)

g, 𝑤 (𝑐𝑘 → ⟨𝑈⟩𝐴𝑛) iff (because 𝐴𝑛 is pure and there are no restrictions
on assignments of nominals in a model over g)

g#, 𝑤 (𝑐𝑘 → ⟨𝑈⟩𝐴𝑛) iff (because 𝐴𝑛 ∼𝑘 𝐴1)
g#, 𝑤 (𝑐𝑘 → ⟨𝑈⟩(𝑐𝑘 ∧𝐴)) iff (because 𝑐𝑘 ̸ →˓ 𝐴)
g#, 𝑤 𝐴. �

It remains to find the local first-order correspondent of 𝐴 given the pure
formula 𝐴𝑛.

Definition 41 (Standard Translation for Pure Formulas) In the
function definition below, st(𝑛, 𝑥,𝐴) stands for standard translation for pure
formulas. Denoting st(𝑛, 𝑥ℓ, 𝐴), we assume that 𝐴 is a pure formula in a hybrid
language, that 𝑥ℓ is such that 𝑐ℓ does not occur in 𝐴, and that 𝑛 is such that
ℓ < 𝑛 and all nominals occurring in 𝐴 are among {𝑐1, . . . , 𝑐𝑛−1}.
st(𝑛, 𝑥𝑖,⊥) =def ⊥
st(𝑛, 𝑥𝑖,⊤) =def ⊤
st(𝑛, 𝑥𝑖, 𝑐𝑗) =def (𝑥𝑖 = 𝑥𝑗) for all 𝑗 ∈ N such that 𝑖 ̸= 𝑗
st(𝑛, 𝑥𝑖,¬𝐴) =def ¬st(𝑛, 𝑥𝑖, 𝐴)
st(𝑛, 𝑥𝑖, (𝐴∨𝐵)) =def (st(𝑛, 𝑥𝑖, 𝐴)∨st(𝑛′, 𝑥𝑖, 𝐵)), where 𝑛′ is the least number
such that 𝑛′ ≥ 𝑛, 𝑛′ > 𝑖 and for all 𝑥𝑗 , occurring in st(𝑛, 𝑥𝑖, 𝐴), 𝑛′ > 𝑗.
st(𝑛, 𝑥𝑖, (𝐴∧𝐵)) =def (st(𝑛, 𝑥𝑖, 𝐴)∧st(𝑛′, 𝑥𝑖, 𝐵)), where 𝑛′ is the least number
such that 𝑛′ ≥ 𝑛, 𝑛′ > 𝑖 and for all 𝑥𝑗 , occurring in st(𝑛, 𝑥𝑖, 𝐴), 𝑛′ > 𝑗.
st(𝑛, 𝑥𝑖, ⟨𝑈⟩𝐴) =def ∃𝑥𝑛st(𝑛+ 1, 𝑥𝑛, 𝐴)
st(𝑛, 𝑥𝑖,♦0

−1𝐴) =def ∃𝑥𝑛st(𝑛+ 1, 𝑥𝑛, 𝐴)
st(𝑛, 𝑥𝑖, [𝑈]𝐴) =def ∀𝑥𝑛st(𝑛+ 1, 𝑥𝑛, 𝐴)
st(𝑛, 𝑥𝑖,�0

−1𝐴) =def ∀𝑥𝑛st(𝑛+ 1, 𝑥𝑛, 𝐴)
st(𝑛, 𝑥𝑖,♦𝑚𝐴) =def ∃𝑥𝑛((𝑥𝑖 𝑟𝑚 𝑥𝑛) ∧ st(𝑛+ 1, 𝑥𝑛, 𝐴))
st(𝑛, 𝑥𝑖,♦𝑚

−1𝐴) =def ∃𝑥𝑛((𝑥𝑛 𝑟𝑚 𝑥𝑖) ∧ st(𝑛+ 1, 𝑥𝑛, 𝐴))
st(𝑛, 𝑥𝑖,�𝑚𝐴) =def ∀𝑥𝑛(¬(𝑥𝑖 𝑟𝑚 𝑥𝑛) ∨ st(𝑛+ 1, 𝑥𝑛, 𝐴))
st(𝑛, 𝑥𝑖,�𝑚−1𝐴) =def ∀𝑥𝑛(¬(𝑥𝑛 𝑟𝑚 𝑥𝑖) ∨ st(𝑛+ 1, 𝑥𝑛, 𝐴))
It is immediate that st defines a unique function if the conditions for it hold.
It is also clear that the result of st can be effectively obtained.

Clearly, the output of this function is a FOL formula with free variables
among {𝑥1, . . . , 𝑥𝑛−1}.

26

An easy, but somewhat tedious, induction on pure formulas 𝐴 shows that,
under the above assumptions for 𝑛 and 𝑥𝑖, for any model M = ⟨F, 𝑉,𝐻⟩ for a
hybrid language which contains 𝐴 and any world 𝑤 in M, it is the case that:

M, 𝑤 𝐴 iff F � st(𝑛, 𝑥𝑖, 𝐴)[𝐻(𝑐1), . . . ,𝐻(𝑐𝑛−1), 𝑥𝑖 ↦→ 𝑤]

We call this the main property of st .

Lemma 42 (Standard Translation Lemma) Let 𝑐𝑘 be a nominal, and let
𝐴 be a pure formula of a hybrid language 𝐿. Then for 𝐴 there can be effectively
obtained a first-order formula 𝜓(𝑥𝑘), such that 𝐴 ∼𝑘 𝜓(𝑥𝑘).

Proof Let 𝑖 be such that all nominals occurring in 𝐴 be among {𝑥1, . . . , 𝑥𝑖−1}.
Consider 𝜓: ∀𝑥𝑗1 . . . ∀𝑥𝑗𝑚∃𝑥𝑖st(𝑛, 𝑥𝑖, 𝐴), where 𝑛 = 𝑖 + 1, and [𝑗1, . . . , 𝑗𝑚] are
such that [𝑐𝑗1 , . . . , 𝑐𝑗𝑚] is the list of elements of NOM (𝐴) ∖ {𝑐𝑘} in left-to-right
order of initial occurrence in 𝐴. Note that 𝜓 can be denoted by 𝜓(𝑥𝑘), because
the only free variable, if any, is 𝑥𝑘. We show that 𝐴 ∼𝑘 𝜓(𝑥𝑘). For convenience,
denote ¬𝐴 by 𝐴′.

For given F for 𝐿 and 𝑤 in F, let M = ⟨F, 𝑉,𝐻⟩ be a model over F such
that M, 𝑤 𝑐𝑘 and M 𝐴′. By the main property of st , for every 𝑤1 in
F: F � st(𝑛, 𝑥𝑖, 𝐴

′)[𝐻(𝑐1), . . . ,𝐻(𝑐𝑖−1), 𝑤1] iff M, 𝑤1 𝐴′. Therefore, F �
∀𝑥𝑖st(𝑛, 𝑥𝑖, 𝐴′)[𝐻(𝑐1), . . . ,𝐻(𝑐𝑖−1)]. In this way, because 𝑥𝑘 is the only free
variable in ∃𝑥𝑗1 . . . ∃𝑥𝑗𝑚∀𝑥𝑖st(𝑛, 𝑥𝑖, 𝐴′), if any, it becomes apparent that, F �
∃𝑥𝑗1 . . . ∃𝑥𝑗𝑚∀𝑥𝑖st(𝑛, 𝑥𝑖, 𝐴′)[𝑥𝑘 ↦→ 𝐻(𝑐𝑘)]. Because 𝐻(𝑐𝑘) = 𝑤, we have that
F � ∃𝑥𝑗1 . . . ∃𝑥𝑗𝑚∀𝑥𝑖st(𝑛, 𝑥𝑖, 𝐴′)[𝑥𝑘 ↦→ 𝑤].

Now, for given F for 𝐿 and 𝑤 in F, let:
F � ∃𝑥𝑗1 . . . ∃𝑥𝑗𝑚∀𝑥𝑖st(𝑛, 𝑥𝑖, 𝐴′)[𝑥𝑘 ↦→ 𝑤].
Clearly there are states 𝑣𝑗1 , . . . , 𝑣𝑗𝑚 in F, for which it holds that:
F � ∀𝑥𝑖st(𝑛, 𝑥𝑖, 𝐴′)[𝑥𝑘 ↦→ 𝑤, 𝑥𝑗1 ↦→ 𝑣𝑗1 , . . . , 𝑥𝑗𝑚 ↦→ 𝑣𝑗𝑚].
Now let us define a model M =def ⟨F, 𝑉,𝐻⟩ where 𝑉 is any valuation,

𝐻(𝑐𝑘) =def 𝑤, 𝐻(𝑐𝑗1) =def 𝑣𝑗1 , . . . , 𝐻(𝑐𝑗𝑚) =def 𝑣𝑗𝑚 , and the value of 𝐻 for
any other nominal is any state of F. By the main property of st , M 𝐴′ and
clearly M, 𝑤 𝑐𝑘. �

For reducing the size of the problem, we need a lemma for conjunctions.

Lemma 43 (Conjunction Lemma) Let 𝐿 be a type 1 or a type 2 language
and let 𝐴,𝐵 ∈ 𝐿. Let 𝜓1(𝑥𝑘) and 𝜓2(𝑥𝑘) be FOL formulas.

1. Let 𝐴 ∼ 𝜓1(𝑥𝑘) and 𝐵 ∼ 𝜓2(𝑥𝑘). Then (𝐴 ∧𝐵) ∼ (𝜓1(𝑥𝑘) ∧ 𝜓2(𝑥𝑘)).
2. If 𝐴 and 𝐵 are d-persistent with respect to L, then so is (𝐴 ∧𝐵).
3. If 𝐴 and 𝐵 are di-persistent with respect to L, then so is (𝐴 ∧𝐵).

27

Proof For 1, let 𝑤 be a world in F, which is a frame for 𝐿. Then, by the
hypothesis, F, 𝑤 𝐴 iff F 𝜓1[𝑥𝑘 ↦→ 𝑤] and F, 𝑤 � 𝐵 iff F � 𝜓2[𝑥𝑘 ↦→ 𝑤].
Let F, 𝑤 (𝐴 ∧ 𝐵). Then, F, 𝑤 𝐴 and F, 𝑤 𝐵. Therefore, F � 𝜓1[𝑤] and
F � 𝜓2[𝑥𝑘 ↦→ 𝑤], so F � (𝜓1(𝑥𝑘) ∧ 𝜓2(𝑥𝑘))[𝑥𝑘 ↦→ 𝑤]. The converse direction is
analogous.

For 2 and 3, the result follows directly from the definition of d-persistence
and di-persistence. �

It remains to describe how to apply the strategy given in Definition 39.

3.3 Deterministic SQEMA Overview

We follow [17][21]. First, we give a simplified informal definition of the algorithm.
Let 𝐿 be a type 1 or a type 2 language and let 𝐴 ∈ 𝐿 be the input modal
formula. The goal is to obtain a nominal 𝑐𝑘, and a pure formula 𝐴′ ∈ 𝐿′, where
𝐿′ is the hybrid temporal extension of 𝐿, such that 𝑐𝑘 ̸ →˓ 𝐴 and 𝐴 ∼𝑘 𝐴

′.
Then by Lemma 42, we obtain a local FOL correspondent of 𝐴.

Definition 44 A modal formula 𝐴 is in negation normal form iff negation
only occurs in front of ⊤, ⊥, propositional variables or nominals. (Here we
assume that the defined symbol for implication, →, is not used.)

It is clear that for any modal formula, we may effectively find a semantically
equivalent formula in the same modal language, which is in negation normal
form.

First, we negate 𝐴 and rewrite it in negation normal form, obtaining 𝛾.
We start eliminating variables by a process similar to Gaussian elimination.
Thus, we solve a system of equations (actually a conjunction of disjunctions),
starting with a system with the single equation (¬𝑐𝑘 ∨ 𝛾), such that 𝑐𝑘 is a
chosen nominal to represent the current state, and is such that 𝑐𝑘 ̸ →˓ 𝐴. We
eliminate each variable separately, so let 𝑝 be the current variable to eliminate.
The elimination is carried out by applying the following rules, where 𝛽(¬𝑝) is
a modal formula which is negative in 𝑝:
Ackermann rule:⎧⎪⎨⎪⎩
⋀︀
((𝛼1 ∨ 𝑝), . . . , (𝛼𝑛𝑎 ∨ 𝑝))∧⋀︀
(𝛽1(¬𝑝), . . . , 𝛽𝑛𝑏

(¬𝑝))∧⋀︀
(𝜃1, . . . , 𝜃𝑛𝑡)

⇒

{︃⋀︀
(𝛽1, . . . , 𝛽𝑛𝑏

)[𝑝/¬
⋀︀
(𝛼1, . . . , 𝛼𝑛𝑎)]∧⋀︀

(𝜃1, . . . , 𝜃𝑛𝑡)

where 𝑝 ̸ →˓ {𝛼1, . . . , 𝛼𝑛𝑎 , 𝜃1, . . . , 𝜃𝑛𝑡} and
⋀︀
(𝛽1, . . . , 𝛽𝑛𝑏

) is negative in 𝑝.
�-rule: (𝐵1 ∨�𝐵2) ⇒ (�−1𝐵1 ∨𝐵2)
♦-rule: (¬𝑐′ ∨ ♦𝐵) ⇒ (¬𝑐′ ∨ ♦𝑐′′) ∧ (¬𝑐′′ ∨𝐵) , where 𝑐′′ is a new nominal.

Now we are ready to formalize the algorithm.

28

Definition 45 (Monotonicity of a Formula Relative to a Variable) Let
𝐴 ∈ 𝐿 be a modal formula, let all variables occurring in 𝐴 be among 𝑝1, . . . , 𝑝𝑛,
let all nominals occurring in 𝐴 be among 𝑐1, . . . , 𝑐𝑚, let 𝑖 ≤ 𝑛, and let 𝑝𝑖 ∈
PROP . For a given frame for 𝐿, F = ⟨𝑊,ℛ⟩, given sets 𝑠1, . . . , 𝑠𝑛 ⊆ 𝑊 ,
worlds 𝑤1, . . . , 𝑤𝑚 ∈ 𝑊 , and set 𝑠 ⊆ 𝑊 , we denote by 𝐴(𝑠, �̄�, 𝑝𝑖 → 𝑠) the set
[[𝐴]](𝑠1, . . . , 𝑠𝑖−1, 𝑠, 𝑠𝑖+1, . . . , 𝑠𝑛, �̄�).

We say that 𝐴 is upwards monotone in 𝑝 iff for all Kripke frames F =
⟨𝑊,ℛ⟩, all sets of worlds 𝑠 and all worlds �̄�, if 𝑡1 ⊆ 𝑡2 ⊆𝑊 , then [[𝐴]](𝑠, �̄�, 𝑝→
𝑡1) ⊆ [[𝐴]](𝑠, �̄�, 𝑝→ 𝑡2).

We say that 𝐴 is downwards monotone in 𝑝 iff for all Kripke frames F =
⟨𝑊,ℛ⟩, all sets of worlds 𝑠 and all worlds �̄�, if 𝑡2 ⊆ 𝑡1 ⊆𝑊 , then [[𝐴]](𝑠, �̄�, 𝑝𝑖 →
𝑡1) ⊆ [[𝐴]](𝑠, �̄�, 𝑝𝑖 → 𝑡2).

Proposition 46 Let 𝐴 be a formula for some modal language 𝐿 and let 𝑝 ∈
PROP . If 𝐴 is positive in 𝑝, then 𝐴 is upwards monotone in 𝑝. If 𝐴 is negative
in 𝑝, then 𝐴 is downwards monotone in 𝑝.

Proof By induction on 𝐴. �

Note that the converse is not always true. For example, let 𝐵 =def (𝑝 ∧
(𝑝 ∨ ¬𝑝)). B is neither positive nor negative in 𝑝, but 𝐵 ≡ 𝑝, and hence, by
Proposition 46, is positive in p.

Definition 47 (Syntactically Closed and Open Formulas) Let 𝐿 be a
type 1 language, let 𝑆 be the set of indices of all diamonds in 𝐿, and let 𝐷 be
the set of indices of all reversed diamonds in 𝐿. Let 𝐿′ be the hybrid temporal
extension of 𝐿. We say that a formula 𝐴 ∈ 𝐿′ is syntactically closed with respect
to 𝐿 iff all occurrences in 𝐴 of nominals and ♦−1

𝑖 , such that 𝑖 ∈ 𝑆 ∖ 𝐷, are
positive, and all occurrences in 𝐴 of �−1

𝑖 , such that 𝑖 ∈ 𝑆 ∖ 𝐷, are negative.
We say that 𝐴 is syntactically open with respect to 𝐿 iff all occurrences in 𝐴 of
nominals and ♦−1

𝑖 , such that 𝑖 ∈ 𝑆 ∖𝐷, are negative, and all occurrences in 𝐴
of �−1

𝑖 , such that 𝑖 ∈ 𝑆 ∖𝐷, are positive.
Clearly, negation maps syntactically open formulas to syntactically closed

ones and vice versa.
Also, clearly, all formulas in 𝐿 (which are also formulas in 𝐿′) are both

syntactically closed and open.

Definition 48 (SQEMA rules) Let 𝐿 be a type 1 or a type 2 language
language and let 𝐿′ be the hybrid temporal extension of 𝐿. Let 𝑐𝑘 be a nominal.
Below, � is any box or reversed box of 𝐿′, ♦ is any diamond or reversed
diamond of 𝐿′, and the formulas below are formulas of 𝐿′.

29

1. Semantic equivalence rule.
Let 𝐴,𝐵, 𝜎 ∈ 𝐿′, and let 𝐴 ≡ 𝐵. If 𝐿 is a type 1 language, let both 𝐴
and 𝐵 be syntactically open formulas, and let 𝜎 be syntactically closed.
Then, within 𝜎, replace occurrences of 𝐴 with 𝐵.

2. Polarity reversing rule.
Replace ¬𝐴 with ¬𝐴[𝑝/¬𝑝].

3. Positive elimination rule.
Let 𝐴 be positive in 𝑝. Then replace ¬𝐴 with ¬𝐴[𝑝/⊤].

4. Negative elimination rule.
Let 𝐴 be negative in 𝑝. Then replace ¬𝐴 with ¬𝐴[𝑝/⊥].

5. �-rule.
Replace ¬(𝐵 ∧ (𝐴1 ∨�𝐴2)) with ¬(𝐵 ∧ (�−1𝐴1 ∨𝐴2)).

6. ♦-rule.
Let 𝑐′′ be such that 𝑐′′ ̸ →˓ {𝑐𝑘, 𝑐′, 𝐴,𝐵}. Then:
Replace ¬(𝐵 ∧ (¬𝑐′ ∨ ♦𝐴)) with ¬(𝐵 ∧ ((¬𝑐′ ∨ ♦𝑐′′) ∧ (¬𝑐′′ ∨𝐴))).

7. The Ackermann rule. Let 𝛼1, . . . , 𝛼𝑛𝑎 , 𝜃1, . . . , 𝜃𝑛𝑡 be formulas which contain
no occurrences of 𝑝, let 𝛽1, . . . , 𝛽𝑛𝑏

be formulas which are either negative
in 𝑝, or, only if 𝐿 is a type 2 language, downwards monotone in 𝑝. Then
replace the formula:
𝛾′ =def ¬

⋀︀
((𝛼1 ∨ 𝑝), . . . , (𝛼𝑛𝑎 ∨ 𝑝), 𝛽1, . . . , 𝛽𝑛𝑏

, 𝜃1, . . . , 𝜃𝑛𝑡)
with:
𝛾′′ =def ¬

⋀︀
(
⋀︀
(𝛽1, . . . , 𝛽𝑛𝑏

)[𝑝/¬
⋀︀
(𝛼1, . . . , 𝛼𝑛𝑎)], 𝜃1, . . . , 𝜃𝑛𝑡)

Definition 49 Equations are formulas of the kind (𝑐′ → ♦𝑐′′) or of the kind
(𝐴 Y 𝐵), such that 𝐴 and 𝐵 are in negation normal form and Y is a symbol
used in place of ∨ in equations to signify that they are equations. A system
is a formula of the kind ¬

⋀︀
(𝜒1, . . . , 𝜒𝑛) for some 𝑛 ≥ 0, where 𝜒1, . . . , 𝜒𝑛 are

equations. We use 𝜎 for systems of equations and 𝜒 for equations. 𝜎 is solved
for 𝑝 iff there are no occurrences of 𝑝 in 𝜎. 𝜎 is solved iff it is pure. Below, we say
that 𝑐𝑚 is a new nominal, if 𝑐𝑚 is such that: if 𝛾1, . . . , 𝛾𝑛 are all formulas that
have occurred as input or during the execution of any branch of the algorithm
so far, then the nominals occurring in {𝛾1, . . . , 𝛾𝑛} are among {𝑐1, . . . , 𝑐𝑚−1}.

The algorithm first splits the input formula, by the Conjunction Lemma
43, into several systems of equations, trying to solve each of them in sequence,
by applying the SQEMA rules from Definition 48. We must show that the rules
in Definition 48 would allow us to construct the sequence that we require, as
described in Definition 39.

Proposition 50 Let 𝐿 be a type 1 or a type 2 language. Let 𝐿′ be the hybrid
temporal extension of 𝐿. Let 𝜎′ ∈ 𝐿′ be a system obtained by applying one of
the rules in Definition 39 to the system 𝜎 ∈ 𝐿′. Then 𝜎 ∼𝐿

𝑘 𝜎
′.

30

(1) If 𝐿 is a type 1 language and if the input formula to any of the rules is
a syntactically closed with respect to 𝐿 system from 𝐿′ of syntactically open
with respect to 𝐿 equations, then the result also is.

(2) If 𝐿 is a type 1 language, then 𝜎 ≈d
𝑘 𝜎

′ with respect to 𝐿.
(3) If 𝐿 is a type 2 language, then 𝜎 ≈di

𝑘 𝜎′ with respect to 𝐿.

Proof (1) Let 𝐿 be a type 1 language. It can be easily checked that all
the rules convert a syntactically closed with respect to 𝐿 system from 𝐿′ of
syntactically open with respect to 𝐿 equations into another one of the same
kind.

For (2), the proof involves a lengthy discussion of the properties of the
modal operators of 𝐿′ with respect to descriptive general frames for 𝐿. A
simpler variant of the full proof can be seen in [17].

For (3), the proof is given in [27].
A full proof for both (2) and (3) is given in the following subsection of this

dissertation, 3.4. �

3.4 Correctness of the SQEMA Rules

This section proves Proposition 50 by using the proofs given in [17] for type 1
languages, and the proofs given in [27] for type 2 languages.

Proposition 51 Let 𝐿 be a type 1 or a type 2 language. Let 𝐿′ be the hybrid
temporal extension of 𝐿. Let 𝜎′ ∈ 𝐿′ be a system obtained by applying one
of the following rules from 39 to the system 𝜎 ∈ 𝐿′: the polarity reversing
rule, the positive or negative elimination rule, the �-rule, or the ♦-rule. Then
𝜎 ∼𝐿

𝑘 𝜎
′, and if 𝐿 is a type 1 language, then 𝜎 ≈d

𝑘 𝜎
′ with respect to 𝐿, or if 𝐿

is a type 2 language, then 𝜎 ≈di
𝑘 𝜎′ with respect to 𝐿.

Proof Let 𝒞 be the class of all general frames for 𝐿. It is enough to show that
𝜎 ≈𝒞

𝑘 𝜎
′, because all frames can be considered to be full general frames, and 𝒞

also includes all descriptive and all discrete frames for 𝐿.
For the equivalence rule, the result follows immediately.
The rest of listed rules are in the form “Replace ¬𝐴′ with ¬𝐴′′” for some

formulas 𝐴′ and 𝐴′′ from 𝐿′. Let g ∈ 𝒞 be any general frame for 𝐿, and let
𝑤 be a world in g. To prove that ¬𝐴′ ≈𝒞

𝑘 ¬𝐴′′, it is enough to prove that for
every model M for 𝐿′ over g, such that [[𝑐𝑘]]M = {𝑤} and M 𝐴′, there is a
model M′ for 𝐿′ over g, such that [[𝑐𝑘]]M′ = {𝑤} and M′ 𝐴′′, and vice versa.

Polarity reversing rule: Because negations of admissible valuations are
admissible, we set M′ to be equal to M, except [[𝑝]]M′ is set to be the complement
of [[𝑝]]M. The implication follows by the definition of Kripke semantics. The
converse follows analogously.

31

Positive elimination rule: Let 𝑊 be the universe of M. By induction on 𝐴,
we get that [[𝐴]]M ⊆ [[𝐴[𝑝/⊤]]]M.

First, let [[𝑐𝑘]]M = {𝑤} and M 𝐴. We set M′ to be equal to M, except [[𝑝]]M′

is set to be 𝑊 , which is admissible. We have that 𝑊 = [[𝐴]]M ⊆ [[𝐴[𝑝/⊤]]]M =
[[𝐴[𝑝/⊤]]]M′ , by the properties of uniform substitution. Therefore, [[𝐴[𝑝/⊤]]]M′ =
𝑊 .

Now, let [[𝑐𝑘]]M = {𝑤} and M 𝐴[𝑝/⊤]. We construct M′ in the same way,
and it is straightforward to prove that [[𝐴]]M′ =𝑊 .

Negative elimination rule: Follows from the polarity reversing rule and the
positive elimination rule.
�-rule: Let 𝑅� be the (converse) relation of M, which corresponds to �.
First, let M (𝐵 ∧ (𝐴1 ∨ �𝐴2)), suppose that M 1 (𝐵 ∧ (�−1𝐴1 ∨ 𝐴2)).

Then, there is a 𝑤1 ∈ 𝑊 : M, 𝑤1 1 (�−1𝐴1 ∨ 𝐴2). Then, M, 𝑤1 1 �−1𝐴1

and M, 𝑤1 1 𝐴2. Therefore, there is a 𝑤2 ∈ 𝑊 : M, 𝑤2 1 𝐴1 and ⟨𝑤2, 𝑤1⟩ ∈
𝑅�. However, M (𝐴1 ∨ �𝐴2), therefore M, 𝑤2 �𝐴2, so M, 𝑤1 𝐴2,
contradiction.

Now, let M (𝐵 ∧ (�−1𝐴1 ∨ 𝐴2)), suppose that M 1 (𝐵 ∧ (𝐴1 ∨ �𝐴2)).
Analogously to the above, we derive a contradiction.
♦-rule: Let M = ⟨g#, 𝑉,𝐻⟩. Let 𝑅♦ be the relation or converse relation of

M, corresponding to ♦.
First, let M (𝐵 ∧ (¬𝑐′ ∨♦𝐴)), and let 𝑤1 =def 𝐻(𝑐′). Then, M, 𝑤1 ♦𝐴.

So, there is a 𝑤2 ∈ 𝑊 : ⟨𝑤1, 𝑤2⟩ ∈ 𝑅♦ and M, 𝑤2 𝐴. We set M′ =def

⟨g#, 𝑉,𝐻 ′⟩, where 𝐻 ′(𝑐′′) =def 𝑤2, and 𝐻 ′(𝑐) =def 𝐻(𝑐) for any other nominal.
By the properties of uniform substitution, and by the hypothesis on 𝑐′′, the
condition holds.

Now, let M (𝐵 ∧ ((¬𝑐′ ∨♦𝑐′′)∧ (¬𝑐′′ ∨𝐴))). Then, M (𝐵 ∧ (¬𝑐′ ∨♦𝐴)).
�

Proposition 52 Let 𝐿 be a type 2 language. Clearly, the hybrid temporal
extension of 𝐿 is also 𝐿. Let 𝜎′ ∈ 𝐿 be a system obtained by applying one of
the rules in 39 to the system 𝜎 ∈ 𝐿. Then 𝜎 ∼𝐿

𝑘 𝜎
′. Also, 𝜎 ≈di

𝑘 𝜎′ with respect
to 𝐿.

Proof By Proposition 51, it remains to show the result only for the Ackermann
rule.

It can be easily checked that the extension of any modal formula 𝐴 ∈ 𝐿 at a
Kripke model M over some discrete general frame g for 𝐿, is also an admissible
in g set.

The Ackermann rule: If 𝛽 is negative in 𝑝, then it is downwards monotone
in 𝑝 by Proposition 46. Let 𝛼 be

⋀︀
(𝛼1, . . . , 𝛼𝑛𝑎), 𝛽 be

⋀︀
(𝛽1, . . . , 𝛽𝑛𝑏

), and 𝛽
be downwards monotone in 𝑝. Let M be a model either over a discrete general
frame g for 𝐿, or over a full general frame g for 𝐿. First, let M ¬𝛾′, so M

32

(𝛼 ∨ 𝑝) and M 𝛽. Then, [[¬𝛼]]M ⊆ [[𝑝]]M, therefore 𝑊 = [[𝛽]]M ⊆ [[𝛽[𝑝/¬𝛼]]]M,
so M ¬𝛾′′. Now, let M ¬𝛾′′, and let M = ⟨g#, 𝑉, 𝐴⟩. Let 𝑉 ′(𝑝) =def

[[¬𝛼]]M, and let 𝑉 ′(𝑝′) =def 𝑉 (𝑝′) for other variables 𝑝′. Let M′ =def ⟨g#, 𝑉 ′, 𝐴⟩.
Clearly, M′ is a model over g. Then, M′ ¬𝛾′. �

For the rest of this section, we prove the first result of Proposition 50
regarding type 1 languages and the Ackermann rule. It will take some time to
get to the conclusion. The proofs closely follow [17].

Definition 53 (Closed Sets) Let g = ⟨F,W⟩ be a general frame for some
language. A subset 𝑠 of the universe 𝑊 is called closed (with respect to g) iff
𝑠 =

⋂︀
{𝑠0 ∈ W | 𝑠 ⊆ 𝑠0}. We denote by 𝒞(W) the set of all closed with respect

to g sets.

Definition 54 (Open Sets) Let g = ⟨F,W⟩ be a general frame for some
language. A subset 𝑠 of the universe 𝑊 is called open (with respect to g) iff it
is the relative complement (to 𝑊) of a closed set.

Definition 55 (Clopen Sets) Let g = ⟨F,W⟩ be a general frame for some
language. A subset 𝑠 of the universe 𝑊 is called clopen (with respect to g) iff
it is both closed and open.

Definition 56 (Closed Operators and Closed Formulas) Let 𝐿 be a type
1 language, and let 𝐿′ be the hybrid temporal extension of 𝐿. Let 𝐴 ∈ 𝐿′, let
PROP(𝐴) ⊆ {𝑝1, . . . , 𝑝𝑛}, and let NOM (𝐴) ⊆ {𝑐1, . . . , 𝑐𝑚}. We say that 𝐴 is
a closed operator in 𝐿 iff for every descriptive frame g = ⟨F,W⟩, if 𝑃1, . . . , 𝑃𝑛 ∈
𝒞(W) and 𝑤1, . . . , 𝑤𝑚 are any elements of𝑊 , then [[𝐴]](𝑃1, . . . , 𝑃𝑛, 𝑤1, . . . , 𝑤𝑚) ∈
𝒞(W), i.e. when applied to closed sets and any elements (resp. for PROP(𝐴)
and NOM (𝐴)) with respect to a descriptive frame for 𝐿 it produces a closed
set. We say that 𝐴 is a closed formula in 𝐿 iff whenever [[𝐴]] is applied to
admissible sets and any elements in any descriptive frame for 𝐿, it produces a
closed set.

Thus, if a formula is a closed operator in 𝐿, then it is a closed formula in
𝐿. The converse is not always true.

Definition 57 (Open Operators and Open Formulas) Similarly to above,
a formula from 𝐿′, the hybrid temporal extension of a type 1 language 𝐿, is
an open operator in 𝐿 iff whenever its modal operator is applied to open sets
and any singletons in a descriptive frame for 𝐿 it produces an open set; it is
an open formula in 𝐿 if whenever its modal operator is applied to admissible
sets and any singletons it produces an open set.

Whenever we mention and index set, we also mean that the index set is
non-empty.

33

Proposition 58 To prove that a set 𝑠 is closed with respect to a general
frame g = ⟨F,W⟩ for any language, it is enough to prove that 𝑠 is equal to
the intersection of some non-empty family of closed sets, and in particular,
admissible sets (with respect to g).

Proof Let {𝑃𝑖}𝑖∈𝐼 be a family of closed sets over g, for some index set 𝐼,
and let 𝑠 =

⋂︀
𝑖∈𝐼{𝑃𝑖}. Because for all 𝑖 ∈ 𝐼, 𝑃𝑖 is a closed set, then, for all

𝑖 ∈ 𝐼, there is a family of admissible over g sets 𝑄𝑖𝑗 , such that 𝐽 is an index
set with 𝑗 ∈ 𝐽 and 𝑃𝑖 =

⋂︀
𝑗∈𝐽{𝑄𝑖𝑗}. This means that 𝑠 =

⋂︀
𝑖∈𝐼

⋂︀
𝑗∈𝐽{𝑄𝑖𝑗},

where, for all 𝑖 ∈ 𝐼 and for all 𝑗 ∈ 𝐽 , 𝑄𝑖𝑗 is an admissible set. This means
that there’s a family of admissible sets {𝐷𝑘}𝑘∈𝐾 for some index set 𝐾, such
that {𝐷𝑘 | 𝐷𝑘 ∈ W & 𝑘 ∈ 𝐾} = {𝑄𝑖𝑗 | 𝑖 ∈ 𝐼 & 𝑗 ∈ 𝐽}. Then, 𝑠 is an
intersection of admissible sets, 𝑠 =

⋂︀
𝑘∈𝐾{𝐷𝑘 | 𝐷𝑘 ∈ W} so it follows that 𝑠 ⊆

𝐷𝑘 for all 𝑘 ∈ 𝐾, so we get 𝑠 =
⋂︀
𝑘∈𝐾{𝐷𝑘 | 𝐷𝑘 ∈ W & s ⊆ 𝐷𝑘}. If we add

more admissible sets {𝐸𝑛}𝑛∈𝑁 for some index set 𝑁 such that for each 𝑛 ∈ 𝑁 ,
𝑠 ⊆ 𝐸𝑛, to the family {𝐷𝑘}𝑘∈𝐾 , we do not change the intersection. So, we get
𝑠 =

⋂︀
{𝑋 ∈ W | 𝑠 ⊆ 𝑋}, which means that 𝑠 is a closed set with respect to g.

�

Proposition 59 To prove that a set 𝑠 is open with respect to a general frame
g = ⟨𝑊,ℛ,W⟩ for any language, it is enough to prove that 𝑠 is equal to the
union of some family of open sets, and in particular, admissible sets (with
respect to g).

Proof Let {𝑃𝑖}𝑖∈𝐼 be a family of open sets over g, for some index set 𝐼, and let
𝑠 =

⋃︀
𝑖∈𝐼{𝑃𝑖}. For 𝑠 to be open, we need to prove that its relative complement

to 𝑊 is closed, so in other words, we need to prove that 𝑊 ∖
⋃︀
𝑖∈𝐼{𝑃𝑖} is closed.

𝑊 ∖
⋃︀
𝑖∈𝐼{𝑃𝑖} =

⋂︀
𝑖∈𝐼{𝑊 ∖ 𝑃𝑖}. But this set is an intersection of some family

of closed sets, and by proposition 58 above, it is closed. Therefore, 𝑠, as its
relative complement, is open. �

Proposition 60 Let F = ⟨𝑊,ℛ⟩ be a frame for a type 1 language 𝐿, and let
𝐿′ be its hybrid temporal extension. Let � be any of box �𝑘 or reversed box
�−1
𝑘 of 𝐿 or 𝐿′. As an operator, [[�𝑝1]] distributes over arbitrary intersections

of subsets of W.

Proof Let 𝑅 be either ℛ(𝑘) if � is �𝑘, or ℛ(𝑘)−1 if � is �−1
𝑘 . Let 𝐼 be an

index set, and let {𝑃𝑖}𝑖∈𝐼 be a family of subsets of 𝑊 . We need to prove that
[[�𝑝1]](

⋂︀
𝑖∈𝐼{𝑃𝑖}) =

⋂︀
𝑖∈𝐼{[[�𝑝1]](𝑃𝑖)}.

First, suppose 𝑥 ∈ [[�𝑝1]](
⋂︀
𝑖∈𝐼{𝑃𝑖}). Then, for all 𝑦 ∈𝑊 : ⟨𝑥, 𝑦⟩ ∈ 𝑅⇒ 𝑦 ∈⋂︀

𝑖∈𝐼{𝑃𝑖}, or, for all 𝑖 ∈ 𝐼 and for all 𝑦 ∈𝑊 : ⟨𝑥, 𝑦⟩ ∈ 𝑅⇒ 𝑦 ∈ 𝑃𝑖. Equivalently,
for all 𝑖 ∈ 𝐼: 𝑥 ∈ [[�𝑝1]](𝑃𝑖), and from here, 𝑥 ∈

⋂︀
𝑖∈𝐼{[[�𝑝1]](𝑃𝑖)}.

34

For the converse, suppose that 𝑥 ∈
⋂︀
𝑖∈𝐼{[[�𝑝1]](𝑃𝑖)}. Going backwards

on the equivalence chain from the first half of the proof, the statement is
equivalent to for all 𝑖 ∈ 𝐼 and for all 𝑦 ∈ 𝑊 : ⟨𝑥, 𝑦⟩ ∈ 𝑅 ⇒ 𝑦 ∈ 𝑃𝑖, which
also means that for all 𝑦 ∈ 𝑊 : ⟨𝑥, 𝑦⟩ ∈ 𝑅 ⇒ 𝑦 ∈

⋂︀
𝑖∈𝐼{𝑃𝑖}, and from there,

𝑥 ∈ [[�𝑝1]](
⋂︀
𝑖∈𝐼{𝐴𝑖}). �

Proposition 61 Let 𝐿 be a type 1 language. For every box or reversed box �
of 𝐿, [[�𝑝1]] is a closed operator in 𝐿. For every diamond or reversed diamond
♦ of 𝐿, [[♦𝑝1]] is an open operator in 𝐿.

Proof Let g = ⟨𝑊,ℛ,W⟩ be any general frame (not just descriptive) for 𝐿.
1. [[�𝑝1]]. Let 𝑠 ∈ 𝒞(W) be a closed set with respect to g. So, there’s a

family {𝑃𝑖}𝑖∈𝐼 of admissible sets for some index set 𝐼, and 𝑠 =
⋂︀
𝑖∈𝐼{𝑃𝑖}.

By proposition 60, we have that [[�𝑝1]](
⋂︀
𝑖∈𝐼{𝑃𝑖}) =

⋂︀
𝑖∈𝐼{[[�𝑝1]](𝑃𝑖)}, which,

according to proposition 58, and the fact that W is closed under taking relative
complements and [[♦𝑝1]] (or, just [[�𝑝1]]), is enough to prove that [[�𝑝1]](𝑠) is a
closed set, and from there we get that [[�𝑝1]] is a closed operator in 𝐿.

2. [[♦𝑝1]]. Let 𝑠 be an open set with respect to g. It is enough to prove that
𝑊 ∖ [[♦𝑝1]](𝑠) is a closed set. But 𝑊 ∖ [[♦𝑝1]](𝑠) = [[�𝑝1]](𝑊 ∖ 𝑠), where 𝑊 ∖ 𝑠 is
a closed set. Then the proof follows immediately by the proof for [[�𝑝1]]. �

Proposition 62 Let 𝐿 be a type 1 language, and let 𝐿′ be the hybrid temporal
extension of 𝐿. Let F = ⟨𝑊,ℛ⟩ be a frame for 𝐿. Let ♦ be either one of the
diamonds ♦𝑘 or reversed diamonds ♦−1

𝑘 of 𝐿 or 𝐿′. Let 𝐼 be an index set
(and hence, non-empty) and let {𝑃𝑖}𝑖∈𝐼 be a collection of subsets of 𝑊 . Then,
[[♦𝑝1]](

⋂︀
𝑖∈𝐼{𝑃𝑖}) ⊆

⋂︀
𝑖∈𝐼{[[♦𝑝1]](𝑃𝑖)}.

Proof Let 𝑅 be either ℛ(𝑘) if ♦ is ♦𝑘, or ℛ(𝑘)−1, otherwise. Let 𝑥 ∈
[[♦𝑝1]](

⋂︀
𝑖∈𝐼{𝑃𝑖}). Then, for some 𝑦 ∈ 𝑊 : ⟨𝑥, 𝑦⟩ ∈ 𝑅 & 𝑦 ∈

⋂︀
𝑖∈𝐼{𝑃𝑖}. Let

𝑦 be one such a element of 𝑊 that ⟨𝑥, 𝑦⟩ ∈ 𝑅 & 𝑦 ∈
⋂︀
𝑖∈𝐼{𝑃𝑖}, and let 𝑖 be any

index in 𝐼. Then 𝑦 ∈ 𝑃𝑖. We have ⟨𝑥, 𝑦⟩ ∈ 𝑅& 𝑦 ∈ 𝑃𝑖 ⇒ 𝑥 ∈ [[♦𝑝1]](𝑃𝑖). Because
we picked any index 𝑖 ∈ 𝐼, we have that for all 𝑖 ∈ 𝐼: 𝑥 ∈ [[♦𝑝1]](𝑃𝑖). But then
𝑥 ∈

⋂︀
𝑖∈𝐼{[[♦𝑝1]](𝑃𝑖)}, and hence [[♦𝑝1]](

⋂︀
𝑖∈𝐼{𝑃𝑖}) ⊆

⋂︀
𝑖∈𝐼{[[♦𝑝1]](𝑃𝑖)}. �

Proposition 63 Let 𝐿 be a type 1 language and let 𝐿′ be its hybrid temporal
extension. Let g = ⟨𝑊,ℛ,W⟩ be a descriptive general frame for 𝐿. Then (a)
Every singleton of a state in 𝑊 is closed with respect to g. (b) Let ♦−1 be any
reversed diamond or diamond of 𝐿 or 𝐿′. If 𝑠 ⊆𝑊 is a closed set with respect
to g, then so is the set [[♦−1𝑝1]](𝑠).

Proof This proof is adapted from [8], pages 316–318.
(a) Let 𝑤 ∈𝑊 be any state in 𝑊 . Then, from the fact that g is descriptive,

hence differentiated, it follows directly that {𝑤} = ∩{𝑃 ∈ W | 𝑤 ∈ 𝑃}.

35

(b) Let ♦−1 be either ♦−1
𝑘 or ♦𝑘 of 𝐿′. Let ♦ be the converse of ♦−1, and

let � be either �𝑘 if ♦ is ♦𝑘, or the converse 𝑘-th box. Let 𝑠 be a closed set
with respect to g. We show that [[♦−1𝑝1]](𝑠) =

⋂︀
{𝑃 ∈ W | 𝑠 ⊆ [[�𝑝1]](𝑃)}

(1), and from Proposition 58, it then follows immediately that [[♦−1𝑝1]](𝑠) is
closed. The left to right inclusion in (1) is trivial, so assume for the sake of
contradiction that 𝑥 /∈ [[♦−1𝑝1]](𝑠) and for all 𝑃 ∈ W: if 𝑠 ⊆ [[�𝑝1]](𝑃) then
𝑥 ∈ 𝑃 .

Let W0 =def {𝑄 ∈ W | 𝑠 ⊆ 𝑄} ∪ {[[♦𝑝1]](𝑃) | 𝑥 ∈ 𝑃 & 𝑃 ∈ W}. First,
we’ll prove that W0 has the fip (2). For that, we need to show that W0 is non-
empty. Because 𝑊 ∈ W, and because 𝑠 ⊆ 𝑊 , 𝑊 ∈ W0. Suppose that there is
a finite subset of W0 with an empty intersection. So, there are 𝑄1, . . . , 𝑄𝑛 and
𝑃1, . . . , 𝑃𝑚 in W0, such that 𝑠 ⊆ 𝑄𝑖 for all 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛, 𝑥 ∈ 𝑃𝑗 for all
𝑗 such that 1 ≤ 𝑗 ≤ 𝑚, and 𝑄1 ∩ · · · ∩𝑄𝑛 ∩ [[♦𝑝1]](𝑃1) ∩ · · · ∩ [[♦𝑝1]](𝑃𝑚) = ∅.
Let 𝑄 =def 𝑄1 ∩ · · · ∩ 𝑄𝑛 and let 𝑃 =def 𝑃1 ∩ · · · ∩ 𝑃𝑚. Clearly 𝑥 ∈ 𝑃 . By
Proposition 62, we have that [[♦𝑝1]](𝑃) ⊆ [[♦𝑝1]](𝑃1) ∩ · · · ∩ [[♦𝑝1]](𝑃𝑚), and
hence, 𝑄 ∩ [[♦𝑝1]](𝑃) = ∅. But [[♦𝑝1]](𝑃) = 𝑊 ∖ [[�𝑝1]](𝑊 ∖ 𝑃), so we get
𝑄 ⊆ [[�𝑝1]](𝑊 ∖ 𝑃), so 𝑠 ⊆ [[�𝑝1]](𝑊 ∖ 𝑃), and, by the assumption, it follows
that 𝑥 ∈ 𝑊 ∖ 𝑃 , contradiction with 𝑥 ∈ 𝑃 . Thus, we proved (2) that W0 has
the fip.

Now, because g is a compact frame, (2) implies that W0 has a non-empty
intersection, so there is a 𝑦 ∈ 𝑊 such that: 𝑦 ∈

⋂︀
{𝑄 ∈ W | 𝑠 ⊆ 𝑄} (3) and

𝑦 ∈
⋂︀
{[[♦𝑝1]](𝑃) | 𝑥 ∈ 𝑃 & 𝑃 ∈ W} (4). It follows immediately from (3) that

𝑦 ∈ 𝑠. Let 𝑅 be either ℛ(𝑘) if ♦−1 is the reversed diamond ♦−1
𝑘 , or ℛ(𝑘)−1,

otherwise. We now also prove that it follows from (4) that ⟨𝑦, 𝑥⟩ ∈ 𝑅, i.e.
𝑥 ∈ [[♦−1𝑝1]](𝑠), contradiction with the assumption that 𝑥 /∈ [[♦−1𝑝1]](𝑠), thus
prove that

⋂︀
{𝑃 ∈ W | 𝑠 ⊆ [[�𝑝1]](𝑃)} ⊆ [[♦−1𝑝1]](𝑠).

Now, suppose that ⟨𝑦, 𝑥⟩ /∈ 𝑅. By the tightness of g, there would be a
𝑃 ∈ W witnessing ⟨𝑦, 𝑥⟩ /∈ 𝑅, that is, 𝑥 ∈ 𝑃 while 𝑦 /∈ [[♦𝑝1]](𝑃). But this
contradicts (4), thus ⟨𝑦, 𝑥⟩ ∈ 𝑅. �

Corollary 64 Let 𝐿 be a type 1 language and let 𝐿′ be its hybrid temporal
extension. Let ♦ be any diamond of 𝐿 or any reversed diamond of 𝐿′. Then
♦𝑝1 is a closed operator in 𝐿.

Proof This is exactly point (b) of Proposition 63 above. �

Corollary 65 Let 𝐿 be a type 1 language and let 𝐿′ be its hybrid temporal
extension. Let � be any box of 𝐿 or any reversed box of 𝐿′. Then �𝑝1 is an
open operator in 𝐿.

Proof Follows by Corollary 64, see the proof of Proposition 61, point 2. �

36

Proposition 66 Let g be a descriptive general frame for some language.
Then every non-empty set of closed sets that has the fip, has a non-empty
intersection.

Proof This proof is adapted from [8], pages 316–318.
Follows directly from the fact that g is compact, and by examining the

definition of a closed set. �

Definition 67 (Downward directed family) . Let {𝑃𝑖}𝑖∈𝐼 be a family of
subsets of the set𝑊 , for some index set 𝐼. {𝑃𝑖}𝑖∈𝐼 is a downward directed family
of sets iff for all 𝑥 ∈ {𝑃𝑖}𝑖∈𝐼 and for all 𝑦 ∈ {𝑃𝑖}𝑖∈𝐼 , there is a 𝑧 ∈ {𝑃𝑖}𝑖∈𝐼 such
that 𝑧 ⊆ 𝑥 & 𝑧 ⊆ 𝑦.

Proposition 68 (Esakia’s Lemma for ♦) . Let 𝐿 be a type 1 language. Let
♦ be any diamond of ♦𝑘 of 𝐿. Let g = ⟨𝑊,ℛ,W⟩ be a descriptive frame for 𝐿,
and let 𝐼 be some index, hence, non-empty, set. Then for every downward
directed family of nonempty closed for g sets {𝑃𝑖}𝑖∈𝐼 , it is the case that
[[♦𝑝1]](

⋂︀
𝑖∈𝐼{𝑃𝑖}) =

⋂︀
𝑖∈𝐼{[[♦𝑝1]](𝑃𝑖)}.

Proof The left to right inclusion is a special case of Proposition 62 and follows
directly from there. Thus we get [[♦𝑝1]](

⋂︀
𝑖∈𝐼{𝑃𝑖}) ⊆

⋂︀
𝑖∈𝐼{[[♦𝑝1]](𝑃𝑖)}.

Let 𝑅 be ℛ(𝑘). For any 𝑥 ∈𝑊 , we denote by 𝑅(𝑥) the set {𝑦 ∈𝑊 | ⟨𝑥, 𝑦⟩ ∈
𝑅}. Now, let 𝑥 ∈

⋂︀
𝑖∈𝐼{[[♦𝑝1]](𝑃𝑖)}. Suppose for the sake of contradiction that

𝑥 /∈ [[♦𝑝1]](
⋂︀
𝑖∈𝐼{𝑃𝑖}). Then, for all 𝑦 ∈

⋂︀
𝑖∈𝐼{𝑃𝑖}, ⟨𝑥, 𝑦⟩ /∈ 𝑅. Then, 𝑅(𝑥) ∩

(
⋂︀
𝑖∈𝐼{𝑃𝑖}) = ∅ (1).
Clearly 𝑥 ∈

⋂︀
𝑖∈𝐼{𝑥0 ∈ 𝑊 | ∃𝑦 ∈ 𝑃𝑖 : ⟨𝑥0, 𝑦⟩ ∈ 𝑅}. Then for all 𝑖 ∈ 𝐼,

there is a 𝑦 ∈ 𝑃𝑖 such that ⟨𝑥, 𝑦⟩ ∈ 𝑅. Thus for all 𝑖 ∈ 𝐼, it is the case that
(𝑅(𝑥) ∩ 𝑃𝑖) ̸= ∅ (2).

Now, because {𝑃𝑖}𝑖∈𝐼 is a downward directed family of non-empty of closed
(with respect g) sets, we have that for all 𝑖 ∈ 𝐼, for all 𝑗 ∈ 𝐼, there is a 𝑘 ∈ 𝐼,
such that 𝑃𝑘 ⊆ 𝑃𝑖 ∩ 𝑃𝑗 , and also we have that for all 𝑘 ∈ 𝐼, 𝑃𝑘 ̸= ∅. Thus,
for all 𝑖 ∈ 𝐼, for all 𝑗 ∈ 𝐼: 𝑃𝑖 ∩ 𝑃𝑗 ̸= ∅. But we also have (2), and that each
𝐶𝑖 is non-empty, thus we get that {𝑅(𝑥)} ∪ {𝑃𝑖}𝑖∈𝐼 has the fip. Because of
Proposition 63, we have that 𝑅(𝑥) is closed, and because of proposition 66, we
have that

⋂︀
({𝑅(𝑥)} ∪ {𝑃𝑖}𝑖∈𝐼) ̸= ∅ because {𝑅(𝑥)} ∪ {𝑃𝑖}𝑖∈𝐼 is a set of closed

sets with the fip. But
⋂︀
({𝑅(𝑥)} ∪ {𝑃𝑖}𝑖∈𝐼) ̸= ∅ contradicts (1), and hence,

𝑥 ∈ [[♦𝑝1]](
⋂︀
𝑖∈𝐼{𝑃𝑖}).

Finally, we conclude that [[♦𝑝1]](
⋂︀
𝑖∈𝐼{𝑃𝑖}) =

⋂︀
𝑖∈𝐼{[[♦𝑝1]](𝑃𝑖)}. �

Proposition 69 (Esakia’s Lemma for ♦−1 in 𝐿′) Let 𝐿 be a type 1 language
and let 𝐿′ be its hybrid temporal temporal extension. Let g = ⟨𝑊,ℛ,W⟩
be a descriptive frame for 𝐿, and let 𝐼 be some index set. Then for every
downward directed family of nonempty closed with respect to g sets {𝑃𝑖}𝑖∈𝐼 ,

37

and any reversed diamond ♦−1 of 𝐿′, it is the case that [[♦−1𝑝1]](
⋂︀
𝑖∈𝐼{𝑃𝑖}) =⋂︀

𝑖∈𝐼{[[♦−1𝑝1]](𝑃𝑖)}.

Proof The inclusion [[♦−1𝑝1]](
⋂︀
𝑖∈𝐼{𝑃𝑖}) ⊆

⋂︀
𝑖∈𝐼{[[♦−1𝑝1]](𝑃𝑖)} is a special

case of proposition 62 and follows directly from there.
Let ♦ be the diamond of 𝐿 with the same index as ♦−1.
Let 𝑥 /∈ [[♦−1𝑝1]](

⋂︀
𝑖∈𝐼{𝑃𝑖}), i.e. [[♦𝑝1]]({𝑥})∩ (

⋂︀
𝑖∈𝐼{𝑃𝑖}) = ∅. Because g is

descriptive, we have that {𝑥} is closed by Proposition 63, and, by Proposition
68, [[♦𝑝1]]({𝑥}) is also closed. Hence, [[♦𝑝1]]({𝑥})∪ {𝑃𝑖}𝑖∈𝐼 is a family of closed
with respect to g sets with the empty intersection, which, by Proposition 66,
cannot have the fip. Thus, there is a finite subfamily {𝑃1, . . . , 𝑃𝑛} ⊆ {𝑃𝑖}𝑖∈𝐼
such that [[♦𝑝1]]({𝑥})∩𝑃1∩· · ·∩𝑃𝑛 = ∅. Because {𝑃𝑖}𝑖∈𝐼 is downward directed,
there exists a 𝑃 ∈ {𝑃𝑖}𝑖∈𝐼 such that 𝑃 ⊆

⋂︀
{𝑃1, . . . , 𝑃𝑛} and [[♦𝑝1]]({𝑥})∩𝑃 =

∅. But then 𝑥 /∈ [[♦−1𝑝1]](𝑃), and hence, 𝑥 /∈
⋂︀
𝑖∈𝐼{[[♦−1𝑝1]](𝑃𝑖)}. �

Proposition 70 Let 𝐿 be a type 1 language and let 𝐿′ be its hybrid temporal
extension. Every syntactically closed with respect to 𝐿 formula of 𝐿′ is a closed
formula in 𝐿, and every syntactically open with respect to 𝐿 formula of 𝐿′ is
an open formula in 𝐿 (with respect to the descriptive frames for 𝐿).

Proof Because we have descriptive frames for 𝐿, we can use the facts that
♦𝑝1 for any diamond or reversed diamond ♦ of 𝐿, and �𝑝1 for any box or
reversed box � of 𝐿 are both closed and open operators in 𝐿; ♦−1𝑝1 for any
reversed diamond ♦−1 which is not in 𝐿 is a closed operator 𝐿; and �−1𝑝1 for
any reversed box �−1 of 𝐿′ which is not in 𝐿 is an open operator in 𝐿. The
proof is by induction, using Definition 56, the above-mentioned facts, and that
singletons are closed in descriptive frames (by Proposition 63). �

Proposition 71 Let 𝐿 be a type 1 language and let 𝐿′ be its hybrid temporal
extension. Let 𝐴 ∈ 𝐿′ be a syntactically closed with respect to 𝐿 formula,
with PROP(𝐴) ⊆ {𝑞1, . . . , 𝑞𝑛, 𝑝}, and NOM (𝐴) ⊆ {𝑐1, . . . , 𝑐𝑚}, and let 𝐴 be
positive in 𝑝. Let g = ⟨𝑊,ℛ,W⟩ be a descriptive frame for 𝐿. Then, for all
𝑄1, . . . , 𝑄𝑛 ∈ W, 𝑥1, . . . , 𝑥𝑚 ∈𝑊 , and 𝑃 ∈ 𝒞(W), it is the case that:
[[𝐴]](𝑄1, . . . , 𝑄𝑛, 𝑃, 𝑥1, . . . , 𝑥𝑚) is closed with respect to g.

Proof If 𝐴 is not in negation normal form, we choose 𝐴 to be a semantically
equivalent formula in negation normal form, and clearly we can choose it to also
be syntactically closed with respect to 𝐿. Because of the semantic equivalence
of the two formulas, their operators for g will be equal. For the rest of the
proof, we will consider 𝐴 to be in negation normal form.

Because 𝐴 is in negation normal form, we may assume that reversed boxes
of 𝐿′, which are not in 𝐿, do not occur in 𝐴, as any such occurrence would

38

have to be negative, and rewriting the formula into negation normal form would
change it into a reversed diamond of 𝐿′.

We proceed by induction on 𝐴.
If 𝐴 is ⊤, ⊥, or one of the atoms 𝑞1, . . . , 𝑞𝑛, 𝑝, 𝑐1, . . . , 𝑐𝑚, then it is clear that

[[𝐴]](𝑄1, . . . , 𝑄𝑛, 𝑃, 𝑥1, . . . , 𝑥𝑚) is a closed set, as we use the facts that ∅ ∈ W,
𝑊 ∈ W, and that every singleton is closed in descriptive frames. Such is also
the case if 𝐴 is the negation of a propositional variable from among 𝑞1, . . . , 𝑞𝑛,
because 𝑄1, . . . , 𝑄𝑛 are clopen as admissible sets in g.

The cases where 𝐴 is the negation of 𝑝 or one of 𝑐1, . . . , 𝑐𝑚 do not happen,
by the definition of 𝐴 and because 𝐴 is in negation normal form.

The cases for ∧ and ∨ follow since the finite unions and intersections of
closed sets are closed. For finite unions, the result is an intersection of finite
unions of admissible sets (by applying De Morgan’s laws), and for intersections,
the result is immediate by the definition of a closed set.

The cases for diamonds and reversed diamonds of 𝐿′ follow by Corollary
64.

The cases for the boxes and reversed boxes of 𝐿 follow by Proposition 61.
�

Proposition 72 (Esakia’s Lemma for Syntactically Closed Formulas)
Let 𝐿 be a type 1 language and let 𝐿′ be its hybrid temporal extension. Let
𝐴 ∈ 𝐿′ be a syntactically closed in 𝐿 formula with PROP(𝐴) ⊆ {𝑞1, . . . , 𝑞𝑛, 𝑝}
and NOM (𝐴) ⊆ {𝑐1, . . . , 𝑐𝑚}, which is positive in p. Let g = ⟨𝑊,ℛ,W⟩ be a
descriptive frame for 𝐿. Then, for all 𝑄1, . . . , 𝑄𝑛 ∈ W, 𝑥1, . . . , 𝑥𝑚 ∈ 𝑊 , and
downwards directed family of closed sets {𝑃𝑖}𝑖∈𝐼 for some index set 𝐼, it is the
case that:
[[𝐴]](𝑄1, . . . , 𝑄𝑛,

⋂︀
𝑖∈𝐼{𝑃𝑖}, 𝑥1, . . . , 𝑥𝑚) =

⋂︀
𝑖∈𝐼 [[𝐴]](𝑄1, . . . , 𝑄𝑛, 𝑃𝑖, 𝑥1, . . . , 𝑥𝑚).

Proof The proof is by induction on 𝐴. For brevity, we’ll omit the parameters
𝑄1, . . . , 𝑄𝑛, 𝑥1, . . . , 𝑥𝑚 when writing (sub)formulas. As before, we assume that
the formulas are written in negation normal form, i.e. we may also assume that
reversed boxes of 𝐿′ which are not in 𝐿 do not occur, as all such occurrences
have to be negative, and rewriting in negation normal form changes these into
reversed diamonds.

The cases when 𝐴 is ⊤, ⊥, or among the atoms in 𝐴, one of 𝑞1, . . . , 𝑞𝑛, 𝑝, 𝑐1,
. . . , 𝑐𝑚 are trivial, as is the case when 𝐴 is the negation of a propositional
variable among 𝑞1, . . . , 𝑞𝑛. As before, the cases where 𝐴 is the negation of 𝑝
or the negation of one of 𝑐1, . . . , 𝑐𝑚 do not happen, by the definition of 𝐴 and
because 𝐴 is in negation normal form.

The inductive step in the case when 𝐴 is in the form (𝐵1 ∧ 𝐵2) is also
trivial.

Suppose 𝐴 is of the form (𝐵1∨𝐵2). We have to show that [[𝐵1]](
⋂︀
𝑖∈𝐼{𝑃𝑖})∪

[[𝐵2]](
⋂︀
𝑖∈𝐼{𝑃𝑖}) =

⋂︀
𝑖∈𝐼([[𝐵1]](𝑃𝑖) ∪ [[𝐵2]](𝑃𝑖)).

39

For the left to right inclusion, let 𝑥 ∈ [[𝐵1]](
⋂︀
𝑖∈𝐼{𝑃𝑖}) ∪ [[𝐵2]](

⋂︀
𝑖∈𝐼{𝑃𝑖}).

By the inductive hypothesis, 𝑥 ∈
⋂︀
𝑖∈𝐼 [[𝐵1]](𝑃𝑖) ∪

⋂︀
𝑖∈𝐼 [[𝐵2]](𝑃𝑖). Without loss

of generality, let 𝑥 ∈
⋂︀
𝑖∈𝐼 [[𝐵1]](𝑃𝑖), i.e. for all 𝑖 ∈ 𝐼: 𝑥 ∈ [[𝐵1]](𝑃𝑖). So, for all

𝑖 ∈ 𝐼: 𝑥 ∈ [[𝐵1]](𝑃𝑖) ∩ [[𝐵2]](𝑃𝑖), so 𝑥 ∈
⋂︀
𝑖∈𝐼([[𝐵1]](𝑃𝑖) ∪ [[𝐵2]](𝑃𝑖)).

For the right to left inclusion, let 𝑥 /∈ [[𝐵1]](
⋂︀
𝑖∈𝐼{𝑃𝑖}) ∪ [[𝐵2]](

⋂︀
𝑖∈𝐼{𝑃𝑖}).

By the inductive hypothesis, 𝑥 /∈
⋂︀
𝑖∈𝐼 [[𝐵1]](𝑃𝑖)∪

⋂︀
𝑖∈𝐼 [[𝐵2]](𝑃𝑖). Thus, there are

𝑃1, 𝑃2 ∈ {𝑃𝑖}𝑖∈𝐼 such that 𝑥 /∈ [[𝐵1]](𝑃1) and 𝑥 /∈ [[𝐵2]](𝑃2). Because {𝑃𝑖}𝑖∈𝐼 is
downward directed, there is a 𝑃 ∈ {𝑃𝑖}𝑖∈𝐼 , such that 𝑃 ⊆ 𝑃1 ∩ 𝑃2. Because
𝐵1 and 𝐵2 are positive in 𝑝 and hence (by Proposition 46) upwards monotone
in 𝑝, it follows that 𝑥 /∈ [[𝐵1]](𝑃) and 𝑥 /∈ [[𝐵2]](𝑃), and from here we get that
𝑥 /∈

⋂︀
𝑖∈𝐼([[𝐵1]](𝑃𝑖) ∪ [[𝐵2]](𝑃𝑖)).

Suppose 𝐴 is of the form ♦𝐵 for some diamond or reversed diamond ♦ of
𝐿. We have to show that [[♦𝐵]](

⋂︀
𝑖∈𝐼{𝑃𝑖}) =

⋂︀
𝑖∈𝐼 [[♦𝐵]](𝑃𝑖). By the inductive

hypothesis, we have [[♦𝐵]](
⋂︀
𝑖∈𝐼{𝑃𝑖}) = [[♦𝑝1]]

⋂︀
𝑖∈𝐼 [[𝐵]](𝑃𝑖). If [[𝐵]](𝑃𝑖) = ∅ for

some 𝑖 ∈ 𝐼, then [[♦𝑝1]]
⋂︀
𝑖∈𝐼 [[𝐵]](𝑃𝑖) = ∅ =

⋂︀
𝑖∈𝐼 [[♦𝐵]](𝑃𝑖), so we may assume

that [[𝐵]](𝑃𝑖) ̸= ∅ for all 𝑖 ∈ 𝐼. Then by Proposition 71, {[[𝐵]](𝑃𝑖) | 𝑖 ∈ 𝐼} is a
family of non-empty closed sets. Moreover, we prove that {[[𝐵]](𝑃𝑖) | 𝑖 ∈ 𝐼}
is downward directed. Because, consider any finite number of elements of
{[[𝐵]](𝑃𝑖) | 𝑖 ∈ 𝐼}, [[𝐵]](𝑃1), . . . , [[𝐵]](𝑃𝑘). Then there is some 𝑃 ∈ {𝑃𝑖}𝑖∈𝐼 such
that 𝑃 ⊆

⋂︀𝑘
𝑗=1{𝑃𝑗}. But then, [[𝐵]](𝑃) ∈ {[[𝐵]](𝑃𝑖) | 𝑖 ∈ 𝐼} and [[𝐵]](𝑃) ⊆⋂︀𝑘

𝑗=1[[𝐵]](𝑃𝑗) by the upward monotonicity of 𝐵 in p. Now, we may apply
Proposition 68 (Esakia’s Lemma for ♦) and conclude that [[♦𝐵]](

⋂︀
𝑖∈𝐼{𝑃𝑖}) =⋂︀

𝑖∈𝐼 [[♦𝐵]](𝑃𝑖).
The case when 𝐴 is of the form ♦−1𝐵 for some reversed diamond ♦−1 of 𝐿′

which is not in 𝐿 is verbatim the same, except that we appeal to Proposition
69 (Esakia’s Lemma for ♦−1) instead of Proposition 68.

Lastly, consider the case when 𝐴 is of the form �𝐵 for some box � of 𝐿. The
result follows by the inductive hypothesis and the fact that [[�𝑝1]] distributes
over arbitrary intersections of subsets of 𝑊 , as seen in Proposition 60. �

Proposition 73 Let 𝐿 be a type 1 language. Let g = ⟨𝑊,ℛ,W⟩ be a descriptive
frame for 𝐿. Let 𝑠 be a closed set with respect to g, 𝑠 =

⋂︀
{𝑃 ∈ W | 𝑠 ⊆ 𝑃}.

Then, {𝑃 ∈ W | 𝑠 ⊆ 𝑃} is a downward directed family of closed with respect
to g sets.

Proof First, every admissible set is closed, so {𝑃 ∈ W | 𝑠 ⊆ 𝑃} is a family
of closed with respect to g sets. To see that {𝑃 ∈ W | 𝑠 ⊆ 𝑃} is downwards
directed, let 𝑃1, 𝑃2 ∈ {𝑃 ∈ W | 𝑠 ⊆ 𝑃}. Then 𝑠 ⊆ 𝑃1 ∩ 𝑃2, and also 𝑃1 ∩ 𝑃2 is
an admissible set, therefore 𝑃1 ∩ 𝑃2 ∈ {𝑃 ∈ W | 𝑠 ⊆ 𝑃}. �

To finish the proof of the first result of Proposition 50 regarding type
1 languages and the Ackermann rule, we only require one more result. The

40

proof then follows by the second result of Proposition 50 and by the following
Proposition 74:

Proposition 74 (Ackermann Lemma for Descriptive Frames) Let 𝐿 be
a type 1 language and let 𝐿′ be its hybrid temporal extension. Let:
1. g = ⟨𝑊,ℛ,W⟩ be a descriptive frame for 𝐿, or a Kripke frame for 𝐿 (in this
case, we take W = P(𝑊)).
2. {𝑞1, . . . , 𝑞𝑛, 𝑝} be different propositional variables from PROP .
3. 𝐴 be a syntactically closed with respect to 𝐿 formula in 𝐿′ with PROP(𝐴) ⊆
{𝑞1, . . . , 𝑞𝑛} and NOM (𝐴) ⊆ {𝑐1, . . . , 𝑐𝑚}
4. 𝐵 be a syntactically open with respect to 𝐿 formula in 𝐿′ with PROP(𝐵) ⊆
{𝑞1, . . . , 𝑞𝑛, 𝑝} and NOM (𝐴) ⊆ {𝑐1, . . . , 𝑐𝑚}, which is negative in 𝑝
Then for all 𝑄1, . . . , 𝑄𝑛 ∈ W and all 𝑥1, . . . , 𝑥𝑚 ∈𝑊 , it is the case that:
[[𝐵]](𝑄1, . . . , 𝑄𝑛, [[𝐴]](𝑄1, . . . , 𝑄𝑛, 𝑥1, . . . , 𝑥𝑛), 𝑥1, . . . , 𝑥𝑛) =𝑊
if and only if there is a 𝑃 ∈ W such that:
[[𝐴]](𝑄1, . . . , 𝑄𝑛, 𝑥1, . . . , 𝑥𝑛) ⊆ 𝑃 and
[[𝐵]](𝑄1, . . . , 𝑄𝑛, 𝑃, 𝑥1, . . . , 𝑥𝑛) =𝑊 .

Proof The implication from right to left follows by Proposition 46, by the
downwards monotonicity of 𝐵 in 𝑝.

For the converse, let 𝑄1, . . . , 𝑄𝑛 ∈ W and let 𝑥1, . . . , 𝑥𝑚 ∈𝑊 . We denote:
𝐴0 =def [[𝐴]](𝑄1, . . . , 𝑄𝑛, 𝑥1, . . . , 𝑥𝑛), where 𝐴0 ⊆𝑊 ;
𝐵0(𝑃) =def [[𝐵]](𝑄1, . . . , 𝑄𝑛, 𝑃, 𝑥1, . . . , 𝑥𝑛),
where 𝑃 ⊆𝑊 and 𝐵0(𝑃) : P(𝑊) ↦→ P(𝑊) is a function over subsets of 𝑊 .

If g is a Kripke frame, i.e. W = P(𝑊), we simply take 𝑃 = 𝐴0, because all
subsets of 𝑊 are admissible.

Now, assume that g is a descriptive frame and 𝐵0(𝐴0) =𝑊 . Let 𝐵′ be the
negation of𝐵 written in negation normal form. Then𝐵′ is a syntactically closed
formula, 𝐵′ is positive in 𝑝, and we again denote 𝐵′

0(𝑃) to be the corresponding
function over subsets of 𝑊 with 𝐵′

0(𝑃) =def [[𝐵′]](𝑄1, . . . , 𝑄𝑛, 𝑃, 𝑥1, . . . , 𝑥𝑛).
We have that and 𝐵′

0(𝐴0) = ∅. We need to find an admissible set 𝑃 ∈ W
such that 𝐴0 ⊆ 𝑃 and 𝐵′

0(𝑃) = ∅. Since 𝐴 is a syntactically closed formula,
it follows by Proposition 70 that 𝐴0 is a closed with respect to g subset of
𝑊 and hence that 𝐴0 = ∩{𝑆 ∈ W | 𝐴0 ⊆ 𝑆}. By Proposition 73, {𝑆 ∈ W |
𝐴0 ⊆ 𝑆} is a downward directed family of closed sets with respect to g. Hence
∅ = 𝐵′

0(𝐴0) = 𝐵′
0(
⋂︀
{𝑆 ∈ W | 𝐴0 ⊆ 𝑆}) =

⋂︀
{𝐵′

0(𝑆) | 𝑆 ∈ W & 𝐴0 ⊆ 𝑆},
by Proposition 72 for 𝐵′, which requires 𝐵′ to be positive in 𝑝. Again by
proposition 70, {𝐵′

0(𝑆) | 𝑆 ∈ W & 𝐴0 ⊆ 𝑆} is a family of closed with respect to
g sets with an empty intersection. Hence, by the compactness of g (Proposition
66), {𝐵′

0(𝑆) | 𝑆 ∈ W & 𝐴0 ⊆ 𝑆} doesn’t have the fip, and we can also
see that it’s non-empty (take for example 𝑆 = 𝑊). Hence there is a finite
subfamily, 𝑆1, . . . , 𝑆𝑘 ∈ {𝑆 ∈ W | 𝐴0 ⊆ 𝑆}, such that

⋂︀𝑘
𝑗=1{𝐵′

0(𝑆𝑗)} = ∅. But

41

then 𝑆0 =def
⋂︀𝑘
𝑗=1{𝑆𝑗} is an admissible set, 𝐴0 ⊆ 𝑆0, and 𝐵′

0(𝑆0) = ∅, i.e.
𝐵0(𝑆) =𝑊 . Hence, we can choose 𝑃 = 𝑆0. �

3.5 The Algorithm Deterministic SQEMA

We now describe a deterministic version of the SQEMA algorithm from [17].
If 𝜎 is ¬

⋀︀
(𝜒1, . . . , 𝜒𝑚), we denote by 𝜎[𝜒𝑗//𝜒′

1, . . . , 𝜒
′
𝑚]: ¬

⋀︀
(𝜒1, . . . , 𝜒𝑗−1,

𝜒′
1, . . . , 𝜒

′
𝑚, 𝜒𝑗+1, . . . , 𝜒𝑛).

We denote by 𝜎[𝑝//¬𝑝] the system of equations, produced from 𝜎, where,
simultaneously, every positive occurrence of 𝑝 has been replaced with ¬𝑝 and
every occurrence of ¬𝑝 has been replaced with 𝑝.

Below, by boxes we mean any box or reversed box, and by diamond we
mean any diamond or reversed diamond.

Definition 75 (The algorithm Deterministic SQEMA)

INPUT: 𝐴 ∈ 𝐿, where 𝐿 is a type 1 or a type 2 language and 𝐿′ is its hybrid
temporal extension.
OUTPUT: ⟨success, fol(𝐴)⟩ or ⟨failure⟩

STEP 1: Rewrite 𝐴 in negation normal form. Then, distribute all boxes,
which are not in the scope of a diamond, and all disjunctions, over conjunctions
as much as possible, using the semantic equivalences:
Rule 1.1: �(𝐴1 ∧𝐴2) ≡ (�𝐴1 ∧�𝐴2)
Rule 1.2: ((𝐴1 ∧𝐴2) ∨𝐴3) ≡ ((𝐴1 ∨𝐴3) ∧ (𝐴2 ∨𝐴3))
Rule 1.3: (𝐴1 ∨ (𝐴2 ∧𝐴3)) ≡ ((𝐴1 ∨𝐴2) ∧ (𝐴1 ∨𝐴3))

Thus, obtain 𝐴 ≡
⋀︀
(𝐴1, . . . , 𝐴𝑛) where no further applications of rules

1.1, 1.2 or 1.3 are possible on any 𝐴𝑖. Now reserve the nominal 𝑐𝑘, such that
all nominals occurring in 𝐴 are among 𝑐1, . . . , 𝑐𝑘−1, and use it throughout the
steps. Proceed with STEP 2, applied separately on each of the subformulas 𝐴𝑖,
and if it succeeds for all 𝐴𝑖, proceed to STEP 5. Otherwise, if anyone of the
branches for a single 𝑖 fails, then return ⟨𝑓𝑎𝑖𝑙𝑢𝑟𝑒⟩ as output and stop.

STEP 2: Let 𝐴𝑖 be one of the conjuncts from STEP 1. Let 𝐴′ be the
normalized form, of ¬𝐴𝑖, which we define below, but for now it suffices to
know that it means that 𝐴′ is in negation normal form, and any variable, that
occurs only positively or negatively in ¬𝐴𝑖 has been replaced, by the positive
or negative elimination rules, with ⊤, or ⊥, respectively. Now, construct the
equation (¬𝑐𝑘 Y 𝐴′), where 𝑐𝑘 is the nominal from STEP 1. By the equivalence
rule, try solving 𝜎: ¬

⋀︀
((¬𝑐𝑘 Y 𝐴′)) by proceeding to STEP 3, and then return

the result to STEP 1.
STEP 3: Let the current system be 𝜎. For every permutation of PROP(𝜎),

try it as the variable elimination order, trying to eliminate each variable in
that order with a new, empty backtracking stack to be used with the current

42

permutation, by proceeding to STEP 4. If a permutation succeeds, and thus, all
propositional variables have been eliminated from the current system, proceed
to STEP 5. If all elimination orders fail, report failure for the current system
and go back to executing STEP 2.

STEP 4: Take the propositional variable 𝑝 that has to be eliminated and
the system 𝜎0 as input. Save a backtracking context ⟨𝑝, 𝜎0⟩, to the stack for
the application of the polarity reversing rule, but only if the input hasn’t come
out of the stack. Deterministically apply the SQEMA rules in order to try
eliminating all occurrences of 𝑝, converting 𝜎0 to 𝜎1. Use the deterministic
strategy for SQEMA rules application which is shown below. If 𝑝 has been
eliminated, report success and return the normalized form of 𝜎1 (defined below)
to STEP 3 to try eliminating the remaining variables. If this fails, check if the
backtracking stack is empty. If it is empty, report failure to eliminate 𝑝 and
resume executing STEP 3 to try other permutations. Otherwise, backtrack to
the context ⟨𝑝′, 𝜎′0⟩ from the top of the stack, which may apply to a previous
variable, then execute STEP 4 with 𝑝′ and 𝜎′0[𝑝′//¬𝑝′], skipping the saving of
backtracking context.

STEP 5: If this step is reached by all branches of the execution, then
all propositional variables have been eliminated from all systems resulting
from the input formula. Let all pure systems be 𝜎1, . . . , 𝜎𝑛. For each pure
system 𝜎𝑖, let NOM (𝜎𝑖) ∖ {𝑐𝑘} = {𝑐𝑗𝑖1 , . . . , 𝑐𝑗𝑖𝑙𝑖

}, and let 𝑐𝑚𝑖 be such that all
nominals occurring in {𝑐𝑘, 𝜎𝑖} are among 𝑐1, . . . , 𝑐𝑚𝑖−1. Using the Standard
Translation Lemma 42, let fol 𝑖(𝐴) be: ∀𝑥𝑗𝑖1 . . . ∀𝑥𝑗𝑖𝑙𝑖

∃𝑥𝑚𝑖st(𝑚𝑖+1, 𝑥𝑚𝑖 , 𝜎𝑖). Let
fol(𝐴) be

⋀︀
(fol1(𝐴), . . . , fol𝑛(𝐴)), by the Conjunction Lemma 43. Return the

result ⟨success, fol(𝐴)⟩. Stop.

Now, we define: a) the normalization of a formula used in STEP 2 with
diamond extraction, b) the normalization of a system of equations used in
STEP 4, and c) the deterministic SQEMA rules application strategy.

Definition 76 (Main normalization rules) We say that 𝐴 is normalized
iff the following rules cannot be applied any more to any subformula of 𝐴:

1. ¬¬𝐴1 ⇒ 𝐴1.
2. ¬(𝐴1 ∨𝐴2) ⇒ (¬𝐴1 ∧ ¬𝐴2).
3. ¬(𝐴1 ∧𝐴2) ⇒ (¬𝐴1 ∨ ¬𝐴2).
4. ((𝐴1∧𝐴2)∨𝐴3) ⇒ ((𝐴1∨𝐴3)∧(𝐴2∨𝐴3)) (this is the same as SQEMA’s

Rule 1.2 in STEP 1).
5. (𝐴1∨(𝐴2∧𝐴3)) ⇒ ((𝐴1∨𝐴2)∧(𝐴1∨𝐴3)) (this is the same as SQEMA’s

Rule 1.3 in STEP 1).
We say that these three rules are the main normalization rules, or just the

main rules.
Clearly, a normalized formula is also in negation normal form.

43

Definition 77 (Normalized equation) We say that an equation (𝛾1 Y 𝛾2)
is normalized iff both 𝛾1 and 𝛾2 are normalized formulas. Note that a formula,
which is an equation, may be a normalized equation but not a normalized
formula. For example, consider (¬𝑐 Y (𝑝 ∧ ¬𝑝)), which is clearly a normalized
equation, but it is not a normalized formula, because the main rule 5. is
applicable.

Definition 78 (Normalized system) We say that a system 𝜎 is normalized
iff all equations in 𝜎 are normalized. Note that as a formula, no system is
normalized because it is clearly not in negation normal form.

In the rules given below, we are influenced by the work of Hughes and
Cresswell in [39]. In Chapter Three, they discuss how an S5 formula is reducible
to a formula of modal depth one, using rules similar to the rules below for the
universal modality. This is no coincidence, because the universal modality is a
kind of an S5 modality. Also, the author’s conjecture is that because of the way
Deterministic SQEMA uses normalization, the algorithm succeeds on formulas
of modal depth one; it is a fact that formulas of modal depth 1 have first-order
correspondents, noticed by van Benthem in [56][57].

We use the table below, where � is any box or reversed box, and ♦ is any
diamond or reversed diamond:

For 𝑗 ∈ {1, 2}, we use 𝑈𝑗 for either [𝑈] or ⟨𝑈⟩, we use ∧
∨ for either ∨ or ∧.

Replace with Replace with
(𝑐1 → ⟨𝑈⟩𝑐2) ⊤ (⟨𝑈⟩𝛾1 ∨ 𝛾2), for 𝛾2 ≡ ¬𝛾1 ⊤
𝑈1𝑈2𝛾 𝑈2𝛾 (⟨𝑈⟩𝛾 ∨ ♦𝛾) ⟨𝑈⟩𝛾
�𝑈1𝛾 (𝑈1𝛾 ∨�⊥) (⟨𝑈⟩𝛾 ∨ 𝛾) ⟨𝑈⟩𝛾
[𝑈](𝑈1𝛾1

∧
∨ 𝑈2𝛾2) (𝑈1𝛾1

∧
∨ 𝑈2𝛾2) (⟨𝑈⟩𝛾 ∧ ♦𝛾) ♦𝛾

[𝑈](𝑈1𝛾1
∧
∨ 𝛾2) (𝑈1𝛾1

∧
∨ [𝑈]𝛾2) (⟨𝑈⟩𝛾 ∧ 𝛾) 𝛾

[𝑈]¬𝑐 ⊥ ([𝑈]𝛾1 ∧ 𝛾2), for 𝛾2 ≡ ¬𝛾1 ⊥
♦𝑈1𝛾 (𝑈1𝛾 ∧ ♦⊤) ([𝑈]𝛾 ∧�𝛾) [𝑈]𝛾

⟨𝑈⟩(𝑈1𝛾1
∧
∨ 𝑈2𝛾2) (𝑈1𝛾1

∧
∨ 𝑈2𝛾2) ([𝑈]𝛾 ∧ 𝛾) [𝑈]𝛾

⟨𝑈⟩(𝑈1𝛾1
∧
∨ 𝛾2) (𝑈1𝛾1

∧
∨ ⟨𝑈⟩𝛾2) ([𝑈]𝛾 ∨�𝛾) �𝛾

⟨𝑈⟩𝑐 ⊤ ([𝑈]𝛾 ∨ 𝛾) 𝛾

44

Replace with Replace with
¬⊤ ⊥ ¬⊥ ⊤
(𝛾 ∨ ⊤) ⊤ (𝛾 ∧ ⊤) 𝛾

(𝛾 ∨ ⊥) 𝛾 (𝛾 ∧ ⊥) ⊥
(𝛾 ∨ 𝛾) 𝛾 (𝛾 ∧ 𝛾) 𝛾

(𝛾1 ∨ 𝛾2), for 𝛾1 ≡ ¬𝛾2 ⊤ (𝛾1 ∧ 𝛾2), for 𝛾1 ≡ ¬𝛾2 ⊥
(𝛾1 ∨ 𝛾2) (in CNF) (𝛾2 ∨ 𝛾1) (𝛾1 ∧ 𝛾2) (in CNF) (𝛾2 ∧ 𝛾1)
(𝛾1 ∨ (𝛾2 ∨ 𝛾3)) (in CNF) ((𝛾1 ∨ 𝛾2) ∨ 𝛾3) (𝛾1 ∧ (𝛾2 ∧ 𝛾3)) (in CNF) ((𝛾1 ∧ 𝛾2) ∧ 𝛾3)
�⊤ ⊤ ♦⊥ ⊥
(♦𝛾1 ∨ ♦𝛾2) ♦(𝛾1 ∨ 𝛾2) (�𝛾1 ∧�𝛾2) �(𝛾1 ∧ 𝛾2)

Definition 79 (Eliminating Normalization Procedure) We say that a
procedure is an eliminating normalization procedure iff its input is a modal
formula, its output is a modal formula, it is terminating, deterministic, and it
converts its input formula 𝐴 into negation normal form by applying the main
rules 1., 2., and 3. to subformulas of 𝐴 as much as possible, finally obtaining
𝐴′, and then the procedure uses subformula rewriting by applying all the main
rules to subformulas of 𝐴′ until none of them may be applied further, while also
possibly applying the rules in the above tables, using the rules marked with
(in CNF) only for re-arranging a conjunctive normal form’s subformulas into
some kind of ordering (without looping forever), replaces all variables, which
either occur only positively or occur only negatively in the formula with ⊤ or ⊥
respectively, does no other kinds of modifications to the formula, and its output
does not contain any subformulas of the kind ¬⊤, ¬⊥, (⊥ ∧

∨ 𝛾), or (𝛾 ∧
∨ ⊥),

and contains no variables which occur only positively or only negatively.

a) It is clear how we can obtain a formula in negation normal form for a
given 𝛾, such that �−1

0 and ♦−1
0 do not occur, because these are semantically

equivalent to [𝑈] and ⟨𝑈⟩. We use this procedure to reduce the number of
subformulas in the output, by applying the above equivalence rules for some
obvious boolean and modal laws, as well as the above rules for the universal
modality. Then, we define a procedure for constructing a conjunctive normal
form, using the standard definition of this notion. It is clear how this normal
form can be constructed. During this construction, also perform diamond
extraction, applying the rule (♦𝐴′ ∨♦𝐴′′) ≡ ♦(𝐴′ ∨𝐴′′). Attempt to eliminate
semantically equivalent or opposite members of any disjunction, by comparing
their normal forms. The output must not have subformulas of the kind ¬⊤,
¬⊥, (⊥ ∧

∨ 𝛾), or (𝛾 ∧
∨ ⊥).

Two improvements can be made: during the elimination, a tableaux method
for the input language could be used to prove an equivalence, instead of
comparing normal forms. Also, in the conjunction construction phase, modal
resolution can be performed, as in example 6.14 of [18].

45

This is the normalization procedure for 𝛾, which produces the normal form
of 𝛾: First, convert 𝛾 to negation normal form, then convert the result to
conjunctive normal form simultaneously performing diamond extraction, by
the equivalence rule, then perform box extraction using the semantic equivalence
(�𝐴1∧�𝐴2) ≡ �(𝐴1∧𝐴2), and finally replace any variables that occur either
only positively or only negatively in 𝛾 with ⊤, or ⊥, respectively. Repeat the
whole process until no further changes to the formula can be made.

Clearly, the normalization procedure for single formulas that Deterministic
SQEMA uses is an eliminating normalization procedure by Definition 79.

Definition 80 (System Normalization Procedure) We say that a
procedure to convert a system ¬

⋀︀
(𝜒1, . . . , 𝜒𝑛) into another system 𝜎′ is a

system normalization procedure iff it produces 𝐴0 from
⋀︀
(𝜒1, . . . , 𝜒𝑛) by

applying the rules ¬⊤ ⇒ ⊥, ¬⊥ ⇒ ⊤, (𝛾 ∨ ⊥) ⇒ 𝛾, and (⊥ ∨ 𝛾) ⇒ 𝛾 to its
subformulas as much as possible, then produces 𝐴1 from 𝐴0 via an eliminating
normalization procedure by Definition 79, and finally forms its result 𝜎′ as
either ¬

⋀︀
(𝐴1) if 𝐴1 is of the kind (¬𝑐 ∨𝐴2), or otherwise ¬

⋀︀
((⊥ Y 𝐴1)).

b) Now, we normalize a system of equations 𝜎. Let 𝜎 be ¬
⋀︀
(𝜒1, . . . , 𝜒𝑛).

Let 𝐴′ be the normal form of
⋀︀
(𝜒1, . . . , 𝜒𝑛). If 𝐴′ is of the kind (¬𝑐 ∨ 𝐴′′),

then the normal form of 𝜎 is ¬
⋀︀
((¬𝑐 Y 𝐴′′)); otherwise, it is ¬

⋀︀
((⊥ Y 𝐴′)).

Clearly, the normalization procedure of Deterministic SQEMA for systems
is equivalent to a system normalization procedure according to Definition 80.

c) The deterministic strategy for applying the SQEMA rules for a given
variable 𝑝 is to use the step function (given below) repeatedly until either a
formula without occurrences of 𝑝 is reached, or failure is obtained.

Definition 81 (Deterministic SQEMA Step) We describe a single step of
the strategy, which is uniquely defined for 𝜎 and 𝑝.

(1) If 𝑝 ̸ →˓ 𝜎, then the result is 𝜎.
(2) Else, if 𝜎 is ¬

⋀︀
{(𝛼1 Y 𝑝), . . . , (𝛼𝑛𝑎 Y 𝑝), 𝛽1, . . . , 𝛽𝑛𝑏

, 𝜃1, . . . , 𝜃𝑛𝑡}, where
𝑛𝑎 ≥ 0, 𝑛𝑏 ≥ 0, 𝑛𝑡 ≥ 0, 𝑝 ̸ →˓ {𝛼1, . . . , 𝛼𝑛𝑎 , 𝜃1, . . . , 𝜃𝑛𝑡}, and 𝛽1, . . . , 𝛽𝑛𝑏

are formulas which are negative in 𝑝, then we can apply the Ackermann
rule for 𝑝 and 𝜎. Let for 1 ≤ 𝑙 ≤ 𝑛𝑏, 𝛽′𝑙 be obtained from 𝛽𝑙 by replacing all
occurrences of ¬𝑝 with

⋀︀
(𝛼1, . . . , 𝛼𝑛𝑎). Then the result for 𝜎 is

¬
⋀︀
(𝛽′1, . . . , 𝛽

′
𝑛𝑏
, 𝜃1, . . . , 𝜃𝑛𝑡).

(3) If we are not in any of the above two cases, then there is at least one
positive occurrence of 𝑝 in 𝜎, which is not in an equation of the kind
(𝛼 Y 𝑝), such that 𝑝 ̸ →˓ 𝛼. For convenience, let 𝜎 be ¬

⋀︀
(𝜒1, . . . , 𝜒𝑚),

46

let 𝑗 be the least number, such that 𝑝 occurs positively in 𝜒𝑗 , 𝜒𝑗 is not
as described, and let 𝜒𝑗 be (𝐴′ Y 𝐴1).

(3.1) If 𝐴1 is (𝐴2 ∧𝐴3), then, by the equivalence rule, the result for 𝜎 is
𝜎[𝜒𝑗//(𝐴

′ Y 𝐴2), (𝐴
′ Y 𝐴3)].

(3.2) If 𝐴1 is (𝐴2 ∨ 𝐴3), then there are three cases. If 𝑝 ̸ →˓ 𝐴2, then
by the equivalence rule the result for 𝜎 is 𝜎[𝜒𝑗//((𝐴′ ∨𝐴2) Y 𝐴3)].
Otherwise, if 𝑝 ̸ →˓ 𝐴3, then, by the equivalence rule, the result for
𝜎 is 𝜎[𝜒𝑗//((𝐴′ ∨𝐴3) Y 𝐴2)]. Otherwise, the result for 𝜎 is failure.

(3.3) If𝐴1 is�𝐴2, by the box rule, the result for 𝜎 is 𝜎[𝜒𝑗//(�−1𝐴′ Y 𝐴1)].
(3.4) If 𝐴1 is ♦𝐴2 and 𝐴′ is either ¬𝑐′ or (⊥∨¬𝑐′), then, by the diamond

rule, let 𝑐′′ be a new nominal, then the result for 𝜎′ is
𝜎[𝜒𝑗//(𝑐

′ → ♦𝑐′′), (¬𝑐′′ Y 𝐴1)].
(3.5) If we are not in any of the above four cases, the result for 𝜎 is

failure.

It is immediate that the above describes a uniquely defined effective function
over the systems of equations and propositional variables. We denote the
function by step.

Immediately by the definition of step, we have that 𝜎 ≈d
𝑘 step(𝜎, 𝑝) for

type 1 input languages, and 𝜎 ≈di
𝑘 step(𝜎, 𝑝) for type 2 input languages, by the

correctness of the SQEMA rules, Proposition 50.
We prove that the application of step can be composed only finitely many

times for a starting 𝜎 and a given 𝑝, before reaching either a 𝜎′, such that
𝑝 ̸ →˓ 𝜎′, or failure.

Indeed, if the result is ever obtained by (1), (2), (3.5), or the failing condition
of (3.2), it is clear that this is the final application of step. Therefore, suppose
there is an infinite sequence of results, obtained by (3.1), (3.3), (3.4), or the
non-failing conditions of (3.2). Then, there is an infinite sequence 𝜎0, 𝜎1, . . . ,
and let 𝑆0, 𝑆1, . . . be the sum of lengths of right-hand sides of equations in
the corresponding 𝜎-s. It is clear that 𝑆0 > 0 and for 𝑖 < 𝑗, 𝑆𝑖 > 𝑆𝑗 , which is
impossible. Therefore, we can only apply step a finite number of times. �

Lemma 82 (Main Deterministic SQEMA Lemma) Let 𝜎 be a system
of equations that Deterministic SQEMA works on. Then the following hold:

i. 𝜎 is a normalized system, except in STEP 4 between an application of
the Ackermann Rule (which is case 2. of the function step) and the subsequent
system normalization.

ii. In the left-hand side of each equation, there are no conjunctions outside
the scope of a box or a diamond.

iii. If we are in STEP 4 of Deterministic SQEMA with a variable 𝑝 to
eliminate, then the left-hand side of any equation in 𝜎 does not contain
occurrences of 𝑝.

47

iv. If 𝐿, the modal language of the input formula, is a type 1 language,
and if 𝐿′ is its hybrid temporal extension, then 𝜎 is a syntactically closed with
respect to 𝐿 formula of 𝐿′ with its equations being syntactically open with
respect to 𝐿 formulas of 𝐿′.

Proof Condition iv. above can be checked immediately by checking all possible
rules that Deterministic SQEMA, including step, applies to its systems.

In STEP 2, we take the conjunct 𝐴𝑖 and use an eliminating
normalization procedure to convert ¬𝐴𝑖 into𝐴′, then we form a system with the
only equation (¬𝑐 Y 𝐴′). Clearly, the only equation in this system is normalized,
i.e. the main rules cannot be applied further on any subformula of 𝐴′ or on any
subformula of ¬𝑐. Also, there are no conjunctions or variables in the left-hand
side of the equation.

In STEP 4, we run the Deterministic SQEMA strategy, which is to run
the step function, converting the current system into another one, occasionally
backtracking and replacing the current system with a system, where a variable’s
polarity has been switched.

In STEP 4, after eliminating a variable from a system, we use an eliminating
normalization procedure to convert ¬𝜎 to a normalized formula 𝐴0, then we
construct a new system 𝜎′, which is either ¬

⋀︀
((¬𝑐∨𝐴1)) if 𝐴0 is (¬𝑐∨𝐴1) or

otherwise ¬
⋀︀
((⊥ Y 𝐴0)). Because 𝐴0 is normalized, then so is the system 𝜎′.

Also, there are no conjunctions or variables in the left-hand side of the single
equation of 𝜎′.

Let 𝑝 be the current variable to eliminate in STEP 4. It remains only to
see that if 𝜎 has the desired properties, then step(𝜎, 𝑝) is either failure or a
system with the desired properties.

Let 𝑝 be the current variable to eliminate in STEP 4. Let 𝜎 be the input
system, which is normalized, there are no conjunctions in the left-hand side of
any equation of 𝜎 outside the scope of a box or a diamond, and 𝑝 does not
occur in any left-hand side of any equation of 𝜎. Let 𝜎′ =def step(𝜎, 𝑝) be the
output system, in the cases when the output is not failure.

1. If the result is obtained by 1., the conditions hold.
2. If the result is obtained by 2., the Ackermann Rule, we only need

to prove conditions ii. and iii. We have that 𝜎 is ¬
⋀︀
((𝛼1 ∨ 𝑝), . . . , (𝛼𝑛𝑎 ∨

𝑝), 𝛽1, . . . , 𝛽𝑛𝑏
, 𝜃1, . . . , 𝜃𝑛𝑡). Because 𝑝 ̸ →˓ 𝜎′, clearly iii. holds for 𝜎′. Because

iii. holds for 𝜎, then the left-hand side of any 𝛽𝑗 hasn’t changed. This fact and
the fact that ii. holds for 𝜎 shows that ii. holds for 𝜎′.

3. If the result is obtained by 3.1, then we have split an equation on a
conjunction into two equations. Let 𝜒 be the equation that has been split.
Let 𝜒 be (𝐴1 Y (𝐴2 ∧ 𝐴3)). The equation 𝜒 has been split into two equations
of 𝜎′, 𝜒1 =def (𝐴1 Y 𝐴2) and 𝜒2 =def (𝐴1 Y 𝐴3). Because the system 𝜎 is
normalized, we have that the formula (𝐴2 ∧𝐴3) is normalized, so there are no

48

possible applications of the main rules on any subformula of (𝐴2 ∧ 𝐴3). It is
enough to show that there are no possible applications of the main rules on
any subformula of any of the two formulas 𝐴2 and 𝐴3. But this follows by the
fact that 𝐴2 and 𝐴3 are subformulas of (𝐴2 ∧𝐴3).

4. If the result is obtained by 3.2, then it is either failure, in which case the
condition holds, or 𝜎′. Let 𝜒 =def (𝐴1 Y (𝐴2 ∨ 𝐴3)) be the changed equation
of 𝜎, and let w.l.o.g. the resulting equation of 𝜎′ be 𝜒′ =def ((𝐴1 ∨𝐴2) Y 𝐴3).

Consider (𝐴1∨𝐴2). Suppose for the sake of contradiction that 𝐴2 contains
a conjunction which is outside the scope of a box or a diamond. Let 𝐴′

2 be the
longest subformula of 𝐴2, which is a conjunction not in the scope of a box or a
diamond. Then either 𝐴′

2 is 𝐴2, or 𝐴′
2 w.l.o.g. occurs in a subformula (𝐴′

2∨𝐴′′
2)

of 𝐴2. In both cases, either the main rule 4. or the main rule 5. is applicable to
(𝐴2∨𝐴3), contradiction. We conclude that 𝐴2 does not have any conjunctions
which are not in the scope of a box or a diamond. Then clearly (𝐴1 ∨𝐴2) also
does not have any conjunctions outside the scope of a box or a diamond.

All of 𝐴1, 𝐴2, 𝐴3 are already normalized formulas so it remains to see that
no main rule is applicable to (𝐴1 ∨ 𝐴2). Suppose one of the main rules 1., 2.,
or 3. is applicable to a subformula of (𝐴1 ∨𝐴2), then it is also applicable to a
subformula of either 𝐴1 or 𝐴2, contradiction. Now suppose that main rule 4.
or main rule 5. is applicable to a subformula of (𝐴1 ∨ 𝐴2). Because it is not
applicable to subformulas of either 𝐴1 or 𝐴2, it must be applicable directly to
(𝐴1 ∨𝐴2). But (𝐴1 ∨𝐴2) contains no conjunctions outside the scope of a box
or a diamond, contradiction. Therefore 𝜒′ is a normalized equation.

5. If the result is obtained by 3.3, then the Box-Rule of SQEMA was applied.
Let the changed equation in 𝜎 be 𝜒 =def (𝐴1 Y �𝐴2), and the resulting
equation in 𝜎′ be 𝜒′ =def (�−1𝐴1 Y 𝐴2). Clearly, �−1𝐴1 has no conjunctions
outside the scope of a box or a diamond. Clearly, 𝐴2 is a normalized formula
because it is a subformula of the normalized formula �𝐴2. Now suppose for
the sake of contradiction that �−1𝐴1 is not a normalized formula. Then some
main rule 1., 2., 3., 4., or 5. can be applied to a subformula of �−1𝐴1. Then
the same main rule can be applied to a subformula of 𝐴1, contradiction.

6. If the result is obtained by 3.4, then the Diamond-Rule of SQEMA was
applied. Let the changed equation in 𝜎 be 𝜒 =def (𝐴1 Y ♦𝐴2), with 𝐴1 being
either ¬𝑐 or (⊥ ∨ ¬𝑐), and the resulting equations in 𝜎′ be 𝜒′

1 =def (𝑐 → ♦𝑐′)
and 𝜒′

2 =def (¬𝑐′ Y 𝐴2). Clearly both equations are normalized and both
equations do not have in their left-hand side any conjunctions or variables.

7. If the result is obtained by 3.5, then the result is failure and the conditions
hold. �

Corollary 83 Let 𝜎 be a system that Deterministic SQEMA works on in
STEP 4, let 𝑝 be a current variable to eliminate, and let step(𝜎, 𝑝) = failure.
Then there is an equation 𝜒 in the system 𝜎, such that 𝑝 occurs positively in

49

𝜒 and 𝜒 is either (𝐴1 Y (𝐴2 ∨ 𝐴3)) such that 𝑝 →˓ 𝐴2 and 𝑝 →˓ 𝐴3, or 𝜒 is
(𝐴1 Y ♦𝐴2) such that 𝐴1 is not a negated nominal and is not (⊥ ∨ ¬𝑐).

Proof Clearly failure may only be obtained either from 3.2, in which case
there is nothing to prove, or from 3.5. So let it be obtained from 3.5. Because
the result is not obtained from either 1 or 2, then let the first equation of 𝜎,
where 𝑝 occurs positively and it is not in the form (𝛼 Y 𝑝) such that 𝑝 ̸ →˓ 𝛼, be
𝜒. Suppose for the sake of contradiction that 𝜒 is not of the kind (𝐴1 Y ♦𝐴2)
such that 𝐴1 is not a negated nominal and is not (⊥∨¬𝑐). Then there are the
following cases:

1. 𝜒 is of the kind (𝑐′ → ♦𝑐′′). Contradicts the fact that 𝑝 →˓ 𝜒.
2. 𝜒 is of the kind (𝐴1 Y 𝑝′). If 𝑝′ is 𝑝, then because 𝜒 is not in the form

(𝛼 Y 𝑝) such that 𝑝 ̸ →˓ 𝛼, then 𝑝 →˓ 𝐴1. But this contradicts Lemma 82. So 𝑝′

is not 𝑝. But then by Lemma 82, 𝑝 ̸ →˓ 𝜒, contradiction.
3. 𝜒 is either of the kind (𝐴1 Y ¬𝑝′), of the kind (𝐴1 Y 𝑐), or of the

kind (𝐴1 Y ¬𝑐). Then because 𝑝 occurs positively in 𝜒, then we get 𝑝 →˓ 𝐴1,
contradicts Lemma 82.

4. 𝜒 is either of the kind (𝐴1 Y (𝐴2
∧
∨ 𝐴3)) or of the kind (𝐴1 Y �𝐴2).

Contradicts the fact that the failure was obtained from 3.5.
5. 𝜒 is of the kind (𝐴1 Y ♦𝐴2). Clearly in this case, if 𝐴1 is either a negated

nominal or (⊥∨¬𝑐), then the result is obtained from 3.4, contradiction. So the
only possibility here is that 𝐴1 is not a negated nominal and is not (⊥ ∨ ¬𝑐),
but this contradicts the supposed property of 𝜒.

In all cases, we have reached a contradiction. Thus we conclude that 𝜒 is of
the kind (𝐴1 Y ♦𝐴2) such that 𝐴1 is not a negated nominal and is not (⊥∨¬𝑐).
�

Also by Lemma 82, the SQEMA rules have been applied with accordance to
Definition 48, so by Theorem 32, we conclude that the formulas that Deterministic
SQEMA succeeds on are canonical with respect to 𝐿.

This concludes our definition of Deterministic SQEMA and the proof for
its soundness and termination.

We now use the above Main Deterministic SQEMA Lemma 82 and its
Corollary 83 to prove that Deterministic SQEMA succeeds on two popular
elementary classes of canonical formulas, the Sahlqvist class and class of Inductive
formulas.

3.6 Examples

Here ♦ means ♦1 as in ML(�) and � means �1.

50

3.6.1 (𝑐1 → ¬♦𝑐1)

Consider the formula (𝑐1 → ¬♦𝑐1).
In STEP 1, we rewrite it in negation normal form, obtaining:
(¬𝑐1 ∨�¬𝑐1).
It is impossible to apply rules 1.1, 1.2 or 1.3 anymore. This we have a single

conjunct, 𝐴1 = (¬𝑐1 ∨�¬𝑐1).
In STEP 2, we need to normalize ¬𝐴1 = ¬(¬𝑐1 ∨�¬𝑐1).
By Definition 79, first we obtain the negation normal form of ¬𝐴1, which is

(𝑐1 ∧ ♦𝑐1).
None of the main rules are applicable to (𝑐1 ∧ ♦𝑐1).
Now, we reserve a nominal, 𝑐2, which does not occur in (𝑐1 ∧ ♦𝑐1). The initial

equation is (¬𝑐2 Y (𝑐1 ∧ ♦𝑐1)). The initial system is:
𝜎1 = ¬

⋀︀
((¬𝑐2 Y (𝑐1 ∧ ♦𝑐1))).

In STEP 3, we pick the empty elimination order because there are no propositional
variables in 𝜎1. Clearly we have succeeded in eliminating all propositional variables
in the empty elimination order, so we proceed with STEP 5.

In STEP 5, we have the pure system 𝜎1 = ¬
⋀︀
((¬𝑐2 Y (𝑐1 ∧ ♦𝑐1))). We take 𝑐3

as the next available nominal, and we set fol1 = ∀𝑥1∃𝑥3st(4, 𝑥3, 𝜎1). The result is⋀︀
(∀𝑥1∃𝑥3st(4, 𝑥3, 𝜎1)).

Let us see how st works here.
st(4, 𝑥3,¬

⋀︀
((¬𝑐2 ∨ (𝑐1 ∧ ♦𝑐1)))) ≡ ¬st(4, 𝑥3, (¬𝑐2 ∨ (𝑐1 ∧ ♦𝑐1))) ≡

≡ ¬(st(4, 𝑥3,¬𝑐2) ∨ st(4, 𝑥3, (𝑐1 ∧ ♦𝑐1))) ≡
≡ ¬(¬st(4, 𝑥3, 𝑐2) ∨ (st(4, 𝑥3, 𝑐1) ∧ st(4, 𝑥3,♦𝑐1))) ≡
≡ ¬(¬(𝑥3 = 𝑥2) ∨ ((𝑥3 = 𝑥1) ∧ ∃𝑥4((𝑥3 𝑟1 𝑥4) ∧ st(5, 𝑥4, 𝑐1)))) ≡
≡ ¬(¬(𝑥3 = 𝑥2) ∨ ((𝑥3 = 𝑥1) ∧ ∃𝑥4((𝑥3 𝑟1 𝑥4) ∧ (𝑥4 = 𝑥1))))
So, the final result is:
∀𝑥1∃𝑥3¬(¬(𝑥3 = 𝑥2) ∨ ((𝑥3 = 𝑥1) ∧ ∃𝑥4((𝑥3 𝑟1 𝑥4) ∧ (𝑥4 = 𝑥1))))
After some simplification, we obtain the result:
𝜓(𝑥2) ≡ ∀𝑥1((𝑥2 = 𝑥1) → ¬(𝑥2 𝑟1 𝑥1)).
which can be further simplified to:
𝜓(𝑥2) ≡ ¬(𝑥2 𝑟1 𝑥2), the local irreflexivity condition.

3.6.2 ((�♦𝑝→ ♦�𝑝) ∨ (�𝑝→ ♦𝑝))

Consider the formula ((�♦𝑝→ ♦�𝑝)∨(�𝑝→ ♦𝑝)). This is a formula on which
the classical SQEMA fails.

In STEP 1, we rewrite it in negation normal form, obtaining:
(♦�𝑝 ∨ ♦�¬𝑝 ∨ ♦𝑝 ∨ ♦¬𝑝).
It is impossible to apply rules 1.1, 1.2 or 1.3 anymore. This we have a single

conjunct, 𝐴1 = (♦�𝑝 ∨ ♦�¬𝑝 ∨ ♦𝑝 ∨ ♦¬𝑝).
In STEP 2, we need to normalize ¬𝐴1 = ¬(♦�𝑝 ∨ ♦�¬𝑝 ∨ ♦𝑝 ∨ ♦¬𝑝).
By Definition 79, first we obtain the negation normal form of ¬𝐴1, which is

(�♦¬𝑝 ∧ (�♦𝑝 ∧ (�¬𝑝 ∧�𝑝))).
Now, none of the main rules are applicable to the above, but the box extraction

rule is applicable. Thus we obtain (�♦¬𝑝 ∧ (�♦𝑝 ∧�(¬𝑝 ∧ 𝑝))).

51

The next rule that is applied is replacing (𝛾1 ∧ 𝛾2) with ⊥ when the normalized
forms of 𝛾1 and ¬𝛾2 are the same formula. Here, both of these are ¬𝑝 and thus we
obtain the formula (�♦¬𝑝 ∧ (�♦𝑝 ∧�⊥)).

We apply box extraction again, obtaining (�♦¬𝑝 ∧�(♦𝑝 ∧ ⊥)).
Now we replace (𝛾 ∧ ⊥) with ⊥, obtaining (�♦¬𝑝 ∧�⊥).
Box extraction is applied again, obtaining �(♦¬𝑝 ∧ ⊥).
Using the same rule as before, we obtain �⊥. No more rules can be applied.
Now, we reserve a nominal, 𝑐1, which does not occur in �⊥. The initial equation

is (¬𝑐1 Y �⊥). The initial system is 𝜎1 = ¬
⋀︀
((¬𝑐1 Y �⊥)).

In STEP 3, we pick the empty elimination order because there are no propositional
variables in 𝜎1. Clearly we have succeeded eliminating all variables in the empty
elimination order, so we proceed with STEP 5.

In STEP 5, we have the pure system 𝜎1 = ¬
⋀︀
((¬𝑐1 Y �⊥)). We take 𝑐2

as the next available nominal, and we set fol1 = ∃𝑥2st(3, 𝑥2, 𝜎1). The result is⋀︀
(∃𝑥2st(3, 𝑥2, 𝜎1)).

After some simplification and renaming of individual variables, we obtain the
result ∃𝑧1(𝑥 𝑟1 𝑧1).

Here we can see the value of the box extracting rule, allowing Deterministic
SQEMA to succeed where the classic SQEMA fails.

3.6.3 (⟨𝑈⟩𝑝→ ⟨𝑈⟩♦𝑝)

Let us consider the formula (⟨𝑈⟩𝑝→ ⟨𝑈⟩♦𝑝).
In STEP 1, we rewrite it to negation normal form, obtaining
𝐴1 = ([𝑈]¬𝑝 ∨ ⟨𝑈⟩♦𝑝), where it is impossible to apply rules 1.1, 1.2, or 1.3.
In STEP 2, we normalize ¬𝐴1 = ¬([𝑈]¬𝑝 ∨ ⟨𝑈⟩♦𝑝).
We obtain the negation normal form of ¬𝐴1, which is (⟨𝑈⟩𝑝 ∧ [𝑈]�¬𝑝). No more

rules for normalization can be applied, except for the ones marked with CNF, which
do not apply here.

Now we reserve the nominal 𝑐1.
The initial system is 𝜎1 = ¬

⋀︀
((¬𝑐1 Y (⟨𝑈⟩𝑝 ∧ [𝑈]�¬𝑝))).

In STEP 3, we chose ⟨𝑝⟩ as the variable eliminating order with an empty backtracking
stack and proceed to STEP 4.

In STEP 4, we save a backtracking context ⟨𝑝, 𝜎1⟩, which will not be necessary,
as we see below.

We now apply the Deterministic SQEMA strategy, which is to call step as many
times as possible, until obtaining either failure or a pure system:

First, step splits on a conjunction: 𝜎2 = ¬
⋀︀
((¬𝑐1 Y ⟨𝑈⟩𝑝), (¬𝑐1 Y [𝑈]�¬𝑝)

Then, step applies the ♦-rule:
𝜎3 = ¬

⋀︀
((𝑐1 → ⟨𝑈⟩𝑐2), (¬𝑐2 Y 𝑝), (¬𝑐1 Y [𝑈]�¬𝑝))

Now, step applies the Ackermann rule:
𝜎4 = ¬

⋀︀
((𝑐1 → ⟨𝑈⟩𝑐2), (¬𝑐1 Y [𝑈]�¬𝑐2))

Because 𝜎4 is a pure system, we return to STEP 3, going to STEP 5:
We choose the new nominal 𝑐3 and set fol1 = ∀𝑥2∃𝑥3st(4, 𝑥3, 𝜎4). Let fol =⋀︀

(fol1), which is our result. After simplification and renaming of the individual
variables, we obtain: ∀𝑦1∃𝑧1(𝑧1 𝑟1 𝑦1).

52

3.6.4 ((♦�(𝑝→ 𝑞) ∧ ♦�(𝑞 → 𝑝)) → ♦�(𝑝↔ 𝑞))

Let us consider the formula ((♦�(𝑝→ 𝑞) ∧ ♦�(𝑞 → 𝑝)) → ♦�(𝑝↔ 𝑞)).
As we see below, Deterministic SQEMA fails on this formula, however,

in [19], the original authors of SQEMA present an extension of SQEMA,
SQEMAsub, which is capable of handling this formula by converting it using
a reversible substitution into an inductive formula, on which SQEMA can
succeed. The substitution would be the following:

1. 𝑇 (𝑞1) = ¬𝑝 ∨ 𝑞.
2. 𝑇 (𝑞2) = 𝑝 ∨ ¬𝑞.
3. 𝑇 (𝑞3) = 𝑝 ∨ 𝑞.
The reversed substitution is:
1. 𝑆(𝑝) = 𝑞3 ∧ 𝑞2
2. 𝑆(𝑞) = 𝑞3 ∧ 𝑞1.
Thus the formula becomes: ((♦�𝑞1 ∧ ♦�𝑞2) → ♦�(𝑞1 ∧ 𝑞2)).
A good future work item for Deterministic SQEMA and its implementation

is to include this extension of SQEMA.
Now, let us go back to the original formula and see how Deterministic

SQEMA fails on it.
In STEP 1, we first obtain a negation normal form of the input formula, which is:
𝐴1 = �♦(𝑝 ∧ ¬𝑞) ∨�♦(𝑞 ∧ ¬𝑝) ∨ ♦�((¬𝑝 ∨ 𝑞) ∧ (¬𝑞 ∨ 𝑝)).
There is a single conjunct in the above, so now we proceed to STEP 2.
In STEP 2, we have to normalize ¬𝐴1. First, we obtain a negation normal form:
♦�(¬𝑝 ∨ 𝑞) ∧ ♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∧ ¬𝑞) ∨ (𝑞 ∧ ¬𝑝)).
Now, we distribute ∨ over ∧ and obtain:
♦�(¬𝑝 ∨ 𝑞) ∧ ♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑝) ∧ (𝑞 ∨ ¬𝑞) ∧ (¬𝑝 ∨ ¬𝑞)).
Now, we may apply the rule of opposites:
♦�(¬𝑝 ∨ 𝑞) ∧ ♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ ⊤ ∧ (𝑞 ∨ ¬𝑞) ∧ (¬𝑝 ∨ ¬𝑞)).
And again:
♦�(¬𝑝 ∨ 𝑞) ∧ ♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ ⊤ ∧ ⊤ ∧ (¬𝑝 ∨ ¬𝑞)).
Then we eliminate ⊤ from the conjunction:
♦�(¬𝑝 ∨ 𝑞) ∧ ♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞)).
No more rules can be applied, except for the rules marked with CNF, so we

allocate a nominal, 𝑐1. The initial system is:
𝜎1 = ¬

⋀︀
((¬𝑐1 Y (♦�(¬𝑝 ∨ 𝑞) ∧ ♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞))))).

In STEP 3, we choose the elimination order ⟨𝑝, 𝑞⟩ and an empty backtracking
stack, then we proceed to STEP 4 with 𝑝 and 𝜎1.

In STEP 4, we save the backtracking context ⟨𝑝, 𝜎1⟩ and start applying the step
function.

First, step(𝜎1, 𝑝) splits on conjunction:
𝜎2 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ 𝑞)),
(¬𝑐1 Y (♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞))))).

And again, step(𝜎2, 𝑝) splits on conjunction:
𝜎3 = ¬

⋀︀
(

53

(¬𝑐1 Y ♦�(¬𝑝 ∨ 𝑞)),
(¬𝑐1 Y ♦�(¬𝑞 ∨ 𝑝)),
(¬𝑐1 Y �♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞)))).

Now, the ♦-rule is applied by step(𝜎3, 𝑝):
𝜎4 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ 𝑞)),
(𝑐1 → ♦𝑐2),
(¬𝑐2 Y �(¬𝑞 ∨ 𝑝)),
(¬𝑐1 Y �♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞)))).

Next, step(𝜎4, 𝑝) applies the �-rule:
𝜎5 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ 𝑞)),
(𝑐1 → ♦𝑐2),
(�−1¬𝑐2 Y (¬𝑞 ∨ 𝑝)),
(¬𝑐1 Y �♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞)))).

And now step(𝜎5, 𝑝) applies case 3.2:
𝜎6 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ 𝑞)),
(𝑐1 → ♦𝑐2),
((�−1¬𝑐2 ∨ ¬𝑞) Y 𝑝),
(¬𝑐1 Y �♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞)))).

step(𝜎6, 𝑝) applies the �-rule:
𝜎7 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ 𝑞)),
(𝑐1 → ♦𝑐2),
((�−1¬𝑐2 ∨ ¬𝑞) Y 𝑝),
(�−1¬𝑐1 Y ♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞)))).

And step(𝜎7, 𝑝) fails.
Now, the configuration ⟨𝑝, 𝜎1⟩ is popped from the backtracking stack and the

polarity of 𝑝 is reversed, obtaining:
𝜎8 = ¬

⋀︀
((¬𝑐1 Y (♦�(𝑝 ∨ 𝑞) ∧ ♦�(¬𝑞 ∨ ¬𝑝) ∧�♦((¬𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑞))))).

First, step(𝜎8, 𝑝) splits on conjunction:
𝜎9 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(𝑝 ∨ 𝑞)),
(¬𝑐1 Y (♦�(¬𝑞 ∨ ¬𝑝) ∧�♦((¬𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑞))))).

Now, step(𝜎9, 𝑝) applies the ♦-rule:
𝜎10 = ¬

⋀︀
(

(¬𝑐1 Y ♦𝑐3),
(¬𝑐3 Y �(𝑝 ∨ 𝑞)),
(¬𝑐1 Y (♦�(¬𝑞 ∨ ¬𝑝) ∧�♦((¬𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑞))))).

step(𝜎10, 𝑝) applies the �-rule:
𝜎11 = ¬

⋀︀
(

(¬𝑐1 Y ♦𝑐3),
(�−1¬𝑐3 Y (𝑝 ∨ 𝑞)),
(¬𝑐1 Y (♦�(¬𝑞 ∨ ¬𝑝) ∧�♦((¬𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑞))))).

step(𝜎11, 𝑝) applies case 3.2:
𝜎12 = ¬

⋀︀
(

54

(¬𝑐1 Y ♦𝑐3),
((�−1¬𝑐3 ∨ 𝑞) Y 𝑝),
(¬𝑐1 Y (♦�(¬𝑞 ∨ ¬𝑝) ∧�♦((¬𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑞))))).

step(𝜎12, 𝑝) splits on a conjunction:
𝜎13 = ¬

⋀︀
(

(¬𝑐1 Y ♦𝑐3),
((�−1¬𝑐3 ∨ 𝑞) Y 𝑝),
(¬𝑐1 Y ♦�(¬𝑞 ∨ ¬𝑝)),
(¬𝑐1 Y �♦((¬𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑞)))).

step(𝜎13, 𝑝) applies the �-rule:
𝜎14 = ¬

⋀︀
(

(¬𝑐1 Y ♦𝑐3),
((�−1¬𝑐3 ∨ 𝑞) Y 𝑝),
(¬𝑐1 Y ♦�(¬𝑞 ∨ ¬𝑝)),
(�−1¬𝑐1 Y ♦((¬𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑞)))).

step(𝜎14, 𝑝) fails.
The backtracking context is empty, so we return to STEP 3 with failure.
In STEP 3, we try the second permutation of the variables, ⟨𝑞, 𝑝⟩, create a new

empty backtracking context, and proceed to STEP 4.
In STEP 4, we save the backtracking context ⟨𝑞, 𝜎1⟩.
The current system is:
𝜎1 = ¬

⋀︀
((¬𝑐1 Y (♦�(¬𝑝 ∨ 𝑞) ∧ ♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞))))).

First, step(𝜎1, 𝑞) splits on conjunction:
𝜎15 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ 𝑞)),
(¬𝑐1 Y (♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞))))).

step(𝜎15, 𝑞) applies the ♦-rule:
𝜎16 = ¬

⋀︀
(

(¬𝑐1 Y ♦𝑐4),
(¬𝑐4 Y �(¬𝑝 ∨ 𝑞)),
(¬𝑐1 Y (♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞))))).

step(𝜎16, 𝑞) applies the �-rule:
𝜎17 = ¬

⋀︀
(

(¬𝑐1 Y ♦𝑐4),
(�−1¬𝑐4 Y (¬𝑝 ∨ 𝑞)),
(¬𝑐1 Y (♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞))))).

step(𝜎17, 𝑞) applies case 3.2:
𝜎18 = ¬

⋀︀
(

(¬𝑐1 Y ♦𝑐4),
((�−1¬𝑐4 ∨ ¬𝑝) Y 𝑞),
(¬𝑐1 Y (♦�(¬𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞))))).

step(𝜎18, 𝑞) splits on conjunction:
𝜎19 = ¬

⋀︀
(

(¬𝑐1 Y ♦𝑐4),
((�−1¬𝑐4 ∨ ¬𝑝) Y 𝑞),
(¬𝑐1 Y ♦�(¬𝑞 ∨ 𝑝)),
(¬𝑐1 Y �♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞)))).

55

step(𝜎19, 𝑞) applies the �-rule:
𝜎20 = ¬

⋀︀
(

(¬𝑐1 Y ♦𝑐4),
((�−1¬𝑐4 ∨ ¬𝑝) Y 𝑞),
(¬𝑐1 Y ♦�(¬𝑞 ∨ 𝑝)),
(�−1¬𝑐1 Y ♦((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑞)))).

step(𝜎20, 𝑞) fails.
Backtracking occurs to context ⟨𝑞, 𝜎1⟩. The polarity of 𝑞 is reversed, obtaining:
𝜎21 = ¬

⋀︀
((¬𝑐1 Y (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�(𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ ¬𝑞) ∧ (¬𝑝 ∨ 𝑞))))).

step(𝜎21, 𝑞) splits on conjunction:
𝜎22 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ ¬𝑞)),
(¬𝑐1 Y (♦�(𝑞 ∨ 𝑝) ∧�♦((𝑝 ∨ ¬𝑞) ∧ (¬𝑝 ∨ 𝑞))))).

step(𝜎22, 𝑞) splits on conjunction:
𝜎23 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ ¬𝑞)),
(¬𝑐1 Y ♦�(𝑞 ∨ 𝑝)),
(¬𝑐1 Y �♦((𝑝 ∨ ¬𝑞) ∧ (¬𝑝 ∨ 𝑞)))).

step(𝜎23, 𝑞) applies the ♦-rule:
𝜎24 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ ¬𝑞)),
(¬𝑐1 Y ♦𝑐5),
(¬𝑐5 Y �(𝑞 ∨ 𝑝)),
(¬𝑐1 Y �♦((𝑝 ∨ ¬𝑞) ∧ (¬𝑝 ∨ 𝑞)))).

step(𝜎24, 𝑞) applies the �-rule:
𝜎25 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ ¬𝑞)),
(¬𝑐1 Y ♦𝑐5),
(�−1¬𝑐5 Y (𝑞 ∨ 𝑝)),
(¬𝑐1 Y �♦((𝑝 ∨ ¬𝑞) ∧ (¬𝑝 ∨ 𝑞)))).

step(𝜎25, 𝑞) applies case 3.2:
𝜎26 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ ¬𝑞)),
(¬𝑐1 Y ♦𝑐5),
((�−1¬𝑐5 ∨ 𝑝) Y 𝑞),
(¬𝑐1 Y �♦((𝑝 ∨ ¬𝑞) ∧ (¬𝑝 ∨ 𝑞)))).

step(𝜎26, 𝑞) applies the �-rule:
𝜎27 = ¬

⋀︀
(

(¬𝑐1 Y ♦�(¬𝑝 ∨ ¬𝑞)),
(¬𝑐1 Y ♦𝑐5),
((�−1¬𝑐5 ∨ 𝑝) Y 𝑞),
(�−1¬𝑐1 Y ♦((𝑝 ∨ ¬𝑞) ∧ (¬𝑝 ∨ 𝑞)))).

step(𝜎27, 𝑞) fails.
Because there is nothing to backtrack to, STEP 4 reports failure and returns to

STEP 3.
In STEP 3, there are no more permutations of the propositional variables to try.

STEP 3 reports failure and returns to STEP 2.

56

In STEP 2, we are unable to solve the system 𝜎1 and report failure to STEP 1.
In STEP 1, the result of Deterministic SQEMA is failure.

3.6.5 More Examples

Here, we skip some of the steps to illustrate some more examples:
Take the formula (��𝑝→ ♦𝑝).
The initial equation is (¬𝑐1 Y �(�𝑝 ∧ ¬𝑝)).
The elimination order is ⟨𝑝⟩.
The initial system is
𝜎0: ¬

⋀︀
((¬𝑐1 Y �(�𝑝 ∧ ¬𝑝))).

step(𝜎0, 𝑝) applies the �-rule, and the result is
𝜎1: ¬

⋀︀
((�−1¬𝑐1 Y (�𝑝 ∧ ¬𝑝))).

Then step(𝜎1, 𝑝) is, by the semantic equivalence rule,
𝜎2: ¬

⋀︀
((�−1¬𝑐1 Y �𝑝), (�−1¬𝑐1 Y ¬𝑝))

Then the �-rule is applied:
𝜎3: ¬

⋀︀
((�−1�−1¬𝑐1 Y 𝑝), (�−1¬𝑐1 Y ¬𝑝))

Finally, the Ackermann rule is applied:
𝜎4: ¬

⋀︀
((�−1¬𝑐1 ∨

⋀︀
(�−1�−1¬𝑐1)))

After applying st and simplification, the following formula is the result:
∃𝑧1((𝑥 𝑟1 𝑧1) ∧ ∃𝑧2((𝑥 𝑟1 𝑧2) ∧ (𝑧2𝑟1𝑧1)))

Now, let us consider (�♦(𝑝∧ 𝑞)∨ (�♦((𝑝∨ 𝑞)∧ (¬𝑝∨¬𝑞))∨�♦(¬𝑝∧¬𝑞)))
A single system is produced, starting with elimination order ⟨𝑝, 𝑞⟩:
𝜎1: ¬

⋀︀
((¬𝑐1 Y (♦�(𝑝 ∨ 𝑞) ∧ (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�((𝑝 ∨ ¬𝑞) ∧ (𝑞 ∨ ¬𝑝))))))

Then, the equation is split on a conjunction:
𝜎2: ¬

⋀︀
((¬𝑐1 Y ♦�(𝑝 ∨ 𝑞)), (¬𝑐1 Y (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�((𝑝 ∨ ¬𝑞) ∧ (𝑞 ∨ ¬𝑝)))))

The ♦-rule is applied:
𝜎3: ¬

⋀︀
((𝑐1 → ♦𝑐2), (¬𝑐2Y�(𝑝∨𝑞)), (¬𝑐1Y(♦�(¬𝑝∨¬𝑞)∧♦�((𝑝∨¬𝑞)∧(𝑞∨¬𝑝)))))

The �-rule is applied:
𝜎4: ¬

⋀︀
((𝑐1 → ♦𝑐2), (�−1¬𝑐2 Y (𝑝∨ 𝑞)), (¬𝑐1 Y (♦�(¬𝑝∨¬𝑞)∧♦�((𝑝∨¬𝑞)∧ (𝑞 ∨

¬𝑝)))))
Now, the equivalence rule is applied on a disjunction (3.2 of step):
𝜎5: ¬

⋀︀
((𝑐1 → ♦𝑐2), ((�−1¬𝑐2 ∨ 𝑞) Y 𝑝), (¬𝑐1 Y (♦�(¬𝑝∨¬𝑞)∧♦�((𝑝∨¬𝑞)∧ (𝑞 ∨

¬𝑝)))))
Then, an equation is split on a conjunction:
𝜎6: ¬

⋀︀
((𝑐1 → ♦𝑐2), ((�−1¬𝑐2 ∨ 𝑞)Y 𝑝), (¬𝑐1 Y♦�(¬𝑝∨¬𝑞)), (¬𝑐1 Y♦�((𝑝∨¬𝑞)∧

(𝑞 ∨ ¬𝑝))))
Now, the ♦-rule is applied:
𝜎7: ¬

⋀︀
((𝑐1 → ♦𝑐2), ((�−1¬𝑐2 ∨ 𝑞) Y 𝑝), (¬𝑐1 Y ♦�(¬𝑝 ∨ ¬𝑞)), (𝑐1 → ♦𝑐3), (¬𝑐3 Y

�((𝑝 ∨ ¬𝑞) ∧ (𝑞 ∨ ¬𝑝))))
The �-rule:
𝜎8: ¬

⋀︀
((𝑐1 → ♦𝑐2), ((�−1¬𝑐2∨𝑞)Y𝑝), (¬𝑐1Y♦�(¬𝑝∨¬𝑞)), (𝑐1 → ♦𝑐3), (�−1¬𝑐3Y

((𝑝 ∨ ¬𝑞) ∧ (𝑞 ∨ ¬𝑝))))
Now, split on conjunction:
𝜎9: ¬

⋀︀
((𝑐1 → ♦𝑐2), ((�−1¬𝑐2∨𝑞)Y𝑝), (¬𝑐1Y♦�(¬𝑝∨¬𝑞)), (𝑐1 → ♦𝑐3), (�−1¬𝑐3Y

(𝑝 ∨ ¬𝑞)), (�−1¬𝑐3 Y (𝑞 ∨ ¬𝑝)))

57

step, point 3.2:
𝜎10: ¬

⋀︀
((𝑐1 → ♦𝑐2), ((�−1¬𝑐2∨𝑞)Y𝑝), (¬𝑐1Y♦�(¬𝑝∨¬𝑞)), (𝑐1 → ♦𝑐3), ((�−1¬𝑐3∨

¬𝑞) Y 𝑝), (�−1¬𝑐3 Y (𝑞 ∨ ¬𝑝)))
Applying the Ackermann rule followed by applying the system normalization

procedure gives us the following system:
𝜎11: ¬

⋀︀
((⊥ Y ((¬𝑐1 ∨ ♦�(�−1¬𝑐3 ∨ ¬𝑞)) ∧ ((�−1¬𝑐2 ∨ (�−1¬𝑐3 ∨ 𝑞)) ∧ ((𝑐1 →

♦𝑐2) ∧ (𝑐1 → ♦𝑐3))))))
Splitting twice on conjunction gives us:
𝜎12: ¬

⋀︀
((⊥Y(¬𝑐1∨♦�(�−1¬𝑐3∨¬𝑞))), (⊥Y(�−1¬𝑐2∨(�−1¬𝑐3∨𝑞))), (⊥Y((𝑐1 →

♦𝑐2) ∧ (𝑐1 → ♦𝑐3))))
Now, applying 3.2 of step twice:
𝜎12: ¬

⋀︀
((⊥Y(¬𝑐1∨♦�(�−1¬𝑐3∨¬𝑞))), (((⊥∨�−1¬𝑐2)∨�−1¬𝑐3)Y𝑞), (⊥Y((𝑐1 →

♦𝑐2) ∧ (𝑐1 → ♦𝑐3))))
Finally, applying the Ackermann rule, translating and simplifying gives us:
∀𝑦1∀𝑦2(((𝑥 𝑟1 𝑦1)∧(𝑥 𝑟1 𝑦2)) → ∀𝑧1((𝑥 𝑟1 𝑧1) → ∃𝑧2((𝑦1 𝑟1 𝑧2)∧(𝑦2 𝑟1 𝑧2)∧(𝑧1 𝑟1

𝑧2))))

3.7 Sahlqvist Formulas

The Sahlqvist formulas are simpler to deal with than the inductive formulas,
and here we examine them first to deal with a simpler case first.

In this section, ♦ stands for any diamond or reversed diamond, and �
means any box or reversed box.

We have adapted Definition 3.51 of [8], page 165.
We assume that a formula 𝐴 is positive iff all occurrences of propositional

variables in it are positive. Here, we disregard the occurrences of nominals.
Again, we assume that a formula𝐴 is negative iff all occurrences of propositional
variables in it are negative, again disregarding any occurrences of nominals.

Definition 84 (Sahlqvist Formulas) A boxed atom is a formula 𝐴, which is
either a propositional variable 𝑝 or �𝐴′, where 𝐴′ is a boxed atom. A Sahlqvist
antecedent is a formula built up from ⊤, ⊥, boxed atoms and negative formulas,
using ∧, ∨ and ♦. A Sahlqvist implication is of the form (𝐴′ → 𝐴′′), where
𝐴′ is a Sahlqvist antecedent and 𝐴′′ is positive. A Sahlqvist formula (in the
classical definition) is built up from Sahlqvist implications by using boxes and
conjunctions, and by applying disjunctions only between formulas which do not
share propositional variables. An extended Sahlqvist formula is built up from
Sahlqvist implications by using boxes, conjunctions, and disjunctions, where
the condition in [8] of using disjunctions is no longer necessary. From now on,
we simply say Sahlqvist formula instead of extended Sahlqvist formula.

Consider the formula (¬�1�1𝑝1∨♦1𝑝1), or, as a formula of ML(�), we may
simply write (¬��𝑝∨♦𝑝). By the definition of implication, this is the defined
formula (��𝑝 → ♦𝑝). Clearly this is a Sahlqvist implication, where ��𝑝 is a

58

boxed atom, and ♦𝑝 is positive. Thus, this formula is a Sahlqvist formula. Here
we see why we may not apply the same algorithm invariant as used for the non-
deterministic version SQEMA in [17]. In the original authors’ article, the initial
SQEMA equation for Sahlqvist formulas must be of the kind (¬𝑐Y𝛽), where 𝑐
is a nominal and 𝛽 is a Sahlqvist antecedent. However, due to box extraction,
Deterministic SQEMA’s initial equation is of the kind (¬𝑐 Y �(�𝑝 ∧ ¬𝑝)) and
clearly the right-hand side is not syntactically a Sahlqvist antecedent. Thus,
we may not apply the original proof that SQEMA succeeds on all Sahlqvist
formulas when it comes to Deterministic SQEMA. We need a new invariant
and a new proof.

A boxed piece is a formula 𝐴 which is either 𝑝, �𝐴′, Neg , (pure ∨ 𝐴′),
(𝐴′ ∨ pure) or (𝐴′

1 ∧ 𝐴′
2), where 𝐴′, 𝐴′

1, and 𝐴′
2 are boxed pieces, Neg is a

negative formula, pure is a pure formula, the main rules 1, 2, 3 (see Definition
76) are not applicable to any subformula of 𝐴, the main rules 4 and 5 may
only apply to negative or pure subformulas of 𝐴.

Examples of boxed pieces are: ��𝑝, �(𝑐1 → ♦𝑐2), (¬𝑞 ∨ ♦¬𝑝), (��𝑝 ∨
�(𝑐1 → ♦𝑐2)), (¬𝑞 ∨ ♦¬𝑝), and �((��𝑝 ∧�𝑞) ∧ (¬𝑞 ∨ ♦¬𝑝)).

A good piece is a formula 𝐴 which is built up from boxed pieces using ∧
and ♦ such that the main rules 1, 2, 3 (see Definition 76) are not applicable
to any subformula of 𝐴, the main rules 4 and 5 may only apply to negative
or pure subformulas of 𝐴, and also the following diamond distribution rule —
♦(𝛾1 ∨ 𝛾2) ⇒ (♦𝛾1 ∨♦𝛾2) — may only be applied to diamonds within negative
or pure subformulas.

Examples of good pieces are (�𝑝∧♦�𝑝), and (♦�𝑝∧(♦�(¬𝑝∨¬𝑞)∧♦�𝑞))).
We denote by 𝛿 a formula which is either a boxed piece, or of the form

(¬𝑐∨𝐴) where 𝐴 is a good piece. We denote by 𝛿′ a formula which is either a
𝛿, or of the kind ((⊥ ∨ ¬𝑐) ∨ 𝐴) where 𝐴 is a good piece. We denote by 𝛿′′ a
formula which is either a 𝛿, or of the kind (𝐴 ∨ ¬𝑐) where 𝐴 is a good piece.

Proposition 85 If 𝜎 is a system of equations, where each equation 𝜒 of 𝜎 is
such that either 𝜒 is a 𝛿′, or 𝜒 is of the form (⊥ Y

⋀︀
(𝛿′′1 , . . . , 𝛿

′′
𝑛)), then

1) Applying step gives a system of the same kind, and never failure.
2) The result of a system normalization procedure on 𝜎 is also a system of

the same kind.
3) On Sahlqvist input formulas, Deterministic SQEMA only works on

systems of the above kind.

Proof 1) Let 𝜎 be as described, and let 𝑝 be the current variable to eliminate
in Deterministic SQEMA’s STEP 4. Let us examine how the result of step is
obtained.

1. If result is obtained by 1., then clearly 1) holds.
2. If result is obtained by 2., the Ackermann rule, then we have replaced ¬𝑝

with a conjunction of left-hand sides of equations of 𝜎. But this conjunction

59

is clearly a pure formula. So, we have replaced occurrences of ¬𝑝 with a pure
formula. Clearly, ¬𝑝 is a negative formula, and the conjunction is a negative
formula and a pure formula. For each occurrence of ¬𝑝, we have replaced ¬𝑝
within a negative formula with a negative formula.

Clearly after the replacements, only negative subformulas on the right-hand
side of equations may have changed, because the left-hand sides are pure. Then
it is clear that in the resulting equations, rules 1, 2, 3 are not applicable to
any subformula, while rules 4 and 5 may only be applicable on the right-hand
sides within negative or pure subformulas.

Consider some occurrence of ¬𝑝. Let 𝜒 be an equation of 𝜎 where ¬𝑝 occurs.
If 𝜒 is a boxed piece, then ¬𝑝 is within a Neg , and after replacement we have
that the conjunction occurs in another Neg ′. If 𝜒 is (¬𝑐 Y 𝐴) where 𝐴 is a good
piece, then we have done the same as in the case where 𝜒 is a boxed piece. If
𝜒 is ((⊥ ∨ ¬𝑐) Y 𝐴) where 𝐴 is a good piece, then we have done the same as
in the case where 𝜒 is a boxed piece. We can easily see by the same kind of
reasoning that we have done the same when 𝜒 is of the kind (⊥ Y

⋀︀
(𝛿′′1 , . . . ,

𝛿′′𝑛)).
Then 1) holds.
3. Now, let 𝜒 be the first equation of 𝜎 such that 𝑝 occurs positively in 𝜒

and 𝜒 is not of the kind (𝛼 Y 𝑝) with 𝑝 ̸ →˓ 𝛼.
3.1. If result is obtained by 3.1., then we have split 𝜒 on a conjunction. Let

𝜒 be (𝐴1 Y (𝐴2 ∧ 𝐴3)) and let the resulting equations be 𝜒1 =def (𝐴1 Y 𝐴2)
and 𝜒2 =def (𝐴1 Y 𝐴3). First suppose that 𝜒 is a boxed piece. Then clearly
both 𝜒1 and 𝜒2 are boxed pieces. Now suppose (𝐴2 ∧𝐴3) is a good piece or a
boxed piece. Then 𝐴2 is a good piece or a boxed piece and 𝐴3 is a good piece
or a boxed piece. Now suppose that 𝜒 is (⊥ Y

⋀︀
(𝛿′′1 , . . . , 𝛿

′′
𝑛)). Suppose 𝑛 > 1,

then 𝜒1 is (⊥ Y
⋀︀
(𝛿′′1)) and 𝜒2 is (⊥ Y

⋀︀
(𝛿′′2 , . . . , 𝛿

′′
𝑛)). Suppose 𝑛 = 1. Then 𝛿′′1

is a conjunction, so it must be a boxed piece, then 𝜒 is a boxed piece, which
we have already covered. Suppose 𝑛 = 0. Then 𝜒 is a pure formula, therefore
it is a negative formula, which makes it a boxed piece, which we have covered
above. Then 1) holds.

3.2. If result is obtained by 3.2., 𝜒 is (𝐴1 Y (𝐴2 ∨ 𝐴3)). Because 𝑝 occurs
positively in 𝜒, by Lemma 82, 𝑝 occurs positively in (𝐴2 ∨ 𝐴3). Suppose 𝜒 is
a boxed piece. Then 𝐴1 is pure. Also w.l.o.g. 𝐴2 is pure and 𝐴3 is a boxed
piece, so 𝑝 ̸ →˓ 𝐴2, so the resulting equation 𝜒′ is ((𝐴1 ∨ 𝐴2) Y 𝐴3). Clearly
𝜒′ is a boxed piece. Now suppose (𝐴2 ∨ 𝐴3) is a good piece while 𝐴1 is either
¬𝑐 or (⊥ ∨ ¬𝑐). Then (𝐴2 ∨ 𝐴3) is a boxed piece and 𝐴1 is a pure formula,
so 𝜒 is a boxed piece, which we have discussed above. Now suppose that 𝜒 is
(⊥ Y

⋀︀
(𝛿′′1 , . . . , 𝛿

′′
𝑛)). Clearly in this case we must have that 𝑛 = 1. Suppose 𝛿′′1

is a boxed piece. Then 𝜒 is a boxed piece, which we have covered before. Now
suppose that 𝛿′′1 is either (¬𝑐 ∨𝐴) or (𝐴 ∨ ¬𝑐), where 𝐴 is a good piece. Then
clearly 𝑝 ̸ →˓ ¬𝑐 so the resulting equation 𝜒′ is ((⊥ ∨ ¬𝑐) Y 𝐴) with 𝐴 being a

60

good piece. Then 𝜒 is a 𝛿′. Therefore 1) holds.
3.3. If result is obtained by 3.3, 𝜒 is (𝐴1 Y �𝐴2). Then the resulting

equation 𝜒′ is (�−1𝐴1 Y 𝐴2). First suppose that 𝜒 is a boxed piece. By Lemma
82 and the definition of a boxed piece, 𝐴1 is pure and 𝑝 occurs positively in
�𝐴2. Then clearly �−1𝐴1 is pure and 𝐴2 is a boxed piece. Now suppose that
𝜒 is either (¬𝑐 Y 𝐴) or ((⊥∨ ¬𝑐) Y 𝐴). Then 𝐴 is �𝐴2, so 𝐴 is a boxed piece,
and this makes 𝜒 also a boxed piece because its left-hand side is pure. But this
case has already been discussed above. Now suppose that 𝜒 is (⊥ Y

⋀︀
(𝛿′′1 , . . . ,

𝛿′′𝑛)). Then clearly 𝑛 = 1 and 𝛿′′1 is �𝐴2 so 𝛿′′1 is a boxed piece, thus 𝜒 is also a
boxed piece. But we have seen this case above. Then 1) holds.

3.4. If result is obtained by 3.4, 𝜒 is (𝐴1 Y ♦𝐴2) with 𝐴1 being either
¬𝑐 or (⊥ ∨ ¬𝑐). The resulting equations are 𝜒1 which is (𝑐 → ♦𝑐′) and 𝜒2

which is (¬𝑐′ Y 𝐴2). Suppose for the sake of contradiction that 𝜒 is a boxed
piece. Clearly then ♦𝐴2 is a pure formula. But then by Lemma 82, 𝑝 ̸ →˓ 𝜒,
contradicts the fact that 𝑝 occurs positively in 𝜒. Clearly 𝜒 may not be of the
kind (⊥ Y

⋀︀
(𝛿′′1 , . . . , 𝛿

′′
𝑛)) because the left-hand side of 𝜒 is not ⊥. It follows

that 𝜒 is a 𝛿′ with ♦𝐴2 being a good piece. But then 𝐴2 is also a good piece.
Consider 𝜒1, it is a pure formula, so it is a negative formula and this makes 𝜒1

a boxed piece. Also 𝜒2 is a formula of the kind 𝛿′ because 𝐴2 is a good piece.
Then 1) holds.

3.5. Suppose for the sake of contradiction that failure is obtained by 3.5.
Then by Corollary 83 and the fact that failure is not obtained by 3.3., there is
an equation 𝜒′ in 𝜎 which is (𝐴1 Y ♦𝐴2) such that 𝐴1 is not a negated nominal
and is not (⊥ ∨ ¬𝑐). Suppose for the sake of contradiction that 𝜒′ is a boxed
piece. Then ♦𝐴2 is a pure formula and by Lemma 82, 𝑝 ̸ →˓ 𝜒′, contradiction.
So 𝜒′ is not a boxed piece. Then because of the above facts for 𝜒′, it may not
be of the kind 𝛿′. It follows that 𝜒′ is of the kind (⊥ Y

⋀︀
(𝛿′′1 , . . . , 𝛿

′′
𝑛)). Then

clearly 𝑛 = 1 and 𝛿′′1 is ♦𝐴2. But by the definition of 𝛿′′, ♦𝐴2 must be either
a boxed piece or a disjunction. Clearly ♦𝐴2 is not a disjunction, so it remains
that it must be a boxed piece. Then ♦𝐴2 is a negative formula, contradicts the
fact that 𝑝 occurs positively in 𝜒′. This shows that failure is never obtained
by 3.5.

We have shown that failure may not be obtained by 3.3 or 3.5 of step. We
have also shown that for any of the other cases, 1) holds.

2) Let us consider a system normalization procedure and its run on 𝜎. Let 𝜎
be ¬

⋀︀
(𝜒1, . . . , 𝜒𝑚). The first formula 𝐴0 as in Definition 80 is

⋀︀
(𝜒′

1, . . . , 𝜒
′
𝑚)

where it is trivial to see that each 𝜒′
𝑖, 1 ≤ 𝑖 ≤ 𝑚 is a 𝛿′′.

It remains to show that for every formula 𝛾 of the kind
⋀︀
(𝛿′′1 , . . . , 𝛿

′′
𝑚),

applying any of the main rules (see Definition 76) or the rules from the two
tables above to a subformula of 𝛾 converts 𝛾 to a formula of the same kind.

Clearly rules 1, 2, and 3 are not applicable. Suppose rule 4 or 5 has been
applied. By the definition of 𝛿′′, rules 4 or 5 are only applicable in two cases.

61

First, within negative (or pure) subformulas - where clearly applying rule 4
or 5 gives also a negative (or pure) subformula. Second, to subformulas of the
kind (¬𝑐∨ 𝛾) or (𝛾 ∨¬𝑐) which are of the kind 𝛿′′ and where 𝛾 is a good piece
and a conjunction (𝛾1 ∧ 𝛾2) of good pieces. Then the result is a formula of the
kind ((¬𝑐 ∨ 𝛾1) ∧ (¬𝑐 ∨ 𝛾2)) or ((𝛾1 ∨ ¬𝑐) ∧ (𝛾2 ∨ ¬𝑐)), which is a conjunction
of two formulas of the kind 𝛿′′.

Now let us consider the rules for the universal modality, which are the rules
in the first table.

(𝑐1 → ⟨𝑈⟩𝑐2) ⇒ ⊥ converts a negative and pure subformula into another
negative and pure one.

𝑈1𝑈2𝛾 ⇒ 𝑈2𝛾 converts a pure formula into a pure formula, a negative
formula into a negative formula, a boxed piece into a boxed piece, a good piece
into a good piece.

The following rules convert a pure formula into a pure formula, a negative
formula into a negative formula, and a boxed piece into a boxed piece:
�𝑈1𝛾 ⇒ (𝑈1𝛾 ∨�⊥)
[𝑈](𝑈1𝛾1

∧
∨ 𝑈2𝛾2) ⇒ (𝑈1𝛾1

∧
∨ 𝑈2𝛾2)

[𝑈](𝑈1𝛾1
∧
∨ 𝛾2) ⇒ (𝑈1𝛾1

∧
∨ [𝑈]𝛾2)

The following rule converts a pure and negative formula into another one:
[𝑈]¬𝑐⇒ ⊥
The following rules convert a pure formula into a pure formula, a negative

formula into a negative formula, a boxed formula into a boxed formula, and a
good piece into a good piece:
♦𝑈1𝛾 ⇒ (𝑈1𝛾 ∧ ♦⊤)
⟨𝑈⟩(𝑈1𝛾1

∧
∨ 𝑈2𝛾2) ⇒ (𝑈1𝛾1

∧
∨ 𝑈2𝛾2)

⟨𝑈⟩(𝑈1𝛾1 ∧ 𝛾2) ⇒ (𝑈1𝛾1 ∧ ⟨𝑈⟩𝛾2)
The following rule converts a pure and negative formula into another one:
⟨𝑈⟩𝑐⇒ ⊤
Because the diamond distribution rule is not applicable outside of negative

or pure subformulas, the rule ⟨𝑈⟩(𝑈1𝛾1 ∨ 𝛾2) ⇒ (𝑈1𝛾1 ∨ ⟨𝑈⟩𝛾2) may only be
applied to a negative or pure subformula. Then this rule clearly converts a
pure formula into a pure formula, a negative formula into a negative formula,
a boxed formula into a boxed formula, and a good piece into a good piece.

The ten rules in the right-hand piece of the first table (the table of universal
modality rules) as well as the top ten rules of the second table (five on each
side) may remove a subformula of either a conjunction or a disjunction or
may replace a subformula with ⊤ or ⊥. Clearly then a 𝛿′′ remains a 𝛿′′ after
replacement, and a conjunction of 𝛿′′ formulas remains a conjunction of 𝛿′′

formulas.
Clearly the rules (𝛾1 ∧ 𝛾2) ⇒ (𝛾2 ∧ 𝛾1), (𝛾1 ∨ 𝛾2) ⇒ (𝛾2 ∨ 𝛾1), and (𝛾1 ∧

(𝛾2 ∧ 𝛾3)) ⇒ ((𝛾1 ∧ 𝛾2) ∧ 𝛾3) maintain the invariant.

62

Consider the rule (𝛾1∨ (𝛾2∨𝛾3)) ⇒ ((𝛾1∨𝛾2)∨𝛾3). If it is applied within a
pure or a negative subformula, clearly the invariant is preserved. If it is applied
to a subformula of a boxed piece, there are two cases. First let 𝛾1 be pure. Then
one of 𝛾2 or 𝛾3 is pure, so the result is a boxed piece. Now, let 𝛾1 be a boxed
piece and (𝛾2 ∨ 𝛾3) be pure. Then the result is a boxed piece. If the rule is
applied to a 𝛿′′ of the kind (¬𝑐∨ 𝛾) or (𝛾 ∨¬𝑐) where 𝛾 is a good piece, then 𝛾
is a disjunction, so 𝛾 is a boxed piece and the 𝛿′′ is also a boxed piece, which
we have discussed above.

The rules �⊤ ⇒ ⊤ and ♦⊥ ⇒ ⊥ replace a negative and pure formula with
another negative and pure formula so the invariant holds.

Clearly the rule (�𝛾1∧�𝛾2) ⇒ �(𝛾1∧𝛾2) converts a boxed piece or a good
piece into a boxed piece because any good piece that starts with a box is a
boxed piece. It is clear what happens when the rule is applied within a pure
or a negative subformula. Thus the rule converts a conjunction of 𝛿′′ formulas
into another one.

Consider the rule (♦𝛾1∨♦𝛾2) ⇒ ♦(𝛾1∨𝛾2). Clearly neither ♦𝛾1 nor ♦𝛾2 is a
negated nominal because it is a diamond. Then the disjunction in the premise
of the rule may only occur within a negative or a pure subformula and the rule
converts it into another negative or pure subformula.

3) Let 𝐴 be a Sahlqvist formula. In STEP 1 of SQEMA we rewrite 𝐴
in negation normal form and then distribute all boxes and disjunctions over
conjunctions as much as possible. Then consider a conjunct 𝐴𝑖 in STEP 2,
and consider 𝐴′

𝑖 which is the result of applying main rules 1., 2., and 3.
(see Definition 76) as much as possible to ¬𝐴𝑖, which is the first step of the
eliminating normalization procedure.

The formula 𝐴′
𝑖 is built up from the negation normal form of Sahlqvist

antecedents and negative formulas using diamonds, conjunctions and disjunctions.
Therefore, 𝐴′ is the negation normal form of a Sahlqvist antecedent, as also
seen in [17]. Because 𝐴𝑖 is a conjunct, obtained by applying the rules 1.1, 1.2,
and 1.3 of SQEMA’s STEP 1, there is no subformula outside the scope of a
box which is a diamond of a disjunction, or a conjunction of a disjunction and
another formula in 𝐴′

𝑖. Any boxed atom is a boxed piece, and so is any negative
formula. Suppose for the sake of contradiction that there is a disjunction of two
formulas each of which is either a boxed atom or a negative formula in 𝐴′

𝑖. Then
its parent formula (if any) within 𝐴′

𝑖 may not be a diamond or a conjunction.
But by the definition of Sahlqvist antecedent, this means that there is a top-
level disjunction in 𝐴′

𝑖, which is a contradiction with the way that 𝐴𝑖 and 𝐴′
𝑖

were obtained. Then 𝐴′
𝑖 is built up from boxed atoms and negative formulas

using diamonds and conjunctions. Clearly the diamond distribution rule is not
applicable to 𝐴′

𝑖 outside of negative or pure subformulas, so 𝐴′
𝑖 is a good part.

This makes the initial equation of SQEMA a 𝛿. �

63

Corollary 86 Deterministic SQEMA succeeds on every Sahlqvist formula at
the first permutation of its variables, without backtracking. �

3.8 Example Runs with Sahlqvist Formulas

Now, some examples. Here ♦ means ♦1 as in ML(�) and � means �1.

3.8.1 (��𝑝→ ♦𝑝)

Consider the extended Sahlqvist formula (��𝑝 → ♦𝑝), which is the same
formula as in the first example of 3.6.5.

In STEP 1, we rewrite the formula in negation normal form: (♦♦¬𝑝 ∨ ♦𝑝).
No applications of rules 1.1, 1.2, or 1.3 are possible.
Thus we have a single conjunct, 𝐴1 = (♦♦¬𝑝 ∨ ♦𝑝).
We reserve the nominal 𝑐1 and proceed to STEP 2.
In STEP 2, we need to normalize ¬𝐴1. By Definition 79, first we obtain the

negation normal form of ¬𝐴1, which is (��𝑝∧�¬𝑝), which is a Sahlqvist antecedent
and also a boxed piece. No more of the main rules are applicable. But we may apply
the box extraction rule, obtaining (�(�𝑝 ∧ ¬𝑝)), which is a boxed piece and a good
piece. This is the normalized form of ¬𝐴1.

The initial system is:
𝜎1 = ¬

⋀︀
((¬𝑐1 Y �(�𝑝 ∧ ¬𝑝))), where the equation is both a boxed piece and of

the form (¬𝑐 ∨𝐴), where 𝐴 is a good piece.
In STEP 3, we pick the elimination order ⟨𝑝⟩, create an empty backtracking stack

and proceed to STEP 4.
In STEP 4, we save the context ⟨𝑝, 𝜎1⟩ to the stack and start applying step.
step(𝜎1, 𝑝) applies the box rule:
𝜎2 = ¬

⋀︀
((�−1¬𝑐1 Y (�𝑝 ∧ ¬𝑝))), where the equation is a boxed piece.

step(𝜎2, 𝑝) splits on a conjunction:
𝜎3 = ¬

⋀︀
((�−1¬𝑐1 Y �𝑝), (�−1¬𝑐1 Y ¬𝑝)), where every equation is a boxed piece.

step(𝜎3, 𝑝) applies the �-rule:
𝜎4 = ¬

⋀︀
((�−1�−1¬𝑐1 Y 𝑝), (�−1¬𝑐1 Y ¬𝑝)), where each equation is a boxed

piece.
step(𝜎4, 𝑝) applies the Ackermann rule:
𝜎5 = ¬

⋀︀
((�−1¬𝑐1 Y �−1�−1¬𝑐1)), where the equation is a pure formula and

thus a negative formula, which makes it a boxed piece.
By the above steps and explanations, the invariant holds before and after every

application of the function step.
This completes STEP 4, which returns to STEP 3, which returns to STEP 2,

which returns to STEP 1, which goes to STEP 5.
In STEP 5, we take the next available nominal, 𝑐2, and construct the final result

as 𝜓′(𝑥1) ≡ ∃𝑥2st(3, 𝑥2, 𝜎5).
After some simplification and renaming of individual variables, the result is:
𝜓(𝑥) ≡ ∃𝑧1((𝑥 𝑟1 𝑧1) ∧ ∃𝑧2((𝑥 𝑟1 𝑧2) ∧ (𝑧2 𝑟1 𝑧1))).

64

3.8.2 (�(�𝑝→ ⊥) ∨ ((⊤ → �♦(𝑝 ∧ 𝑞)) ∨�(�𝑞 → ⊥)))

Consider the extended Sahlqvist formula
(�(�𝑝→ ⊥) ∨ ((⊤ → �♦(𝑝 ∧ 𝑞)) ∨�(�𝑞 → ⊥))).
Note that the same deterministic SQEMA steps below apply to the formula
(�♦¬𝑝 ∨ (�♦(𝑝 ∧ 𝑞) ∨ �♦¬𝑞)), which is the negation normal form of the

above with eliminated occurrences of ⊥ and ¬⊤ in disjunctions.
We do not describe the normalization here because it only converts to negation

normal form and eliminates the boolean constants, unable to apply any more rules,
except for the ones marked with CNF.

The initial system (after normalization) is:
𝜎1: ¬

⋀︀
((¬𝑐1 Y (♦�𝑝 ∧ (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�𝑞))))

In the above equation, �𝑝, and �𝑞 are boxed pieces, �(¬𝑝 ∨ ¬𝑞) is a negative
formula and thus also a boxed piece, and the equation is (¬𝑐1 Y𝐴) where 𝐴 is a good
piece.

Now, we split on conjunction:
𝜎2: ¬

⋀︀
((¬𝑐1 Y ♦�𝑝), (¬𝑐1 Y (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�𝑞)))

The equations above are of the kind (¬𝑐1 Y𝐴) where 𝐴 is a good piece.
Applying the ♦-rule:
𝜎3: ¬

⋀︀
((𝑐1 → ♦𝑐2), (¬𝑐2 Y �𝑝), (¬𝑐1 Y (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�𝑞)))

Now the first equation is a pure formula which makes it a 𝛿, the second and third
equation are of the kind (¬𝑐1 Y𝐴) where 𝐴 is a good piece.

Applying the �-rule:
𝜎4: ¬

⋀︀
((𝑐1 → ♦𝑐2), (�−1¬𝑐2 Y 𝑝), (¬𝑐1 Y (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�𝑞)))

The first two equations are boxed pieces, and the last equation hasn’t changed.
Now, we apply the Ackermann rule:
𝜎5: ¬

⋀︀
((𝑐1 → ♦𝑐2), (¬𝑐1 Y (♦�(�−1¬𝑐2 ∨ ¬𝑞) ∧ ♦�𝑞)))

Here the first equation is still a boxed piece, and the last equation is of the kind
(¬𝑐1 Y 𝐴 where 𝐴 is a good piece.

Now, we apply the system normalization procedure. First, we create a formula
which is the negation normal form of⋀︀

((𝑐1 → ♦𝑐2), (¬𝑐1 ∨ (♦�(�−1¬𝑐2 ∨ ¬𝑞) ∧ ♦�𝑞)).
As in the proof of Proposition 85, this is a conjunction of the kind

⋀︀
(𝛿′′1 , . . . , 𝛿

′′
𝑛)

because each conjunct is either a boxed piece, or of the kind (¬𝑐 ∨ 𝐴) where 𝐴 is a
good piece.

But this formula is already in negation normal form. Now, we try applying the
main rules 1., 2., or 3., but this is impossible.

Now we continue by applying all the main rules and the rules from the two tables.
First, we apply the disjunction distribution rule:⋀︀
((𝑐1 → ♦𝑐2), (¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ ¬𝑞)), (¬𝑐1 ∨ ♦�𝑞)), which is still of the kind⋀︀

(𝛿′′1 , . . . , 𝛿
′′
𝑛).

No more rule application is possible, except for the rules marked with CNF,
but the implementation also arranges the subformulas using a form of lexicographic
ordering, using the (in CNF)-marked rules in the second table, so we obtain:⋀︀

((¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ ¬𝑞)), (𝑐1 → ♦𝑐2), (¬𝑐1 ∨ ♦�𝑞)).
Then we get the system:
𝜎6: ¬

⋀︀
((⊥ Y ((¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ ¬𝑞)) ∧ ((𝑐1 → ♦𝑐2) ∧ (¬𝑐1 ∨ ♦�𝑞))))),

65

The above equation is (⊥Y
⋀︀
((¬𝑐1∨♦�(�−1¬𝑐2∨¬𝑞)), (𝑐1 → ♦𝑐2), (¬𝑐1∨♦�𝑞))),

where the first two components of the conjunction are negative formulas, thus are of
the kind 𝛿′′, and the last one is a boxed piece and therefore of the kind 𝛿′′.

We proceed by trying to eliminate 𝑞:
We split on conjunction twice, maintaining the invariant because of the above

reasoning:
𝜎7: ¬

⋀︀
((⊥ Y (¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ ¬𝑞))), (⊥ Y (𝑐1 → ♦𝑐2)), (⊥ Y (¬𝑐1 ∨ ♦�𝑞)))

We apply point 3.2 of step:
𝜎8: ¬

⋀︀
((⊥ Y (¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ ¬𝑞))), (⊥ Y (𝑐1 → ♦𝑐2)), ((⊥ ∨ ¬𝑐1) Y ♦�𝑞))

Because ♦�𝑞 is a good piece, the third equation above is a 𝛿′ thus maintaining
the invariant.

Now, we apply 3.4 of step, the ♦-rule:
𝜎9: ¬

⋀︀
((⊥Y (¬𝑐1∨♦�(�−1¬𝑐2∨¬𝑞))), (⊥Y (𝑐1 → ♦𝑐2)), (𝑐1 → ♦𝑐3), (¬𝑐3Y�𝑞)),

maintaining the invariant because (𝑐3 ∨�𝑞) is a boxed piece.
Applying the �-rule:
𝜎10: ¬

⋀︀
((⊥Y (¬𝑐1∨♦�(�−1¬𝑐2∨¬𝑞))), (⊥Y (𝑐1 → ♦𝑐2)), (𝑐1 → ♦𝑐3), (�−1¬𝑐3 Y

𝑞)), where (�−1𝑐3 ∨ 𝑞) is a boxed piece.
Finally, we apply the Ackermann rule:
𝜎10: ¬

⋀︀
((⊥ Y (¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ �−1¬𝑐3))), (⊥ Y (𝑐1 → ♦𝑐2)), (𝑐1 → ♦𝑐3)),

which is a clean system and thus each equation is a boxed piece.
Finally, we apply st and simplify to obtain:
∀𝑦1∀𝑦2(((𝑥 𝑟1 𝑦1)∧(𝑥 𝑟1 𝑦2)) → ∀𝑧1((𝑥 𝑟1 𝑧1) → ∃𝑧2((𝑦1 𝑟1 𝑧2)∧(𝑦2 𝑟1 𝑧2)∧(𝑧1 𝑟1

𝑧2))))

3.8.3 (♦𝑝→ �♦𝑝)

Consider the extended Sahlqvist formula (♦𝑝→ �♦𝑝).
The initial system (after normalization) is:
𝜎1: ¬

⋀︀
((¬𝑐1 Y (♦�¬𝑝∧♦𝑝))), where (♦�¬𝑝∧♦𝑝) is a good piece because ♦�¬𝑝

is a negative formula and 𝑝 is a boxed piece.
Now, we split on conjunction:
𝜎2: ¬

⋀︀
((¬𝑐1 Y ♦�¬𝑝), (¬𝑐1 Y ♦𝑝))

Where the invariant is maintained due to the above reasoning.
Now, we apply the ♦-rule:
𝜎3: ¬

⋀︀
((¬𝑐1 Y ♦�¬𝑝), (𝑐1 → ♦𝑐2), (¬𝑐2 Y 𝑝)), maintaining the invariant.

After applying the Ackermann rule:
𝜎4: ¬

⋀︀
((¬𝑐1Y♦�¬𝑐2), (𝑐1 → ♦𝑐2)), maintaining the invariant because it is a pure

system thus every equation is a boxed piece.
Translating and simplifying, we obtain:
∀𝑦1((𝑥 𝑟1 𝑦1) → ∀𝑧1((𝑥 𝑟1 𝑧1) → (𝑧1 𝑟1 𝑦1)))

3.8.4 (��𝑝→ �𝑝)

Consider the extended Sahlqvist formula (��𝑝→ �𝑝). The initial system (after
normalization) is:

𝜎1: ¬
⋀︀
((¬𝑐1 Y (♦¬𝑝 ∧��𝑝)))

66

Clearly the invariant holds because (♦¬𝑝 ∧��𝑝) is a boxed piece.
First, we split on conjunction:
𝜎2: ¬

⋀︀
((¬𝑐1 Y ♦¬𝑝), (¬𝑐1 Y ��𝑝))

The invariant holds for the above because both equations are boxed pieces.
Now, we apply the �-rule twice, while each equation remains a boxed piece.
𝜎3: ¬

⋀︀
((¬𝑐1 Y ♦¬𝑝), (�−1�−1¬𝑐1 Y 𝑝))

Now, we apply the Ackermann rule:
𝜎4: ¬

⋀︀
((¬𝑐1 Y ♦�−1�−1¬𝑐1)), where the equation is a boxed piece.

We translate and simplify to obtain:
∀𝑧1((𝑥 𝑟1 𝑧1) → ∃𝑧2((𝑥 𝑟1 𝑧2) ∧ (𝑧2 𝑟1 𝑧1)))

3.9 Inductive Formulas

In this section, ♦ stands for any diamond or reversed diamond, and � means
any box or reversed box.

We assume that a formula 𝐴 is positive iff all occurrences of propositional
variables in it are positive. Here, we disregard the occurrences of nominals.
Again, we assume that a formula𝐴 is negative iff all occurrences of propositional
variables in it are negative, again disregarding any occurrences of nominals.

Definition 87 (Inductive Formulas) Let # be a symbol, which is not in
the alphabet of any of the input modal languages. # is a box-form of #. If 𝐵(#)
is a box-form of #, then �𝐵(#) is a box-form of # for any �, and (𝐴→ 𝐵(#))
is a box-form of # for any positive formula 𝐴. Replacing all occurrences of # in
𝐵(#) with 𝑝, we get 𝐵(𝑝), a box-formula of 𝑝. The only positive occurrence of 𝑝
in 𝐵(𝑝) is the head of 𝐵(𝑝), and any other occurrence of a propositional variable
in 𝐵(𝑝) is inessential. For convenience, we also say that 𝑝 is the head of 𝐵(𝑝)
and the variables which have inessential occurrences in 𝐵(𝑝) are inessential. A
monadic regular formula (MRF) is a modal formula built up from ⊤, ⊥, positive
formulas and negated box-formulas by applying ∧, ∨ and �. The dependency
graph of a set of box-formulas B = {𝐵1(𝑝1), . . . , 𝐵𝑛(𝑝𝑛)} is a directed graph
𝐺(B) = ⟨𝑉,𝐸⟩ where 𝑉 = {𝑝1, . . . , 𝑝𝑛} is the set of heads in B and 𝐸 is the set
of edges, such that ⟨𝑝𝑖, 𝑝𝑗⟩ ∈ 𝐸 iff 𝑝𝑖 occurs as an inessential variable in a box-
formula from B with head 𝑝𝑗 . A directed graph is acyclic iff it does not contain
directed cycles. The dependency graph of an MRF 𝐴 is the dependency graph
of the set of box-formulas which occur in the construction of 𝐴 as an MRF. A
monadic inductive formula (MIF) is a monadic regular formula with an acyclic
dependency graph. We say that a conjunction of MIFs is an inductive formula.

We extend the definitions to negation normal forms of the above.
Consider the same ML(�) formula that we took as an example of a Sahlqvist

formula, (¬��𝑝 ∨ ♦𝑝). We can see that it is an inductive formula because
��𝑝 is a boxed formula of 𝑝 with an empty graph and ♦𝑝 is positive. Here

67

we see why we may not apply the same algorithm invariant as used for the
non-deterministic version SQEMA in [17]. In the original authors’ article, the
initial SQEMA equation for inductive formulas must be of the kind (¬𝑐 Y
NegMIF*), where 𝑐 is a nominal and NegMIF* is the negation normal form of
a negation of an inductive formula, built up from ⊤, ⊥, positive formulas and
negated box-formulas using disjunctions and boxes with an acyclic dependency
graph, or, in other words, among other requirements, a formula built up from
⊤, ⊥, negative formulas and box-formulas using conjunctions and diamonds.
However, due to box extraction, Deterministic SQEMA’s initial equation is of
the kind (¬𝑐Y�(�𝑝∧¬𝑝)) and clearly the right-hand side is not syntactically
a NegMIF*. Thus, we may not apply the original proof that SQEMA succeeds
on all Inductive formulas when it comes to Deterministic SQEMA. We need a
new invariant and a new proof.

We define an extended box-formula of 𝑝 thusly: 𝑝 is an EB(𝑝), �EB(𝑝)
is an EB(𝑝), (EB1 (𝑝) ∧ EB2 (𝑝)) is an EB(𝑝), if Neg ′ and Neg ′′ are negative
formulas, then each of (Neg ′ ∨ EB(𝑝)), (EB(𝑝) ∨ Neg ′), (Neg ′′ ∧ EB(𝑝)) and
(EB(𝑝) ∧ Neg ′′) is an EB(𝑝), the main rules 1, 2, 3 (see Definition 76) are
not applicable to any subformula. Here, 𝑝 is the head of the extended box-
formula, any occurrences of propositional variables in any of the Neg ′ formulas
is inessential. The dependency graph of EB(𝑝) is defined analogously to the
above, but note that the variables of any Neg ′′ do not count as inessential.

Examples of BF (𝑝) are the following formulas: 𝑝, �𝑝, (�𝑝∨¬𝑝), which has
a cycle in its dependency graph, (�𝑝 ∧ ¬𝑝), which has an empty dependency
graph, �(�𝑝 ∧ (��(𝑝 ∨ ¬𝑞) ∧ ¬𝑝)), which has an edge from 𝑞 to 𝑝 in its
dependency graph.

PureBox is a pure formula built up from negated nominals, ⊥, ∨ and �.
We say that a formula 𝐴 is a Good formula if it is such that the main rules

1, 2, 3 (see Definition 76) are not applicable to any subformula of 𝐴, and 𝐴 is
either EB(𝑝), Neg , (𝐴1∧𝐴2), ♦𝐴′ outside the scope of boxes and disjunctions,
�𝐴′, (𝐴′ ∨ PureBox), or (PureBox ∨ 𝐴′), where Neg is a negative formula,
𝐴′, 𝐴1 and 𝐴2 are Good formulas, and also the following diamond distribution
rule — ♦(𝛾1 ∨ 𝛾2) ⇒ (♦𝛾1 ∨ ♦𝛾2) — may only be applied to diamonds within
negative or pure subformulas. The dependency graph of Good is the union of
the dependency graphs of the occurring formulas of kind EB(𝑝), and we require
that all Good formulas have an acyclic dependency graph.

Examples of Good formulas are: 𝑝, �𝑝, (♦�𝑝 ∧ (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�𝑞)).
A good system is a system of equations 𝜎 = ¬

⋀︀
(𝜒1, . . . , 𝜒𝑛), such that

every 𝜒𝑖 is a good equation with an acyclic dependency graph 𝐺(𝜒𝑖) defined
below, 𝐺(𝜎) =

⋃︀
{𝐺(𝜒1), . . . , 𝐺(𝜒𝑛)}, 𝐺(𝜎) is acyclic, where exactly one of the

following holds for each 𝜒𝑖:
good.1. 𝜒𝑖 is either (Negi1 Y Negi2) or (𝑐′𝑖 → ♦𝑐′′𝑖), with 𝐺(𝜒𝑖) = ⟨∅, ∅⟩,
good.2.1. 𝜒𝑖 is not of kind good.1, but is either (¬𝑐𝑖 Y Good 𝑖) or ((⊥∨¬𝑐𝑖) Y

68

Good 𝑖), with 𝐺(𝜒𝑖) = 𝐺(Good 𝑖),
good.2.2. 𝜒𝑖 is not of the kind good.1 or good.2.1., but is (PureBox Y

Good ′
𝑖), such that 1. there are no diamonds in Good ′

𝑖 outside of box-formulas
or negative subformulas, 2. 𝐺(𝜒𝑖) = 𝐺(Good ′

𝑖),
good.3. 𝜒𝑖 is not of the above kinds, but 𝜒𝑖 is (Neg ′𝑖 Y EB ′

𝑖(𝑝𝑖)), such that
𝜒𝑖 is some EB 𝑖(𝑝𝑖) with an acyclic graph, and 𝐺(𝜒𝑖) = 𝐺(EB 𝑖(𝑝𝑖)),

good.4. 𝜒𝑖 is not of the above kinds, but 𝜒𝑖 is (⊥ Y
⋀︀
(𝛿1, . . . , 𝛿𝑚)), where

each 𝛿𝑗 is either 1. negative with 𝐺(𝛿𝑗) = ⟨∅, ∅⟩, 2. (¬𝑐∨Good) or (Good ∨¬𝑐)
with 𝐺(𝛿𝑗) = 𝐺(Good), 3. (PureBox ∨ Good ′) or (Good ′ ∨ PureBox) with
𝐺(𝛿𝑗) = 𝐺(Good ′), such that there are no diamonds in Good ′ outside of box-
formulas or negative formulas, or 4. an EB with 𝐺(𝛿𝑗) = 𝐺(EB) - an acyclic
graph. The graph 𝐺(𝜒𝑖) =

⋃︀
{𝐺(𝛿1), . . . , 𝐺(𝛿𝑚)} is acyclic.

Claim 88 Every output of step, where the input is a good system, is a good
system.

Proof Consider result , which is step(𝜎, 𝑝), where for 𝜎 the invariant holds.
We show that result is not failure and that the invariant holds for result .

If result is obtained from (1), then the invariant holds.
If result is obtained from (2), the Ackermann rule, then result is 𝜎′, 𝜎 is

¬
⋀︀
((𝛼1 Y 𝑝), . . . , (𝛼𝑛𝑎 Y 𝑝), 𝛽1, . . . , 𝛽𝑛𝑏

, 𝜃1, . . . , 𝜃𝑛𝑡), such that 𝑝 ̸ →˓ 𝛼1, . . . ,
𝛼𝑛𝑎 , 𝜃1, . . . , 𝜃𝑛𝑡 . Then, each (𝛼 Y 𝑝) is of the form good.2.1, good.2.2, good.3,
or good.4, so each 𝛼 is a Neg , and the occurrences of ¬𝑝 within every 𝛽 are in
occurrences of a Neg within 𝛽.

It remains to prove that 𝐺(𝜎′) is acyclic. It would follow that the graph of
every resulting equation is acyclic and that each of the resulting equations are
in some of the good equation forms.

Because of the replacement, for every edge ⟨𝑞1, 𝑞2⟩ of 𝐺(𝜎′) either ⟨𝑞1, 𝑞2⟩
is an edge of 𝐺(𝜎) or there are edges ⟨𝑞1, 𝑝⟩ and ⟨𝑝, 𝑞2⟩ of 𝐺(𝜎). Then for every
cycle in 𝐺(𝜎′) there is a corresponding cycle in 𝐺(𝜎). Hence 𝐺(𝜎′) is acyclic.

Then 𝜎′ is a good system.
If result is obtained from (3.1), then result is 𝜎′. We have split on ∧

an equation of type good.2.1, good.2.2, good.3, or good.4. Equations of type
good.2.1 split into two equations of type good.2.1, or one of type good.1 and
one of type good.2.1. Equations of type good.2.2 split into two equations of
type good.2.2, or one of type good.1 and one of type good.2.2. Equations of
type good.3 split into two equations of the same kind, or one of kind good.1
and one of kind good.3. Equations of kind good.4 split into two equations,
each of them of type either good.1, good.2.2, good.3, or good.4. All resulting
equations are good equations, because the resulting equations have graphs that
are subgraphs of the original ones. Hence 𝜎′ is a good system.

If result is obtained from (3.2), then let the changed equation of 𝜎 be 𝜒,
which is (𝐴′ Y (𝐴2 ∨𝐴3)). We have that 𝜒 is not negative, and because of the

69

invariant for 𝜎 and the definition of Good, we have that 𝜒 is either of type
good.2.1, good.2.2, good.3, or good.4 with 𝑚 = 1.

First, let 𝜒 be of type good.2.1, good.2.2 or good.3. Then 𝐴′ is negative.
Because the graph of 𝜒 is acyclic, either 𝑝 ̸ →˓ 𝐴2, with 𝐴2 negative or pure and
𝐴3 a Good formula, or vice versa. So result is 𝜎′, not failure, and the invariant
holds for 𝜎′ because we have converted 𝜒 to an equation of type good 2.1, good
2.2 or good.3 with a graph that is the same.

Now, let 𝜒 be of type good.4 with 𝑚 = 1. Then 𝐴′ is ⊥. Then, because
𝑝 occurs positively in 𝜒, there are three cases for (𝐴2 ∨ 𝐴3). If (𝐴2 ∨ 𝐴3) is
(¬𝑐∨Good) or (PureBox ∨Good ′), then 𝑝 ̸ →˓ 𝐴2. If (𝐴2 ∨𝐴3) is (Good ∨¬𝑐)
or (Good ′ ∨ PureBox), then 𝑝 ̸ →˓ 𝐴3. In these two cases we have converted 𝜒
into an equation of type good.2.1 or good.2.2. If (𝐴2 ∨ 𝐴3) is an EB(𝑝′) with
an acyclic graph, then clearly 𝑝 is 𝑝′. Either 𝐴2 is negative and 𝑝 ̸ →˓ 𝐴2 or 𝐴3

is negative and 𝑝 ̸ →˓ 𝐴3. In this case we have converted 𝜒 into an equation of
type good.3.

In either case, result is 𝜎′ and the invariant holds for 𝜎′.
If result is obtained from (3.3), then result is 𝜎′. Suppose for the sake of

contradiction that we have changed an equation 𝜒 of kind good.4. Then either
𝜒 is a negative formula, which contradicts the fact that 𝜒 is not of kind good.1,
or the right-hand side of 𝜒 is a box, which contradicts the fact that 𝜒 is not
of kind good.3. Now, because 𝑝 occurs positively in the changed equation of
𝜎, there are three cases. First, an equation of type good.3 was changed, then
we have converted the equation into another one of type good.3 with a graph
that is the same. Second, we have converted an equation of type good.2.2 into
another one of the same kind, with a graph that is the same. Third, we have
converted an equation of type good.2.1 into an equation of type good.2.2 with
a graph that is the same. Therefore, the invariant holds.

If result is obtained from (3.4) or from (3.5), let the first equation of 𝜎
where 𝑝 occurs positively and which is not of kind (𝛼 Y 𝑝) such that 𝑝 ̸ →˓ 𝛼,
be 𝜒, which is (𝐴′ Y ♦𝐴2) by Corollary 83. Because 𝜒 is not negative, 𝜒 can
only be of type good.2.1, and the result can only have been obtained from
(3.4). The invariant holds because we have converted 𝜒 into an equation of
type good.1 and an equation of type good.2.1. �

Claim 89 Every output result of a system normalization procedure, where
the input is a good system, is a good system.

Proof Consider a system normalization procedure run on a good system
𝜎. Let 𝜎 be ¬

⋀︀
(𝜒1, . . . , 𝜒𝑚). The first formula 𝐴0 as in Definition 80 is⋀︀

(𝜒′
1, . . . , 𝜒

′
𝑚) where it is trivial to see that each 𝜒′

𝑖, 1 ≤ 𝑖 ≤ 𝑚 is a 𝛿 as
in the definition of good.4. above.

70

It remains to check that for every formula 𝛾 of the kind
⋀︀
(𝛿1, . . . , 𝛿𝑚),

applying any of the main rules (see Definition 76) or the rules from the two
tables above to a subformula of 𝛾 converts 𝛾 to a formula of the same kind.
This would guarantee that the resulting system has a single equation which
is of kind good.4 if it is not any of the kinds good.1, good.2.1, good.2.2, or
good.3.

Clearly the main rules 1, 2, and 3 (see Definition 76) do not apply.
Suppose rule 4 or 5 has been applied. Then the rule is applied to a subformula

of some 𝛿𝑖 of 𝛾.
If the rule is applied inside a negative formula, then we convert a negative

formula to another one with the same propositional variables, so the invariant
holds.

Suppose we apply the rule to the disjunction of a negative formula and
an EB . There are two cases. Either the formula to which the rule has been
applied is another EB , then the result is also an EB with the same graph as
the original. Or, the rule has been applied to a disjunction of a PureBox and
a formula of kind Good or Good ′, which we discuss below.

Suppose the rule is applied to a disjunction of a PureBox formula and a
Good or Good ′ formula. Then the result is a formula of the same kind, with
the same graph as the original.

Now suppose the rule is applied directly to a 𝛿.
If applied to a negative formula 𝛿, we have already seen this case above.
If applied to a formula 𝛿 of the kind (¬𝑐∨Good) or of the kind (Good ∨¬𝑐),

then we have split 𝛿 into two formulas of the same kind, with a subgraph of
the original, so the invariant holds.

If applied to a formula 𝛿 of the kind (PureBox ∨ Good ′) or of the kind
(Good ′ ∨PureBox), then we have clearly split 𝛿 into two formulas of the same
kind, with a subgraph of the original, so the invariant holds.

If applied to a formula 𝛿 which is an EB with an acyclic graph, then by
what we have discussed above, the invariant holds.

Now consider the rules in the first table above.
(𝑐1 → ⟨𝑈⟩𝑐2) ⇒ ⊥ converts a negative and pure subformula into another

negative and pure one, so it maintains the invariant.
The following rules convert a negative formula into another one, a PureBox

formula into another one, a negative formula into another one with the same
set of variables, an EB into another one with the same graph, a Good ′ into
another one with the same graph, or a Good into another one with the same
graph, so they maintain the invariant:

𝑈1𝑈2𝛾 ⇒ 𝑈2𝛾
�𝑈1𝛾 ⇒ (𝑈1𝛾 ∨�⊥)
[𝑈](𝑈1𝛾1

∧
∨ 𝑈2𝛾2) ⇒ (𝑈1𝛾1

∧
∨ 𝑈2𝛾2)

[𝑈](𝑈1𝛾1
∧
∨ 𝛾2) ⇒ (𝑈1𝛾1

∧
∨ [𝑈]𝛾2)

71

[𝑈]¬𝑐⇒ ⊥
♦𝑈1𝛾 ⇒ (𝑈1𝛾 ∧ ♦⊤)
⟨𝑈⟩(𝑈1𝛾1

∧
∨ 𝑈2𝛾2) ⇒ (𝑈1𝛾1

∧
∨ 𝑈2𝛾2)

⟨𝑈⟩(𝑈1𝛾1 ∧ 𝛾2) ⇒ (𝑈1𝛾1 ∧ ⟨𝑈⟩𝛾2)
⟨𝑈⟩𝑐⇒ ⊤
Because the diamond distribution rule is not applicable outside of negative

or pure subformulas in a Good formula, the rule ⟨𝑈⟩(𝑈1𝛾1 ∨ 𝛾2) ⇒ (𝑈1𝛾1 ∨
⟨𝑈⟩𝛾2) may only be applied to a negative or pure subformula within a PureBox
formula, a negative formula, an EB , a Good ′ formula or a Good formula. Then
this rule clearly converts a negative or pure subformula into another negative or
pure subformula whose variables are the same as the variables of the original,
thus preserving the invariant.

The ten rules in the right-hand part of the first table (the table of universal
modality rules) as well as the top ten rules of the second table (five on each
side) may replace a subformula with either ⊤ or ⊥ or may remove a subformula
of either a conjunction or a disjunction. Clearly then a 𝛿 remains a 𝛿 after
replacement with its graph being a subgraph of the original, and a conjunction
of 𝛿 formulas remains a conjunction of 𝛿 formulas with a graph which is a
subgraph of the original.

Clearly the rules (𝛾1 ∧ 𝛾2) ⇒ (𝛾2 ∧ 𝛾1), (𝛾1 ∨ 𝛾2) ⇒ (𝛾2 ∨ 𝛾1), and (𝛾1 ∧
(𝛾2 ∧ 𝛾3)) ⇒ ((𝛾1 ∧ 𝛾2) ∧ 𝛾3) maintain the invariant.

Consider the rule (𝛾1 ∨ (𝛾2 ∨ 𝛾3)) ⇒ ((𝛾1 ∨ 𝛾2) ∨ 𝛾3). If it is applied to
a negative or a PureBox formula, then the result is of the same kind and
the same set of occurring variables. If it is applied to an EB formula, then
one of 𝛾1 and (𝛾2 ∨ 𝛾3) is a negative formula and the other one is an EB , so
the invariant holds because the graph is the same. If the rule is applied to
a Good ′ formula, the result is also a Good ′ formula with the same graph. If
it is applied to a Good formula, the result is also a Good formula with the
same graph. Suppose the rule is applied to a 𝛿 formula. If 𝛿 is negative, the
result is also negative and the invariant is preserved. If 𝛿 is (¬𝑐 ∨ Good) or
(Good ∨ ¬𝑐), then Good is a disjunction and by the definition of Good there
are no diamonds in the scope of a disjunction in Good except inside a pure or
a negative subformula. So the result is a 𝛿 of the kind (PureBox ∨ Good ′) or
(Good ′ ∨PureBox) with the same graph. Now suppose that the rule is applied
to a 𝛿 of the kind (PureBox ∨Good ′) or (Good ′ ∨PureBox), then the result is
a formula of the same kind with the same graph, so the invariant holds. The
case of EB has already been discussed above.

The rule �⊤ ⇒ ⊤ replaces a PureBox formula with another one and
the rule ♦⊥ ⇒ ⊥ replaces a pure formula with another pure formula so the
invariant holds.

The rule (�𝛾1∧�𝛾2) ⇒ �(𝛾1∧𝛾2) converts a negative formula into another
one with the same set of variables, a PureBox formula into another one, an

72

𝐸𝐵 into another one with the same graph, a Good ′ formula into another one
with the same graph, a Good formula into another one with the same graph,
and a conjunction of 𝛿 formulas into another one.

Consider the rule (♦𝛾1 ∨ ♦𝛾2) ⇒ ♦(𝛾1 ∨ 𝛾2). Clearly neither ♦𝛾1 nor ♦𝛾2
is a negated nominal because it is a diamond. The rule converts a negative
formula into another one with the same set of variables, a PureBox formula into
another one, a Good ′ formula into another one with the same graph because
the diamonds only occur in negative or pure subformulas, a Good formula into
another one with the same graph because diamonds do not occur in PureBox .
It may only be applied to a 𝛿 formula if the 𝛿 formula is a negative formula,
which we have already discussed above. �

Claim 90 On inductive input formulas, Deterministic SQEMA only works on
good systems, with the starting equation being either of kind good.1 or of kind
good.2.1.

Proof By Claim 88 and Claim 89, it is enough to show that every initial
equation is one of the kinds good.1, good.2.1, good.2.2, good.3, or good.4.

Let 𝐴 be an inductive formula. In STEP 1 of SQEMA we rewrite 𝐴 in
negation normal form and then distribute all boxes and disjunctions over
conjunctions as much as possible. Consider a conjunct 𝐴𝑖 in STEP 2, and
consider 𝐴′

𝑖 which is the result of applying main rules 1., 2., and 3. (see
Definition 76) as much as possible to ¬𝐴𝑖, which is the first step of the
eliminating normalization procedure.

If 𝛾 is the negation normal form of a box-formula of the variable 𝑝, then
𝛾 is built up as follows: 𝑝 | (Neg ∨ 𝛾) | �𝛾. Clearly then 𝛾 is an extended
box-formula of 𝑝 (EB(𝑝)) with the same graph as 𝛾.

𝐴′
𝑖 is the negation normal form of a negated MRF formula with an acyclic

graph, so it is built up from negative formulas and negation normal forms
of box-formulas by applying ∨, ∧, and ♦. We must prove that 𝐴′

𝑖 is a Good
formula. To see that this is the case, first note that there are no occurrences of ♦
in 𝐴′

𝑖 in the scope of a disjunction or a box, except within negative subformulas.
Suppose for the sake of contradiction that 𝐴′

𝑖 contains an occurrence of a
disjunction outside any negative or EB subformulas. Because of STEP 1, this
is impossible. So the only occurrences of disjunctions in 𝐴′

𝑖 must be within
extended box-formulas or negative formulas. So 𝐴′

𝑖 is built up from negative
formulas and negation normal forms of box-formulas (which are extended box-
formulas) by applying ∧ and ♦. Because of how 𝐴′

𝑖 was obtained, none of
the main rules 1., 2., and 3. (see Definition 76) is applicable to 𝐴′

𝑖 and the
diamond distribution rule is not applicable to any subformula of 𝐴′

𝑖 except
within negative or pure subformulas. Then 𝐴′

𝑖 is a Good formula.
Similarly to the proof of Claim 89, we can see that the result of an eliminating

normalization procedure on a Good formula is a Good formula. Therefore the

73

initial equation is an equation of the kind (¬𝑐 Y Good), so it is either of kind
good.1 or of kind good.2.1. �

Corollary 91 Deterministic SQEMA succeeds on every inductive formula at
the first permutation of its variables, without backtracking. �

3.10 Example Runs with Inductive Formulas

Now, some examples. Here ♦ means ♦1 as in ML(�) and � means �1.

3.10.1 (𝑝1 ∨�¬𝑝2 ∨ ♦(¬𝑝1 ∧ 𝑝2))

Consider the inductive formula (𝑝1∨�¬𝑝2∨♦(¬𝑝1∧𝑝2)). This is a good example
because the execution of Deterministic SQEMA goes through all kinds of good
equations, good.1, good.2.1, good.2.2, good.3, and good.4.

In STEP 1, the formula is already in negation normal form, and it is impossible
to apply rules 1.1, 1.2, or 1.3 any more. Thus we have a single conjunct:

𝐴1 = (𝑝1 ∨�¬𝑝2 ∨ ♦(¬𝑝1 ∧ 𝑝2)).
In STEP 2, we need to normalize ¬𝐴 = ¬(𝑝1 ∨�¬𝑝2 ∨ ♦(¬𝑝1 ∧ 𝑝2)).
First, we obtain a negation normal form of ¬𝐴, which is: (¬𝑝1∧♦𝑝2∧�(𝑝1∨¬𝑝2)).

None of the main rules are applicable. However, the implementation re-arranges the
formulas using a form of lexicographical ordering, by the rules in the second table
marked as CNF, to obtain (♦𝑝2 ∧ (�(𝑝1 ∨ ¬𝑝2) ∧ ¬𝑝1)).

Now, we reserve the nominal 𝑐1 and form the initial system:
𝜎1 = ¬

⋀︀
((¬𝑐1 Y (♦𝑝2 ∧ (�(𝑝1 ∨ ¬𝑝2) ∧ ¬𝑝1)))).

Here, the equation is of kind good.2.1, with a graph containing two vertices, 𝑝1
and 𝑝2, with an edge from 𝑝2 to 𝑝1, and thus acyclic.

In STEP 3, we pick the elimination order ⟨𝑝1, 𝑝2⟩, create an empty backtracking
stack and proceed to STEP 4, attempting to eliminate 𝑝1.

In STEP 4, we save a backtracking context ⟨𝑝1, 𝜎⟩, which we will not have to use.
We now apply the Deterministic SQEMA strategy, which is to call step as many

times as possible, until obtaining either failure or a system, which is solved for 𝑝1:
step(𝜎1, 𝑝1) splits on conjunction:
𝜎2 = ¬

⋀︀
((¬𝑐1 Y ♦𝑝2), (¬𝑐1 Y (�(𝑝1 ∨ ¬𝑝2) ∧ ¬𝑝1))),

where the first equation is of kind good.2.1 with a graph with a single vertex 𝑝2
and no edges, and the second equation is of kind good.2.1 with a graph with two
vertices, 𝑝1 and 𝑝2, with an edge from 𝑝2 to 𝑝1, and thus acyclic. The combined graph
is the same as the graph for the second equation, thus acyclic.

step(𝜎2, 𝑝1) splits on conjunction:
𝜎3 = ¬

⋀︀
((¬𝑐1 Y ♦𝑝2), (¬𝑐1 Y �(𝑝1 ∨ ¬𝑝2)), (¬𝑐1 Y ¬𝑝1)).

The first equation does not change. The second one is of kind good.2.1, with the
same graph as the second equation in 𝜎2, thus acyclic. The third equation is of kind
good.1, with an empty graph. Thus the graph of 𝜎3 is the same as the graph of 𝜎2,
thus acyclic.

step(𝜎3, 𝑝1) applies the �-rule:
𝜎4 = ¬

⋀︀
((¬𝑐1 Y ♦𝑝2), (�−1¬𝑐1 Y (𝑝1 ∨ ¬𝑝2)), (¬𝑐1 Y ¬𝑝1)).

74

The first and the third equations are the same as in 𝜎3. The second equation is
of kind good.2.2, with the same graph as the second equation of 𝜎3, thus acyclic. The
combined graph of 𝜎4 is the same as the graph of 𝜎3, thus acyclic.

step(𝜎4, 𝑝1) applies case 3.2:
𝜎5 = ¬

⋀︀
((¬𝑐1 Y ♦𝑝2), ((�−1¬𝑐1 ∨ ¬𝑝2) Y 𝑝1), (¬𝑐1 Y ¬𝑝1)).

The first and the third equations are unchanged. The second equation is of kind
good.3, with the same graph as the second equation of 𝜎4, thus acyclic. The graph of
𝜎5 is the same.

step(𝜎5, 𝑝1) applies the Ackermann rule:
𝜎6 = ¬

⋀︀
((¬𝑐1 Y ♦𝑝2), (¬𝑐1 Y (�−1¬𝑐1 ∨ ¬𝑝2))).

The first equation is still the same as in 𝜎5, but the second one is of kind good.1
with an empty graph. Thus the combined graph for 𝜎6 has single vertex 𝑝2 and no
edges.

The system normalization procedure is very simple here, because there isn’t much
to do but endlessly apply the CNF-marked rules, which it does not do.

Thus the conjunction that is obtained is
⋀︀
((¬𝑐1 ∨ ♦𝑝2), (¬𝑐1 ∨ (�−1¬𝑐1∨¬𝑝2))),

where both conjuncts are of the kind 𝛿. The first conjunct’s graph is the same as the
graph of the first equation of 𝜎6, and the second one’s graph is the empty graph.

Thus, after normalization, the system is:
𝜎7 = ¬

⋀︀
((⊥ Y ((¬𝑐1 ∨ ♦𝑝2) ∧ (¬𝑐1 ∨ (�−1¬𝑐1 ∨ ¬𝑝2)))))

The equation here is of kind good.4. Because of the above reasoning about the
conjuncts, the combined graph of 𝜎7 is the same as the graph of 𝜎6 with a single
vertex and no edges, thus acyclic.

Then STEP 4 returns to STEP 3, which calls STEP 4 again with 𝜎7, 𝑝2 and the
existing backtracking context.

In STEP 4, we save a backtracking context ⟨𝑝2, 𝜎7⟩ and start calling step.
step(𝜎7, 𝑝2) splits on conjunction:
𝜎8 = ¬

⋀︀
((⊥ Y (¬𝑐1 ∨ ♦𝑝2)), (⊥ Y (¬𝑐1 ∨ (�−1¬𝑐1 ∨ ¬𝑝2))))

Now the first equation is of kind good.4 with the same graph as 𝜎7, and the second
equation is of kind good.1 with the empty graph. Thus the graph of 𝜎8 is the same
as the graph of 𝜎7.

step(𝜎8, 𝑝2) applies case 3.2:
𝜎9 = ¬

⋀︀
(((⊥ ∨ ¬𝑐1) Y ♦𝑝2), (⊥ Y (¬𝑐1 ∨ (�−1¬𝑐1 ∨ ¬𝑝2))))

The first equation is of kind good.2.1 with the same graph as 𝜎8, and the second
one is of kind good.1 with the empty graph. Thus the graph of 𝜎9 is the same as the
graph of 𝜎8.

step(𝜎9, 𝑝2) applies the ♦-rule, case 3.4:
𝜎10 = ¬

⋀︀
((𝑐1 → ♦𝑐2), (¬𝑐2 Y 𝑝2), (⊥ Y (¬𝑐1 ∨ (�−1¬𝑐1 ∨ ¬𝑝2))))

The first equation is of kind good.1 with the empty graph. The second one is of
kind good.2.1 with the same graph as 𝜎9. The last equation is of kind good.1 with
the empty graph. So the graph of 𝜎10 is the same as the graph of 𝜎9.

step(𝜎10, 𝑝2) applies the Ackermann rule:
𝜎11 = ¬

⋀︀
((𝑐1 → ♦𝑐2), (⊥ Y (¬𝑐1 ∨ (�−1¬𝑐1 ∨¬𝑐2)))), which is a pure system, so

both equations are of kind good.1 with the empty graph.
After translating and simplifying, we arrive at the formula:
𝜓(𝑥) ≡ ∀𝑦1((𝑥 𝑟1 𝑦1) → ((𝑥 = 𝑦1) ∧ (𝑥 𝑟1 𝑥)))

75

3.10.2 (�♦¬𝑝 ∨ (�♦(𝑝 ∧ 𝑞) ∨�♦¬𝑞))

Consider the inductive formula (�♦¬𝑝 ∨ (�♦(𝑝 ∧ 𝑞) ∨�♦¬𝑞)).
The initial system (after normalization) is:
𝜎1: ¬

⋀︀
((¬𝑐1 Y (♦�𝑝 ∧ (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�𝑞))))

Above, �𝑝, and �𝑞 are EB -formulas with graphs which have singletons as the
sets of vertices, and no edges. �(¬𝑝 ∨ ¬𝑞) is a negative formula, and the equation is
of kind good.2.1 with a graph with vertices {𝑝, 𝑞} and no edges.

Now, we split on conjunction:
𝜎2: ¬

⋀︀
((¬𝑐1 Y ♦�𝑝), (¬𝑐1 Y (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�𝑞)))

Each equation above is of kind good.2.1. The graph of the system is the same as
the graph of 𝜎1.

Applying the ♦-rule:
𝜎3: ¬

⋀︀
((𝑐1 → ♦𝑐2), (¬𝑐2 Y �𝑝), (¬𝑐1 Y (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�𝑞)))

The first equation is of kind good.1, the other two are still of kind good.2.1 with
graphs without edges. The graph of 𝜎3 is the same as the graph of 𝜎2.

Applying the �-rule:
𝜎4: ¬

⋀︀
((𝑐1 → ♦𝑐2), (�−1¬𝑐2 Y 𝑝), (¬𝑐1 Y (♦�(¬𝑝 ∨ ¬𝑞) ∧ ♦�𝑞)))

We have changed the second equation from good.2.1 into good.2.2 preserving the
graphs.

Now, we apply the Ackermann rule:
𝜎5: ¬

⋀︀
((𝑐1 → ♦𝑐2), (¬𝑐1 Y (♦�(�−1¬𝑐2 ∨ ¬𝑞) ∧ ♦�𝑞)))

Above, the first equation is of kind good.1 with the empty graph, and the second
one is of kind good.2.1 with the same graph as 𝜎4, because ♦�(�−1¬𝑐2 ∨ ¬𝑞) is a
negative formula and ♦�𝑞 is a Good formula.

The normalization process is trivial, only splitting on conjunction once by applying
the distributive rule for ∨ and rearranging the conjunction using a form of lexicographic
ordering.

After normalization, we obtain:
𝜎6: ¬

⋀︀
((⊥ Y ((¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ ¬𝑞)) ∧ ((𝑐1 → ♦𝑐2) ∧ (¬𝑐1 ∨ ♦�𝑞)))))

The above equation is (⊥Y
⋀︀
((¬𝑐1∨♦�(�−1¬𝑐2∨¬𝑞)), (𝑐1 → ♦𝑐2), (¬𝑐1∨♦�𝑞))),

where the first two components of the conjunction are negative formulas, and the last
one is of kind (¬𝑐 ∨Good) with the same graph as the one of 𝜎5. Thus, the equation
is of kind good.4 because, due to ♦�𝑞, it is not of kind good.2.2 or good.3.

Now, we split on conjunction twice, maintaining the invariant because of the above
reasoning, finally obtaining two equations of kind good.1 and one of kind good.4:

𝜎7: ¬
⋀︀
((⊥ Y (¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ ¬𝑞))), (⊥ Y (𝑐1 → ♦𝑐2)), (⊥ Y (¬𝑐1 ∨ ♦�𝑞)))

We apply point 3.2 of step:
𝜎8: ¬

⋀︀
((⊥ Y (¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ ¬𝑞))), (⊥ Y (𝑐1 → ♦𝑐2)), ((⊥ ∨ ¬𝑐1) Y ♦�𝑞))

Because ♦�𝑞 is a Good formula with a graph without edges and a single vertex,
the third equation has changed into an equation of kind good.2.1 with the same graph.

Now, we apply 3.4 of step, the ♦-rule:
𝜎9: ¬

⋀︀
((⊥Y (¬𝑐1∨♦�(�−1¬𝑐2∨¬𝑞))), (⊥Y (𝑐1 → ♦𝑐2)), (𝑐1 → ♦𝑐3), (¬𝑐3Y�𝑞)),

producing a new equation of kind good.1, and converting the last equation into kind
good.2.1, preserving the graph without edges.

Applying the �-rule:

76

𝜎10: ¬
⋀︀
((⊥Y (¬𝑐1∨♦�(�−1¬𝑐2∨¬𝑞))), (⊥Y (𝑐1 → ♦𝑐2)), (𝑐1 → ♦𝑐3), (�−1¬𝑐3 Y

𝑞)), where (�−1¬𝑐3 Y 𝑞) is of kind good.2.2 with the same graph as before.
Finally, we apply the Ackermann rule:
𝜎11: ¬

⋀︀
((⊥ Y (¬𝑐1 ∨ ♦�(�−1¬𝑐2 ∨ �−1¬𝑐3))), (⊥ Y (𝑐1 → ♦𝑐2)), (𝑐1 → ♦𝑐3)),

which is a pure system so all equations are of kind good.1 with the empty graph.
We translate and simplify to obtain:
∀𝑦1∀𝑦2(((𝑥 𝑟1 𝑦1)∧(𝑥 𝑟1 𝑦2)) → ∀𝑧1((𝑥 𝑟1 𝑧1) → ∃𝑧2((𝑦1 𝑟1 𝑧2)∧(𝑦2 𝑟1 𝑧2)∧(𝑧1 𝑟1

𝑧2))))

3.10.3 More Examples

1. Consider the inductive formula (♦𝑝→ �♦𝑝).
The initial system (after normalization) is:
𝜎1: ¬

⋀︀
((¬𝑐1 Y (♦�¬𝑝∧♦𝑝))), where (♦�¬𝑝∧♦𝑝) is a good piece because ♦�¬𝑝

is a negative formula and 𝑝 is an EB(𝑝) with a graph with a single vertex 𝑝 and no
edges, and thus the equation is of type good.2.1.

Now, we split on conjunction:
𝜎2: ¬

⋀︀
((¬𝑐1 Y ♦�¬𝑝), (¬𝑐1 Y ♦𝑝))

Where the invariant is maintained due to the above reasoning, the first equation
being of kind good.1 and the second one being of kind good.2.1.

Now, we apply the ♦-rule:
𝜎3: ¬

⋀︀
((¬𝑐1Y♦�¬𝑝), (𝑐1 → ♦𝑐2), (¬𝑐2Y𝑝)), maintaining the invariant by converting

an equation of type good.2.1 into one of type good.1 and one of type good.2.1.
After applying the Ackermann rule, translating and simplifying, we obtain:
∀𝑦1((𝑥 𝑟1 𝑦1) → ∀𝑧1((𝑥 𝑟1 𝑧1) → (𝑧1 𝑟1 𝑦1)))

2. Consider the inductive formula (��𝑝→ �𝑝).
The initial system (after normalization) is:
𝜎1: ¬

⋀︀
((¬𝑐1 Y (♦¬𝑝 ∧��𝑝)))

Clearly the invariant holds because ♦¬𝑝 is a negative formula and ��𝑝 is an
EB(𝑝) with a graph with a single vertex 𝑝 and no edges, and thus the equation is of
type good.2.1.

First, we split on conjunction into one equation of kind good.1 and one of type
good.2.1:

𝜎2: ¬
⋀︀
((¬𝑐1 Y ♦¬𝑝), (¬𝑐1 Y ��𝑝))

Now, we apply the �-rule twice, first converting an equation of type good.2.1 into
an equation of kind good.2.2, and then keeping an equation of kind good.2.2.

𝜎3: ¬
⋀︀
((¬𝑐1 Y ♦¬𝑝), (�−1�−1¬𝑐1 Y 𝑝))

Now, we apply the Ackermann rule, translate and simplify to obtain:
∀𝑧1((𝑥 𝑟1 𝑧1) → ∃𝑧2((𝑥 𝑟1 𝑧2) ∧ (𝑧2 𝑟1 𝑧1)))

3.11 Pre-Contact Logics

The language of pre-contact logics (PCL) is a first-order language with equality
(=) and without quantifiers. It is intended to be a propositional language for
point-free theories of space, as outlined in [5].

77

Definition 92 Boolean terms of PCL are: 𝜏 ::= 𝑝 | 0 | 1 | −𝜏 | (𝜏 ∪ 𝜏) | (𝜏 ∩
𝜏), where 0 and 1 are boolean constants, and 𝑝 ∈ PROP is a boolean variable
(but note we use the same set of symbols as our propositional variables in
modal languages).

Atomic formulas are: 𝛼 ::= ⊥ | ⊤ | (𝜏 = 𝜏) | (𝜏 ≤ 𝜏) | 𝐶(𝜏, 𝜏) where part-of
(≤) and contact (𝐶) are binary predicate symbols.

Pre-Contact formulas are: 𝜓 ::= 𝛼 | ¬𝜓 | (𝜓 ∨ 𝜓) | (𝜓 ∧ 𝜓). We may use →
and ↔ as defined symbols with their usual meaning.

We use Kripke frames and Kripke models for the basic modal language
ML(�), which are also frames and models for the language ML(�, [𝑈]).

If M = ⟨F, 𝑉 ⟩ is a Kripke model, where F = ⟨𝑊,𝑅⟩, then the valuation 𝑉 ,
which is a valuation of propositional variables to subsets of 𝑊 , can be extended
to all boolean terms by evaluating the boolean variables of PCL the same way
as the propositional variables of modal languages, in the following way:

𝑉 (𝑝) ⊆𝑊
𝑉 (0) = ∅, 𝑉 (1) =𝑊
𝑉 (−𝜏) =𝑊 ∖ 𝑉 (𝜏)
𝑉 ((𝜏1 ∪ 𝜏2)) = 𝑉 (𝜏1) ∪ 𝑉 (𝜏2)
𝑉 ((𝜏1 ∩ 𝜏2)) = 𝑉 (𝜏1) ∩ 𝑉 (𝜏2)
The definition of truth of atomic formulas in a Kripke model M is as follows:
M � (𝜏1 = 𝜏2) iff 𝑉 (𝜏1) = 𝑉 (𝜏2)
M � (𝜏1 ≤ 𝜏2) iff 𝑉 (𝜏1) ⊆ 𝑉 (𝜏2)
M � 𝐶(𝜏1, 𝜏2) iff ∃𝑥∃𝑦(𝑥 ∈ 𝑉 (𝜏1) & 𝑦 ∈ 𝑉 (𝜏2) & ⟨𝑥, 𝑦⟩ ∈ 𝑅)
Truth of pre-contact formulas in M is defined as follows:
M � ¬𝜓1 iff M 2 𝜓1

M � ((𝜓1 ∨ 𝜓2)) iff M � 𝜓1 or M � 𝜓2

M � ((𝜓1 ∧ 𝜓2)) iff M � 𝜓1 and M � 𝜓2

We say that 𝜓 is valid in a frame F, F � 𝜓, iff 𝜓 is true in all models over F.
It is shown in [5] that pre-contact formulas can be represented as formulas

of ML(�, [𝑈]). More precisely, there is a translation t : PCL ↦→ ML(�, [𝑈])
with the property that for every PCL formula 𝜓 and every Kripke model M,
M � 𝜓 iff M t(𝜓).

This translation t maps variables to propositional variables. Function symbols
map to the corresponding boolean connectives. t(0) = ⊥ ∈ ML(�, [𝑈]), t(1) =
⊤ ∈ ML(�, [𝑈]). Let 𝜏1, 𝜏2 be terms. The predicate symbols translate as
follows:

t((𝜏1 = 𝜏2)) = [𝑈](t(𝜏1) ↔ t(𝜏2))
t((𝜏1 ≤ 𝜏2)) = [𝑈](t(𝜏1) → t(𝜏2))
t(𝐶(𝜏1, 𝜏2)) = ⟨𝑈⟩(t(𝜏1) ∧ ♦1t(𝜏2))
The boolean connectives translate to themselves.
Now, we discuss Sahlqvist PCL formulas, as defined in [4].

78

A positive term is built up from variables, −0 and 1, using only ∪ and ∩.
A negation-free formula is built up from ¬(𝜏1 = 0) and 𝐶(𝜏1, 𝜏2), where 𝜏1

and 𝜏2 are positive terms, using only ⊤, ∨, and ∧.
A positive formula is built up from ¬(𝜏1 = 0), (−𝜏1 = 0), (𝜏1 = 1), 𝐶(𝜏1, 𝜏2),

and ¬𝐶(−𝜏1,−𝜏2), where 𝜏1 and 𝜏2 are positive terms, using only ⊤, ∨, and
∧.

A Sahlqvist formula 𝜓 is an implication (𝜓1 → 𝜓2), where 𝜓1 is negation-
free, and 𝜓2 is positive.

To translate Sahlqvist PCL formulas, as defined in [4], into Sahlqvist formulas
in ML(�, [𝑈]), we define a modified translation t′ as follows:

t′(𝑝) =def 𝑝 ∈ ML(�, [𝑈])
t′(0) =def ⊥ ∈ ML(�, [𝑈])
t′(1) =def ⊤ ∈ ML(�, [𝑈])
t′(−𝜏) =def ¬t′(𝜏) where 𝜏 is any term
t′((𝜏1 ∪ 𝜏2)) =def (t′(𝜏1) ∨ t′(𝜏2)), where 𝜏1 and 𝜏2 are any terms
t′((𝜏1 ∩ 𝜏2)) =def (t′(𝜏1) ∧ t′(𝜏2)), where 𝜏1 and 𝜏2 are any terms
t′((−𝜏 = 0)) =def [𝑈]t′(𝜏), where 𝜏 is any term.
t′((𝜏 = 1)) =def [𝑈]t′(𝜏), where 𝜏 is any term.
t′((𝜏1 = 𝜏2)) =def [𝑈](t′(𝜏1) ↔ t′(𝜏2)), where (𝜏1 = 𝜏2) is not as in the

above two cases
t′((𝜏1 ≤ 𝜏2)) =def [𝑈](t′(𝜏1) → t′(𝜏2)), where 𝜏1 and 𝜏2 are any terms
t′(𝐶(𝜏1, 𝜏2)) =def ⟨𝑈⟩(t′(𝜏1) ∧ ♦1t′(𝜏2)), where 𝜏1 and 𝜏2 are any terms
t′(¬𝐶(−𝜏1,−𝜏2)) =def [𝑈](t′(𝜏1)∨�1t

′(𝜏2)), where 𝜏1 and 𝜏2 are any terms
t′(¬(𝜏 = 0)) =def ⟨𝑈⟩t′(𝜏), where 𝜏 is any term
t′(¬𝜓) =def ¬t′(𝜓), where ¬𝜓 is not as in the above two cases
t′((𝜓1 ∨ 𝜓2)) =def (t′(𝜓1) ∨ t′(𝜓2)) for any 𝜓1 and 𝜓2

t′((𝜓1 ∧ 𝜓2)) =def (t′(𝜓1) ∧ t′(𝜓2)) for any 𝜓1 and 𝜓2

It is easy to see, by induction on PCL terms and PCL formulas, that for
any PCL formula 𝜓, 𝜓 and t′(𝜓) are true in the same models.

We show now how to derive a result from [4] that Sahlqvist formulas have a
first-order correspondent as a corollary to the fact that Deterministic SQEMA
succeeds on all Sahlqvist ML(�, [𝑈]) formulas.

Theorem 93 The modified translation maps Sahlqvist PCL formulas to Sahlqvist
implications from ML(�, [𝑈]).

Proof An easy induction on PCL terms shows that t′(𝜏) for a positive term
𝜏 is a positive ML(�, [𝑈]) formula. Similarly, it is simple to show that t′(𝜓)
for a positive 𝜓 is a positive ML(�, [𝑈]) formula. It remains to show that t′

maps negation-free PCL formulas to ML(�, [𝑈]) Sahlqvist antecedents. This
again follows from an easy induction, using the definition of t′. �

79

We use Deterministic SQEMA for the language of Pre-Contact Logic, by
translating a pre-contact formula to a formula of ML(�, [𝑈]), using t′, and
running Deterministic SQEMA on the translation. It immediately follows that
Deterministic SQEMA succeeds on the modified translation of any Sahlqvist
PCL formula.

It was proved in [5] that: Every pre-contact formula is complete with respect
to the class of finite frames defined by it. Hence, every pre-contact formula is
complete.

Theorem 94 Every PCL formula 𝜓, on whose modified translation
Deterministic SQEMA succeeds and produces a FOL formula 𝜓′, is complete
on the class of frames defined by 𝜓′.

Proof By the properties of Deterministic SQEMA, t′(𝜓) and 𝜓′ are locally
correspondent, therefore globally correspondent. By the properties of t′, 𝜓
and t′(𝜓) define the same class of frames, so 𝜓 and 𝜓′ define the same class
of frames, therefore they define the same class of finite frames. By the above-
mentioned result in [5], 𝜓 is complete in the class of finite frames, defined by
𝜓′, and therefore is complete in the class of all frames, defined by 𝜓′. �

3.12 Example Runs with PCL Formulas

3.12.1 ((0 ̸= 𝑝) → 𝐶(𝑝, 1))

Consider the PCL formula ((0 ̸= 𝑝) → 𝐶(𝑝, 1)).
The modified translation t′(((0 ̸= 𝑝) → 𝐶(𝑝, 1))) produces the formula:
(⟨𝑈⟩𝑝→ ⟨𝑈⟩(♦⊤ ∧ 𝑝)).
This is a Sahlqvist formula of the language ML(�, [𝑈]), so we expect Deterministic

SQEMA to succeed on the first try, without backtracking.
In STEP 1, we rewrite the formula in negation normal form, obtaining:
([𝑈]¬𝑝 ∨ ⟨𝑈⟩(♦⊤ ∧ 𝑝)).
We have a single conjunct, 𝐴1 = ([𝑈]¬𝑝 ∨ ⟨𝑈⟩(♦⊤ ∧ 𝑝)).
We allocate the nominal 𝑐1 and proceed to STEP 2.
In STEP 2, we need to normalize ¬𝐴1 = ¬([𝑈]¬𝑝 ∨ ⟨𝑈⟩(♦⊤ ∧ 𝑝)).
First, we take the negation normal form, which is (⟨𝑈⟩𝑝∧ [𝑈](�⊥∨¬𝑝)). Then we

check to see if we can apply any more rules, except for the ones marked with CNF.
We cannot, so we form the initial system:

𝜎1 = ¬
⋀︀
((¬𝑐1 Y (⟨𝑈⟩𝑝 ∧ [𝑈](�⊥ ∨ ¬𝑝)))).

In STEP 3, we set the variable elimination order to ⟨𝑝⟩, and create a new backtracking
context. Then we proceed to STEP 4.

In STEP 4, we save a backtracking context ⟨𝑝, 𝜎1⟩, and start applying step.
step(𝜎1, 𝑝) splits on a conjunction:
𝜎2 = ¬

⋀︀
((¬𝑐1 Y ⟨𝑈⟩𝑝), (¬𝑐1 Y [𝑈](�⊥ ∨ ¬𝑝))).

step(𝜎2, 𝑝) applies the ♦-rule:
𝜎3 = ¬

⋀︀
((𝑐1 → ⟨𝑈⟩𝑐2), (¬𝑐2 Y 𝑝), (¬𝑐1 Y [𝑈](�⊥ ∨ ¬𝑝))).

80

step(𝜎3, 𝑝) applies the Ackermann rule:
𝜎4 = ¬

⋀︀
((𝑐1 → ⟨𝑈⟩𝑐2), (¬𝑐1 Y [𝑈](�⊥ ∨ ¬𝑐2))).

Thus we proceed to STEP 5.
In STEP 5, we take 𝑐3 as the next available nominal, and set:
fol1 = ∀𝑥2∃𝑥3st(4, 𝑥3, 𝜎4).
The final result is a conjunction with a single element fol1. After simplification,

we obtain the sentence:
∀𝑦1∃𝑧1(𝑦1 𝑟1 𝑧1).

3.12.2 (𝐶(𝑝, 𝑞) → (𝐶(𝑝, 𝑟) ∨ 𝐶(−𝑟, 𝑞)))

Consider the PCL formula (𝐶(𝑝, 𝑞) → (𝐶(𝑝, 𝑟) ∨ 𝐶(−𝑟, 𝑞))).
First, we translate into ML(�, [𝑈]), t′((𝐶(𝑝, 𝑞) → (𝐶(𝑝, 𝑟) ∨ 𝐶(−𝑟, 𝑞)))):
(⟨𝑈⟩(𝑝 ∧ ♦𝑞) → (⟨𝑈⟩(𝑝 ∧ ♦𝑟) ∨ ⟨𝑈⟩(¬𝑟 ∧ ♦𝑞))).
This is an inductive formula of the language ML(�, [𝑈]), so we expect Deterministic

SQEMA to succeed on the first try.
In the future, the author would like to explore a matching definition of inductive

formulas in the PCL language.
In STEP 1, we rewrite the formula into negation normal form, obtaining:
([𝑈](¬𝑝 ∨�¬𝑞) ∨ (⟨𝑈⟩(𝑝 ∧ ♦𝑟) ∨ ⟨𝑈⟩(¬𝑟 ∧ ♦𝑞))).
We have a single conjunct, 𝐴1 = ([𝑈](¬𝑝∨�¬𝑞)∨ (⟨𝑈⟩(𝑝∧♦𝑟)∨ ⟨𝑈⟩(¬𝑟 ∧♦𝑞))).
In STEP 2, we need to normalize ¬𝐴1. First, we rewrite the formula into negation

normal form, obtaining:
(⟨𝑈⟩(𝑝 ∧ ♦𝑞) ∧ ([𝑈](¬𝑝 ∨�¬𝑟) ∧ [𝑈](𝑟 ∨�¬𝑞))).
Now, the �-extraction rule is applied:
(⟨𝑈⟩(𝑝 ∧ ♦𝑞) ∧ [𝑈]((¬𝑝 ∨�¬𝑟) ∧ (𝑟 ∨�¬𝑞))).
Finally, we use the rules marked with CNF to re-arrange the subformulas in the

conjunctive normal form in a kind of lexicographical order, obtaining:
(⟨𝑈⟩(♦𝑞 ∧ 𝑝) ∧ [𝑈]((�¬𝑞 ∨ 𝑟) ∧ (�¬𝑟 ∨ ¬𝑝))).
We reserve the nominal 𝑐1 and form the initial system:
𝜎1 = ¬

⋀︀
((¬𝑐1 Y (⟨𝑈⟩(♦𝑞 ∧ 𝑝) ∧ [𝑈]((�¬𝑞 ∨ 𝑟) ∧ (�¬𝑟 ∨ ¬𝑝))))).

In STEP 3, we choose the elimination order ⟨𝑝, 𝑞, 𝑟⟩ and create a new backtracking
context, then call STEP 4.

In STEP 4, we start solving 𝜎1 by calling step.
step(𝜎1, 𝑝) splits on conjunction:
𝜎2 = ¬

⋀︀
((¬𝑐1 Y ⟨𝑈⟩(♦𝑞 ∧ 𝑝)), (¬𝑐1 Y [𝑈]((�¬𝑞 ∨ 𝑟) ∧ (�¬𝑟 ∨ ¬𝑝)))).

step(𝜎2, 𝑝) applies the ♦-rule:
𝜎3 = ¬

⋀︀
((𝑐1 → ⟨𝑈⟩𝑐2), (¬𝑐2 Y (♦𝑞 ∧ 𝑝)), (¬𝑐1 Y [𝑈]((�¬𝑞 ∨ 𝑟) ∧ (�¬𝑟 ∨ ¬𝑝)))).

step(𝜎3, 𝑝) splits on conjunction:
𝜎4 = ¬

⋀︀
(

(𝑐1 → ⟨𝑈⟩𝑐2),
(¬𝑐2 Y ♦𝑞),
(¬𝑐2 Y 𝑝),
(¬𝑐1 Y [𝑈]((�¬𝑞 ∨ 𝑟) ∧ (�¬𝑟 ∨ ¬𝑝)))).

step(𝜎4, 𝑝) applies the Ackermann rule:
𝜎5 = ¬

⋀︀
(

(𝑐1 → ⟨𝑈⟩𝑐2),

81

(¬𝑐2 Y ♦𝑞),
(¬𝑐1 Y [𝑈]((�¬𝑞 ∨ 𝑟) ∧ (�¬𝑟 ∨ ¬𝑐2)))).

Now, we need to normalize the above system. In the normalization process, we
remove the conjunct (𝑐1 → ⟨𝑈⟩𝑐2) because it is equivalent to ⊤, obtaining the system:

𝜎6 = ¬
⋀︀
((⊥ Y ((¬𝑐1 ∨ [𝑈]((¬𝑐2 ∨�¬𝑟) ∧ (�¬𝑞 ∨ 𝑟))) ∧ (¬𝑐2 ∨ ♦𝑞)))).

Then STEP 4 is called again with the next variable to eliminate and the same
backtracking stack, 𝑞. A backtracking context ⟨𝑞, 𝜎6⟩ is saved to the backtracking
stack.

step(𝜎6, 𝑝) splits on conjunction:
𝜎7 = ¬

⋀︀
(

(⊥ Y (¬𝑐1 ∨ [𝑈]((¬𝑐2 ∨�¬𝑟) ∧ (�¬𝑞 ∨ 𝑟)))),
(⊥ Y (¬𝑐2 ∨ ♦𝑞))).

step(𝜎7, 𝑝) applies case 3.2:
𝜎8 = ¬

⋀︀
(

(⊥ Y (¬𝑐1 ∨ [𝑈]((¬𝑐2 ∨�¬𝑟) ∧ (�¬𝑞 ∨ 𝑟)))),
((⊥ ∨ ¬𝑐2) Y ♦𝑞)).

step(𝜎8, 𝑝) applies the ♦-rule:
𝜎9 = ¬

⋀︀
(

(⊥ Y (¬𝑐1 ∨ [𝑈]((¬𝑐2 ∨�¬𝑟) ∧ (�¬𝑞 ∨ 𝑟)))),
(𝑐2 → ♦𝑐3),
(¬𝑐3 Y 𝑞)).

step(𝜎9, 𝑝) applies the Ackermann rule:
𝜎10 = ¬

⋀︀
(

(⊥ Y (¬𝑐1 ∨ [𝑈]((¬𝑐2 ∨�¬𝑟) ∧ (�¬𝑐3 ∨ 𝑟)))),
(𝑐2 → ♦𝑐3)).

The system normalization procedure only removes the occurrence of ⊥ in a disjunction.
We obtain the system:

𝜎11 = ¬
⋀︀
((⊥ Y ((𝑐2 → ♦𝑐3) ∧ (¬𝑐1 ∨ [𝑈]((¬𝑐2 ∨�¬𝑟) ∧ (�¬𝑐3 ∨ 𝑟)))))).

STEP 4 is called again with the same backtracking context and propositional
variable to eliminate 𝑟.

step(𝜎11, 𝑟) splits on conjunction:
𝜎12 = ¬

⋀︀
(

(⊥ Y (𝑐2 → ♦𝑐3)),
(⊥ Y (¬𝑐1 ∨ [𝑈]((¬𝑐2 ∨�¬𝑟) ∧ (�¬𝑐3 ∨ 𝑟))))).

step(𝜎12, 𝑟) applies case 3.2:
𝜎13 = ¬

⋀︀
(

(⊥ Y (𝑐2 → ♦𝑐3)),
((⊥ ∨ ¬𝑐1) Y [𝑈]((¬𝑐2 ∨�¬𝑟) ∧ (�¬𝑐3 ∨ 𝑟)))).

step(𝜎13, 𝑟) applies the �-rule:
𝜎14 = ¬

⋀︀
(

(⊥ Y (𝑐2 → ♦𝑐3)),
(�−1

0 (⊥ ∨ ¬𝑐1) Y ((¬𝑐2 ∨�¬𝑟) ∧ (�¬𝑐3 ∨ 𝑟)))).
step(𝜎14, 𝑟) splits on conjunction:
𝜎15 = ¬

⋀︀
(

(⊥ Y (𝑐2 → ♦𝑐3)),
(�−1

0 (⊥ ∨ ¬𝑐1) Y (¬𝑐2 ∨�¬𝑟)),
(�−1

0 (⊥ ∨ ¬𝑐1) Y (�¬𝑐3 ∨ 𝑟))).

82

step(𝜎15, 𝑟) applies case 3.2:
𝜎16 = ¬

⋀︀
(

(⊥ Y (𝑐2 → ♦𝑐3)),
(�−1

0 (⊥ ∨ ¬𝑐1) Y (¬𝑐2 ∨�¬𝑟)),
((�−1

0 (⊥ ∨ ¬𝑐1) ∨�¬𝑐3) Y 𝑟)).
step(𝜎16, 𝑟) applies the Ackermann rule:
𝜎16 = ¬

⋀︀
(

(⊥ Y (𝑐2 → ♦𝑐3)),
(�−1

0 (⊥ ∨ ¬𝑐1) Y (¬𝑐2 ∨� (�−1
0 (⊥ ∨ ¬𝑐1) ∨�¬𝑐3))).

We now go to STEP 5. We take the next available nominal, 𝑐4, and set:
fol1(𝑥1) = ∀𝑥2∀𝑥3∃𝑥4(5, 𝑥4, 𝜎16).
After simplification and suitable renaming of individual variables, we obtain the

final result, which is a sentence:
∀𝑦1∀𝑦2((𝑦1 𝑟1 𝑦2) → ∃𝑧1((𝑦1 𝑟1 𝑧1) ∧ (𝑧1 𝑟1 𝑦2)))

3.13 Implementation in the Programming Language Java

A variant of the algorithm Deterministic SQEMA was implemented in the
Java programming language back in 2006, as part of the author’s master’s
thesis [25], and has been running at the website http://www.fmi.uni-sofia.
bg/fmi/logic/sqema ever since. For this dissertation, several changes were
made to the implementation:

- Support for the universal modality was finalized and theoretical work
was done to show soundness of the variant of Deterministic SQEMA with the
universal modality, i.e. that if successful, then the result is a local first-order
correspondent, and the input formula is the proven to be d-persistent with
respect to a language with the universal modality.

- The user interface of the implementation was completely changed from
plain HTML with a backend running as a Java servlet on a Tomcat instance, to
static HTML/CSS/Javascript files, served from a regular Apache installation.
This was achieved by keeping the implementation in the Java language, but
using the Google GWT compiler to translate the algorithm’s implementation
into Javascript and run it directly in the user’s browser. This had several
beneficial effects:

First, it removed the need for a servlet-capable backend, which helped a
great deal when later the Tomcat instance was shut down and a migration to
a plain Apache was inevitable.

Second, it relieved the machines of the Faculty of Mathematics and
Informatics from the burden of running an algorithm whose first step is
obtaining a potentially exponentially larger formula from the input by
converting to a conjunctive normal form. Needless to say, that had caused
quite a few problems over the years.

83

http://www.fmi.uni-sofia.bg/fmi/logic/sqema
http://www.fmi.uni-sofia.bg/fmi/logic/sqema

And finally, it helped the author create backup websites hosting the
implementation, such as:

http://debian.fmi.uni-sofia.bg/~dimitertg/sqema,
http://dimiter.slavi.biz/sqema,
and
http://geocities.ws/sqema,
which are always kept up-to-date with the original website, and are

sometimes used as testing environments for newer versions before the main
website is updated.

- Some additional simplifications were implemented for the first-order result
formula, improving the readability of the results.

- Support for the language of Pre-Contact Logics was added, by using
a modified translation of PCL formulas into formulas of the modal language
ML(�, [𝑈]) and thus ensuring that the implementation succeeds on all Sahlqvist
PCL formulas, see details in 3.11.

- Support for polyadic modalities was added. The theoretical work
on which this part of the implementation is based comes from [18], and no
further proofs were made to ensure that the implementation succeeds on all
polyadic Sahlqvist and polyadic Inductive formulas. This is considered out of
scope for this dissertation. In the future, the author would like to explore this
topic further.

- A recognizer for Sahlqvist and Inductive formulas was added to the user
interface. Thus the user can quickly check if the input formula is a Sahlqvist or
an Inductive formula. This recognizer does not yet support polyadic formulas
and does not affect the work of the algorithm.

- An off-line testing system was implemented in Java, along with some
formula generators, which were used to amass several million formulas as a
test corpus. The tests are used for several reasons:

First, they are used as a regression check, after every major change in the
algorithm, a test is run off-line by the author to see if there are any differences
in the results between versions of the algorithm.

Second, they were used to test the hypotheses that the implementation
always succeeds on all Sahlqvist and all Inductive formulas, using the recognizer
mentioned above and checking whether the implementation indeed succeeds on
all such formulas from the test corpus.

Last but not least, the tests were of great help when the author was looking
for new invariants for Sahlqvist and Inductive formulas.

84

http://debian.fmi.uni-sofia.bg/~dimitertg/sqema
http://dimiter.slavi.biz/sqema
http://geocities.ws/sqema

4 ML(�) and 𝒞KD45

We are using the basic modal language ML(�) and the standard predicate
calculus with equality and a single binary predicate symbol 𝑟 FOL. The standard
definitions of Kripke frame and Kripke model apply. We use the well-known
constructions bounded morphic image (p-morphic image), generated subframe,
and disjoint union (

⨄︀
) (see definitions 5, 6, and 7) and their properties as in [8].

We are interested in the class of all KD45-frames, and this class is axiomatized
with the popular KD45 normal modal logic. The axioms of KD45 are the
following formulas:
(𝐷) (�𝑝→ ♦𝑝) (right-unboundedness axiom)
(4) (�𝑝→ ��𝑝) (transitivity axiom)
(5) (♦𝑝→ �♦𝑝) (Euclidean axiom)

We say that a frame F is a KD45-frame iff F validates the axioms (4), (5),
and (𝐷).

The first-order correspondents of the KD45 axioms are:
(𝐷′) ∀𝑥∃𝑧1(𝑥 𝑟 𝑧1)
(4′) ∀𝑥∀𝑧1((𝑥 𝑟 𝑧1) → ∀𝑧2((𝑧1 𝑟 𝑧2) → (𝑥 𝑟 𝑧2)))
(5′) ∀𝑥∀𝑦1((𝑥 𝑟 𝑦1) → ∀𝑧1((𝑥 𝑟 𝑧1) → (𝑧1 𝑟 𝑦1)))

We say that a Kripke frame F = ⟨𝑊,𝑅⟩ is a daisy iff 𝑊 = 𝑃 (F) ∪ 𝑆(F),
where 𝑃 (F) ∩ 𝑆(F) = ∅, 𝑆(F) ̸= ∅, 𝑃 (F) is the set of petals, 𝑆(F) is the set of
stamens, and the following hold:
(Daisy 1). ∀𝑥 ∈ 𝑃 (F)¬∃𝑦 ∈𝑊 (⟨𝑦, 𝑥⟩ ∈ 𝑅)
(Daisy 2). ∀𝑥 ∈ 𝑃 (F)∀𝑦 ∈ 𝑆(F)(⟨𝑥, 𝑦⟩ ∈ 𝑅)
(Daisy 3). ∀𝑥 ∈ 𝑆(F)∀𝑦 ∈ 𝑆(F)(⟨𝑥, 𝑦⟩ ∈ 𝑅)

It is also easy to see that each daisy is a KD45 frame (F � (𝐷′)∧(4′)∧(5′)).

Proposition 95 Let F be a KD45 frame. Then there is an index set 𝐼 and a
set of daisies 𝐷 = {F𝑖 | 𝑖 ∈ 𝐼}, such that F =

⨄︀
𝐷.

Proof Let F = ⟨𝑊,𝑅⟩ be a KD45 frame. Let F′ =def ⟨𝑊,𝑅′⟩, where 𝑅′ =def

{⟨𝑥, 𝑦⟩ | ∃𝑧(⟨𝑥, 𝑧⟩ ∈ 𝑅 & ⟨𝑦, 𝑧⟩ ∈ 𝑅)}.
We show that 𝑅′ is an equivalence relation over 𝑊 . By the definition of 𝑅′,

it is symmetric. By F � (𝐷′), 𝑅′ is reflexive. Let us see that 𝑅′ is transitive.
Suppose ⟨𝑎, 𝑏⟩ ∈ 𝑅′ & ⟨𝑏, 𝑐⟩ ∈ 𝑅′. Then 𝑎 and 𝑏 have a common 𝑅-successor
𝑥, and 𝑏 and 𝑐 have a common 𝑅-successor 𝑦. Since 𝑅 is Euclidean, ⟨𝑥, 𝑦⟩ ∈ 𝑅
because they are both descendants of 𝑏. But 𝑅 is also transitive, therefore
⟨𝑎, 𝑦⟩ ∈ 𝑅, thus 𝑎 and 𝑐 have 𝑦 as a common 𝑅-successor. Thus ⟨𝑎, 𝑐⟩ ∈ 𝑅′ and
𝑅′ is transitive. Therefore, 𝑅′ is an equivalence relation.

We denote by |𝑤| the 𝑅′-equivalence class of 𝑤 ∈𝑊 . Let 𝐼 =def {|𝑤| | 𝑤 ∈
𝑊}, let F|𝑤| =def ⟨|𝑤|, 𝑅 ∩ (|𝑤| × |𝑤|)⟩, and let 𝐷 = {F𝑖 | 𝑖 ∈ 𝐼}. Clearly, 𝐼 is
a non-empty set of disjoint subsets of 𝑊 . To see that F =

⨄︀
𝐷, suppose for

85

the sake of contradiction that there are two 𝑅′-equivalence classes |𝑤1| ≠ |𝑤2|,
such that for some 𝑥 ∈ |𝑤1| and some 𝑦 ∈ |𝑤2| we have that ⟨𝑥, 𝑦⟩ ∈ 𝑅. Because
𝑅 is euclidean, 𝑦 is reflexive and thus it is a common 𝑅-successor of both 𝑥
and 𝑦, obtaining the contradiction |𝑤1| = |𝑤2|. We conclude that F =

⨄︀
𝐷.

It remains to show that for all 𝑤 ∈ 𝑊 , F|𝑤| is a daisy. Let 𝑤 ∈ 𝑊 and
let F|𝑤| = ⟨|𝑤|, 𝑅|𝑤|⟩. Let 𝑃 =def {𝑥 ∈ |𝑤| | ⟨𝑥, 𝑥⟩ /∈ 𝑅}, and let 𝑆 =def {𝑥 ∈
|𝑤| | ⟨𝑥, 𝑥⟩ ∈ 𝑅}. Clearly, 𝑃 and 𝑆 are disjoint, and 𝑃 ∪𝑆 = |𝑤|. Also, because
𝐹 (𝐷′) ∧ (5′), 𝑆 ̸= ∅.

For (Daisy 1), suppose for the sake of contradiction that for some 𝑥 ∈ 𝑃 ,
there is a 𝑦 ∈ 𝑊 , such that ⟨𝑦, 𝑥⟩ ∈ 𝑅|𝑤|. Then ⟨𝑦, 𝑥⟩ ∈ 𝑅, and because
𝐹 � (5′), ⟨𝑥, 𝑥⟩ ∈ 𝑅, contradiction.

For (Daisy 3), let 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆. Because both 𝑥 and 𝑦 are in |𝑤|,
they have a common 𝑅-successor 𝑧. Because 𝑅 is Euclidean, 𝑧 is reflexive and
𝑧 ∈ |𝑤|. But 𝑦 is also reflexive, so by the fact that 𝑅 is Euclidean, ⟨𝑧, 𝑦⟩ ∈ 𝑅
and by transitivity ⟨𝑥, 𝑦⟩ ∈ 𝑅. Because F =

⨄︀
𝐷, ⟨𝑥, 𝑦⟩ ∈ 𝑅|𝑤|

For (Daisy 2), let 𝑥 ∈ 𝑃 and 𝑦 ∈ 𝑆. Because both 𝑥 and 𝑦 are in |𝑤|, then
they have a common 𝑅-successor 𝑧. Because 𝑅 is Euclidean, 𝑧 is reflexive and
𝑧 ∈ |𝑤|. Moreover, 𝑧 ∈ 𝑆. By (Daisy 3), ⟨𝑧, 𝑦⟩ ∈ 𝑅. By transitivity, ⟨𝑥, 𝑦⟩ ∈ 𝑅
and thus ⟨𝑥, 𝑦⟩ ∈ 𝑅|𝑤|. �

4.1 First-order Definability

Now, some definitions. The class of all KD45-frames is denoted by 𝒞KD45. The
class of all S5 frames is denoted by 𝒞S5. Easily, 𝒞S5 (𝒞KD45. We denote by 𝐶0

the class of finite daisies without petals, and 𝐶1 for the class of finite daisies
with a single petal. We denote by 𝐷𝑖 the finite daisy with 𝑖 stamens and no
petals, and 𝐷′

𝑖 for the finite daisy with 𝑖 stamens and a single petal. Clearly,
𝐷𝑖 and 𝐷′

𝑖 are well-defined up to ismorphism of Kripke structures.

Lemma 96 Let 𝐴 be a modal formula. Then 𝒞S5 𝐴 iff 𝐶0 𝐴. Also 𝒞KD45
𝐴 iff 𝐶1 𝐴.

Proof Let 𝒞S5 𝐴. 𝐶0 ⊆ 𝒞S5, so 𝐶0 𝐴. Let 𝐶0 𝐴. Let F ∈ 𝒞S5 and
suppose that F 1 𝐴. Then 𝒞S5 1 𝐴. Because of the finite model property of
𝒞S5, there is a finite frame F′ ∈ 𝒞S5, such that F′ 1 𝐴. Therefore, there is a
state 𝑤 from F′, such that F′, 𝑤 1 𝐴. Let F′′ be the generated subframe (see
Definition 7) of F′ at 𝑤. Then F′′, 𝑤 1 𝐴 (see [8]), so F′′ 1 𝐴, but F′′ is the
equivalence class of 𝑤 in F′, so F′′ ∈ 𝐶0, and thus 𝐶0 1 𝐴, contradicts 𝐶0 𝐴.

Let 𝒞KD45 𝐴. 𝐶1 ⊆ 𝒞KD45, so 𝐶1 𝐴. Let 𝐶1 𝐴. Suppose there is
some F ∈ 𝒞KD45, such that F 1 𝐴. Because of the finite model property of
KD45, there is a finite frame F′ ∈ 𝒞KD45, such that F′ 1 𝐴. Then there is a
state 𝑤 from F′, such that F′, 𝑤 1 𝐴. Let F′′ be the generated subframe of

86

F′ at 𝑤. Then F′′, 𝑤 1 𝐴, so F′′ 1 𝐴. F′′ is a finite daisy with at most one
petal. So there is a number 𝑛 > 1, such that either 𝑤 is reflexive, and then
F′′ = 𝐷𝑛 ∈ 𝐶0, or 𝑤 is not reflexive, and then F′′ = 𝐷′

𝑛 ∈ 𝐶1. If F′′ is 𝐷𝑛,
then F′′ is a p-morphic image of 𝐷′

𝑛 ∈ 𝐶1. But 𝐶1 𝐴, so 𝐷′
𝑛 𝐴, therefore

F′′ 𝐴, contradicts F′′ 1 𝐴. Otherwise, F′′ is 𝐷′
𝑛 ∈ 𝐶1, and because 𝐶1 𝐴,

F′′ 𝐴, contradicts F′′ 1 𝐴. �

Lemma 97 Let 𝐴 be a modal formula. Exactly one of the following three
holds: either 𝒞S5 𝐴, 𝐷1 1 𝐴, or there is a number 𝑛 > 1, such that for all 𝑖:
𝐷𝑖 𝐴 ⇔ 𝑖 < 𝑛. Exactly one of the following three holds: either 𝒞KD45 𝐴,
𝐷′

1 1 𝐴, or there is a number 𝑛′ > 1, such that for all 𝑖: 𝐷′
𝑖 𝐴 ⇔ 𝑖 < 𝑛′. If

such 𝑛 and 𝑛′ exist, then 𝑛′ ≤ 𝑛.

Proof For the first condition, consider the validity of 𝐴 in the class 𝐶0. There
are three cases. First, let 𝐶0 𝐴. By Lemma 96, this happens if and only if
𝒞S5 𝐴. Second, let for all F ∈ 𝐶0 : F 1 𝐴. Then because 𝐷1 ∈ 𝐶0, we have
that 𝐷1 1 𝐴. Now let 𝐷1 1 𝐴 and suppose that for some F ∈ 𝐶0 : F 𝐴.
But 𝐷1 is a p-morphic image of F, so 𝐷1 𝐴, contradicts 𝐷1 1 𝐴. Third, let
there be some frame F′ ∈ 𝐶0, such that F′ 𝐴, and let there be some frame
F′′ ∈ 𝐶0, such that F′′ 1 𝐴. Let 𝑛 ≥ 1 be the first number, such that 𝐷𝑛 1 𝐴.
Because 𝐷1 is a p-morphic image of F′, 𝐷1 𝐴, so 𝑛 ̸= 1, therefore 𝑛 > 1.
Moreover, if 𝑖 ≥ 𝑛, 𝐷𝑛 is a p-morphic image of 𝐷𝑖, so 𝐷𝑖 1 𝐴, because suppose
otherwise. Then 𝐷𝑛 𝐴, contradicts 𝐷𝑛 1 𝐴. Now, let 𝑖 < 𝑛. Because 𝑛 is
the first number, such that 𝐷𝑛 1 𝐴, it follows that 𝐷𝑖 𝐴. Therefore, there
is a number 𝑛 > 1 and for all 𝑖: 𝐷𝑖 𝐴⇔ 𝑖 < 𝑛. Now, suppose that there is a
number 𝑛 > 1, such that for all 𝑖: 𝐷𝑖 𝐴⇔ 𝑖 < 𝑛. Then 𝐷1 𝐴 and 𝐷𝑛 1 𝐴.

For the second condition, consider the validity of 𝐴 in the class 𝐶1. There
are again three cases. First, let 𝐶1 𝐴. By Lemma 96, this happens if and only
if 𝒞KD45 𝐴. Second, let for all F ∈ 𝐶1 : F 1 𝐴. Then because 𝐷′

1 ∈ 𝐶1, we
have that 𝐷′

1 1 𝐴. Now let 𝐷′
1 1 𝐴 and suppose that for some F ∈ 𝐶1 : F 𝐴.

But 𝐷′
1 is a p-morphic image of F, so 𝐷′

1 𝐴, contradicts 𝐷′
1 1 𝐴. Third let

there be some frame F′ ∈ 𝐶1, such that F′ 𝐴, and let there be some frame
F′′ ∈ 𝐶1, such that F′′ 1 𝐴. Let 𝑛 ≥ 1 be the first number, such that 𝐷′

𝑛 1 𝐴.
Because 𝐷′

1 is a p-morphic image of F′, 𝐷′
1 𝐴, so 𝑛 ̸= 1, thus 𝑛 > 1. Now,

if 𝑖 ≥ 𝑛, then 𝐷′
𝑛 is a p-morphic image of 𝐷′

𝑖, and suppose that 𝐷′
𝑖 𝐴, then

𝐷′
𝑛 𝐴, contradicts 𝐷′

𝑛 1 𝐴. Let 𝑖 < 𝑛. Then because 𝑛 is the first number,
such that 𝐷′

𝑛 1 𝐴, we have that 𝐷′
𝑖 𝐴. Therefore, there is a number 𝑛 > 1

and for all 𝑖: 𝐷′
𝑖 𝐴⇔ 𝑖 < 𝑛. Now, suppose that there is a number 𝑛 > 1 and

for all 𝑖: 𝐷′
𝑖 𝐴⇔ 𝑖 < 𝑛. Then 𝐷1 𝐴 and 𝐷𝑛 1 𝐴.

Finally, let such 𝑛 and 𝑛′ exist. Then 𝑛′ ≤ 𝑛 by the properties of p-morphic
images. �

For 𝑛 ≥ 1, we denote 𝜓𝑛(𝑥) =def ∀𝑦1 . . . ∀𝑦𝑛(
⋀︀
{(𝑥 𝑟 𝑦𝑘) | 1 ≤ 𝑘 ≤ 𝑛} →

87

⋁︀
{(𝑦𝑘 = 𝑦𝑙) | 1 ≤ 𝑘 < 𝑙 ≤ 𝑛}). Clearly, for any KD45 frame F, F � 𝜓𝑛(𝑥) iff

every daisy from F has less than 𝑛 stamens.

Theorem 98 Let 𝐴 be a modal formula. Then there is a first-order formula
𝜓, such that 𝐴 and 𝜓 are globally correspondent over the class of frames 𝒞KD45.
Also, 𝜓 can be effectively computed.

Proof We note here the following: Because KD45 is finitely (hence recursively)
axiomatizable, canonical (hence complete) and because KD45 has the finite
model property, the problem of 𝒞KD45 𝐴 is decidable. The same applies to
the problem of 𝒞S5 𝐴.

Now, we show an algorithm for finding the first-order correspondent of 𝐴
over 𝒞KD45, thus proving both points of the theorem.

First we show first-order definitions of𝐴 over the classes 𝐶0 and 𝐶1 separately,
then we use these definitions to form the definition of 𝐴 over the class 𝒞KD45.

First, the definition of 𝐴 over 𝐶0. Because of Lemma 97, there are 3 cases:
1. If 𝒞S5 𝐴, then 𝜓𝒞0 =def ⊤ is a definition of 𝐴 over 𝐶0 and let 𝑖 =def 1.
2. If 𝐷1 1 𝐴, then 𝜓𝒞0 =def ⊥ is a definition of 𝐴 over 𝐶0 and let 𝑖 =def 2.
3. Otherwise, there is a number 𝑛 > 1, such that for all 𝑚: 𝐷𝑚 𝐴⇔ 𝑚 <

𝑛. Therefore, it is easy to check that the formula 𝜓𝒞0 =def 𝜓𝑛 is a definition of
𝐴 over 𝐶0 and let 𝑖 =def 3.

Now, the definition of 𝐴 over 𝐶1. Because of Lemma 97, there are 3 cases:
1. If 𝒞KD45 𝐴, then 𝜓𝒞1 =def ⊤ is a definition of 𝐴 over 𝒞1 and let

𝑗 =def 1.
2. If 𝐷′

1 1 𝐴, then 𝜓𝒞1 =def ⊥ is a definition of 𝐴 over 𝒞1 and let 𝑗 =def 2.
3. Otherwise, there is a number 𝑛′ > 1, such that for all 𝑚: 𝐷′

𝑚 𝐴⇔ 𝑚 <
𝑛′. Therefore, it is easy to check that the formula 𝜓𝒞1 =def 𝜓𝑛′ is a definition
of 𝐴 over 𝒞1 and let 𝑗 =def 3.

Let 𝜓 =def ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝒞0) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝒞1)).
Let F ∈ 𝒞KD45, we now show that F � 𝜓 iff F 𝐴, by examining the cases

of the pair 𝑖, 𝑗:
1. 𝑖 = 1, 𝑗 = 1. 𝜓 ≡ ⊤, so F � 𝜓. Because 𝑗 = 1, 𝒞KD45 𝐴, so F 𝐴.
2. 𝑖 = 1, 𝑗 = 2. 𝜓 ≡ ∀𝑥(𝑥 𝑟 𝑥).
2.1. F ∈ 𝒞S5. Then, F � 𝜓 and because 𝑖 = 1, F 𝐴.
2.2. F /∈ 𝒞S5. Then F 2 𝜓. Suppose F 𝐴. But 𝐷′

1 is a p-morphic image of
F, so 𝐷′

1 𝐴, contradicts 𝑗 = 2.
3. 𝑖 = 1, 𝑗 = 3. 𝜓 ≡ ∀𝑥((𝑥 𝑟 𝑥) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝑛′)).
3.1. F ∈ 𝒞S5. Then F � ∀𝑥(𝑥 𝑟 𝑥), so F � 𝜓. But 𝑖 = 1, so 𝒞S5 𝐴, so

F 𝐴.
3.2. F /∈ 𝒞S5.
3.2.1. F � 𝜓. Suppose F 1 𝐴. Then there is a state 𝑤 from F, such that

F, 𝑤 1 𝐴. Let F′ be the generated subframe F′ of F at 𝑤, we have that F′, 𝑤 1

88

𝐴. Suppose F′ ∈ 𝒞S5, then because 𝑖 = 1, F′ 𝐴, contradiction. So F′ /∈ 𝒞S5, so
because F � 𝜓, F′ is a daisy with < 𝑛′ stamens and exactly 1 petal. Therefore
there is a number 𝑚 < 𝑛′, such that F′ is isomorphic to 𝐷′

𝑚, and because of
𝑗 = 3, 𝐷′

𝑚 𝐴, so F′ 𝐴, contradiction.
3.2.2. F 𝐴. Suppose F 2 𝜓. Then F � ∃𝑥(¬(𝑥 𝑟 𝑥) ∧ ((𝑥 𝑟 𝑥) ∨ ¬𝜓𝑛′)).

Then there is a state 𝑤 from F, such that 𝑤 is a petal and 𝑤 has ≥ 𝑛′ 𝑅-
successors. Then 𝐷′

𝑛′ is a p-morphic image of the generated subframe of F at
𝑤, so 𝐷′

𝑛′ 𝐴, however by 𝑗 = 3, 𝐷′
𝑛′ 1 𝐴, contradiction.

4. 𝑖 = 2, 𝑗 = 1. Impossible.
5. 𝑖 = 2, 𝑗 = 2. 𝜓 ≡ ⊥, so F 2 𝜓. Suppose F 𝐴. But 𝐷1 is a p-morphic

image of F, so 𝐷1 𝐴, however by 𝑖 = 2, 𝐷1 1 𝐴, contradiction, therefore
F 1 𝐴.

6. 𝑖 = 2, 𝑗 = 3. Impossible.
7. 𝑖 = 3, 𝑗 = 1. Impossible.
8. 𝑖 = 3, 𝑗 = 2. 𝜓 ≡ ∀𝑥((𝑥 𝑟 𝑥) ∧ 𝜓𝑛).
8.1. F � 𝜓. Then F ∈ 𝒞S5. Suppose F 1 𝐴. Then there is a state 𝑤 from F,

such that F, 𝑤 1 𝐴. Let F′ be the generated subframe of F at 𝑤, we have that
F′ 1 𝐴. Because F � 𝜓, F � 𝜓𝑛 and therefore F′ is an equivalence class with
< 𝑛 stamens. Therefore, F′ ∈ 𝐶0 and there is some 𝑚 < 𝑛, such that F′ is
isomorphic to 𝐷𝑚. Therefore, 𝐷𝑚 1 𝐴, but 𝑖 = 3, so 𝐷𝑚 𝐴, contradiction.

8.2. F 𝐴. Suppose F 2 𝜓. Then F � ∃𝑥(¬(𝑥 𝑟 𝑥) ∨ ¬𝜓𝑛).
8.2.1. There is some 𝑤 from F, such that 𝑤 is not reflexive. Then 𝐷′

1 is a
p-morphic image of the generated subframe of F at 𝑤, so 𝐷′

1 𝐴, however by
𝑗 = 2, 𝐷′

1 1 𝐴, contradiction.
8.2.2. All states of F are reflexive. Then F � ∃𝑥(¬𝜓𝑛), so there is some

state 𝑤 from F, such that 𝑤 has ≥ 𝑛 𝑅-descendants. Then 𝐷𝑛 is a p-morphic
image of the generated subframe of F at 𝑤, therefore 𝐷𝑛 𝐴, but by 𝑖 = 3,
𝐷𝑛 1 𝐴, contradiction.

9. 𝑖 = 3, 𝑗 = 3.
9.1. F � 𝜓. Suppose F 1 𝐴. Then there is a state 𝑤 of F, such that F, 𝑤 1 𝐴.

Let F′ be the generated subframe of F at 𝑤, we have that F′ 1 𝐴. Because
F � 𝜓, F′ is a finite daisy with at most one petal.

9.1.1. 𝑤 is a petal of F′. Because F � 𝜓, we have that F � 𝜓𝑛′ [𝑤], so 𝑤 has
< 𝑛′ 𝑅-descendants. So there is a number 𝑚 < 𝑛′, such that F′ is isomorphic
to 𝐷′

𝑚, so 𝐷′
𝑚 1 𝐴, but by 𝑗 = 3, 𝐷′

𝑚 � 𝐴, contradiction.
9.1.2. 𝑤 is a stamen of F′. Because F � 𝜓, we have that F � 𝜓𝑛[𝑤], so 𝑤 has

< 𝑛 𝑅-descendants. So there is a number 𝑚 < 𝑛, such that F′ is isomorphic
to 𝐷𝑚, so 𝐷𝑚 1 𝐴, but by 𝑖 = 3, 𝐷𝑚 𝐴, contradiction.

9.2. F 𝐴. Suppose F 2 𝜓. Then F � ∃𝑥((¬(𝑥 𝑟 𝑥) ∨ ¬𝜓𝑛) ∧ ((𝑥 𝑟
𝑥)∨¬𝜓𝑛′)), so there is a state 𝑤 of F, such that F � ((¬(𝑥 𝑟 𝑥)∨¬𝜓𝑛)∧ ((𝑥 𝑟
𝑥) ∨ ¬𝜓𝑛′))[𝑤]. Let F′ be the generated subframe of F at 𝑤, then F′ 𝐴.

89

9.2.1. F � (¬(𝑥 𝑟 𝑥)∧¬𝜓𝑛′)[𝑤]. Then F′ is a daisy with one petal and ≥ 𝑛′

stamens. Therefore, 𝐷′
𝑛′ is a p-morphic image of F′, so 𝐷′

𝑛′ 𝐴. But by 𝑗 = 3,
𝐷′
𝑛′ 1 𝐴, contradiction.

9.2.2. F � ((𝑥 𝑟 𝑥) ∧ ¬𝜓𝑛)[𝑤]. Then F′ is a daisy with no petals and ≥ 𝑛
stamens. Therefore, 𝐷𝑛 is a p-morphic image of F′, so 𝐷𝑛 𝐴. But by 𝑖 = 3,
𝐷𝑛 1 𝐴, contradiction.

9.2.3. F � (¬𝜓𝑛∧¬𝜓𝑛′)[𝑤]. Then there are two cases. Either F � (𝑥 𝑟 𝑥)[𝑤],
in which case the proof is the same as in the case 9.2.2 above, or F � ¬(𝑥 𝑟
𝑥)[𝑤], where the proof is the same as in the case 9.2.1. above. �

4.2 Modal Definability

Let F ∈ 𝒞KD45. Then there is a set of daisies 𝐷, such that F =
⨄︀
𝐷. Let 𝑄 =def

{Card(𝑆(𝑥)) | 𝑥 ∈ 𝐷} and let 𝑠(F) =def sup(𝑄). Let 𝑄0 =def {Card(𝑆(𝑥)) |
𝑥 ∈ 𝐷 & 𝑃 (𝑥) = ∅} and let 𝑠0(F) =def sup(𝑄0). Let 𝑄1 =def {Card(𝑆(𝑥)) |
𝑥 ∈ 𝐷 & 𝑃 (𝑥) ̸= ∅} and let 𝑠1(F) =def sup(𝑄1). We denote the class of frames
F ∈ 𝒞KD45 such that 1 ≤ 𝑠(F) < 𝜔 by 𝐶𝑏.

Definition 99 (Restriction of a Daisy) Let F and F′ be daisies and let
𝑘 > 0. We say that F′ is a restriction of F to at most 𝑘 petals and at most 𝑘
stamens iff F′ has either 𝑘 petals if F has at least 𝑘 petals, or has the same
number of petals as F otherwise, and F′ has either 𝑘 stamens if F has at least
𝑘 stamens, or has the same number of stamens as F otherwise. Clearly, up to
isomorphism, for a given daisy F and 𝑘 > 0, there is a single daisy, which is
the restriction of F to at most 𝑘 petals and at most 𝑘 stamens. We denote this
daisy by F �1 𝑘 and we say that it is the restriction of F to 𝑘

Definition 100 (Restriction) Let F be a KD45-frame and let 𝑘 > 0. Let 𝐷
be the unique set of daisies (up to isomorphism), such that F =

⨄︀
𝐷. We say

that the following frame is the restriction of F to 𝑘: F �1 𝑘 =def
⨄︀
{F′ �1 𝑘 |

F′ ∈ 𝐷}.

Lemma 101 Let F ∈ 𝒞KD45 and let 𝑛 > 0. Then there is a frame F′ in 𝐶𝑏,
such that: 1. for all FOL sentences 𝜓 with quantifier rank 𝑛, F � 𝜓 iff F′ � 𝜓.
2. 𝑠0(F′) ≤ min(𝑠0(F), 𝑛) and 𝑠1(F

′) ≤ min(𝑠1(F), 𝑛). 3. F′ is a p-morphic
image of F.

Proof Let F′ =def F �1 𝑛 (see Definition 100), then 𝑠(F′) ≤ 𝑛 and F′ ∈
𝐶𝑏. We use the Ehrenfeucht-Fräıssé method, see chapter 1 of [22]. Clearly,
the duplicator wins the Ehrenfeucht-Fräıssé game 𝐺𝑛(F,F′). By Ehrenfeucht’s
theorem, F ≡𝑛 F′ (for every sentence 𝜓 ∈ FOL with quantifier rank 𝑛, F � 𝜓
iff F′ � 𝜓). By the definition of F′, 𝑠0(F′) ≤ 𝑠0(F), 𝑠0(F′) ≤ 𝑛, 𝑠1(F′) ≤ 𝑠1(F),
𝑠1(F

′) ≤ 𝑛, and F′ is a p-morphic image of F. �

90

Lemma 102 Let F0 ∈ 𝐶𝑏,F1 ∈ 𝐶𝑏,F′ ∈ 𝐶𝑏. If 𝑠0(F0) ≥ 𝑠0(F
′) and 𝑠1(F1) ≥

𝑠1(F
′), then for every sentence 𝜓 ∈ FOL, if 𝜓 is modally definable in ML(�)

over 𝒞KD45, F0 � 𝜓, F1 � 𝜓, then F′ � 𝜓.

Proof Suppose F0 � 𝜓 and F1 � 𝜓, but F′ 2 𝜓. Let 𝐴 be a modal definition
of 𝜓 over 𝒞KD45. Then F0 𝐴, F1 𝐴, and F′ 1 𝐴, so there is some state 𝑤 of
F′, such that F′, 𝑤 1 𝐴, so let F′′ be the generated subframe of F′ at 𝑤. Then
F′′, 𝑤 1 𝐴, so F′′ 1 𝐴. There are two cases for F′′. First, let 𝑤 be reflexive. Then
𝑠0(F

′′) ≤ 𝑠0(F
′) ≤ 𝑠0(F0), so F′′ is a p-morphic image of a daisy of F0, then

F′′ 𝐴, contradiction. Now, let 𝑤 be a petal. Then 𝑠1(F′′) ≤ 𝑠1(F
′) ≤ 𝑠1(F1).

Then F′′ is a p-morphic image of a daisy of F1, so F′′ 𝐴, contradiction. �

For 𝑛 > 0, we denote 𝐴𝑛 =def
⋀︀
{♦𝑝𝑘 | 1 ≤ 𝑘 ≤ 𝑛} →

⋁︀
{♦(𝑝𝑖 ∧ 𝑝𝑗) | 1 ≤

𝑖 < 𝑗 ≤ 𝑛}. It can easily be verified that for any KD45 frame F and any state
𝑤 from F, F, 𝑤 𝐴𝑛 iff 𝑤 has less than 𝑛 𝑅-descendants. Therefore, for all
𝑛 > 0, 𝜓𝑛(𝑥) and 𝐴𝑛 are locally correspondent with respect to 𝒞KD45. This
implies that ∀𝑥𝜓𝑛(𝑥) and 𝐴𝑛 are globally correspondent with respect to 𝒞KD45.

We assume that 𝑞 is a variable, which does not occur in any 𝐴𝑛.

Lemma 103 For all 𝑖 and 𝑗 such that 1 ≤ 𝑖 ≤ 𝑗, ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝑗) ∨ (¬(𝑥 𝑟
𝑥) ∧ 𝜓𝑖)) is globally correspondent to ((𝑞 → ♦𝑞) ∧ 𝐴𝑗) ∨ 𝐴𝑖 with respect to
𝐶0 ∪ 𝐶1.

Proof Let F = ⟨𝑊,𝑅⟩ ∈ 𝐶0 ∪ 𝐶1.
First, we show that F � ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝑗) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝑖)) iff F 𝐴𝑖 or

F ((𝑞 → ♦𝑞) ∧𝐴𝑗).
1. Let F � ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝑗) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝑖)).
1.1. F has a petal 𝑤. Then F � 𝜓𝑖[𝑤], so F has < 𝑖 stamens. Then F � ∀𝑥𝜓𝑖,

so F 𝐴𝑖.
1.2. F has no petals. Let 𝑤 be any state of F. Then F � 𝜓𝑗 [𝑤], so F has

< 𝑗 stamens. Then F � ∀𝑥𝜓𝑗 , so F 𝐴𝑗 , but F has no petals (F (𝑞 → ♦𝑞)),
so F ((𝑞 → ♦𝑞) ∧𝐴𝑗).

2. Let F 𝐴𝑖. Then F has < 𝑖 stamens, so F � 𝜓𝑖. But 𝑖 ≤ 𝑗, so F � 𝜓𝑗 .
Then F � ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝑗) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝑖)).

3. Let F ((𝑞 → ♦𝑞) ∧ 𝐴𝑗). Then F (𝑞 → ♦𝑞) and F 𝐴𝑗 . Then
F � ∀𝑥(𝑥 𝑟 𝑥) and F ∀𝑥𝜓𝑗 . So F � ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝑗) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝑖)).

It remains to show that for F 𝐴𝑖 or F ((𝑞 → ♦𝑞) ∧ 𝐴𝑗) iff F ((𝑞 →
♦𝑞) ∧𝐴𝑗) ∨𝐴𝑖.

The left-to-right direction is obvious. Let F ((𝑞 → ♦𝑞) ∧ 𝐴𝑗) ∨ 𝐴𝑖 and
suppose that F 1 𝐴𝑖 and F 1 ((𝑞 → ♦𝑞)∧𝐴𝑗). Then there are states 𝑤1 and 𝑤2

from F, such that F, 𝑤1 1 𝐴𝑖 and F, 𝑤2 1 ((𝑞 → ♦𝑞)∧𝐴𝑗). Therefore, 𝑤1 has at
least 𝑖 𝑅-descendants, and 𝑤2 is not reflexive or has at least 𝑗 𝑅-descendants.

91

Now, we have that F 𝐴𝑗 ∨ 𝐴𝑖 and F (𝑞 → ♦𝑞) ∨ 𝐴𝑖, but this means that
F 𝐴𝑗 (because 𝑖 ≤ 𝑗), so 𝑤2 has less than 𝑗 𝑅-descendents, therefore 𝑤2 is
not reflexive. First, F, 𝑤2 1 (𝑞 → ♦𝑞). Second, F, 𝑤2 1 𝐴𝑖 because the stamens
of F are at least 𝑖. Because 𝑞 does not occur in 𝐴𝑖, F, 𝑤2 1 (𝑞 → ♦𝑞)∨𝐴𝑖. This
contradicts F (𝑞 → ♦𝑞) ∨𝐴𝑖. �

Lemma 104 Let for some 1 ≤ 𝑖 ≤ 𝑗, ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝑗) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝑖))
be globally correspondent to some modal formula 𝐴 with respect to 𝐶0 ∪ 𝐶1.
Then ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝑗) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝑖)) is globally correspondent to 𝐴 with
respect to 𝒞KD45.

Proof Analogous to case 9 in the proof of Theorem 98. �

Lemma 105 For all 1 ≤ 𝑖 ≤ 𝑗, ∀𝑥(((𝑥 𝑟 𝑥)∧𝜓𝑗)∨ (¬(𝑥 𝑟 𝑥)∧𝜓𝑖)) is globally
correspondent to ((𝑞 → ♦𝑞) ∧𝐴𝑗) ∨𝐴𝑖 with respect to 𝒞KD45.

Proof Follows by Lemmas 103 and 104. �

We denote 𝐴0 =def ⊥, 𝐴𝜔 =def ⊤, 𝜓0 =def ⊥, 𝜓𝜔 =def ⊤.

Lemma 106 Let 𝜓 be a FOL sentence. Then 𝜓 is modally definable in ML(�)
over 𝒞KD45 iff there are ordinals 𝜎0, 𝜎1 such that 0 ≤ 𝜎1 ≤ 𝜎0 ≤ 𝜔 and for every
F ∈ 𝐶𝑏: F � 𝜓 iff 𝑠0(F) ≤ 𝜎0 and 𝑠1(F) ≤ 𝜎1.

Proof (“only if”) Let 𝜓 be modally definable in ML(�) over 𝒞KD45. Let
𝑆0 =def {𝑠0(F) | F ∈ 𝐶𝑏 & F � 𝜓}, 𝑆1 =def {𝑠1(F) | F ∈ 𝐶𝑏 & F � 𝜓}. Let
𝜎0 =def sup(𝑆0) which is an ordinal even when 𝑆0 = ∅. Let 𝜎1 =def sup(𝑆1)
which is an ordinal even when 𝑆1 = ∅. By the definition of 𝐶𝑏, 0 ≤ 𝜎0 ≤ 𝜔 and
0 ≤ 𝜎1 ≤ 𝜔.

Suppose 𝜎1 > 𝜎0. Then there is some frame F′ ∈ 𝐶𝑏, such that F′ ∈ 𝑆1, and
𝑠1(F

′) > 𝜎0, because suppose otherwise. Then 𝜎1 ≤ 𝜎0, contradicts 𝜎1 > 𝜎0.
Also, F′ � 𝜓. Let F′′ be F′ without its petals. Then F′′ is a p-morphic image
of F′. Let 𝐴 be a modal definition of 𝜓, then F′ 𝐴, so F′′ 𝐴 and F′′ � 𝜓.
But 𝑠(F′′) = 𝑠(F′), so F′′ ∈ 𝐶𝑏, so 𝑠0(F

′′) ≤ 𝜎0. But 𝑠0(F′′) = 𝑠1(F
′), so

𝜎0 < 𝑠1(F
′) = 𝑠0(F

′′) ≤ 𝜎0, contradiction. We conclude that 𝜎0 ≤ 𝜎1.
Let F ∈ 𝐶𝑏. First, let F � 𝜓. By the definition of 𝑆0 and 𝑆1, 𝑠0(F) ≤ 𝜎0

and 𝑠1(F) ≤ 𝜎1. Now let 𝑠0(F) ≤ 𝜎0 and 𝑠1(F) ≤ 𝜎1. Then there are frames
F0 ∈ 𝑆0, such that 𝑠0(F) ≤ 𝑠0(F0) and F1 ∈ 𝑆1, such that 𝑠1(F) ≤ 𝑠1(F1). By
Lemma 102, F � 𝜓.

(“if”) Let there be ordinals 𝜎0, 𝜎1, such that 0 ≤ 𝜎1 ≤ 𝜎0 ≤ 𝜔 and for every
F ∈ 𝐶𝑏: F � 𝜓 iff 𝑠0(F) ≤ 𝜎0 and 𝑠1(F) ≤ 𝜎1.

If 𝜎0 < 𝜔, let 𝛼0 =def 𝜎0 + 1, otherwise let 𝛼0 =def 𝜎0. If 𝜎1 < 𝜔, let
𝛼1 =def 𝜎1 + 1, otherwise let 𝛼1 =def 𝜎1. Let 𝐴 =def ((𝑞 → ♦𝑞) ∧𝐴𝛼0) ∨𝐴𝛼1 .
We show that for all F ∈ 𝒞KD45, F � 𝜓 iff F 𝐴.

92

1. 𝜎0 = 𝜔, 𝜎1 = 𝜔. Then 𝐴 ≡ ⊤. Suppose that F 2 𝜓. Then F � ¬𝜓 and
by Lemma 101, there is a frame F′ ∈ 𝐶𝑏, such that F′ � ¬𝜓, so F′ 2 𝜓. But
because F′ ∈ 𝐶𝑏, 𝑠0(F′) < 𝜔 and 𝑠1(F′) < 𝜔, so F′ � 𝜓, contradiction.

2. 𝜎0 = 𝜔, 𝜎1 = 0. Then 𝐴 ≡ (𝑞 → ♦𝑞).
2.1. F ∈ 𝒞S5. Then F 𝐴. Suppose F 2 𝜓. Then F � ¬𝜓 and by Lemma 101,

there is a frame F′ ∈ 𝐶𝑏, such that F′ � ¬𝜓, 𝑠0(F′) < 𝜔 and 𝑠1(F′) ≤ 𝑠1(F) = 0.
So F′ � 𝜓, contradicts F′ � ¬𝜓.

2.2. F /∈ 𝒞S5. Then F 1 𝐴. Suppose F � 𝜓. Then F � ∃𝑥¬(𝑥 𝑟 𝑥) ∧ 𝜓. By
Lemma 101, there is a frame F′ ∈ 𝐶𝑏, such that F′ � ∃𝑥¬(𝑥 𝑟 𝑥) ∧ 𝜓. Then
F′ � 𝜓 and 𝑠1(F′) > 0, so F′ 2 𝜓, contradiction.

3. 𝜎0 = 𝜔, 0 < 𝜎1 < 𝜔. Then 𝐴 ≡ (𝑞 → ♦𝑞) ∨𝐴𝛼1 .
3.1. F ∈ 𝒞S5. Then F (𝑞 → ♦𝑞), so F 𝐴. Suppose F 2 𝜓. Then F � ¬𝜓

and by Lemma 101, there is a frame F′ ∈ 𝐶𝑏, such that F′ � ¬𝜓, 𝑠0(F′) < 𝜔
and 𝑠1(F′) ≤ 𝑠1(F) ≤ 𝜎1. So F′ � 𝜓, contradicts F′ � ¬𝜓.

3.2. F /∈ 𝒞S5.
3.2.1. F 𝐴. Suppose F 2 𝜓, so F � ¬𝜓. By Lemma 101, there is a

p-morphic image of F, F′, such that F′ ∈ 𝐶𝑏, 𝑠0(F′) < 𝜔, and F′ � ¬𝜓, so
F′ 2 𝜓. Then F′ 𝐴, but 𝑠1(F′) ≥ 𝛼1 > 𝜎1 > 0. By the definition of 𝑠1(F′),
F′ has a petal, 𝑤, which has ≥ 𝛼1 𝑅-descendants. Then F′, 𝑤 1 (𝑞 → ♦𝑞) and
F′, 𝑤 1 𝐴𝛼1 . Because 𝑞 does not occur in 𝐴𝛼1 , F′, 𝑤 1 𝐴.

3.2.2. F � 𝜓. Suppose F 1 𝐴. So there is some state 𝑤 of F, such that
F, 𝑤 1 𝐴. So F, 𝑤 1 (𝑞 → ♦𝑞) and F, 𝑤 1 𝐴𝛼1 . Then 𝑤 is not reflexive and 𝑤
has > 𝜎1 𝑅-descendants. So F � 𝜓∧∃𝑥(¬(𝑥 𝑟 𝑥)∧𝜓𝛼1). By Lemma 101, there
is a frame F′ ∈ 𝐶𝑏, such that F′ � 𝜓 ∧ ∃𝑥(¬(𝑥 𝑟 𝑥) ∧ 𝜓𝛼1). Then, F′ � 𝜓, but
𝑠1(F

′) > 𝜎1, so F′ 2 𝜓, contradiction.
4. 𝜎0 = 0, 𝜎1 = 𝜔, contradicts 𝜎1 ≤ 𝜎0.
5. 𝜎0 = 0, 𝜎1 = 0. Then 𝐴 ≡ ⊥, so F 1 𝐴. Suppose F � 𝜓. By Lemma

101, there is a frame F′ ∈ 𝐶𝑏, such that F′ � 𝜓, but then both 𝑠0(F′) ≤ 0 and
𝑠1(F

′) ≤ 0, so 𝑠(F′) = 0, impossible.
6. 𝜎0 = 0, 0 < 𝜎1 < 𝜔. contradicts 𝜎1 ≤ 𝜎0.
7. 0 < 𝜎0 < 𝜔, 𝜎1 = 𝜔. contradicts 𝜎1 ≤ 𝜎0.
8. 0 < 𝜎0 < 𝜔, 𝜎1 = 0. Then 𝐴 ≡ (𝑞 → ♦𝑞) ∧𝐴𝛼0 .
8.1. F 𝐴. Then F (𝑞 → ♦𝑞), so F ∈ 𝒞S5, so 𝑠1(F) = 0. Suppose

F 2 𝜓, then F � ¬𝜓. By Lemma 101, there is a p-morphic image F′ of F, such
that F′ ∈ 𝐶𝑏, 𝑠1(F′) ≤ 𝑠1(F) = 0, and F � ¬𝜓, so 𝑠0(F) > 𝜎0 and therefore
𝑠(F) > 𝜎0. But F′ 𝐴𝛼0 , so every state in F′ has at most 𝜎0 successors,
contradiction.

8.2. F � 𝜓. Suppose F 1 𝐴.
8.2.1. F 1 (𝑞 → ♦𝑞). Then F has a non-reflexive state, so F � ∃𝑥¬(𝑥 𝑟

𝑥)∧𝜓. By Lemma 101, there is a frame F′ ∈ 𝐶𝑏, such that F′ � ∃𝑥¬(𝑥 𝑟 𝑥)∧𝜓.
Then F′ � 𝜓 and 𝑠1(F′) > 0, so F′ 2 𝜓, contradiction.

93

8.2.2. F 1 𝐴𝛼0 . Then F has some state with more than 𝜎0 successors.
So F � 𝜓 ∧ ∃𝑥(¬𝜓𝛼0). By Lemma 101, there is a frame F′ ∈ 𝐶𝑏, such that
F′ � 𝜓∧∃𝑥(¬𝜓𝛼0), so 𝑠0(F′) ≤ 𝜎0 and 𝑠1(F′) ≤ 𝜎1 = 0. Then 𝑠(F′) > 𝜎0. Then
either 𝑠0(F′) > 𝜎0, contradicts 𝑠0(F′) ≤ 𝜎0, or 𝑠1(F′) > 𝜎0 > 0, contradicts
𝑠1(F

′) = 0.
9. 0 < 𝜎0 < 𝜔, 0 < 𝜎1 < 𝜔. Then 𝐴 ≡ ((𝑞 → ♦𝑞) ∧𝐴𝛼0) ∨𝐴𝛼1

9.1. Let F 𝐴. Suppose F 2 𝜓, so F � ¬𝜓. By Lemma 101, there is a
p-morphic image F′ of F, such that F′ ∈ 𝐶𝑏 and F′ � ¬𝜓, so F′ 2 𝜓 and
F′ 𝐴.

9.1.1. 𝑠0(F′) > 𝜎0. So there is a finite daisy without petals in F′, 𝐷, which
has at least 𝛼0 stamens. Because 𝐷 is a generated subframe of F′, 𝐷 𝐴. Let
𝑀 = ⟨𝐷,𝑉 ⟩ be a model defined as follows: 𝑉 (𝑞) = ∅, and for all 𝑘, such that
1 < 𝑘 ≤ 𝛼0, 𝑉 (𝑝𝑘) are distinct singletons from 𝐷. Such a valuation is possible
because 𝐷 has at least 𝛼0 stamens. Clearly, 𝑀 1 𝐴, contradiction.

9.1.2. 𝑠1(F′) > 𝜎1. So there is a finite daisy 𝐷′ in F at least one petal 𝑤
and at least 𝛼1 stamens. Let 𝐷 be the generated subframe of F′ at 𝑤. Then
𝐷 𝐴. Let 𝑀 = ⟨𝐷,𝑉 ⟩ be a model defined as follows: 𝑉 (𝑞) = {𝑤}, and for all
𝑘, such that 1 < 𝑘 ≤ 𝛼1, 𝑉 (𝑝𝑘) are distinct singletons of stamens of 𝐷. Such
a valuation is possible because 𝐷 has at least 𝛼1 stamens. Clearly, 𝑀 1 𝐴,
contradiction.

9.2. Let F � 𝜓. Suppose F 1 𝐴. Then by Lemma 105, F 2 ∀𝑥(((𝑥 𝑟 𝑥) ∧
𝜓𝛼0)∨(¬(𝑥 𝑟 𝑥)∧𝜓𝛼1)). Then F � 𝜓∧∃𝑥(¬((𝑥 𝑟 𝑥)∧𝜓𝛼0)∧¬(¬(𝑥 𝑟 𝑥)∧𝜓𝛼1)).
By Lemma 101, there is a frame F′ ∈ 𝐶𝑏, such that F′ � 𝜓 ∧ ∃𝑥(¬((𝑥 𝑟
𝑥) ∧ 𝜓𝛼0) ∧ ¬(¬(𝑥 𝑟 𝑥) ∧ 𝜓𝛼1)). Then F′ � 𝜓 and there is some world 𝑤 from
F′ such that F′ � ¬((𝑥 𝑟 𝑥) ∧ 𝜓𝛼0)[𝑤] and F′ � ¬(¬(𝑥 𝑟 𝑥) ∧ 𝜓𝛼1)[𝑤], so
F′ ((𝑥 𝑟 𝑥) → ¬𝜓𝛼0)[𝑤] and F′ (¬(𝑥 𝑟 𝑥) → ¬𝜓𝛼1)[𝑤].

9.2.1. 𝑤 is reflexive. Then F′ � ¬𝜓𝛼0 [𝑤]. If 𝑤 is part of a daisy with a petal,
then 𝑠1(F

′) > 𝜎0. Otherwise, 𝑠0(F′) > 𝜎0. Because 𝑠1(F′) ≤ 𝑠0(F
′), in both

cases we have 𝑠0(F′) > 𝜎0, contradicts F′ � 𝜓.
9.2.2. 𝑤 is not reflexive. Then F′ � ¬𝜓𝛼1 [𝑤]. Then 𝑠1(F′) > 𝜎1, contradicts

F′ � 𝜓. �

Definition 107 (Restriction to at most 𝑘 Daisies of the Same Kind)

Let F and F′ be KD45-frames and let 𝑘 > 0. Let 𝐷 be the unique set of daisies,
up to isomorphism, such that F =

⨄︀
𝐷, and let 𝐷′ be the unique set of daisies,

up to isomorphism, such that F′ =
⨄︀
𝐷′. We say that F′ is the restriction of F

to at most 𝑘 daisies of the same kind iff for any daisy 𝑥 ∈ 𝐷, if 𝐷 has at least
𝑘 isomorphic copies of 𝑥 then 𝐷′ contains 𝑘 isomorphic copies of 𝑥, otherwise
𝐷′ contains the same number of isomorphic copies of 𝑥 as 𝐷. Clearly, up to
isomorphism, there is a single KD45-frame which is the restriction of F to at
most 𝑘 daisies of the same kind. We denote this frame by F �2 𝑘.

94

Let 𝐶fin be the class of all finite KD45 frames.
Let 𝑘 > 0. We denote by 𝐶𝑘fin the class of finite KD45-frames F such that

every daisy in F has at most 𝑘 petals and 𝑘 stamens and F contains at most
𝑘 isomorphic copies of every daisy.

Proposition 108 Let F be a 𝒞KD45-frame and let 𝑘 ≥ 0. Then there is a
frame F′ ∈ 𝐶𝑘fin , such that: 1. for all FOL sentences 𝜓 with quantifier rank 𝑘:
F � 𝜓 iff F′ � 𝜓. 2. F′ is a p-morphic image of F.

Proof Let F′′ =def F �1 𝑘 (see Definition 100). This is similar to the proof of
the weaker statement in Lemma 101. Let F′ =def F′′ �2 𝑘 (see Definition 107).
Clearly, F′ is finite and F′ ∈ 𝐶fin . Also, clearly F′ is a p-morphic image of F′′,
and F′′ is a p-morphic image of F, so F′ is a p-morphic image of F. Clearly,
the duplicator wins the Ehrenfeucht-Fräıssé game 𝐺𝑛(F,F′). By Ehrenfeucht’s
theorem, F′ ≡𝑘 F. �

Proposition 109 Let 𝜓 be a sentence with quantifier rank 𝑘. Then 𝒞KD45 � 𝜓
iff 𝐶𝑘fin � 𝜓.

Proof Similar to the proof of Proposition 108. �

Corollary 110 Let 𝜓 ∈ FOL be a sentence. The problem of deciding 𝒞KD45 �
𝜓 is PSPACE-complete.

Proof A theorem by Stockmeyer in [51] shows that the complexity of deciding
the validity of a first-order formula with equality as its only predicate symbol
is PSPACE-complete. We also use the fact that the first-order theory we are
considering is a conservative extension of the theory for =, to conclude that
the problem is PSPACE-hard. To see that the problem is in PSPACE, we use
Proposition 109. �

Theorem 111 The problem of modal definability of a FOL sentence 𝜓 in
ML(�) over the class 𝒞KD45 is in PSPACE.

Proof Let 𝑚′ be the quantifier rank of 𝜓 and let 𝑚 =def 𝑚
′ + 1. Let 𝑄 =def

{𝜓0, 𝜓1, . . . , 𝜓𝑚, 𝜓𝜔}, which has 𝑚+ 2 elements.
If there are 𝛼0, 𝛼1 ∈ {0, 1, . . . ,𝑚, 𝜔}, such that 𝜓𝛼0 ∈ 𝑄, 𝜓𝛼1 ∈ 𝑄, 0 ≤

𝛼1 ≤ 𝛼0 ≤ 𝜔 and 𝒞KD45 � 𝜓 ↔ ∀𝑥(((𝑥 𝑟 𝑥)∧𝜓𝛼0)∨ (¬(𝑥 𝑟 𝑥)∧𝜓𝛼1)), then for
all F ∈ 𝐶𝑏, F � 𝜓 iff 𝑠0(F) < 𝛼0 and 𝑠1(F) < 𝛼1. Then there are ordinals 𝜎0
and 𝜎1, such that 0 ≤ 𝜎0 ≤ 𝜎1 ≤ 𝜔, and for all F ∈ 𝐶𝑏, F � 𝜓 iff 𝑠0(F) ≤ 𝜎0
and 𝑠1(F) ≤ 𝜎1. Then by Lemma 106, 𝜓 is modally definable in ML(�) over
𝒞KD45.

Now, let there be no 𝛼0, 𝛼1 ∈ {0, 1, . . . ,𝑚, 𝜔}, such that 𝜓𝛼0 ∈ 𝑄, 𝜓𝛼1 ∈ 𝑄,
0 ≤ 𝛼1 ≤ 𝛼0 ≤ 𝜔 and 𝒞KD45 � 𝜓 ↔ ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝛼0) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝛼1)).

95

Suppose 𝜓 is modally definable in ML(�) over 𝒞KD45. Then by Lemma 106,
there are some ordinals 𝜎0 and 𝜎1, such that 0 ≤ 𝜎1 ≤ 𝜎0 ≤ 𝜔 and for all
F ∈ 𝐶𝑏: F � 𝜓 iff 𝑠0(F) ≤ 𝜎0 and 𝑠1(F) ≤ 𝜎1. Then there are ordinals 𝛼0 and
𝛼1, such that 0 ≤ 𝛼1 ≤ 𝛼0 ≤ 𝜔 and for all F ∈ 𝐶𝑏: F � 𝜓 iff 𝑠0(F) < 𝛼0

and 𝑠1(F) < 𝛼1. Then 𝒞KD45 � 𝜓 ↔ ∀𝑥(((𝑥 𝑟 𝑥) ∧ 𝜓𝛼0) ∨ (¬(𝑥 𝑟 𝑥) ∧ 𝜓𝛼1)).
But 𝛼0, 𝛼1 /∈ {0, 𝜔} ⊆ {0, 1, . . . ,𝑚, 𝜔}, so therefore 𝒞KD45 2 𝜓 ↔ ⊥ and
𝒞KD45 2 𝜓 ↔ ⊤. Let F ∈ 𝒞KD45 be such that F 2 𝜓, then F � ¬𝜓. Let
F′ =def F �1 𝑚 (see Definition 100). Then the duplicator wins the Ehrenfeucht-
Fräıssé game 𝐺𝑚(F,F′), so F ≡𝑚 F′. Because the quantifier rank of ¬𝜓 is < 𝑚,
F′ 2 𝜓. Clearly F′ ∈ 𝐶𝑏, and also 𝑠0(F

′) ≤ 𝑚 < 𝛼0 and 𝑠1(F
′) ≤ 𝑚 < 𝛼1,

which implies F′ � 𝜓, contradicts F′ 2 𝜓.
By Corollary 110, the problem of 𝐶KD45 � 𝛾 for FOL formulas 𝛾 is in

PSPACE. Therefore, the problem of modal definability of FOL sentences in
ML(�) over the class 𝐶KD45 is also in PSPACE. �

Definition 112 (Relativized Reduct) Let F,F0 be structures for some first-
order language 𝐿. We say that F0 is a relativized reduct of F if there exist a
formula 𝜓(�̄�, 𝑥) ∈ 𝐿 and a list 𝑠 of worlds in F such that F0 is the restriction
of F to the set of all worlds 𝑠 in F such that F � 𝜓(�̄�, 𝑥)[𝑠, 𝑠]. In this case, F0

is called the relativized reduct of F with respect to 𝜓(�̄�, 𝑥) and 𝑠.

Definition 113 (Stable Classes of Frames) Let 𝒞 be a class of frames. We
say that 𝒞 is stable iff there is a FOL formula 𝛾1(�̄�, 𝑥) and a FOL sentence 𝛾2,
such that:

(a) for all frames F in 𝒞, for all lists 𝑠 of worlds in F, and for all frames F′,
if F′ is the relativized reduct of F with respect to 𝛾1(�̄�, 𝑥) and 𝑠, then F′ is in
𝒞,

(b) for all frames F0 in 𝒞, there are frames F,F′ in 𝒞 and there is a list 𝑠
of worlds from F, such that F0 is the relativized reduct of F with respect to
𝛾1(�̄�, 𝑥) and 𝑠, F � 𝛾2, F′ 2 𝛾2, and for all ML(�) formulas 𝐴: if F 𝐴, then
F′ 𝐴.

Theorem 114 If 𝒞 is a stable class of frames, then the problem of deciding
the validity of FOL sentences in 𝒞 is reducible to the problem of deciding the
modal definability of FOL sentences in ML(�) with respect to 𝒞.

Proof See the proof in [3]. �

Note that by examining the proof of the above theorem in [3], it becomes
clear that in these cases, the validity problem is polynomially reducible to the
modal definability problem.

Proposition 115 𝒞KD45 is a stable class.

96

Proof Let 𝛾1(𝑥1, 𝑥2, 𝑥) =def

(∃𝑧((𝑧 𝑟 𝑧) ∧ (𝑧 ̸= 𝑥1) ∧ (𝑧 ̸= 𝑥2))
∧ ∀𝑧((𝑧 𝑟 𝑥1) ∨ (𝑥1 𝑟 𝑧) ∨ (𝑧 𝑟 𝑥2) ∨ (𝑥2 𝑟 𝑧) → (𝑧 = 𝑥1) ∨ (𝑧 = 𝑥2)))

→ ((𝑥 ̸= 𝑥1) ∧ (𝑥 ̸= 𝑥2)).
It is clear that for any frame F ∈ 𝒞KD45 and any states 𝑤1, 𝑤2 from F, there

is a relativized reduct of F with respect to 𝛾1(𝑥1, 𝑥2, 𝑥) and 𝑤1, 𝑤2 and it is in
𝒞KD45, because we can only remove a whole daisy.

Let 𝛾2 =def ∃𝑥¬(𝑥 𝑟 𝑥).
Now, let F0 ∈ 𝒞KD45, we find F ∈ 𝒞KD45, states 𝑤0 and 𝑤1 from F, and F′ ∈

𝒞KD45, such that F0 is the relativized reduct of F with respect to 𝛾1(𝑥1, 𝑥2, 𝑥)
and 𝑤1, 𝑤2, F′ is a p-morphic image of F, F � 𝛾2, and F′ 2 𝛾2, which proves
that 𝒞KD45 is a stable class.

Let 𝐷 be an isomorphic copy of 𝐷′
1, which is disjoint with F0, and let

F =def F0
⨄︀
𝐷. Let 𝑤1 and 𝑤2 be the two states of 𝐷 in any order. Clearly,

F0 is the relativized reduct of F with respect to 𝛾1(𝑥1, 𝑥2, 𝑥) and 𝑤1, 𝑤2. Let
F′ be the restriction of F to all its stamens, removing the petals. Clearly, F′ is
a p-morphic image of F, F � 𝛾2 because of the petal of 𝐷, and F′ 2 𝛾2. �

Corollary 116 The problem of modal definability of FOL formulas in ML(�)
over 𝒞KD45 is PSPACE-hard.

Proof A theorem by Stockmeyer in [51] shows that the complexity of deciding
the validity of a first-order formula with equality as its only predicate symbol is
PSPACE-complete. Clearly, this problem is polynomially reducible to validity
of FOL sentences in the class of all KD45-frames. By Proposition 115 and
Theorem 114 (with the remark after it), the latter problem is polynomially
reducible to the problem of modal definability of FOL sentences in the language
ML(�) over 𝐶KD45. Therefore, problem of modal definability of FOL sentences
in ML(�) over 𝐶KD45 is PSPACE-hard.

5 ML(�, [𝑈]) and 𝒞KD45

With the language ML(�, [𝑈]), the KD45 axioms and frames are the same as
with ML(�). In the context of the language ML(�, [𝑈]), the operation disjoint
union loses its meaning and well-known properties. Still, using the symbol

⨄︀
for disjoint union as in the context of ML(�), we can see that Proposition 95
holds in the context of ML(�, [𝑈]).

5.1 Modal Definability

Let F ∈ 𝐶fin , 𝑚 be the maximal number of petals in a daisy in F, and 𝑛
be the maximal number of stamens in a daisy in F. The pattern of F is the

97

matrix:

⎡⎢⎢⎢⎣
𝑥01 𝑥02 𝑥03 . . . 𝑥0𝑛
𝑥11 𝑥12 𝑥13 . . . 𝑥1𝑛
...

...
...

. . .
...

𝑥𝑚1 𝑥𝑚2 𝑥𝑚3 . . . 𝑥𝑚𝑛

⎤⎥⎥⎥⎦, where for all 𝑖, 𝑗 such that 0 ≤ 𝑖 ≤ 𝑚

and 1 ≤ 𝑗 ≤ 𝑛, 𝑥𝑖𝑗 is the number of daisies in F with 𝑖 petals and 𝑗 stamens.
Let F ∈ 𝐶fin , 𝑚 be the maximal number of petals in a daisy in F, and 𝑛 be

the maximal number of stamens in a daisy in F and 𝒫 be the pattern of F. Let
𝑖, 𝑗 be such that 0 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. Let 𝑥 be 𝑥𝑖𝑗 of 𝒫. The Jankov-Fine
formula for ⟨𝑖, 𝑗, 𝑥⟩, 𝐴(𝑑, 𝑝, 𝑡)⟨𝑖,𝑗,𝑥⟩, similarly to [8], pp. 144–145, and [2], is:⋀︁

1≤𝑞≤𝑖
1≤𝑟≤𝑥

⟨𝑈⟩𝑝𝑟𝑞 ∧
⋀︁

1≤𝑞≤𝑗
1≤𝑟≤𝑥

⟨𝑈⟩𝑡𝑟𝑞 ∧
⋀︁

1≤𝑟≤𝑥
⟨𝑈⟩𝑑𝑟 ∧

⋀︁
1≤𝑞<𝑟≤𝑥

[𝑈]¬(𝑑𝑞 ∧ 𝑑𝑟)∧

⋀︁
1≤𝑘<𝑞≤𝑖
1≤𝑟≤𝑥

[𝑈]¬(𝑝𝑟𝑘 ∧ 𝑝𝑟𝑞) ∧
⋀︁

1≤𝑘<𝑞≤𝑗
1≤𝑟≤𝑥

[𝑈]¬(𝑡𝑟𝑘 ∧ 𝑡𝑟𝑞) ∧
⋀︁

1≤𝑘≤𝑖
1≤𝑞≤𝑗
1≤𝑟≤𝑥

[𝑈]¬(𝑝𝑟𝑘 ∧ 𝑡𝑟𝑞)∧

⋀︁
1≤𝑟≤𝑥

[𝑈](𝑑𝑟 ↔ 𝑝𝑟1 ∨ · · · ∨ 𝑝𝑟𝑖 ∨ 𝑡𝑟1 ∨ · · · ∨ 𝑡𝑟𝑗)∧

⋀︁
1≤𝑞≤𝑖
1≤𝑟≤𝑥

[𝑈](𝑝𝑟𝑞 → �¬𝑝𝑟𝑞) ∧
⋀︁

1≤𝑘≤𝑖
1≤𝑞≤𝑗
1≤𝑟≤𝑥

[𝑈](𝑝𝑟𝑘 → ♦𝑡𝑟𝑞) ∧
⋀︁

1≤𝑘≤𝑗
1≤𝑞≤𝑗
1≤𝑟≤𝑥

[𝑈](𝑡𝑟𝑘 → ♦𝑡𝑟𝑞)∧

⋀︁
1≤𝑟≤𝑥

[𝑈](𝑑𝑟 ↔ �(
⋁︁

1≤𝑞≤𝑗
𝑡𝑟𝑞))

where 𝑝11, . . . , 𝑝1𝑖 , . . . , 𝑝
𝑥
1 , . . . , 𝑝

𝑥
𝑖 , 𝑡

1
1, . . . , 𝑡

1
𝑗 , . . . , 𝑡

𝑥
1 , . . . , 𝑡

𝑥
𝑗 , 𝑑1, . . . , 𝑑𝑥 be pairwise

distinct parametrized variables.

Proposition 117 Let 𝑖 ≥ 0, 𝑗 ≥ 1, 𝑥 ≥ 0. Let 𝐴 =def 𝐴(𝑑, 𝑝, 𝑡)⟨𝑖,𝑗,𝑥⟩ be the
Jankov-Fine formula for ⟨𝑖, 𝑗, 𝑥⟩. Then for all frames F ∈ 𝒞KD45: 𝐴 is satisfiable
in F iff F contains ≥ 𝑥 daisies with ≥ 𝑖 petals and ≥ 𝑗 stamens.

Proof First, let M = ⟨𝐹, 𝑉 ⟩ and let M 𝐴.
If 𝑥 = 0, then the proposition is trivially true, so let 𝑥 > 0.
Because M

⋀︀
1≤𝑟≤𝑥 ⟨𝑈⟩𝑑𝑟 ∧

⋀︀
1≤𝑞<𝑟≤𝑥 [𝑈]¬(𝑑𝑞 ∧ 𝑑𝑟), then 𝑉 (𝑑1), . . . ,

𝑉 (𝑑𝑥) are pairwise non-intersecting non-empty sets.
Because M

⋀︀
1≤𝑞≤𝑖
1≤𝑟≤𝑥

⟨𝑈⟩𝑝𝑟𝑞 ∧
⋀︀

1≤𝑞≤𝑗
1≤𝑟≤𝑥

⟨𝑈⟩𝑡𝑟𝑞, then the valuations of all 𝑝-

variables, if any, and all 𝑡-variables of 𝐴 are non-empty sets. Because M ⋀︀
1≤𝑘<𝑞≤𝑖
1≤𝑟≤𝑥

[𝑈]¬(𝑝𝑟𝑘∧𝑝𝑟𝑞), M
⋀︀

1≤𝑘<𝑞≤𝑗
1≤𝑟≤𝑥

[𝑈]¬(𝑡𝑟𝑘∧𝑡𝑟𝑞), and M
⋀︀

1≤𝑘≤𝑖
1≤𝑞≤𝑗
1≤𝑟≤𝑥

[𝑈]¬(𝑝𝑟𝑘∧

𝑡𝑟𝑞), these valuations are also pairwise non-intersecting.

98

Because M
⋀︀

1≤𝑟≤𝑥 [𝑈](𝑑𝑟 ↔ 𝑝𝑟1 ∨ · · · ∨ 𝑝𝑟𝑖 ∨ 𝑡𝑟1 ∨ · · · ∨ 𝑡𝑟𝑗), for all 𝑟 such
that 1 ≤ 𝑟 ≤ 𝑥, 𝑉 (𝑑𝑟) = 𝑉 (𝑝𝑟1) ∪ · · · ∪ 𝑉 (𝑝𝑟𝑖) ∪ 𝑉 (𝑡𝑟1) ∪ . . . 𝑉 (𝑡𝑟𝑗).

Because M
⋀︀

1≤𝑞≤𝑖
1≤𝑟≤𝑥

[𝑈](𝑝𝑟𝑞 → �¬𝑝𝑟𝑞), then there cannot be any reflexive

states in any valuation of the 𝑝-variables of 𝐴, if any, so all these valuations
contain only petals.

Because M
⋀︀

1≤𝑘≤𝑖
1≤𝑞≤𝑗
1≤𝑟≤𝑥

[𝑈](𝑝𝑟𝑘 → ♦𝑡𝑟𝑞) ∧
⋀︀

1≤𝑘≤𝑗
1≤𝑞≤𝑗
1≤𝑟≤𝑥

[𝑈](𝑡𝑟𝑘 → ♦𝑡𝑟𝑞), then the

valuations of all 𝑡-variables of 𝐴 contain descendant states, and because all the
variables of 𝐴 valuate to non-empty sets, the valuations of all 𝑡-variables of 𝐴
contain at least one stamen each. This also implies that each of the valuations
𝑉 (𝑑𝑟) contains at least 𝑖 distinct petals and 𝑗 distinct stamens, which are from
the same daisy.

Finally, because of the last conjunct of 𝐴, for all 𝑟 such that 1 ≤ 𝑟 ≤ 𝑥,
all descendants of states in any valuation of the 𝑑𝑟-variables of 𝐴 are in some
valuation of a corresponding 𝑟-superscripted 𝑡-variable of 𝐴. Then clearly all
descendants of states of each 𝑉 (𝑑𝑟) are only among 𝑉 (𝑑𝑟). Therefore suppose
that there are two 𝑑-variables of 𝐴, 𝑑𝑟′ and 𝑑𝑟′′ , such that 𝑉 (𝑑𝑟′) and 𝑉 (𝑑𝑟′′)
both contain states from the same daisy 𝐷 of F and let 𝑤 be a stamen of
𝐷. Then clearly by the above, 𝑤 ∈ 𝑉 (𝑑𝑟′) and 𝑤 ∈ 𝑉 (𝑑𝑟′′), but 𝑉 (𝑑𝑟′) ∩
𝑉 (𝑑𝑟′′) = ∅, contradiction. Therefore, each 𝑉 (𝑑𝑟) contain only states from
different daisies.

Then F contains ≥ 𝑥 daisies with ≥ 𝑖 petals and ≥ 𝑗 stamens.
Now, let F contain ≥ 𝑥 daisies with ≥ 𝑖 petals and ≥ 𝑗 stamens. Let

𝐷1, . . . , 𝐷𝑥 be 𝑥 such daisies, let for all 𝑟 such that 1 ≤ 𝑟 ≤ 𝑥, 𝑤𝑟1, . . . , 𝑤𝑟𝑖 be 𝑖
distinct petals of 𝐷𝑟 (if they exist) and 𝑣𝑟1, . . . , 𝑣𝑟𝑗 be 𝑗 distinct stamens of 𝐷𝑟.
We form a valuation 𝑉 in this way: for all 1 ≤ 𝑟 ≤ 𝑥, 1 ≤ 𝑞 ≤ 𝑖, 1 ≤ 𝑘 ≤ 𝑗:
𝑉 (𝑑𝑟) =def |𝐷𝑟|, 𝑉 (𝑝𝑟𝑞) =def {𝑤𝑟𝑞}, 𝑉 (𝑡𝑟𝑘) =def {𝑣𝑟𝑘}. Let M =def ⟨F, 𝑉 ⟩, clearly
M 𝐴. �

Let 𝑖 ≥ 0, 𝑗 > 0, and 𝑥 ≥ 0. Denote 𝑄′ =def {⟨𝑖0, 𝑥0⟩ | 0 ≤ 𝑖0 ≤ 𝑖 & 0 ≤
𝑥0 ≤ 𝑖} and let 𝑄 =def {𝑦 | 𝑦 ∈ P(𝑄′) & Σ⟨𝑖0,𝑥0⟩∈𝑦𝑖0.𝑥0 ≥ 𝑖}. The extended
Jankov-Fine formula for ⟨𝑖, 𝑗, 𝑥⟩, 𝐴(𝑑, 𝑝, 𝑡)⟨𝑖,𝑗,𝑥⟩ is:

𝑥⋀︁
𝑘=1

⋁︁
𝑦∈𝑄

⋀︁
⟨𝑖0,𝑥0⟩∈𝑦

param=⟨𝑘,𝑦,𝑖0,𝑥0,𝑖,𝑗,𝑥⟩

𝐴(𝑑param , 𝑝param , 𝑡param)⟨𝑖0,𝑗,𝑥0⟩

where for all finite sets of numbers 𝑦 and for all numbers 𝑘, 𝑖0, 𝑥0, 𝑖, 𝑗, 𝑥, all
possible parameters param = ⟨𝑘, 𝑦, 𝑖0, 𝑥0, 𝑖, 𝑗, 𝑥⟩, 𝑑param , 𝑝param , 𝑡param are
pairwise-distinct.

Let G ∈ 𝐶fin , let 𝑚 be the maximum number of petals per daisy in G and
𝑛 be the maximum number of stamens per daisy in G. Let 𝒫 be the pattern of

99

G and let for all ⟨𝑖, 𝑗, 𝑥⟩, such that 𝑥 is 𝑥𝑖𝑗 of 𝑃 , 𝐴𝑖𝑗 =def 𝐴(𝑑, 𝑝, 𝑡)⟨𝑖,𝑗,𝑥⟩ be the
extended Jankov-Fine formula for ⟨𝑖, 𝑗, 𝑥⟩, where the sets of variables of each
𝐴𝑖𝑗 are pairwise non-intersecting. Let 𝐴′ =def

⋀︀
1≤𝑖≤𝑚
1≤𝑗≤𝑛

𝐴𝑖𝑗 , let 𝑄1 be the set of

all 𝑑-variables of 𝐴′, and let 𝑄2 be the set of all disjuncts of all 𝐴𝑖𝑗 .

𝐴 =def 𝐴
′∧⋀︁

𝑑1,𝑑2∈𝑄1
𝐴1,𝐴2∈𝑄2

𝑑1 ̸ →˓𝑑2,𝑑1 →˓𝐴1,𝑑2 →˓𝐴2

((𝐴1 ∧𝐴2) → [𝑈]¬(𝑑1 ∧ 𝑑2)) ∧ [𝑈](
⋁︁

𝑑∈𝑄1,𝐴∈𝑄2

𝑑 →˓𝐴

(𝐴 ∧ 𝑑))

We say that 𝐴 is the Jankov-Fine formula of G.

Proposition 118 Let F ∈ 𝒞KD45, G ∈ 𝐶fin . Let 𝐴 be the Jankov-Fine formula
of G. Then F ¬𝐴 iff G is not a p-morphic image of F.

Proof We show that 𝐴 is satisfiable in F iff G is a p-morphic image of F.
First, let 𝐴 be satisfiable in F. So there is a valuation 𝑉 and a model

M = ⟨F, 𝑉 ⟩, such that M 𝐴. Let 𝒫 be the pattern of G, let 𝑚 be the
maximal number of petals and 𝑛 be the maximal number of stamens per daisy
in G. Then for all 𝑥𝑖𝑗 from 𝑃 , M 𝐴𝑖𝑗 , where 𝐴𝑖𝑗 is the extended Jankov-
Fine formula for ⟨𝑖, 𝑗, 𝑥𝑖𝑗⟩. Each 𝐴𝑖𝑗 is a conjunction of disjunctions, so for
all conjuncts of 𝐴𝑖𝑗 , there is some disjunct, which holds in M. Let 𝐴′ be the
conjunction of all such disjuncts from all 𝐴𝑖𝑗 . Clearly, M 𝐴′. By Proposition
117, and by the definition of 𝐴𝑖𝑗 , F contains a p-morphic pre-image for each
daisy of G, and by the last two conjuncts of 𝐴, the parts of these pre-images
(the 𝑉 -valuations of all 𝑑-variables of 𝐴′) are non-intersecting and contain all
states of F. Therefore, G is a p-morphic image of F.

Now, let G be a p-morphic image of F and let 𝑓 be one such p-morphism.
We need two easy to prove lemmas. First, let 𝐷 be a daisy of G. Then

𝑓−1[𝐷] is a union of daisies of F. The second lemma states that whenever 𝐷 is
a daisy of G, which is the image of a union of some daisies of F: {F𝑖 | 𝑖 ∈ 𝐼},
then for all 𝑖 ∈ 𝐼: |𝑆(𝐷)| ≤ |𝑆(F𝑖)| and |𝑃 (𝐷)| ≤ Σ𝑖∈𝐼 |𝑃 (F𝑖)|.

Let F1, . . . ,F𝑛 be all daisies of G. Let F′
1, . . . ,F

′
𝑛 be their corresponding

pre-images from F. Note that these pre-images contain all states of F. By the
lemmas, each F′

𝑘 is a union of daisies, where the cardinality of stamens per
daisy of F′

𝑘 is ≥ |𝑆(F𝑘)|, and where cardinality of all petals of all daisies in F′
𝑘

is ≥ |𝑃 (F𝑘)|. It is clear how to define a valuation over F which satisfies 𝐴. �

For simplicity, when discussing patterns of frames from 𝐶𝑘fin , we only consider
(𝑘 + 1)× 𝑘 matrices.

100

Proposition 119 Let 𝜓 be a sentence with quantifier rank 𝑘 and modally
definable by a formula 𝐴 from ML(�, [𝑈]) in 𝒞KD45. If there is some F ∈

𝐶𝑘fin with pattern 𝒫1 =

⎡⎢⎢⎢⎣
𝑥01 . . . 𝑥0(𝑗−1) 𝑘 𝑥0(𝑗+1) 𝑥0𝑘
𝑥11 . . . 𝑥1𝑘
...

. . .
...

...
...

...
...

𝑥𝑘1 . . . 𝑥𝑘𝑘

⎤⎥⎥⎥⎦, such that

1 ≤ 𝑗 ≤ 𝑘, and F � 𝜓, then there is a frame F′ ∈ 𝐶𝑘fin with a pattern

𝒫2 =

⎡⎢⎢⎢⎣
𝑘 . . . 𝑘 𝑘 𝑥0(𝑗+1) 𝑥0𝑘
𝑥11 . . . 𝑥1𝑘
...

. . .
...

...
...

...
...

𝑥𝑘1 . . . 𝑥𝑘𝑘

⎤⎥⎥⎥⎦, such that F′ � 𝜓.

Proof Let F′ ∈ 𝐶𝑘fin be with pattern 𝒫2. Let F′′ be obtained from F by
adding (𝑘 + 2)2 new daisies, each of them with 0 petals and 𝑗 stamens. By
Ehrenfeucht’s theorem, F′′ ≡𝑘 F, so F′′ � 𝜓. So F′′ 𝐴. But F′ is a p-morphic
image of F′′, so F′ 𝐴 and F′ � 𝜓. �

Proposition 120 Let 𝜓 be a sentence with quantifier rank 𝑘 and modally
definable by a formula 𝐴 from ML(�, [𝑈]) in 𝒞KD45. If there is some F ∈ 𝐶𝑘fin

with pattern 𝒫1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥01 𝑥0𝑗 𝑥0(𝑗+1) . . . 𝑥0𝑘
... . . .

.
...

... . . . 𝑥(𝑖−1)𝑗 𝑥(𝑖−1)(𝑗+1) . . .
...

... . . . 𝑥𝑖(𝑗−1) 𝑘 𝑥𝑖(𝑗+1) . . .
...

... . . . 𝑥(𝑖+1)𝑗 𝑥(𝑖+1)(𝑗+1) . . .
...

... . . .
... . . .

...
𝑥𝑘1 𝑥𝑘𝑗 𝑥𝑘(𝑗+1) . . . 𝑥𝑘𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, such

that 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑘, and F � 𝜓, then there is a frame F′ ∈ 𝐶𝑘fin with a

pattern 𝒫2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘 𝑘 𝑥0(𝑗+1) . . . 𝑥0𝑘
... . . .

. . .
... . . .

...
... . . . 𝑘 𝑥(𝑖−1)(𝑗+1) . . .

...
... . . . 𝑘 𝑘 𝑥𝑖(𝑗+1) . . .

...
... . . . 𝑘 𝑥(𝑖+1)(𝑗+1) . . .

...
... . . .

...
... . . .

...
𝑘 . . . 𝑘 𝑘 𝑥𝑘(𝑗+1) . . . 𝑥𝑘𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, such that F′ � 𝜓.

Proof Let F′ ∈ 𝐶𝑘fin be with pattern 𝑃2. Let F′′ be obtained from F by adding
(𝑘+2)4 new daisies, each of them with 𝑖 petals and 𝑗 stamens. By Ehrenfeucht’s

101

theorem, F′′ ≡𝑘 F, so F′′ � 𝜓. So F′′ 𝐴. But F′ is a p-morphic image of F′′,
so F′ 𝐴 and F′ � 𝜓. �

Let 𝜓 be a sentence and 𝑘 > 0. We denote by 𝐶𝑘fin(𝜓) the class of all frames
F ∈ 𝐶𝑘fin , such that F � 𝜓.

Theorem 121 Let 𝜓 be a sentence with quantifier rank 𝑘, such that 𝒞KD45 2 𝜓
and 𝒞KD45 2 ¬𝜓. Then 𝜓 is modally definable over 𝒞KD45 with a formula of
ML(�, [𝑈]) iff 𝐶𝑘fin(𝜓) satisfies the following conditions: (1) ∅ ≠ 𝐶𝑘fin(𝜓) ̸=
𝐶𝑘fin and 𝐶𝑘fin(𝜓) is closed under p-morphisms; (2) 𝐶𝑘fin(𝜓) is closed under the
pattern transformations described in Proposition 119 and Proposition 120.

Proof Let 𝜓 be modally definable over 𝒞KD45 with a formula of ML(�, [𝑈]).
Then (1) holds by Proposition 109, and (2) follows by Proposition 119 and
Proposition 120.

Now, let (1) and (2) hold. Because of (1), ∅ (𝐶𝑘fin(𝜓) (𝐶𝑘fin , so there is a
frame F0 ∈ 𝐶𝑘fin , such that F0 /∈ 𝐶𝑘fin(𝜓), so F0 ∈ 𝐶𝑘fin(¬𝜓), so 𝐶𝑘fin(¬𝜓) ̸= ∅.
For all frames F0 ∈ 𝐶𝑘fin(¬𝜓), take their Jankov-Fine formulas 𝐴F0 , and take
𝐴𝜓 to be the conjunction of the negations of all such formulas. We show that
for all frames F ∈ 𝒞KD45:

F � 𝜓 ⇔ F 𝐴𝜓

i.e. that 𝐴𝜓 modally defines 𝜓 over 𝒞KD45.
First, let F ∈ 𝒞KD45 and let F 𝐴𝜓. Let F′′ =def F �1 𝑘 (see Definition

100). Let F′ =def F′′ �2 𝑘 (see Definition 107). By Ehrenfeucht’s theorem,
F′ ≡𝑘 F, and F′ is finite, so F′ ∈ 𝐶𝑘fin . Also, F′ is an p-morphic image of F,
so F′ 𝐴𝜓. By the construction of 𝐴𝜓, and by Proposition 118, no frame of
𝐶𝑘fin(¬𝜓) is a p-morphic image of F′, so F′ ∈ 𝐶𝑘fin(𝜓). Because F′ ≡𝑘 F, F � 𝜓.

Now, let F ∈ 𝒞KD45 and let F � 𝜓. Suppose for the sake of contradiction
that F 1 𝐴𝜓. So there is a valuation 𝑉 over F and a model M = ⟨𝐹, 𝑉 ⟩, such
that M 1 𝐴𝜓. Then we can find a frame G ∈ 𝐶𝑘fin(¬𝜓), such that M 1 ¬𝐴G,
so M 𝐴G. By Proposition 118, G is a p-morphic image of F.

Let F′ =def F �1 𝑘 (see Definition 100). Then by Ehrenfeucht’s theorem,
F′ � 𝜓, and also it is not hard to see that G is a p-morphic image of F′.

Now, let F′′ =def F′ �2 𝑘 (see Definition 107). Clearly, F′′ ≡𝑘 F′, F′′ � 𝜓,
F′′ ∈ 𝐶𝑘fin(𝜓).

It remains to show that G is a p-morphic image of some frame F0 ∈ 𝐶𝑘fin(𝜓).
Then by (1), G ∈ 𝐶𝑘fin(𝜓), contradicts G ∈ 𝐶𝑘fin(¬𝜓).

Let 𝒫 be the pattern of F′′.
If F′′ is F′, then we are done.
Otherwise, clearly there are indices 𝑖0, 𝑗0, such that 𝑥𝑖0𝑗0 of 𝒫 is 𝑘. Let

𝑖1, 𝑗1 be such that 𝑥𝑖1𝑗1 = 𝑘, 𝑗1 is the largest such second index, and 𝑖1 is the

102

largest first index, such that the second index is 𝑗1. If there is such a pair of
indices 𝑖0, 𝑗0, such that 𝑥𝑖0𝑗0 = 𝑘 and 𝑖0 > 0, then let 𝑖2, 𝑗2 be one such pair,
where 𝑗2 is the largest second index, such that 𝑖2 > 0; otherwise, let 𝑗2 be 𝑗1
and 𝑖2 be 𝑖1.

Case 1. 𝑖1 = 0.
Case 1.1. 𝑗2 = 𝑗1. Then 𝑖2 = 0. Let 𝑗 =def 𝑗1. Then we have the case as in

Proposition 119. Let F1 be obtained from F′′ by applying the transformation
described in Proposition 119 for 𝜓 and the indices 0, 𝑗. By (2), F1 ∈ 𝐶𝑘fin(𝜓).
Also, it is easy to see that G is a p-morphic image of F1.

Case 1.2. 𝑗2 < 𝑗1. Let F1 be obtained from F′′ by applying the transformation
from Proposition 119 for 𝑖1, 𝑗1, then let F2 be obtained by F1 by the
transformation from Proposition 120 for 𝑖2, 𝑗2. Then F2 ∈ 𝐶𝑘fin(𝜓) and again it
is easy to see that G is a p-morphic image of F2.

Case 2. 𝑖1 > 0. Then 𝑗1 ≥ 𝑗2. Let F2 be obtained from F′′ by the
transformation from Proposition 120 for 𝑖1, 𝑗1. Then F2 ∈ 𝐶𝑘fin(𝜓) and again it
is easy to see that G is a p-morphic image of F2. �

Proposition 122 Let 𝜓 be a sentence with quantifier depth 𝑘. Let 𝜏𝑘 be the
sentence which says ‘there are at least (𝑘+2)4 daisies, each with at least 𝑘+1
petals and 𝑘+1 stamens’. Then 𝜓∨ 𝜏𝑘 is modally definable in ML(�, [𝑈]) over
𝒞KD45 iff 𝒞KD45 � 𝜓.

Proof The right-to-left direction is obvious, so suppose the sentence 𝜓∨ 𝜏𝑘 is
modally definable by the formula 𝐴 from ML(�, [𝑈]) over 𝒞KD45. Let F𝑘+1 ∈
𝒞KD45 be a structure with exactly (𝑘 + 2)4 daisies with 𝑘 + 1 petals and 𝑘 + 1
stamens. Then F𝑘+1 � 𝜓 ∨ 𝜏𝑘 because F𝑘+1 � 𝜏𝑘. Therefore F𝑘+1 𝐴. Let
F ∈ 𝐶𝑘fin . Because F is a p-morphic image of F𝑘+1, F 𝐴, so F � 𝜓 ∨ 𝜏𝑘. But
F 2 𝜏𝑘, so F � 𝜓. Thus 𝐶𝑘fin � 𝜓. By Proposition 109, 𝒞KD45 � 𝜓. �

Theorem 123 The problem of the modal definability of sentences in ML(�, [𝑈])
over 𝒞KD45 is PSPACE-complete.

Proof We have that the problem is PSPACE-hard by Corollary 110 and
Proposition 122. Theorem 121 guarantees that the problem is in PSPACE,
because it is possible to create a polynomial-space algorithm, which, given a
sentence 𝜓, calculates 𝑘 and checks whether 𝐶𝑘fin(𝜓) satisfies the conditions (1)
and (2) of the theorem. �

5.2 First-order Definability

Now, we are going to apply the main idea of [2], which is to apply the properties
of Ehrenfeucht-Fräıssé games and Ehrenfeucht’s theorem to the standard
translation of modal formulas, in order to restrict the Kripke frames that we

103

are working with. Thus, as we see below in Theorem 133, it is possible to show
that every modal formula of ML(�, [𝑈]) has a first-order definition over 𝒞KD45.

Definition 124 ((𝑛, 𝑑)-sort and non-null (𝑛, 𝑑)-sort) Let 𝑑 > 0 and 𝑛 >
0. We say that a sequence of numbers 𝜎1, . . . , 𝜎2𝑛 is an (𝑛, 𝑑)-sort iff for all 𝑖,
such that 1 ≤ 𝑖 ≤ 2𝑛, 0 ≤ 𝜎𝑖 ≤ 𝑑. Clearly, the number of all (𝑛, 𝑑)-sorts is
(𝑑+ 1)2

𝑛 . Additionally, we may require that at least one of the 𝜎𝑖 is positive.
Thus we define a non-null (𝑛, 𝑑)-sort, and the number of all non-null (𝑛, 𝑑)-
sorts is < (𝑑+ 1)2

𝑛 .

Let the variables of PROP be ordered as 𝑝1, 𝑝2, Let {𝑃1, 𝑃2, . . . } be a
countably infinite set of unary predicate symbols.

Definition 125 (𝐿(=, 𝑅, 𝑃1, . . . , 𝑃𝑛)) Let 𝑛 > 0. We extend FOL to 𝐿(=
, 𝑅, 𝑃1, . . . , 𝑃𝑛) by adding the new predicate symbols 𝑃1, . . . , 𝑃𝑛. Clearly, any
Kripke model M is also a structure for 𝐿(=, 𝑅, 𝑃1, . . . , 𝑃𝑛). In this case, for all
𝑖 such that 1 ≤ 𝑖 ≤ 𝑛, we will use 𝑉 (𝑃𝑖) interchangeably with 𝑉 (𝑝𝑖).

For any 𝑛 > 0, let 𝜖1, . . . , 𝜖2𝑛 be a fixed liner order of all sequences of
zeroes and ones of length 𝑛, for example, the lexicographical order. Let the 𝑖th

element of a sequence 𝜖𝑗 for 1 ≤ 𝑗 ≤ 2𝑛 and 1 ≤ 𝑖 ≤ 𝑛 be denoted by 𝜖𝑗𝑖 .

Definition 126 ((𝑛, 𝑑)-sort of a set) Let M = ⟨𝑊,𝑅, 𝑉 ⟩ be a Kripke model,
let 𝑋 be subset of 𝑊 , let 𝑑 > 0, 𝑛 > 0. Let 𝜎1, . . . , 𝜎2𝑛 be an (𝑛, 𝑑)-sort. For
each 𝑗 such that 1 ≤ 𝑗 ≤ 2𝑛, we define the set 𝑋𝜖𝑗 =def 𝑋 ∩ 𝑉 (𝑃1)

𝜖𝑗1 ∩
· · · ∩ 𝑉 (𝑃𝑛)

𝜖𝑗𝑛 , where for all 𝑖, such that 1 ≤ 𝑖 ≤ 𝑛, 𝑉 (𝑃𝑖)
0 = 𝑉 (𝑃𝑖) and

𝑉 (𝑃𝑖)
1 = 𝑊 ∖ 𝑉 (𝑃𝑖). We say that 𝑋 is of the given (𝑛, 𝑑)-sort 𝜎1, . . . , 𝜎2𝑛 iff

for any 𝑗 such that 1 ≤ 𝑗 ≤ 2𝑛, the set 𝑋𝜖𝑗 has 𝜎𝑗 elements if 𝜎𝑗 < 𝑑, and at
least 𝑑 elements if 𝜎𝑗 = 𝑑.

We say that a Kripke model is a KD45-model iff its frame is a KD45-frame.

Definition 127 ((𝑛, 𝑑)-sort of a daisy) Let M a KD45-model, and let 𝐷 be
a daisy from M. Let 𝐷pet be the set of petals of 𝐷, and let 𝐷sta be the set
of stamens of 𝐷. Let 𝑑 > 0, 𝑛 > 0. Let Σpet be an (𝑛, 𝑑)-sort. Let Σsta be a
non-null (𝑛, 𝑑)-sort. We say that any such tuple ⟨Σpet,Σsta⟩ is an (𝑛, 𝑑)-sort of
a daisy. We say that 𝐷 is of the sort ⟨Σpet,Σsta⟩ iff 𝐷pet is of sort Σpet and
𝐷sta is of sort Σsta. Clearly, for fixed KD45-model M, 𝑑 and 𝑛, the number of
all sorts of daisies is ≤ ((𝑑+ 1)2

𝑛
)2.

Definition 128 ((𝑛, 𝑑)-similar KD45-models) Let M1 and M2 be two KD45-
models. Let 𝑑 > 0, 𝑛 > 0. We say that M1 and M2 are (𝑛, 𝑑)-similar iff for any
(𝑛, 𝑑) sort of a daisy ⟨Σpet,Σsta⟩ either M1 and M2 contain the same number
of daisies having the sort ⟨Σpet,Σsta⟩ whenever this number is < 𝑑, or each of
them contains at least 𝑑 daisies of sort ⟨Σpet,Σsta⟩.

104

Proposition 129 Let 𝑑 > 0, 𝑛 > 0. Let M1 and M2 be two (𝑛, 𝑑)-similar
KD45-models. Then they validate the same sentences from 𝐿(=, 𝑅, 𝑃1, . . . , 𝑃𝑛)
with quantifier depth ≤ 𝑑.

Proof Clearly, the duplicator wins the Ehrenfeucht-Fräıssé 𝑑-rounds game
over M1 and M2. Therefore they validate the same sentences from
𝐿(=, 𝑅, 𝑃1, . . . , 𝑃𝑛) with quantifier depth ≤ 𝑑. �

Let 𝐴 ∈ ML(�, [𝑈]). Let 𝑛 > 0 be such that all variables occurring in 𝐴 be
among 𝑝1, . . . , 𝑝𝑛. It is a well-known fact that the standard translation (see 2.7)
ST(𝐴, 𝑥) of the formula 𝐴, which gives a formula 𝜓(𝑥) ∈ 𝐿(=, 𝑅, 𝑃1, . . . , 𝑃𝑛),
has the property that for any given Kripke model M, M 𝐴 iff M � 𝜓(𝑥).
Also if 𝑑 > 0 and the modal depth of 𝐴 is < 𝑑, then the quantifier depth of
∀𝑥𝜓 is ≤ 𝑑.

Therefore, by Proposition 129 and by the above, we get the following
lemma:

Lemma 130 Let 𝑑 > 0, 𝑛 > 0. Let M1 and M2 be two (𝑛, 𝑑)-similar KD45-
models. Then for any modal formula 𝐴 ∈ ML(�, [𝑈]) with modal depth < 𝑑
and variables among 𝑝1, . . . , 𝑝𝑛: M1 𝐴 iff M2 𝐴. �

Definition 131 (Restriction of a Kripke Model) Let M = ⟨𝑊,𝑅, 𝑉 ⟩ be
a Kripke model, let F′ = ⟨𝑊 ′, 𝑅′⟩ be a Kripke frame where 𝑊 ′ ⊆ 𝑊 , 𝑅′ =
𝑅∩(𝑊 ′×𝑊 ′). Then we say that the model 𝑀 ′ = ⟨𝑊 ′, 𝑅′, 𝑉 ′⟩ is the restriction
of M to F′, denoted by M � F′, iff for all propositional variables 𝑝, 𝑉 ′(𝑝) =
𝑉 (𝑝) ∩𝑊 ′.

Proposition 132 Let 𝑑 > 0, 𝑛 > 0. Let 𝑘 > 𝑑.((𝑑+1)2
𝑛
)2. Let F ∈ 𝒞KD45. Let

F1 =def F �1 𝑘 (see Definition 100). Let F2 =def F1 �2 𝑘 (see Definition 107).
Then for any modal formula 𝐴 ∈ ML(�, [𝑈]) with variables among 𝑝1, . . . , 𝑝𝑛
and modal depth 𝑚 such that (𝑚+ 1) < 𝑑 the following are equivalent:
(1) F 𝐴
(2) F1 𝐴
(3) F2 𝐴.

Proof First, we show the equivalence of (1) and (2). Clearly, F1 is a p-morphic
image of F, so (1) ⇒ (2). Now, let F1 𝐴 and suppose F 1 𝐴. Then there is
a model M over F and a state 𝑤 in F, such that M, 𝑤 1 𝐴. Then M ⟨𝑈⟩¬𝐴.
Let M1 =def M � F1 (see Definition 131). We now show that M and M1 are
(𝑛, 𝑑)-similar and by Lemma 130, this shows the contraposition of (2) ⇒ (1).

Clearly by Definition 100, there is a bijection 𝑓 between the daisies of F
and F1, such that for every daisy 𝐷1 of F1, 𝐷1 = 𝑓−1[𝐷1] �1 𝑘.

105

Let 𝐷1 be a daisy from F1 and let 𝐷 be 𝑓−1[𝐷1]. It is enough to show
that for every daisy type ⟨Σpet,Σsta⟩, 𝐷1 is of the type ⟨Σpet,Σsta⟩ iff 𝐷 is of
the type ⟨Σpet,Σsta⟩. If 𝐷1 = 𝐷, then there is nothing to prove, so suppose
𝐷1 ̸= 𝐷.

Let ⟨Σpet,Σsta⟩ be a daisy type, let Σpet = {𝜎pet1 , . . . , 𝜎pet2𝑛 }, let Σsta =
{𝜎sta1 , . . . , 𝜎sta2𝑛 }. Denote the set of petals of 𝐷1 by 𝐷pet

1 , the set of stamens of
𝐷1 by 𝐷sta

1 , the set of petals of 𝐷 by 𝐷pet, the set of stamens of 𝐷 by 𝐷sta.
First, let𝐷1 be of type ⟨Σpet,Σsta⟩. Then easily,𝐷 is also of type ⟨Σpet,Σsta⟩.
Now, let𝐷 be of type ⟨Σpet,Σsta⟩. Then, because𝐷pet

1 is a subframe of𝐷pet,
𝐷sta

1 is a subframe of 𝐷sta, 𝜎pet1 + · · ·+𝜎pet2𝑛 ≤ 𝑑.2𝑛 < 𝑘, and 𝜎sta1 + · · ·+𝜎sta2𝑛 ≤
𝑑.2𝑛 < 𝑘, we have that 𝐷1 is also of type ⟨Σpet,Σsta⟩.

Now, we show the equivalence of (2) and (3). Because F2 is a p-morphic
image of F1, we easily get the direction (2) ⇒ (3). We need to show that
for every model M1 over F1, we can find an (𝑛, 𝑑)-similar model M2 over F2,
then the result would follow by Lemma 130. Let M1 be a model over F1. By
Definition 128 and the fact that 𝑘 > 𝑑.((𝑑 + 1)2

𝑛
)2, we can see that we can

find an (𝑛, 𝑑)-similar model M2 over F2. �

Theorem 133 Any modal formula 𝐴 of ML(�, [𝑈]) is first-order definable in
FOL over the class 𝒞KD45.

Proof Let 𝐴 ∈ ML(�, [𝑈]). Let the modal depth of 𝐴 be 𝑚. Let 𝑛 > 0 be
such that the variables of 𝐴 are among 𝑝1, . . . , 𝑝𝑛. Let 𝑑 > 0 be such that
(𝑚+1) < 𝑑. Let 𝑘 be such that 𝑘 > 𝑑.((𝑑+1)2

𝑛
)2. Let 𝐶𝑘fin(𝐴) be the class of

all frames in 𝐶𝑘fin which validate 𝐴.
If 𝐶𝑘fin(𝐴) = ∅, then by Proposition 132, ⊥ is a FOL definition of 𝐴 over

𝒞KD45.
If 𝐶𝑘fin(𝐴) = 𝐶𝑘fin , then by Proposition 132, ⊤ is a FOL definition of 𝐴 over

𝒞KD45.
Otherwise, let F ∈ 𝐶𝑘fin(𝐴). by Proposition 132, F is a witness of a class

of frames from 𝒞KD45, which validate 𝐴. Namely, this is the class of all frames
F0 which produce F as F = (F0 �1 𝑘) �2 𝑘. Clearly, this class of frames can be
described by a single FOL sentence, because F is a finite frame. Denote this
formula by 𝜓F.

Let 𝜓 =def
⋁︀
(𝜓F | F ∈ 𝐶𝑘fin(𝐴)).

Suppose F ∈ 𝒞KD45 and suppose F 𝐴. Let F′ =def (F �1 𝑘) �2 𝑘. By
the Proposition 132, F′ 𝐴, so F′ ∈ 𝐶𝑘fin(𝐴). Then by the definition of 𝜓F′ ,
F � 𝜓F′ , so F � 𝜓.

Now, let F ∈ 𝒞KD45 and let F � 𝜓. Then there is a disjunct of 𝜓, 𝜓F′ , such
that F′ ∈ 𝐶𝑘𝑛(𝐴) (and so, F′ 𝐴), and F � 𝜓F′ . Then by the definition of 𝜓F′ ,
F′ = (F �1 𝑘) �2 𝑘. By Proposition 132, F 𝐴. �

106

6 ML(�) and 𝒞K5

We are using the basic modal language ML(�) and the standard predicate
calculus with individual variables VAR, equality, and a single binary predicate
symbol 𝑟 FOL. The standard definitions of Kripke frame and Kripke model
apply. See 2 for more information.

The axiom of K5 is the following formula:
(5) (♦𝑝→ �♦𝑝) (Euclidean axiom)

A first-order correspondent of the K5 axiom is:
(5′) ∀𝑥∀𝑦1((𝑥 𝑟 𝑦1) → ∀𝑧1((𝑥 𝑟 𝑧1) → (𝑧1 𝑟 𝑦1)))

We say that a frame F is a K5 frame iff the axiom (5) is valid on F. Denote
the class of all Euclidean frames by 𝒞K5.

Let us examine the problems of modal definability of FOL formulas in
ML(�) over 𝒞K5 and of first-order definability of ML(�) formulas in FOL over
𝒞K5.

6.1 ML(�) formulas are FOL-definable over 𝒞K5

Definition 134 (Simple K5 Frame) We say that an K5 frame F = ⟨𝑊,𝑅⟩
is a simple K5 frame iff there are sets 𝑃 (F) (the set of petals) and 𝑆(F) (the set
of stamens), such that 𝑊 = 𝑃 (F) ∪ 𝑆(F), 𝑃 (F) ∩ 𝑆(F) = ∅, and the following
hold:
(SK5F 1). ∀𝑥 ∈ 𝑃 (F)¬∃𝑦 ∈𝑊 (⟨𝑦, 𝑥⟩ ∈ 𝑅)
(SK5F 2). 𝑆(F) ̸= ∅ ⇒ ∀𝑥 ∈ 𝑃 (F)∃𝑦 ∈ 𝑆(F)(⟨𝑥, 𝑦⟩ ∈ 𝑅)
(SK5F 3). ∀𝑥 ∈ 𝑆(F)∀𝑦 ∈ 𝑆(F)(⟨𝑥, 𝑦⟩ ∈ 𝑅)

It is easy to check that any K5-frame is a disjoint union of simple K5
frames.

Let the class of all generated subframes of K5-frames be denoted by 𝐶gen .
Clearly any F ∈ 𝐶gen has zero or one irreflexive states and possibly a cluser of
states, with the irreflexive state, if present, being related to some of the states
in the cluster.

Denote the class of finite generated subframes of K5 by 𝐶f . Clearly 𝐶f ⊆
𝐶gen . We denote by F𝑒,𝑠,𝑚 any frame of 𝐶f , where 𝑒 ∈ {0, 1} is the number
of irreflexive states, 𝑠 is the number of descendents of the irreflexive state (if
any), and 𝑚 is the total number of states in the cluster. Clearly 𝑚 ≥ 𝑠 ≥ 0
and 𝑚+ 𝑒 > 0.

We say that a Kripke model M is a K5-model iff its frame is a K5-frame,
denoted by M ∈ 𝒞K5. We say that a Kripke model M is a gen-model iff its
frame is a gen-frame, denoted by M ∈ 𝐶gen . We say that a Kripke model M is
an f -model iff its frame is an f -frame, denoted by M ∈ 𝐶f .

We must now remember definitions 124, 125, and 126.

107

Definition 135 ((𝑛, 𝑑)-sort of a gen-model) Let Σpet, Σsta1 , and Σsta2 be
(𝑛, 𝑑)-sorts. We say that any such tuple ⟨Σpet,Σsta1 ,Σsta2⟩ is an (𝑛, 𝑑)-sort of
a gen-model iff there is at least one number in one of the three (𝑛, 𝑑)-sorts,
which is > 0, and also in Σpet, there is at most one number, which is equal to
1, and the rest are 0.

Let M ∈ 𝐶gen . Then its frame 𝐷 is some F𝑒,𝑠,𝑚. Let𝐷pet be the set of petals
of 𝐷. Let 𝐷sta1 be the set of stamens of 𝐷, which are descendants of the petal,
if present. Let 𝐷sta2 be the set of stamens of 𝐷, which are not descendants of a
petal. Let 𝑑 > 0, 𝑛 > 0. We say that M is of the (𝑛, 𝑑)-sort ⟨Σpet,Σsta1 ,Σsta2⟩
iff 𝐷pet is of sort Σpet, 𝐷sta1 is of sort Σsta1 , and 𝐷sta2 is of sort Σsta2 .

Definition 136 ((𝑛, 𝑑)-similar gen-models) Let M1,M2 ∈ 𝐶gen . Let 𝑑 > 0,
𝑛 > 0. We say that M1 and M2 are (𝑛, 𝑑)-similar iff they have the same (𝑛, 𝑑)-
sort.

Proposition 137 Let 𝑑 > 0, 𝑛 > 0. Let M1 ∈ 𝐶gen and M2 ∈ 𝐶gen be two
(𝑛, 𝑑)-similar models. Then they validate the same sentences from
𝐿(=, 𝑅, 𝑃1, . . . , 𝑃𝑛) (see Definition 125) with quantifier depth ≤ 𝑑.

Proof Clearly, the duplicator wins the Ehrenfeucht-Fräıssé 𝑑-rounds game
over M1 and M2. Therefore they validate the same sentences from
𝐿(=, 𝑅, 𝑃1, . . . , 𝑃𝑛) with quantifier depth ≤ 𝑑. �

Let 𝑛 > 0. Let 𝐴 ∈ ML(�) and let all variables occurring in 𝐴 be
among 𝑝1, . . . , 𝑝𝑛. It is a well-known fact that the standard translation (see 2.7)
ST(𝐴, 𝑥) of the formula 𝐴, which gives a formula 𝜓(𝑥) ∈ 𝐿(=, 𝑅, 𝑃1, . . . , 𝑃𝑛),
has the property that for any given Kripke model M and a state 𝑤 in M,
M, 𝑤 𝐴 iff M � 𝜓(𝑥)[𝑤]. Also if 𝑑 > 0 and the modal depth of 𝐴 is < 𝑑, then
the quantifier depth of ∃𝑥𝜓 is ≤ 𝑑.

Therefore, by Proposition 137 and by the above, we get the following
lemma:

Lemma 138 Let 𝑑 > 0, 𝑛 > 0. Let M1 and M2 be two (𝑛, 𝑑)-similar 𝐶gen -
models. Then for any modal formula 𝐴 ∈ ML(�) with modal depth < 𝑑 and
variables among 𝑝1, . . . , 𝑝𝑛: 𝐴 is satisfied on M1 iff 𝐴 is satisfied on M2.

Proof By Proposition 137, either both models validate the sentence
∃𝑥ST(𝐴, 𝑥), or both models validate its negation. The result follows by the
properties of ST. �

For 𝑘 > 0, 𝐶𝑘f =def {F ∈ 𝐶f | Card(Fsta1) ≤ 𝑘 & Card(Fsta2) ≤ 𝑘}

108

Definition 139 (Restriction of a gen-frame) Let F ∈ 𝐶gen and let 𝑘 > 0.
We say that the frame F′ ∈ 𝐶𝑘f is a restriction of F to 𝑘 iff:

1. Fpet = F′
pet ,

2. Either Card(Fsta1) < 𝑘 and Card(Fsta1) = Card(F′
sta1

), or Card(Fsta1) ≥
𝑘 and Card(F′

sta1
) = 𝑘,

3. Either Card(Fsta2) < 𝑘 and Card(Fsta2) = Card(F′
sta2

), or Card(Fsta2) ≥
𝑘 and Card(F′

sta2
) = 𝑘.

Clearly, up to isomorphism, for any F ∈ 𝐶gen , there is a single frame
F′ ∈ 𝐶𝑘f , which is the restriction of F to 𝑘. We denote this by F′ =def F �3 𝑘.
Up to isomorphism, we may consider F′ to be a subframe of F.

Proposition 140 Let 𝐴 ∈ ML(�). Let 𝑛 > 0 be such that the variables of
𝐴 be among 𝑝1, . . . , 𝑝𝑛. Let the modal depth of 𝐴 be 𝑑𝐴. Let 𝑑 > 0 be such
that (𝑑𝐴 + 1) < 𝑑. Let 𝑘 be such that 𝑘 > (𝑑 + 1).2𝑛. Let F ∈ 𝐶gen and let
F′ = F �3 𝑘. Then 𝐴 is satisfiable on F iff 𝐴 is satisfiable on F′.

Proof Let M be any model over F. Because 𝑘 > (𝑑 + 1).2𝑛, clearly we
may construct a model M′ over F′, such that M and M′ are (𝑛, 𝑑)-similar.
By Proposition 138, 𝐴 is satisfiable on M iff 𝐴 is satisfiable on M′.

Now, let M′ be any model over F′. Because 𝑘 > (𝑑+ 1).2𝑛, and because F′

is a subframe of F, we may extend M′ to an (𝑛, 𝑑)-similar model M over F. By
Proposition 138, 𝐴 is satisfiable on M iff 𝐴 is satisfiable on M′. �

Let 𝐴 ∈ ML(�) and let 𝑘 > 0. Denote 𝐶𝑘f (𝐴) =def {F ∈ 𝐶𝑘f | F 𝐴}.

Proposition 141 Let 𝐴 ∈ ML(�). Then 𝐴 has a definition in FOL over 𝒞K5.

Proof Let 𝑛 > 0 be such that the variables of 𝐴 be among 𝑝1, . . . , 𝑝𝑛. Let
the modal depth of 𝐴 be 𝑑𝐴. Let 𝑑 > 0 be such that (𝑑𝐴 + 1) < 𝑑. Let 𝑘 be
such that 𝑘 > (𝑑+ 1).2𝑛.

Let F ∈ 𝐶𝑘f ∖ 𝐶𝑘f (𝐴). Then F is a finite frame and we construct a FOL
sentence 𝜓F, with the following property: for all F′ ∈ 𝒞K5, F′ � 𝜓F iff there is
a generated subframe F′′ of F′, such that, up to isomorphism, F′′ �3 𝑘 = F. We
construct the sentence in the following way. Because F ∈ 𝐶𝑘𝑓 , then there are
numbers 𝑒, 𝑠,𝑚 such that F = F𝑒,𝑠,𝑚.

First, if 𝑚 = 𝑠 = 0, then 𝑒 = 1 and because 𝑘 > 1 the sentence is:
𝜓F =def ∃𝑥∀𝑥′(¬(𝑥 𝑟 𝑥′) ∧ ¬(𝑥′ 𝑟 𝑥)).

Second, if 𝑒 = 𝑠 = 0, then 𝑚 > 0 and there are two cases. First, if 𝑚 = 𝑘:
𝜓F =def ∃𝑧1 . . . ∃𝑧𝑚

⋀︀
1≤𝑖,𝑗≤𝑚(𝑧𝑖 𝑟 𝑧𝑗) ∧

⋀︀
1≤𝑖 ̸=𝑗≤𝑚(𝑧𝑖 ̸= 𝑧𝑗).

Else if 𝑚 < 𝑘, the formula is:
𝜓F =def ∃𝑧1 . . . ∃𝑧𝑚

⋀︀
1≤𝑖,𝑗≤𝑚(𝑧𝑖 𝑟 𝑧𝑗) ∧

⋀︀
1≤𝑖 ̸=𝑗≤𝑚(𝑧𝑖 ̸= 𝑧𝑗)∧⋀︀

1≤𝑖≤𝑚 ∀𝑧′((𝑧𝑖 𝑟 𝑧′) →
⋁︀

1≤𝑗≤𝑚(𝑧
′ = 𝑧𝑗)).

Third, 𝑒 = 1 and 𝑠 > 0. Then 𝑚 ≥ 𝑠 and there are three cases.

109

Let 0 < 𝑠 = 𝑚 = 𝑘
𝜓F =def ∃𝑥∃𝑦1 . . . ∃𝑦𝑠

(∀𝑥′(¬(𝑥′ 𝑟 𝑥))) ∧
⋀︀

1≤𝑖 ̸=𝑗≤𝑠(𝑦𝑖 ̸= 𝑦𝑗) ∧
⋀︀

1≤𝑖≤𝑠(𝑥 𝑟 𝑦𝑖) ∧
⋀︀

1≤𝑖,𝑗≤𝑠(𝑦𝑖 𝑟 𝑦𝑗).
Now let 0 < 𝑠 < 𝑚 = 𝑘.

𝜓F =def ∃𝑥∃𝑦1 . . . ∃𝑦𝑠∃𝑧1 . . . ∃𝑧𝑚
(∀𝑥′(¬(𝑥′ 𝑟 𝑥))) ∧

⋀︀
1≤𝑖 ̸=𝑗≤𝑠(𝑦𝑖 ̸= 𝑦𝑗) ∧

⋀︀
1≤𝑖≤𝑠(𝑥 𝑟 𝑦𝑖)∧⋀︀

1≤𝑖,𝑗≤𝑚(𝑧𝑖 𝑟 𝑧𝑗) ∧
⋀︀

1≤𝑖 ̸=𝑗≤𝑚(𝑧𝑖 ̸= 𝑧𝑗) ∧
⋀︀

1≤𝑖≤𝑠
⋁︀

1≤𝑗≤𝑚(𝑦𝑖 = 𝑧𝑗)∧
∀𝑦′(

⋀︀
1≤𝑖≤𝑠(𝑦

′ ̸= 𝑦𝑖) → ¬(𝑥 𝑟 𝑦′)).
Now let 0 < 𝑠 ≤ 𝑚 < 𝑘.

𝜓F =def ∃𝑥∃𝑦1 . . . ∃𝑦𝑠∃𝑧1 . . . ∃𝑧𝑚
(∀𝑥′(¬(𝑥′ 𝑟 𝑥))) ∧

⋀︀
1≤𝑖 ̸=𝑗≤𝑠(𝑦𝑖 ̸= 𝑦𝑗) ∧

⋀︀
1≤𝑖≤𝑠(𝑥 𝑟 𝑦𝑖)∧⋀︀

1≤𝑖,𝑗≤𝑚(𝑧𝑖 𝑟 𝑧𝑗) ∧
⋀︀

1≤𝑖 ̸=𝑗≤𝑚(𝑧𝑖 ̸= 𝑧𝑗) ∧
⋀︀

1≤𝑖≤𝑠
⋁︀

1≤𝑗≤𝑚(𝑦𝑖 = 𝑧𝑗)∧
∀𝑦′(

⋀︀
1≤𝑖≤𝑠(𝑦

′ ̸= 𝑦𝑖) → ¬(𝑥 𝑟 𝑦′))∧
∀𝑧′(

⋀︀
1≤𝑖≤𝑚(𝑧

′ ̸= 𝑧𝑖) →
⋀︀

1≤𝑖≤𝑚 ¬(𝑧𝑖 𝑟 𝑧′)).
Because, up to isomorphism, the class 𝐶𝑘f ∖ 𝐶𝑘f (𝐴) is finite, let 𝜓 be a

sentence, which is the disjunction of all sentences 𝜓F for all F ∈ 𝐶𝑘f ∖ 𝐶𝑘f (𝐴).
Let us see that ¬𝜓 is a definition of 𝐴 over 𝒞K5.

First, let F ∈ 𝒞K5, F � ¬𝜓, and suppose that F 1 𝐴. Then ¬𝐴 is satisfiable
in F at some state 𝑤. Let F′ be the generated subframe of F at 𝑤. Then ¬𝐴 is
satisfiable on F′. Now let F′′ =def F′ �3 𝑘. By Proposition 140, ¬𝐴 is satisfiable
on F′′, so F′′ ∈ 𝐶𝑘f ∖𝐶𝑘f (𝐴), therefore F′′ � 𝜓. But then by the definition of 𝜓,
F � 𝜓, contradiction.

Now, let F ∈ 𝒞K5, F 𝐴, and suppose that F 2 ¬𝜓, so F � 𝜓. Because
𝜓 is a disjunction of sentences, there is a disjunct of 𝜓, 𝜓′, such that F � 𝜓′.
By the definition of 𝜓′, there is a generated subframe F′ of F, such that, up to
isomorphism, F′′ = F′ �3 𝑘 ∈ 𝐶𝑘f ∖ 𝐶𝑘f (𝐴), so F′′ 1 𝐴 i.e. ¬𝐴 is satisfiable on
F′′. But F′ 𝐴 and by Proposition 140, ¬𝐴 is satisfiable on F′, contradiction.

We conclude that ¬𝜓 is a definition of 𝐴 over 𝒞K5. �

6.2 Undecidability of validity of FOL formulas in 𝒞K5

In this section, we use the definitions from [50] for first-order theory, or just a
theory. As in [50], if T is a theory, then 𝐿(T) denotes the language of T.

We use a variant of the interpretation argument from [50] to show that
satisfiability of FOL formulas in the class of all reflexive and symmetrical
frames is reducible to satisfiability of FOL formulas in the class of all K5-
frames. This shows that validity of FOL sentences in 𝒞K5 is undecidable.

It is clear that by renaming bound variables while preserving semantic
equivalence, we may obtain a variant of a first-order formula 𝑈(𝑥) where a
given variable 𝑥′ does not occur and 𝑥 does not have any bound occurrences.
Thus we denote by 𝑈(𝑥′) the formula obtained by substituting 𝑥′ for 𝑥 in a
formula obtained in this way.

110

Now, remember the definition of a relativized reduct of structure for a
first-order language, Definition 112.

Definition 142 (Relativization of a Formula) Let 𝐿 be a first-order
language and let 𝜓,𝑈(𝑥) ∈ 𝐿. We define inductively 𝜏(𝜓,𝑈), the relativization
of 𝜓 with respect to 𝑈(𝑥), in the following way:

𝜏(𝛼,𝑈) = 𝛼 for atomic formulas 𝛼.
𝜏(¬𝜓,𝑈) = ¬𝜏(𝜓,𝑈).
𝜏(𝜓1 ∨ 𝜓2, 𝑈) = (𝜏(𝜓1, 𝑈) ∨ 𝜏(𝜓2, 𝑈)).
𝜏(𝜓1 ∧ 𝜓2, 𝑈) = (𝜏(𝜓1, 𝑈) ∧ 𝜏(𝜓2, 𝑈)).
𝜏(∃𝑥𝜓,𝑈) = ∃𝑥(𝑈(𝑥) ∧ 𝜏(𝜓,𝑈)).
𝜏(∀𝑥𝜓,𝑈) = ∀𝑥(𝑈(𝑥) → 𝜏(𝜓,𝑈)).

Lemma 143 (Relativization Theorem) Let F,F′ be structures for a first-
order language 𝐿, let 𝑈(𝑥) be a formula from 𝐿. If F′ is the relativized reduct
of F with respect to 𝑈(𝑥) then for all first-order formulas 𝜓(𝑦) ∈ 𝐿 and for all
lists 𝑡 of worlds in F′, F � 𝜏(𝜓(𝑦), 𝑈(𝑥))[𝑡] iff F′ � 𝜓(𝑦)[𝑡].

Proof See Theorem 5.1.1 in [38]. �

Proposition 144 Let T1 and T2 be theories with equality such that 𝐿(T1) ⊆
𝐿(T2). Let 𝑈(𝑥) ∈ 𝐿(T2) be a formula. Let the following two conditions hold:

(𝑖). If for some structure F1 for the language 𝐿(T1), F1 � T1, then there is
a structure F2 for 𝐿(T2) such that F2 � T2 and F1 is the restriction to 𝐿(T1)
of the relativized reduct of F2 with respect to 𝑈(𝑥).

(𝑖𝑖). If for some structure F2 for the language 𝐿(T2), F2 � T2 and F2 �
∃𝑥𝑈(𝑥), then F2 has a relativized reduct with respect to 𝑈(𝑥) and its restriction
to 𝐿(T1), F1, is such that F1 � T1.

Then for any 𝜓(𝑥1, . . . , 𝑥𝑛) ∈ 𝐿(T1), the following two conditions are
equivalent:

(1) There is some structure F1 for 𝐿(T1) such that F1 � T1 and F1 �
∃𝑥1 . . . ∃𝑥𝑛𝜓(𝑥1, . . . , 𝑥𝑛)

(2) There is some structure F2 for 𝐿(T2) such that F2 � T2 and F2 �
∃𝑥𝑈(𝑥)∧∃𝑥1 . . . ∃𝑥𝑛(𝑈(𝑥1)∧· · ·∧𝑈(𝑥𝑛)∧𝜏(𝜓)), where 𝜏(𝜓) is the relativization
of 𝜓(𝑥1, . . . , 𝑥𝑛) with respect to 𝑈(𝑥).

Proof Follows by Lemma 143. �

From now on, let T1 be the first-order theory of symmetrical and reflexive
relations, which is a first-order theory with equality and the non-logical axiom:

∀𝑥(𝑥 𝑟1 𝑥) ∧ ∀𝑥∀𝑦((𝑥 𝑟1 𝑦) → (𝑦 𝑟1 𝑥)).
According to [47], the problem of deciding the validity of formulas in T1 is

undecidable.

111

Let us use the following theory as the first-order theory of all Euclidean
Kripke frames: TK5, which is a first-order theory with equality and the following
non-logical axiom:

(5′′) ∀𝑥∀𝑦1((𝑥 𝑟2 𝑦1) → ∀𝑧1((𝑥 𝑟2 𝑧1) → (𝑧1 𝑟2 𝑦1)))
Let 𝑈(𝑥) be the formula ¬(𝑥 𝑟2 𝑥) ∧ ∃𝑧(𝑥 𝑟2 𝑧).
Now, extend 𝐿(TK5) to 𝐿 by adding the binary predicate symbol 𝑟1 and

defining it in the theory T2, which is an extension of TK5, with language 𝐿
and with the following additional non-logical axiom:

(Interpr ′) ∀𝑥∀𝑦((𝑥 𝑟1 𝑦) ↔ 𝑈(𝑥) ∧ 𝑈(𝑦) ∧ ∃𝑧((𝑥 𝑟2 𝑧) ∧ (𝑦 𝑟2 𝑧)))
Clearly, by using techniques from [50], the problem of deciding validity of

formulas in T2 is reducible to the problem of deciding validity of formulas in
TK5.

Proposition 145 The problem of deciding satisfiability of formulas in T1 is
reducible to the problem of deciding satisfiability of formulas in T2.

Proof We use Proposition 144 to show the desired result.
First we prove (𝑖). Let F1 = ⟨𝑊1, 𝑅1⟩ be a structure for 𝐿(T1) such that

F1 � T1. Up to isomorphism, choose F1 such that:
𝑊1 ∩ {{𝑎, 𝑏} | 𝑎 ∈𝑊1 & 𝑏 ∈𝑊1} = ∅.

Define 𝑊2 and 𝑅2 in the following way:
𝑊2 =def 𝑊1 ∪ {{𝑎, 𝑏} | ⟨𝑎, 𝑏⟩ ∈ 𝑅1} (this is a disjoint union).
𝑅2 =def

{⟨𝑎, {𝑎, 𝑏}⟩ | 𝑎 ∈𝑊1, 𝑏 ∈𝑊1, {𝑎, 𝑏} ∈𝑊2} ∪
{⟨{𝑎, 𝑏}, {𝑐, 𝑑}⟩ | 𝑎, 𝑏, 𝑐, 𝑑 ∈𝑊1, {𝑎, 𝑏} ∈𝑊2, {𝑐, 𝑑} ∈𝑊2}.

Let F2 =def ⟨𝑊2, 𝑅1, 𝑅2⟩, which is a structure for 𝐿(T2). Clearly, by the
definition of F2, F2 � (Interpr ′). Now, F2 � (5′′) because every 𝑅2-descendant
state in F2 is a pair of states in F1 and every two such pairs are in relation 𝑅2.
Thus F2 � T2. Also, F2 � ∃𝑥𝑈(𝑥), because 𝑊1 is non-empty and because 𝑅1

is reflexive. This means that F2 has a relativized reduct with respect to 𝑈(𝑥)
and clearly the restriction of this relativized reduct to 𝐿(T1) is F1.

Now, let us prove (𝑖𝑖). Let F2 = ⟨𝑊2, 𝑅1, 𝑅2⟩ be a structure for 𝐿(T2) such
that F2 � T2 and F2 � ∃𝑥𝑈(𝑥). Let F′ = ⟨𝑊1, 𝑅

′
1, 𝑅

′
2⟩ be the relativized reduct

of F2 with respect to 𝑈(𝑥) and let F1 = ⟨𝑊1, 𝑅
′
1⟩ be the restriction of F′ to

the language 𝐿(T1). Because F2 � T2, F2 � (Interpr ′), so 𝑅1 is symmetrical,
which makes 𝑅′

1 also symmetrical. Because F′ is the relativized reduct of F1

with respect to 𝑈(𝑥), because 𝑅2 is Euclidean, and because F2 � (Interpr ′),
𝑅′

1 is reflexive. Thus F1 � T1. �

Corollary 146 The problem of deciding validity of formulas in T1 is reducible
to the problem of deciding validity of formulas in TK5.

Proof Follows by Proposition 145. �

112

6.3 Undecidability of modal definability over 𝒞K5

Now, let us remember the definition for a stable class of frames (Definition
113) and the theorem that states that if 𝒞 is a stable class of frames, then the
first-order validity problem with respect to 𝒞 is reducible to the problem of
modal definability over 𝒞 in ML(�) of FOL formulas (Theorem 114).

Proposition 147 𝒞K5 is a stable class of frames.

Proof Let 𝛾1(𝑥1, 𝑥2, 𝑥) =def 𝑥 ̸= 𝑥1 ∧ 𝑥 ̸= 𝑥2.
Let 𝛾2 =def ∃𝑥∃𝑦(𝑥 ̸= 𝑦 ∧ ∀𝑧(¬((𝑧 𝑟 𝑥) ∨ (𝑧 𝑟 𝑦) ∨ (𝑥 𝑟 𝑧) ∨ (𝑦 𝑟 𝑧)))).
Clearly, 𝛾2 is a sentence that states that there are at least two 𝑟-independent

states.
Let F0 = ⟨𝑊0, 𝑅0⟩ ∈ 𝒞K5.
If F1 is a relativized reduct of F0 with respect to 𝛾1 and some states 𝑣1, 𝑣2

in F0, then F1 ∈ 𝒞K5.
Now, we show frames F,F′ ∈ 𝒞K5 with the property (b) from Definition

113. Let F =def ⟨𝑊,𝑅⟩ be the disjoint union of F0 and two new independent
states 𝑤1 and 𝑤2. Thus 𝑊 = 𝑊0 ∪ {𝑤1, 𝑤2} and 𝑅 = 𝑅0. Clearly, F0 is the
relativized reduct of F with respect to 𝛾1 and 𝑤1, 𝑤2, and also F ∈ 𝒞K5. Let 𝑊1

be the set of states in𝑊 , which do not have 𝑅-successors or 𝑅-predecessors (the
independent states in F). Let 𝑊2 =def 𝑊 ∖𝑊1. We can see that 𝑤1, 𝑤2 ∈ 𝑊1

and also 𝑊2 ⊆ 𝑊0. Thus F = ⟨𝑊1 ∖ {𝑤1}, ∅⟩ ⊎ ⟨𝑊2 ∪ {𝑤1}, 𝑅⟩. Now, let us
define a new frame F′ = ⟨𝑊2 ∪ {𝑤1}, 𝑅⟩. Clearly F′ ∈ 𝒞K5, F′ is a p-morphic
image of F, F � 𝛾2, but F′ 2 𝛾2. �

Thus we have shown that the problem of modal definability of FOL sentences
over the class of all K5-frames is undecidable.

7 Conclusion

In section 3, we have seen a deterministic version of the SQEMA algorithm
which uses conjunctive normal form and subformula elimination. We have seen
that this algorithm always terminates. We have seen the invariants for Sahlqvist
and Inductive formulas. There were proofs that the algorithm always succeeds
on Sahlqvist and Inductive formulas.

In section 3, we have also seen a new translation of PCL formulas into
formulas of ML(�, [𝑈]). We have seen a proof that Sahlqvist PCL formulas
translate with this new translation into Sahlqvist ML(�, [𝑈]) formulas. We
have also seen how to use Deterministic SQEMA to find first-order correspondents
of PCL formulas using this new translation. The results have been implemented
in the programming language Java into the SQEMA website, http://www.fmi.
uni-sofia.bg/fmi/logic/sqema.

113

http://www.fmi.uni-sofia.bg/fmi/logic/sqema
http://www.fmi.uni-sofia.bg/fmi/logic/sqema

In section 4, we have seen that every modal formula of ML(�) has a first-
order definition over 𝒞KD45. Also, that deciding whether a first-order sentence
has a modal definition in ML(�) over 𝒞KD45 is PSPACE-complete.

In section 5, we have seen that every modal formula of ML(�, [𝑈]) has a
first-order definition over 𝒞KD45. Also, the problem of deciding whether a first-
order sentence has a modal definition which is in ML(�, [𝑈]) and is over 𝒞KD45

is PSPACE-complete.
In section 6, we have seen that every modal formula of ML(�) has a first-

order definition over the class of all Euclidean frames, 𝒞K5. Also, we have seen
that deciding validity of first-order formulas in the class 𝒞K5 is undecidable.
Modal definability of first-order sentences over 𝒞K5 is also undecidable.

7.1 Future work

It would be useful to modify Deterministic SQEMA with additional rules for
the special cases of S5 and KD45 modalities.

The author speculates that in its current form, Deterministic SQEMA may
be able to succeed on all modal formulas of modal depth 1, which do have a first-
order correspondent, according to van Benthem in [56][57] - and this is because
of the conjunctive normal form eliminating procedure that the algorithm uses.
It may also be possible to show that by applying the conjunctive normal form
eliminating procedure at the beginning of the algorithm three times (by using
negation), that any formula containing only the universal modality is reduced
to a formula of modal depth 1, similarly to Chapter Three of [39], thus making
sure that Deterministic SQEMA succeeds on all such formulas. There is some
experimental data to suggest that both of these conjectures hold, but a more
formal proof is required.

It would also be interesting to see whether modal and first-order definability
are decidable in some classes of frames, such as 𝒞S5, 𝒞KD45, or 𝒞K5, when the
language is the basic modal language with the added difference operator.

Authenticity Claims

The author declares that the following are original findings (items number 1, 2,
and 3 below), or co-authored with Tinko Tinchev and Philippe Balbiani (item
number 4 below).

Scientific Results

The author considers the following to be the main results of the dissertation:
The results in the dissertation can be grouped in the following groups.

114

1. Results about the algorithm Deterministic SQEMA, Sahlqvist
and Inductive formulas.

These include:
- Defining a new deterministic version of the SQEMA algorithm with

additional simplification rules for the universal modality.
- A proof of termination of Deterministic SQEMA.
- A new invariant for Deterministic SQEMA executions on Sahlqvist formulas.
- A proof that Deterministic SQEMA succeeds on all Sahlqvist formulas.
- A new invariant for Deterministic SQEMA executions on Inductive formulas.
- A proof that Deterministic SQEMA succeeds on all Inductive formulas.
2. Results about applying Deterministic SQEMA to formulas of

the Pre-Contact Logic language, and results about Sahlqvist PCL
formulas

- Defining a modified translation of PCL formulas into ML(�, [𝑈]).
- Proving that the above translation converts Sahlqvist PCL formulas into

Sahlqvist ML(�, [𝑈]) formulas.
- Modifying the existing Deterministic SQEMA implementation at http://

www.fmi.uni-sofia.bg/fmi/logic/sqema to accept PCL formulas and succeed
on all Sahlqvist PCL formulas by using the modified translation.

3. Computability and complexity results about the correspondence
problems in the class of all KD45 Kripke frames

The results of this group are:
- A proof that all modal formulas of the basic modal language are first-order

definable in the class of all KD45 frames.
- A proof that the problem of deciding whether first-order formulas are

modally definable in the basic modal language in the class of KD45 frames is
PSPACE-complete.

- A proof that all modal formulas of the basic modal language extended
with the universal modality are first-order definable in the class of all KD45
frames.

- A proof that the problem of deciding modal definability in the basic modal
language extended with the universal modality of first-order formulas in the
class of KD45 frames is PSPACE-complete.

4. Computability and complexity results about the correspondence
problems in the class of all Euclidean Kripke frames - this group
of results was examined in collaboration with Tinko Tinchev and Philippe
Balbiani.

- A proof that all modal formulas of the basic modal language have a first-
order definition in the class of all Euclidean Kripke frames.

- A proof that the problem of deciding whether a first-order formula is valid
in the class of all Euclidean Kripke frames is undecidable.

115

http://www.fmi.uni-sofia.bg/fmi/logic/sqema
http://www.fmi.uni-sofia.bg/fmi/logic/sqema

- A proof that the problem of deciding whether a first-order formula is
modally definable in the class of all Euclidean Kripke frames is undecidable.

Referred Publications

Some results of the dissertation have been published in the referred works:
[26]: Georgiev, D.: SQEMA with Universal Modality. proc. of the 10th

Panhellenic Logic Symposium, 2015, pp. 76–81.
[27]: Georgiev, D.: Deterministic SQEMA and application for pre-contact

logic, Annual of Sofia University “St. Kliment Ohridski” Faculty of Mathematics
and
Informatics, Sofia 2016, Volume 103, 2016, pp. 149–176.

[28]: Georgiev, D.: Computability of definability in the class of all KD45
frames, 11th International Conference on Advances in Modal Logic,
Short presentations, 2016, pp. 59–63.

And an extension of the above is currently under review:
[29]: Georgiev, D.: Definability in the class of all KD45-frames - computability

and complexity, submitted in November 2016, under review, Journal of Applied
Non-Classical Logics

Also, the author is co-authoring with Tinko Tinchev and Philippe Balbiani
in the following work, which is still under development:

Balbiani, P., Georgiev, D., Tinchev, T.: Definability in the Class of All
Euclidean Kripke Frames.

Citations

There are no known citations of the referred publications.
However, there have been references to the Deterministic SQEMA website,

http://www.fmi.uni-sofia.bg/fmi/logic/sqema, in the following:
Dunin-Keplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems. A

Formal Approach, John Wiley, 2010 section 3.9.
Gabbay, D. M., Schmidt, R. A., Szalas, A.: Second-order Quantifier

Elimination: Foundations, Computational Aspects and Applications, College
Publications, 2008 - Computers.

Lokhorst, G.J., Mens Rea, Logic and the Brain, in: Law and Neuroscience,
Freeman, M., F.B.A, editor, Oxford University Press, 2010, pp. 29–39, citation
on page 33.

Presentations at Conferences and Seminars

Parts of the dissertation have been presented at the following presentations:

116

http://www.fmi.uni-sofia.bg/fmi/logic/sqema

A) “The algorithm SQEMA for a modal language with the universal modality”,
Spring science session of FMI, Sofia University, March 2015.

B) “SQEMA with Universal Modality”, 10th Panhellenic Logic Symposium,
Samos, Greece, June 10th 2015.

C) Seminar in IRIT, Toulouse, October 2015.
D) “Deterministic SQEMA and application for the language of pre-contact

loggics”, Spring science session of FMI, Sofia University, March 2016.
E) Short presentation “Computability of definability in the class of all KD45

frames”, Advances in Modal Logic, Budapest, Hungary, 2016.
F) “Modal and first-order definability in the class of all KD45 Kripke

frames”, Conference on Mathematical Logic, dedicated to the 80th anniversary
of prof. Dimiter Skordev, October, Gyolechitsa, Bulgaria, 2016.

References
[1] Balbiani, P., Tinchev, T.: Decidability and complexity of definability over the

class of all partitions, in: Proc. of the 5th Panhellenic Logic Symposium (2005),
pp. 26–33.

[2] Balbiani, P., Tinchev, T.: Definability over the class of all partitions, Journal of
Logic and Computation 16 (2006), pp. 541–557.

[3] Balbiani, P., Tinchev, T.: Undecidable problems for modal definability, Journal
of Logic and Computation, doi 10.1093/logcom/exv094 (2016).

[4] Balbiani, P., Kikot, S.: Sahlqvist Theorems for Precontact Logics, AiML 01/2014;
9.

[5] Balbiani, P., Tinchev, T., Vakarelov, D.: Modal Logics for Region-based Theories
of Space, Fundamenta Informaticae 81, 2007, IOS Press, pp. 29–82.

[6] Balbiani, P., Georgiev, D., Tinchev, T.: Definability in the Class of All Euclidean
Kripke Frames, to be submitted to the Journal of Logic and Computation.

[7] Bezhanishvili, N.: Pseudomonadic Algebras as Algebraic Models of Doxastic
Modal Logic, Mathematical Logic Quarterly 48 (2002) 4, WILEY-VCH Verlag
Berlin GmbH 2002, pp. 624–636

[8] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic (Cambridge Tracts in
Theoretical Computer Science), Cambridge University Press, 2002.

[9] Chagrov, A., Chagrova, L.: Algorithmic problems concerning first-order
definability of modal formulas on the class of all finite frames. Studia Logica
55 (1995) pp.421–448.

[10] Chagrov, A., Chagrova, L.: The truth about algorithmic problems in
correspondence theory. In: Advances in Modal Logic. Vol. 6. College Publications
(2006) pp. 121–138.

[11] Chagrov, A., Chagrova, L.: Demise of the algorithmic agenda in the
correspondence theory? Logical Investigations 13 (2007) pp.224–248 (in
Russian).

[12] Chagrova, L. A.: On the Problem of Definability of Propositional Formulas of
Intuitionistic Logic by Formulas of Classical First-Order Logic., University of
Kalinin (1989) Doctoral Thesis (in Russian).

117

[13] Chagrova, L.: An undecidable problem in correspondance theory. The Journal of
Symbolic Logic 56 (1991) 1261–1272.

[14] Chang, C. C., Keisler, H. J.: Model Theory. (1973). Studies in logic
and the foundations of mathematics, North-Holland publishing company NY,
Amsterdam, London, 1973.

[15] Conradie, W.: Completeness and Correspondence in Hybrid Logic via an
Extension of SQEMA. Electronic Notes in Theoretical Computer Science 231,
2009, pp. 175–190, doi:10.1016/j.entcs.2009.02.035, ELSEVIER.

[16] Conradie, W., Goranko, V., Vakarelov, D.: Elementary Canonical Formulae: A
Survey on Syntactic, Algorithmic, and Model–theoretic Aspects. AiML, vol. 5,
pp. 17–51, Kings College, London, 2005

[17] Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and
completeness in modal logic. I. The core algorithm SQEMA. Logical Methods in
Computer Science, 2 (1:5) 2006, 1–26. (http://arxiv.org/pdf/cs/0602024.
pdf)

[18] Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and
completeness in modal logic II. Polyadic and hybrid extensions of the algorithm
SQEMA. J Logic Computation (2006) 16 (5): 579–612.

[19] Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic Correspondence and
Completeness in Modal Logic. III. Extensions of the Algorithm SQEMA with
Substitutions. Fundamenta Informaticae (2009) 92 (4): pp. 307–343.

[20] Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and
completeness in modal logic. V. Recursive extensions of SQEMA. Journal of
Applied Logic (2010) 8 (4): pp. 319–333.

[21] Conradie, W., Goranko, V.: Algorithmic correspondence and completeness in
modal logic IV. Semantic extensions of SQEMA. Journal of Applied Non-
Classical Logics (2012) 18 (2-3): pp. 175–211.

[22] Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Perspectives in mathematical
logic, Springer, Berlin, New York, 1995.

[23] Gabbay, D., Ohlbach, H. J.: Quantifier Elimination in Second-Order Predicate
Logic. South African Computer Journal, 7, (1992), 35–43.

[24] Gargov, G., Goranko, V.: Modal Logic with Names. Journal of Philosophical Logic
22; pp. 607-636, 1993.

[25] Georgiev, D.: An implementation of the algorithm SQEMA for computing first-
order correspondences of modal formulas. Master Thesis. Sofia University, FMI,
2006.

[26] Georgiev, D.: SQEMA with Universal Modality. proc. of the 10th Panhellenic
Logic Symposium, 2015, pp. 76–81.

[27] Georgiev, D.: Deterministic SQEMA and application for pre-contact logic,
Annual of Sofia University “St. Kliment Ohridski” Faculty of Mathematics and
Informatics, Sofia 2016, Volume 103, 2016, pp. 149–176.

[28] Georgiev, D.: Computability of definability in the class of all KD45 frames, 11th
International Conference on Advances in Modal Logic, Short presentations, 2016,
pp. 59–63.

[29] Georgiev, D.: Definability in the class of all KD45-frames - computability and
complexity, submitted in November 2016, under review, Journal of Applied Non-
Classical Logics

118

http://arxiv.org/pdf/cs/0602024.pdf
http://arxiv.org/pdf/cs/0602024.pdf

[30] Goranko, V., Vakarelov D.: Sahlqvist formulae in Hybrid Polyadic Modal
Languages, Journal of Logic and Computation, 2001, 11 (5), pp. 737–754.

[31] Goranko, V., Vakarelov D.: Sahlqvist formulas Unleashed in Polyadic Modal
Languages, 2002, In: F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev,
eds. Advances in Modal Logic, vol. 3, World Scientific, pp. 221–240

[32] Goranko, V., Vakarelov, D.: Elementary Canonical Formulae: Extending
Sahlqvist’s Theorem. Annals of Pure and Applied Logics, 2006, 141, 1-2, pp.
180–217.

[33] Goré, R.: Tableau Methods for Modal and Temporal Logics. In: Handbook for
Tableau Methods (M. D’Agostino, R. Gabbay, R. Hähnle, J. Posegga, eds.),
Kluwer Academic Publishers, Dordrecht 1999, pp. 297–396.

[34] Halpern, J., Moses, Y.: A guide to the modal logics of knowledge and belief,
Proceedings IJCAI-85, Los Angeles (CA) 1985, pp. 480–490.

[35] Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief, Artificial Intelligence 54 (1992), pp. 319–379.

[36] Halpern, J., Rêgo. L: Characterizing the NP-PSPACE Gap in the Satisfiability
Problem for Modal Logic, In: J. Logic Computation (2007) 17 (4): pp. 795–806.
DOI: doi.org/10.1093/logcom/exm029

[37] Hintikka, J.: Knowledge and Belief. Cornel University Press, Ithaca (NY) 1962.
[38] Hodges, W.: Model Theory. Cambridge University Press (1993).
[39] Hughes, G. E., Cresswell, M. J.: An Introduction to Modal Logic, 1968, Methuen,

London.
[40] Meyer, J.: Epistemic logic, In: The Blackwell Guide to Philosophical Logic,

Blackwell Publishers, Malden 2001, pp. 183–203.
[41] Meyer, J. van der Hoek, W.: Epistemic Logic for AI and Computer Science.

Cambridge University Press, Cambridge 1995.
[42] Nagle, M.: The decidability of normal K5-logics, J. Symbolic Logic 46 (1981),

pp. 319–328.
[43] Nagle, M. Thomason, S.: The extensions of the modal logic K5. J. Symbolic Logic

50 (1985), pp. 102–109.
[44] Papadimitriou, C. M.: Computational Complexity. Addison-Wesley, Reading,

Massachusetts, 1994.
[45] Passy, S., Tinchev, T.: PDL with Data Constants. Information Processing

Letters, 20, pp. 35–41, 1985.
[46] Passy, S., Tinchev, T.: An Essay in Combinatory Dynamic Logic. Information

and Computation, 1991, 93, pp. 263–332.
[47] Rogers, H. Jr.: Certain logical reduction and decision problems. Annals of

Mathematics 64 (1956) pp. 264–284.
[48] Sahlqvist, H.: Completeness and correspondence in the first and second order

semantics for modal logic, in: S. Kanger, editor, Proc. of the Third Scandinavian
Logic Symposium, Studies in Logic and the Foundations of Mathematics 82,
Elsevier, 1975 pp. 110–143.

[49] Segerberg, K.: An Essay in Classical Modal Logic, Philosophical Studies, Uppsala
1971.

[50] Shoenfield, J. R.: Mathematical Logic. Reading, Mass., Addison-Wesley Pub.
Co. 1967.

[51] Stockmeyer, L. J.: The polynomial-time hierarchy, Theoretical Computer Science

119

3 (1976), pp. 1–22.
[52] Szalas, A.: On the correspondence between Modal and Classical Logic: an

Automated Approach. J. Logic and Comp. Vol 3 No 6 (1993), 605–620.
[53] ten Cate, B.: Model theory for extended modal languages, PHD Thesis, Institute

for Logic, Language and Computation, 2005, chapter 5, pp. 69–89.
[54] Vakarelov D.: Modal Definability in Languages with a Finite Number of

Propositional Variables and a New Extension of the Sahlqvist’s Class. In:
Advances in Modal Logic, vol. 4, King’s College Publications, 2003, pp. 499–
518.

[55] Vakarelov D.: A recursive generalization of Ackermann Lemma with applications
to modal 𝜇-definability. Procs of the 6th Panhellenic Logic Symposium, Volos,
Greece, 5-8 July 2007 pp. 133–137.

[56] van Benthem, J.: Some Kinds of Modal Completeness, in: Studia Logica: An
International Journal for Sumbolic Logic, Vol. 39, No. 2/3 (1980), pp. 125–141.

[57] van Benthem, J.: Correspondence theory, in: D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic: Volume II: Extensions of Classical
Logic, Reidel, Dordrecht, 1984 pp. 167–247.

[58] van der Hoek, W.: Systems of knowledge and belief, J. Logic and Computation 3
(1993), pp 173–195.

120

	Abstract
	Structure
	Thanks and Acknowledgements
	Introduction
	Preliminaries
	Modal Languages
	Kripke Semantics of Modal Languages
	Modal Formulas as Operators
	First-Order Languages
	Decidability and Complexity
	The Correspondence Problems
	Standard Translation
	P-Morphisms, Disjoint Unions, and Generated Subframes
	General Frames
	D-Persistence and Di-Persistence
	Normal Modal Logics, Completeness and Canonicity
	Finite Model Property
	Decidability of Normal Modal Logics

	Deterministic SQEMA
	Introduction to Deterministic SQEMA
	Strategy of Deterministic SQEMA
	Deterministic SQEMA Overview
	Correctness of the SQEMA Rules
	The Algorithm Deterministic SQEMA
	Examples
	(c1 c1)
	((p p) (p p))
	("426830A U"526930B p "426830A U"526930B p)
	 (((p q) (q p)) (p q))
	More Examples

	Sahlqvist Formulas
	Example Runs with Sahlqvist Formulas
	(p p)
	((p) (((p q)) (q)))
	(p p)
	(p p)

	Inductive Formulas
	Example Runs with Inductive Formulas
	(p1 p2 (p1 p2))
	(p ((p q) q))
	More Examples

	Pre-Contact Logics
	Example Runs with PCL Formulas
	((0 =p) C(p, 1))
	(C(p, q) (C(p, r) C(-r, q)))

	Implementation in the Programming Language Java

	ML() and CKD45
	First-order Definability
	Modal Definability

	ML(, [U]) and CKD45
	Modal Definability
	First-order Definability

	ML() and CK5
	ML() formulas are FOL-definable over CK5
	Undecidability of validity of FOL formulas in CK5
	Undecidability of modal definability over CK5

	Conclusion
	 Future work

	Authenticity Claims
	Scientific Results
	Referred Publications
	Citations
	Presentations at Conferences and Seminars
	References

