Sofia University St. Kliment Ohridski
 Faculty of Mathematics and Informatics
 Department of Mathematical Logic and Its Applications

Master Thesis

Logics of n-ary Contact

Ivan Zheliazkov Nikolov

M.Sc. "Logics and Algorithms," Mathematics

Faculty Number: 24977

Supervisor: Prof. Tinko Tinchev
Department Chair: Assoc. Prof. Hristo Ganchev

October, 2017
Sofia

Contents

1 Introduction. Formal language and notions 1
1.1 Introductory notes 1
1.2 Formal language 3
1.3 Adopted Boolean logic notions 5
1.3.1 Kripke frames 5
1.3.2 Boolean frames 6
1.3.3 Correspondence 7
1.3.4 Formal system 8
1.3.5 Completeness of Boolean logics 9
1.4 Graphs notions 9
1.5 Topological spaces. \mathbb{R}^{m} 9
1.5.1 Topological spaces. Notions 10
1.5.2 Topological space \mathbb{R}^{m} 11
1.6 Regular closed sets, polytopes and Boolean algebras 13
1.6.1 Regular closed sets 13
1.6.2 Boolean algebras of regular closed sets 15
1.6.3 \quad Polytopes of \mathbb{R}^{m} 21
1.6.4 Boolean algebras of regular closed sets and polytopes. 22
$1.7 n$-ary contact relation 24
2 Contact frames and graphs 25
2.1 Contact n-frames 25
$2.2 n$-graphs. Contact n-graphs 26
2.2.1 n-graphs 26
2.2.2 Contact n-graphs 27
$2.3 \quad n$-frames n-graphs correspondence 28
$2.4 \quad n$-graphs and n-frames properties 33
3 Kripke frames with contact semantics in \mathbb{R}^{m} 36
3.1 Polytopes of $\mathbb{R}^{m}, m \geq 2$ 36
3.1.1 \quad Procedure for polytopes of \mathbb{R}^{2}. 36
3.1.2 Observations 41
3.2 Regular closed sets of $\mathbb{R}^{m}, m \geq 1$ 48
3.2.1 \quad Procedure for regular closed sets of \mathbb{R}^{1} 48
3.2.2 Observations 51
$\begin{array}{ll}3.3 & 2 \text {-graphs and polytopes of } \mathbb{R}^{1}\end{array}$ 57
3.3.1 \quad Procedure for polytopes of \mathbb{R}^{1} for 2-graph 57
3.3.2 Observations 59
4 p-morphic preimages of contact n-frames 63
4.1 Formal procedure 63
4.2 Observations 63
$5 \quad n$-ary contact axioms 70
5.1 Axioms of the n-ary contact 70
5.2 Validity in the contact n-frames 70
6 Boolean frames and algebras in \mathbb{R}^{m} 72
6.1 Boolean subframes 72
6.2 Finite Boolean algebras of polytopes or regular closed sets 73
6.3 Finite Boolean and Kripke frames 77
7 Boolean logic of n-ary contact. Completeness 81
7.1 Boolean semantics and axiomatisation 81
7.1.1 Boolean frames of n-ary contact 81
7.1.2 Formal system of logic of n-ary contact 83
7.2 Correctness 84
7.3 Completeness 86
7.4 Corollary Notes 91

Abstract

For an arbitrary connected topological space consider the set of the regular closed sets. With appropriately defined Boolean operations this set forms a (complete) Boolean algebra.

In the case of the m-dimensional Euclidean space we have a special subset of the regular closed sets called polytopes. One of their significant properties is the finite characteristic that they can be represented as a finite union of other polytopes. In addition to that they form a subalgebra of the Boolean algebra of the regular closed sets.

Let us say that n sets are in contact if their set theoretical intersection is non-empty.

The objective of this research is within an appropriate formal system to axiomatise the contact properties in the aforementioned sense of the Boolean algebras of the polytopes of the m-dimensional space and the regular closed sets of the connected topological spaces.

1 Introduction. Formal language and notions

1.1 Introductory notes.

Let us say that n sets of an arbitrary topological space are in n-ary contact if their set theoretical intersection is non-empty. Now, consider the connected topological spaces. We would like to study the properties of the n-ary contact with respect to the regular closed sets of such topological spaces.

An approach to this is being examined in [2] by Dimitar Vakarelov by the means of the so called sequent algebras. Nevertheless, for this purpose is being used a formal language, which in its essence is of a second-order logic.

As per [1] Philippe Balbiani and Tinko Tinchev study the general notion of the so called "Boolean logics with relations". They use a quantifier-free fragment of a first-order logic language to express Boolean notions and their relation properties. Convenient semantic structures are being introduced as well.

In this research we adopt the language and the semantic structures of [1] with an intended interpretation of the relation symbols being the n-ary contact. We aim to axiomatise the valid formulas of the language with respect to that semantics in the topological context of the Boolean subalgebras of the regular closed sets of some connected topological space.

To approach this problem as a representative of a connected topological space is used the m-dimensional Euclidean space. It is devised an appropriate axiomatisation of the Boolean algebra of the regular closed sets of \mathbb{R}^{m}. Also, it is considered a special subset of the regular closed sets of \mathbb{R}^{m}, namely the polytopes. One can think of them in the case of \mathbb{R}^{2} as the set of the finite unions of convex polygons or their (closed) complement (with respect to the whole real plane). The polytopes form a subalgebra of the Boolean algebra of the regular closed sets of the particular m-dimensional topological space. Such an algebra is also axiomatised appropriately. Moreover, the main result of this study shows that the logic of the Boolean algebra of the polytopes of \mathbb{R}^{m} for $m \geq 2$ is the same as the logic of the Boolean algebra of the regular closed sets of any connected topological space. The last fact trivially is because the axiomatisations of those Boolean algebras are the same.

For the Boolean algebra of the polytopes of \mathbb{R}^{1} is demonstrated to have an axiomatisation that is different than the one of the polytopes of \mathbb{R}^{m} for $m \geq 2$. The difference is the property that distinguishes the polytopes of \mathbb{R}^{1} from the regular closed sets of \mathbb{R}^{1}.

To attain the completeness of the corresponding axiomatisations with respect to the aforementioned intended Boolean algebras substantially a common approach is used.
First, the correctness with respect to any Boolean subalgebra of the regular closed sets of a connected topological space is easy.
With respect to completeness the following steps are made. As a remark, when we talk about satisfiability of a formula in a Boolean algebra we mean the appropriate first-order language semantic structure with a carrier the intended in the particular context Boolean algebra having interpretation of the relation symbols the n-ary contact.

- For a formula not deducible in the formal system by appropriate ("external" with respect to the exposition of this research) means is being
obtained a finite relational structure (called a Kripke frame) in which the axioms are valid and the intended formula is refutable.
- The relational structure appears of a kind for which a relevant connected graph representation is being associated to. By a particular sequence of modifications that graph is then transformed into an acyclic connected one. Significant is that the associated Kripke structure to the resulting graph is a p-morphic preimage of the originating structure.
- Moreover, it is being elaborated on an appropriate procedure for any of the intended algebras that applied on the acyclic connected graph eventually produces a Kripke structure with particular properties that is isomorphic to the associated to the acyclic graph one.
So far, this means in the resulting Kripke structure the intended formula is refutable.
- With regard to that Kripke structure its carrier has elements of the intended Boolean algebra the structure being obtained for. Furthermore, the set-theoretical Boolean algebra generated by this structure appears isomorphic to the Boolean algebra generated by the elements of its carrier. It follows that the intended formula is refutable in the generated by the carrier Boolean algebra.
- On the other hand, the relations are interpreted as the n-ary contact. As a result, the generated by the carrier of the Kripke structure Boolean algebra is a subalgebra of the intended one. Then the formula cannot be valid in the intended Boolean algebra.

These results are developed within the exposition in the following way.
Further in this Section 1 are introduced the necessary notions and adopted results needed throughout the study. It is being clarified the formal language (Section 1.2), the adopted notions and results from 1 (Section 1.3), the notions with respect to graphs (Section 1.4). In Section 1.5 the very basic definitions and results regarding topological spaces needed later are being developed. In Section 1.6 the definitions and properties of regular closed sets and polytopes and their corresponding Boolean algebras are being highlighted. Finally (Section 1.7), the n-ary contact relation is being formally defined.

Section 2 introduces the auxiliary notions of a contact n-frame (Section 2.1) and an n-graph or contact n-graph (Section 2.2). The contact n-frames are in some sense generalised relational structures, namely Kripke frames, which impose on the interpretation of the relations properties analogous to those of the n-ary contact relation. In short, they are used as the linkage between a general finite Boolean algebra satisfying certain set of axioms and a finite Boolean algebra of particular elements (regular closed sets or polytopes of \mathbb{R}^{m}) interpreting the relations as the n-ary contact. This is achieved by the essential property of the finite contact n-frames that is their unique one-to-one correspondence with a special class of graphs, namely the contact n-graphs (Section 2.3). This result is established by the pair of Claim 2.3.4 and Claim 2.3.5. Having the aforementioned correspondence, they are demonstrated the connectedness property and a specific condition on the ternary contact of a contact n-frame to have an intuitive meaning on the corresponding graph structures (Section 2.4).

Let us consider a finite acyclic contact n-graph and its corresponding contact n-frame. Section 3 elaborates on procedures for obtaining a Kripke frame with interpretation of the relations the n-ary contact and specific properties of the carrier that is isomorphic to the given contact n-frame. In short, the properties of the carrier are such that its elements are the atoms of a finite Boolean algebra subalgebra of a particular Boolean algebra of polytopes or regular closed sets. Section 3.1 treats the Boolean algebra of the polytopes of \mathbb{R}^{m} for $m \geq 2$ and Section 3.2 is for the Boolean algebra of the regular closed sets of \mathbb{R}^{m} for $m \geq$ 1. Section 3.3 within particular conditions for the given acyclic contact n graph (effectively, those obtained in Section 2.4) demonstrates an approach for the polytopes of \mathbb{R}^{1}.

Now, consider an arbitrary connected contact n-graph. Section 4 shows a procedure for transforming that contact n-graph into a connected acyclic one whose corresponding contact n-frame is a p-morphic preimage of the corresponding to the originating graph contact n-frame (Claim4.2.1). Furthermore, they are highlighted the properties of the originating graph being preserved in the resulting one.

The relatively short Section 5 in advance lists the axioms which will be used later in Section 7 to define the Boolean logic of n-ary contact and the appropriate axiomatisation of the considered classes of Boolean algebras of regular closed sets. The purpose of Section 5 is to study the implications of the validity of those axioms with respect to the contact n-frames. The auxiliary result to be used later is Proposition 5.2.3.

Section 6 considers the semantic structures for representing the Boolean algebras, namely the Boolean frames, and demonstrates few results about finite Boolean algebras of polytopes and regular closed sets being of essential importance later in the exposition The latter is treated in Section 6.2. Furthermore (Section 6.3), they are being demonstrated essential correspondences between the finite Boolean algebras (Boolean frames) and the finite relational structures (Kripke frames). One can check Claim 6.3.1 and Claim 6.3.2

Section 7 is where the Boolean logic of n-ary contact is formally defined and examined. Section 7.1 introduces the intended semantic structures and defines the relevant formal systems of the axiomatisations to be studied. Section 7.2 demonstrates the correctness of the formal systems. Section 7.3 is where the completeness of the formal systems is being proven as per the aforementioned steps. This is where all the former results find their appropriate use. The key achievements are Proposition 7.3.1, Proposition 7.3 .2 and Proposition 7.3.3. Section 7.4 summarises and recaps the aimed outcome of this study. A good illustration are Corollary 7.4.2 and Corollary 7.4.5.

1.2 Formal language

In essence n-ary contact logic adopts a reduction of the language of the Boolean logic as introduced in [1] Section 2, "Syntax". That is we have exactly one n-ary relation symbol for each natural $n \geq 1$. A more refined definition is provided as follows.

Recall, for a language $L_{\mathcal{R}}$ of a Boolean logic we have countably infinite set \mathcal{R} of relation symbols each being n-ary relation for some natural $n \geq 0$. To $L_{\mathcal{R}}$ we attribute the following logical symbols:

- Parentheses: '(', ')'
- Comma: ','
- Countably many Boolean variables: denoted by lower case Latin letters x, y and so.
- Boolean functions: ' 0 ', '-' and ' \cup '
- Connectives: ' \perp ', ' \neg ' and ' V '
- Binary relation symbol: ' \equiv '

Eventually, we assume that no relation symbol of \mathcal{R} occurs in the set of the logical symbols.

Definition. As a language for the n-ary contact logic we consider a Boolean language $L_{\mathcal{R}}$, where \mathcal{R} consists of exactly one n-ary relation symbol per each positive n.

Again, ρ denotes the arity function mapping the relation symbols from \mathcal{R} to appropriate natural numbers indicating the intended arity of the respective relation symbol. Hence, by definition of a language for an n-ary contact logic we imply ρ being injective.

Recall the inductive definition of a term of $L_{\mathcal{R}}$.

- A Boolean variable is a term.
- The Boolean function symbol 0 is a term.
- If τ is a term then also is $-\tau$.
- If τ_{1} and τ_{2} are terms then also is $\left(\tau_{1} \cup \tau_{2}\right)$

Atomic formulas of $L_{\mathcal{R}}$:

- If P is an n-ary relation symbol and $\tau_{1}, \ldots, \tau_{n}$ are terms then $P\left(\tau_{1}, \ldots, \tau_{n}\right)$ is an atomic formula.
- If τ_{1} and τ_{2} are terms then $\left(\tau_{1} \equiv \tau_{2}\right)$ is atomic formula.

Formulas of $L_{\mathcal{R}}$:

- An atomic formula is a formula.
- \perp is a formula.
- If φ is a formula then also is $\neg \varphi$.
- If φ_{1} and φ_{2} are formulas then also is $\left(\varphi_{1} \vee \varphi_{2}\right)$.

Recall also the abbreviations adopted:

- 1 denotes -0 .
- $\left(\tau_{1} \cap \tau_{2}\right)$ denotes $-\left(-\tau_{1} \cup-\tau_{2}\right)$.
- \top denotes $\neg \perp$
- $\left(\varphi_{1} \wedge \varphi_{2}\right)$ denotes $\neg\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right)$
- $\left(\varphi_{1} \Longrightarrow \varphi_{2}\right)$ denotes $\left(\neg \varphi_{1} \vee \varphi_{2}\right)$
- $\left(\varphi_{1} \Longleftrightarrow \varphi_{2}\right)$ denotes $\left(\left(\varphi_{1} \Longrightarrow \varphi_{2}\right) \wedge\left(\varphi_{2} \Longrightarrow \varphi_{1}\right)\right)$

For any set of formulas Δ by $B V(\Delta)$ we denote the set of Boolean variables occurring in Δ. Whenever $\Delta=\{\varphi\}$ we simply write $B V(\varphi)$. In a similar way for any term τ by $B V(\tau)$ we denote the set of Boolean variables occurring in τ. By $\varphi\left[x_{1}, \ldots, x_{n}\right]$ for formula φ we indicate that $B V(\varphi) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$.

1.3 Adopted Boolean logic notions

We recall some of the notions adopted from [1], "Boolean logics with relations". Furthermore, will summarise the basic formal understanding when dealing with graphs.

1.3.1 Kripke frames

A Kripke frame for $L_{\mathcal{R}}$ is a structure $\mathcal{F}=\langle S, I\rangle$ where S is a non-empty set and I is an interpretation function mapping the relation symbols of \mathcal{R} to appropriate relations on S. That is for arbitrary P of \mathcal{R} then $I(P)$ is $\rho(P)$-ary relation on S. A valuation on \mathcal{F} is function \mathcal{V} mapping the Boolean variables to subsets of S. Recall the recursive extension $\widetilde{\mathcal{V}}$ of \mathcal{V} on the terms of $L_{\mathcal{R}}$:

- $\tilde{\mathcal{V}}(x)=\mathcal{V}(x)$
- $\widetilde{\mathcal{V}}(0)=\emptyset$
- $\widetilde{\mathcal{V}}(-\tau)=S \backslash \widetilde{\mathcal{V}}(\tau)$
- $\widetilde{\mathcal{V}}\left(\tau_{1} \cup \tau_{2}\right)=\widetilde{\mathcal{V}}\left(\tau_{1}\right) \cup \widetilde{\mathcal{V}}\left(\tau_{2}\right)$

A Kripke model for $L_{\mathcal{R}}$ is a structure $\mathcal{M}=\langle\mathcal{F}, \mathcal{V}\rangle$ where $\mathcal{F}=\langle S, I\rangle$ is a Kripke frame for $L_{\mathcal{R}}$ and \mathcal{V} is a valuation on \mathcal{F}. Recall the inductive definition of a formula φ true in a Kripke model \mathcal{M} denoted by $\mathcal{M} \Vdash \varphi$.

- $\mathcal{M} \Vdash P\left(\tau_{1}, \ldots, \tau_{n}\right) \quad$ iff there exists $s_{1} \in \tilde{\mathcal{V}}\left(\tau_{1}\right), \ldots$, there exists $s_{n} \in \widetilde{\mathcal{V}}\left(\tau_{n}\right)$ such that $<s_{1}, \ldots, s_{n}>\in I(P)$
- $\mathcal{M} \Vdash\left(\tau_{1} \equiv \tau_{2}\right) \quad$ iff $\quad \widetilde{\mathcal{V}}\left(\tau_{1}\right)=\widetilde{\mathcal{V}}\left(\tau_{2}\right)$
- $\mathcal{M} \nVdash \perp$
- $\mathcal{M} \Vdash \neg \varphi \quad$ iff $\quad \mathcal{M} \nVdash \varphi$
- $\mathcal{M} \Vdash\left(\varphi_{1} \vee \varphi_{2}\right) \quad$ iff $\quad \mathcal{M} \Vdash \varphi_{1}$ or $\mathcal{M} \Vdash \varphi_{2}$

Recall that a set of formulas Σ is called satisfiable in given Kripke frame should there be a Kripke model based on that frame (equivalently, there is a valuation on that frame) such that all the formulas in Σ are true in that model (respectively, in the model for the Kripke frame and the valuation). Σ is satisfiable in a class of Kripke frames if exists Kripke frame from that class such that Σ is satisfiable in it. A formula φ is valid in a Kripke frame \mathcal{F} if φ is true in every Kripke model for the frame \mathcal{F}. We denote it $\mathcal{F} \Vdash \varphi$. A set
of formulas Φ is valid in a Kripke frame \mathcal{F} if every formula in Φ is valid in \mathcal{F}. We denote it $\mathcal{F} \Vdash \Phi$. For a set of formulas Φ by C_{Φ}^{K} we denote the class of all Kripke frames in which Φ is valid.

1.3.2 Boolean frames

A Boolean frame for $L_{\mathcal{R}}$ is a structure $\mathcal{F}=\left\langle A, 0_{A},-_{A}, \cup_{A}, I\right\rangle$ for which is satisfied $\left.<A, 0_{A},-{ }_{A}, \cup_{A}\right\rangle$ is a non-degenerate Boolean algebra and I is an interpretation function mapping the relation symbols of \mathcal{R} to appropriate relations on A. That is for arbitrary P of \mathcal{R} then $I(P)$ is $\rho(P)$-ary relation on A. Furthermore, they must be satisfied:

- for any $a_{1}, \ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{n}$ in A if $<a_{1}, \ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{n}>$ is in $I(P)$ then $a_{i} \neq 0_{A}$
- for all $a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}, a_{i}^{\prime \prime}, a_{i+1}, \ldots, a_{n}$ in A :

$$
\begin{aligned}
& <a_{1}, \ldots, a_{i-1},\left(a_{i}^{\prime} \cup a_{i}^{\prime \prime}\right), a_{i+1}, \ldots, a_{n}>\in I(P) \\
& \quad \text { iff } \\
& <a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}, a_{i+1}, \ldots, a_{n}>\in I(P) \\
& \text { or } \\
& <a_{1}, \ldots, a_{i-1}, a_{i}^{\prime \prime}, a_{i+1}, \ldots, a_{n}>\in I(P)
\end{aligned}
$$

A valuation on \mathcal{F} is a function $\mathcal{V} \underset{\widetilde{V}}{\text { mapping the Boolean variables to elements }}$ of A. Recall the recursive extension $\widetilde{\mathcal{V}}$ of \mathcal{V} on the terms of $L_{\mathcal{R}}$:

- $\widetilde{\mathcal{V}}(x)=\mathcal{V}(x)$
- $\widetilde{\mathcal{V}}(0)=0_{A}$
- $\widetilde{\mathcal{V}}(-\tau)=-{ }_{A} \widetilde{\mathcal{V}}(\tau)$
- $\widetilde{\mathcal{V}}\left(\tau_{1} \cup \tau_{2}\right)=\widetilde{\mathcal{V}}\left(\tau_{1}\right) \cup_{A} \widetilde{\mathcal{V}}\left(\tau_{2}\right)$

A Boolean model for $L_{\mathcal{R}}$ is a structure $\mathcal{M}=\langle\mathcal{F}, \mathcal{V}\rangle$ where the structure $\mathcal{F}=\left\langle A, 0_{A},-_{A}, \cup_{A}, I\right\rangle$ is a Boolean frame for $L_{\mathcal{R}}$ and \mathcal{V} is a valuation on \mathcal{F}. Recall the inductive definition of a formula φ true in a Boolean model \mathcal{M} denoted by $\mathcal{M} \Vdash \varphi$.

- $\mathcal{M} \Vdash P\left(\tau_{1}, \ldots, \tau_{n}\right) \quad$ iff $\quad<\widetilde{\mathcal{V}}\left(\tau_{1}\right), \ldots, \widetilde{\mathcal{V}}\left(\tau_{n}\right)>\in I(P)$
- $\mathcal{M} \Vdash\left(\tau_{1} \equiv \tau_{2}\right) \quad$ iff $\quad \widetilde{\mathcal{V}}\left(\tau_{1}\right)=\widetilde{\mathcal{V}}\left(\tau_{2}\right)$
- $\mathcal{M} \nVdash \perp$
- $\mathcal{M} \Vdash \neg \varphi \quad$ iff $\quad \mathcal{M} \nVdash \varphi$
- $\mathcal{M} \Vdash\left(\varphi_{1} \vee \varphi_{2}\right) \quad$ iff $\quad \mathcal{M} \Vdash \varphi_{1}$ or $\mathcal{M} \Vdash \varphi_{2}$

Recall that a set of formulas Σ is called satisfiable in given Boolean frame should there be a Boolean model based on that frame (equivalently, there is a valuation on that frame) such that all the formulas in Σ are true in that model (respectively, in the model for the Boolean frame and the valuation). Σ
is satisfiable in a class of Boolean frames if exists Boolean frame from that class such that Σ is satisfiable in it. A formula φ is valid in a Boolean frame \mathcal{F} if φ is true in every Boolean model for the frame \mathcal{F}. We denote it $\mathcal{F} \Vdash \varphi$. A set of formulas Φ is valid in a Boolean frame \mathcal{F} if every formula in Φ is valid in \mathcal{F}. We denote it $\mathcal{F} \Vdash \Phi$. For a set of formulas Φ by C_{Φ}^{B} we denote the class of all Boolean frames in which Φ is valid.

1.3.3 Correspondence

Given $\mathcal{F}=\langle S, I\rangle$. Recall, by Boolean frame over \mathcal{F} we denote the structure $B(\mathcal{F})=<A^{\prime}, 0_{A^{\prime}},-A_{A^{\prime}}, \cup_{A^{\prime}}, I^{\prime}>$ such that:

- < $A^{\prime}, 0_{A^{\prime}},{ }_{A^{\prime}}, \cup_{A^{\prime}}>$ is the Boolean algebra of all subsets of S
- I^{\prime} is mapping the relation symbols P of \mathcal{R} to appropriate relations $I^{\prime}(P)$ on A^{\prime} such that for any $a_{1}, \ldots, a_{n} \in A^{\prime}$:

$$
\begin{aligned}
& <a_{1}, \ldots, a_{n}>\in I_{B}(P) \\
& \text { iff } \\
& \text { exists } s_{1} \in a_{1}, \ldots, \text { exists } s_{n} \in a_{n} \text { such that }<s_{1}, \ldots, s_{n}>\in I(P)
\end{aligned}
$$

Remark that, by definition, any valuation \mathcal{V} on a Kripke frame \mathcal{F} is valuation on $B(\mathcal{F})$ and vice versa. Furthermore, the resulting recursive valuations on \mathcal{F} and $B(\mathcal{F})$ are the same. This is trivially inferred due to the simple fact that the zero and the join functions of the Boolean algebra A^{\prime} are exactly the set theoretical empty set and union for the set of all subsets of S. Really, let $\widetilde{\mathcal{V}}^{\prime}$ and $\widetilde{\mathcal{V}}^{\prime \prime}$ be the recursive valuations for \mathcal{F} and $B(\mathcal{F})$ respectively. Then, by induction on the definition of $\widetilde{\mathcal{V}}^{\prime}$ and $\widetilde{\mathcal{V}}^{\prime \prime}$ subsequently we have:

- For any Boolean variable x : $\widetilde{\mathcal{V}}^{\prime}(x)=\mathcal{V}(x)=\widetilde{\mathcal{V}}^{\prime \prime}(x)$
- $\widetilde{\mathcal{V}}^{\prime}(0)=\emptyset=0_{A^{\prime}}=\widetilde{\mathcal{V}}^{\prime \prime}(0)$
- By inductive hypothesis $\widetilde{\mathcal{V}}^{\prime}(\tau)=\widetilde{\mathcal{V}}^{\prime \prime}(\tau)$ then:

$$
\widetilde{\mathcal{V}}^{\prime}(-\tau)=S \backslash \widetilde{\mathcal{V}}^{\prime}(\tau)=-{ }_{A^{\prime}} \widetilde{\mathcal{V}}^{\prime \prime}(\tau)=\widetilde{\mathcal{V}}^{\prime \prime}(-\tau)
$$

- By inductive hypothesis $\widetilde{\mathcal{V}}^{\prime}\left(\tau_{1}\right)=\widetilde{\mathcal{V}}^{\prime \prime}\left(\tau_{1}\right)$ and $\widetilde{\mathcal{V}}^{\prime}\left(\tau_{2}\right)=\widetilde{\mathcal{V}}^{\prime \prime}\left(\tau_{2}\right)$ then:

$$
\widetilde{\mathcal{V}}^{\prime}\left(\tau_{1} \cup \tau_{2}\right)=\widetilde{\mathcal{V}}^{\prime}\left(\tau_{1}\right) \cup \widetilde{\mathcal{V}}^{\prime}\left(\tau_{2}\right)=\widetilde{\mathcal{V}}^{\prime \prime}\left(\tau_{1}\right) \cup_{A^{\prime}} \widetilde{\mathcal{V}}^{\prime \prime}\left(\tau_{2}\right)=\widetilde{\mathcal{V}}^{\prime \prime}\left(\tau_{1} \cup \tau_{2}\right)
$$

Next we cite "Proposition 5" from [1], section 4.1 "From Kripke frames to Boolean frames".

Proposition 1.3.1. Let $\mathcal{F}=\langle S, I\rangle$ be a Kripke frame. Consider the Boolean frame over \mathcal{F} denoted by $B(\mathcal{F})=<A^{\prime}, 0_{A^{\prime}},-_{A^{\prime}}, \cup_{A^{\prime}}, I^{\prime}>$. Let \mathcal{V} be a valuation on \mathcal{F} (and as clarified, equivalently on $B(\mathcal{F})$). Then for every formula φ :

$$
<B(\mathcal{F}), \mathcal{V}>\Vdash \varphi \quad \text { iff } \quad<\mathcal{F}, \mathcal{V}>\Vdash \varphi
$$

Proof. Trivially by induction on the complexity of the formula φ.

1.3.4 Formal system

As per [1], Section 7.1, "Axiomatization" for any set of formulas Φ the set of axioms of the formal system \mathcal{L}_{Φ} is defined and separated in the following groups:
(1) Sentential axioms
(2) Identity axioms: (for τ, τ_{1}, τ_{2} and τ_{3} Boolean terms)

- $(\tau \equiv \tau)$
- $\left(\tau_{1} \equiv \tau_{2}\right) \Longrightarrow\left(\tau_{2} \equiv \tau_{1}\right)$
- $\left(\tau_{1} \equiv \tau_{2}\right) \wedge\left(\tau_{2} \equiv \tau_{3}\right) \Longrightarrow\left(\tau_{1} \equiv \tau_{3}\right)$
(3) Congruence axioms ($\tau_{1}, \tau_{2}, \tau_{3}$ and τ_{4} Boolean terms)
- $\left(\tau_{1} \equiv \tau_{2}\right) \Longrightarrow\left(-\tau_{1} \equiv-\tau_{2}\right)$
- $\left(\tau_{1} \equiv \tau_{3}\right) \wedge\left(\tau_{2} \equiv \tau_{4}\right) \Longrightarrow\left(\left(\tau_{1} \cup \tau_{2}\right) \equiv\left(\tau_{3} \cup \tau_{4}\right)\right)$
(4) Boolean axioms: For all Boolean terms τ_{1} and τ_{2}, if τ_{1} and τ_{2} are equivalent Boolean terms of Boolean logic then the following formula is an axiom of \mathcal{L}_{Φ} :
- $\left(\tau_{1} \equiv \tau_{2}\right)$
(5) Non-degenerate axiom:
- $\neg(0 \equiv 1)$
(6) Proximity axioms: (consider P the n-ary relation symbol, $1 \leq i \leq n$, and $\tau_{1}, \ldots, \tau_{i-1}, \tau_{i}, \tau_{i}^{\prime}, \tau_{i}^{\prime \prime}, \tau_{i+1}, \ldots, \tau_{n}$ arbitrary Boolean terms)
- $P\left(\tau_{1}, \ldots, \tau_{i-1}, \tau_{i}, \tau_{i+1}, \ldots, \tau_{n}\right) \Longrightarrow \neg\left(\tau_{i} \equiv 0\right)$
- $\left(\tau_{i} \equiv\left(\tau_{i}^{\prime} \cup \tau_{i}^{\prime \prime}\right)\right) \Longrightarrow$

$$
\begin{aligned}
& \left(P\left(\tau_{1}, \ldots, \tau_{i-1}, \tau_{i}, \tau_{i+1}, \ldots, \tau_{n}\right) \Longleftrightarrow\right. \\
& \left.\quad\left(P\left(\tau_{1}, \ldots, \tau_{i-1}, \tau_{i}^{\prime}, \tau_{i+1}, \ldots, \tau_{n}\right) \vee P\left(\tau_{1}, \ldots, \tau_{i-1}, \tau_{i}^{\prime \prime}, \tau_{i+1}, \ldots, \tau_{n}\right)\right)\right)
\end{aligned}
$$

(7) Φ-axioms: Every formula obtained from a formula of Φ by simultaneously and uniformly substituting Boolean terms for the Boolean variables it contains.

Modus ponens is the only rule of inference for \mathcal{L}_{Φ}.
\mathcal{L}_{Φ}-deduction of formula φ from given set of formulas Σ is a finite sequence of formulas $\varphi_{1}, \ldots, \varphi_{s}$ such that:

- Every φ_{i}, where $1 \leq i \leq s$, is either:
- An axiom of \mathcal{L}_{Φ}
- Formula from the set Σ
- Obtained by Modus ponens from formulas φ_{j} and φ_{k} from the sequence, where $j<i, k<i$ and φ_{k} is the formula $\left(\varphi_{j} \Longrightarrow \varphi_{i}\right)$
- φ_{s} is the formula φ

We say φ is \mathcal{L}_{Φ}-deducible from Σ, denoted as $\Sigma \vdash_{\mathcal{L}_{\Phi}} \varphi$, should it exist \mathcal{L}_{Φ}-deduction of φ from Σ.

We say φ is \mathcal{L}_{Φ}-deducible in the particular case when $\Sigma=\emptyset$ and denote it by $\vdash_{\mathcal{L}_{\Phi}} \varphi$.

1.3.5 Completeness of Boolean logics

Later in the exposition, for proving particular completeness properties of our n-ary contact logic, we resort to the more general case results for Boolean log$i c s$ as studied in [1]. In particular, we refer to "Proposition 26", section 7.5 "Completeness with respect to the Boolean semantics" and cite it here as the following:

Proposition 1.3.2. Let Σ be a set of formulas and φ be a formula such that $\Sigma \Vdash_{C_{\Phi}^{B}} \varphi$. If $B V(\Sigma)$ is finite then $\Sigma \vdash_{\mathcal{L}_{\Phi}} \varphi$.

Effectively, we will be applying Proposition 1.3 .2 for empty set Σ. Hence, for convenience sake, we state the form we will use.

Proposition 1.3.3. For every set of formulas Φ and formula φ of the language $L_{\mathcal{R}}$:

$$
\Vdash_{C_{\Phi}^{B}} \varphi \quad \text { implies } \quad \vdash_{\mathcal{L}_{\Phi}} \varphi
$$

1.4 Graphs notions

The definition and notions with respect to graphs are as in 4], "Graphs: Theory and Algorithms". Will highlight some of them for the sake of common understanding used in the exposition later.

Denoting a graph by $G=(V, E)$, where V and E are finite sets (unless otherwise explicitly mentioned). The elements of V are called vertices and those of E edges. Each edge is associated with pair of vertices. We say that any of those vertices is incident on the edge. Furthermore, any edge a vertex being incident with is also called incident on the vertex.

In general we consider undirected graphs which means the pairs of vertices associated to the edges are non-ordered. We will tacitly assume directed graphs in the case of rooted trees. By assumption the direction of all edges is from the root of the tree towards the leafs.

Remark that by definition there is no restriction that every edge is associated with distinct pair of vertices (such graphs may be referred as multi graphs). We call two edges associated with a same pair of vertices parallel edges or multi edges. Should the pair of vertices associated with an edge be singleton then we call that edge self-loop at the given vertex or simply a loop. Graph having no parallel edges or self-loops is called simple.

We call a graph bipartite if its set of vertices can be coloured into two colours such that for every edge of the graph its two incident vertices are in different colour.

A graph with no edges is called empty.

1.5 Topological spaces and notions. Topological space \mathbb{R}^{m}

Here we briefly introduce the used notions and understanding related to topological spaces. Furthermore, we clarify what is the intended meaning of the topological space \mathbb{R}^{m}.

1.5.1 Topological spaces. Notions

Definition. $\mathbb{T}=\langle X, \boldsymbol{\tau}\rangle$ is topological space if:

- X is a non-empty set and $\boldsymbol{\tau} \subseteq \mathcal{P}(X)$
- $\emptyset \in \boldsymbol{\tau}$ and $X \in \boldsymbol{\tau}$
- If $A_{1}, A_{2} \in \boldsymbol{\tau}$ then $A_{1} \cap A_{2}$ is an element of $\boldsymbol{\tau}$
- If $\left\{A_{i}\right\}_{i \in I}$ is a family of elements of $\boldsymbol{\tau}$ then $\cup_{i \in I} A_{i}$ is also an element of $\boldsymbol{\tau}$ τ is called a topology on X.

Open set in topological space $\mathbb{T}=\langle X, \boldsymbol{\tau}\rangle$ is any of the elements of the topology $\boldsymbol{\tau}$.

Closed set is a complement with respect to X of an open set.
We state the definition above in a more convenient form.
Definition. In topological space $\mathbb{T}=\langle X, \boldsymbol{\tau}\rangle$:

- A is an open set iff $A \in \boldsymbol{\tau}$
- A is a closed set \quad iff $\quad X \backslash A \in \boldsymbol{\tau}$

Remark the dual nature of the terms open and closed sets. It allows to define topological space by $\boldsymbol{\tau}$ being the closed sets instead and the open sets being their complements with respect to X. Within this exposition though we use the definition already given, namely where $\boldsymbol{\tau}$ is the set of the open sets.

Given topological space $\mathbb{T}=\langle X, \boldsymbol{\tau}\rangle$ we define interior and closure of a set. Consider A subset of X.

Definition. Interior of a set A, denoted by $\operatorname{Int}(A)$, is:

$$
\operatorname{Int}(A) \leftrightharpoons \cup\{B \in \boldsymbol{\tau} \mid B \subseteq A\}
$$

Hence, alternatively, the interior of a set A is the biggest open set subset of A.
Definition. Closure of a set A, denoted by $C l(A)$, is:

$$
C l(A) \leftrightharpoons \cap\{B \mid X \backslash B \in \boldsymbol{\tau} \text { and } A \subseteq B\}
$$

Hence, alternatively, the closure of a set A is the smallest closed set for which A is its subset.

Remark the dual nature of interior and closure of a set. In particular:

- $C l(A)=X \backslash \operatorname{Int}(X \backslash A)$
- $\operatorname{Int}(A)=X \backslash C l(X \backslash A)$

For the definitions of open and closed sets then we have:

- A is open iff $A \in \boldsymbol{\tau}$ iff $A=\operatorname{Int}(A)$
- A is closed iff $\quad X \backslash A \in \boldsymbol{\tau} \quad$ iff $\quad A=C l(A)$

Trivially by definition:

$$
\operatorname{Int}(A) \subseteq A \subseteq C l(A)
$$

Definition. Boundary points of the set A are the elements of the set:

$$
C l(A) \backslash \operatorname{Int}(A)
$$

Then, in addition to the above, the definitions of open and closed sets can be restated in the following equivalent way:

- A is open iff A does not contain any of its boundary points
- A is closed iff A contains all its boundary points

Again, consider topological space $\mathbb{T}=\langle X, \boldsymbol{\tau}\rangle$
Definition. The topological space \mathbb{T} is called connected if there exist no open non-empty A_{1} and A_{2} subsets of X such that $A_{1} \cap A_{2}=\emptyset$ and $A_{1} \cup A_{2}=X$.

Remark that if \mathbb{T} is connected then the only pair A_{1} and A_{2} of subsets of X such that $A_{1} \cap A_{2}=\emptyset$ and $A_{1} \cup A_{2}=X$ is the sets \emptyset and X.

By definition of a connected topological space the following definitions are equivalent:

- There exist no non-empty open A_{1} and A_{2} subsets of X such that $A_{1} \cap A_{2}=$ \emptyset and $A_{1} \cup A_{2}=X$.
- There exist no non-empty closed A_{1} and A_{2} subsets of X such that $A_{1} \cap$ $A_{2}=\emptyset$ and $A_{1} \cup A_{2}=X$.
- The only subsets of X being both open and closed (clopen) are \emptyset and X.
- The only subsets of X having empty set of boundary points are \emptyset and X.

1.5.2 Topological space \mathbb{R}^{m}

Consider the Euclidean metric in the Euclidean space \mathbb{R}^{m}.
When we say an open ball o for point x of \mathbb{R}^{m} we mean the set of all points being with Euclidean distance to x less than given fixed real positive r. We can think of r as the radius of the "ball". Remark the collision with the term open set determined in Section 1.5.1. As a comment, this is not a collision at all as effectively open ball eventually is an open subset of the topological space \mathbb{R}^{m} which we are going to define shortly. Nevertheless this result is not going to be explicitly stated as not being essential to the exposition. Confusion should be avoided as the usage of the term open ball will be non-ambiguous and clear by the context.

Consider $<\mathbb{R}^{m}, \boldsymbol{\tau}>$ where $\boldsymbol{\tau}$ is defined as:

- $A \in \boldsymbol{\tau} \quad$ iff for every $x \in A$ there exists an open ball $o \ni x$ such that $o \subseteq A$

Remark that $\left.<\mathbb{R}^{m}, \boldsymbol{\tau}\right\rangle$ is topological space. Really:

- \emptyset and X are in $\boldsymbol{\tau}$ by trivial reasons.
- Let A_{1} and A_{2} be from τ. Consider arbitrary $x \in A_{1} \cap A_{2}$. By A_{1} there is an open ball $o_{1} \ni x$ such that $o_{1} \subseteq A_{1}$ and by A_{2} there is $o_{2} \ni x$ such that $o_{2} \subseteq A_{2}$. Hence $o_{1} \cap o_{2} \subseteq A_{1} \cap A_{2}$. Trivially, $o_{1} \cap o_{2}$ is an open ball. Furthermore, $o_{1} \cap o_{2}$ is an open ball for x. x was arbitrary element of $A_{1} \cap A_{2}$ therefore $A_{1} \cap A_{2}$ is from $\boldsymbol{\tau}$.
- Consider $\left\{A_{i}\right\}_{i<I}$ family of elements of $\boldsymbol{\tau}$. For an arbitrary $x \in \cup_{i \in I} A_{i}$ we have that there exists $j \in I$ such that $x \in A_{j}$. Then there is an open ball $o \ni x$ such that $o \subseteq A_{j}$. This means $o \subseteq \cup_{i \in I} A_{i} . x$ was arbitrary therefore $\cup_{i \in I} A_{i}$ is from $\boldsymbol{\tau}$.

For simplicity when we say topological space \mathbb{R}^{m} we should mean the topological space $<\mathbb{R}^{m}, \boldsymbol{\tau}>$ as just defined.

Consider the topological space \mathbb{R}^{m}. Having the notions of open, closed set and boundary points of a set in arbitrary topological space then, when in \mathbb{R}^{m}, those can in addition be restated in the following way:

- A is an open set iff for every $x \in A$ there exists an open ball $o \ni x$ such that $o \subseteq A$
- a is a boundary point for A for every open ball $o \ni a$ there exist in o both points from A and points from the complement of A with respect to \mathbb{R}^{m} (that is $o \cap A \neq \emptyset$ and $\left.o \cap\left(\mathbb{R}^{m} \backslash A\right) \neq \emptyset\right)$
- A is a closed set iff for every $x \in A \quad$ either there exists an open ball $o \ni x$ such that $o \subseteq A$ (in particular, x is from the interior of A) or for every open ball $o \ni x$ there exist in o both points from A and points from the complement of A with respect to \mathbb{R}^{m} (in particular, x is a boundary point for A)

Finally, remark that:

- The topological space \mathbb{R}^{m} is connected.

Proof notes: Assume the contrary, namely, there exist non-empty open sets A and B subsets of \mathbb{R}^{m} satisfying $A \cap B=\emptyset$ and $A \cup B=\mathbb{R}^{m}$. Take arbitrary $a \in A$ and $b \in B$. Apparently $a \neq b$. Consider the segment s being the section between a and b (including a and b) of the straight line connecting a and b in \mathbb{R}^{m}. We build a countable sequence of segments subsets of s in the following way. Let s_{0} be s. Consider the Euclidean distance between a and b and take the point in the middle of the segment s_{0}, denote it by a_{1}. If $a_{1} \in A$ then s_{1} is the segment between a_{1} and b (including a_{1} and b). Otherwise $a_{1} \in B$ then s_{1} is the segment between a and a_{1} (including a and a_{1}). Remark that the length of the segment s_{1} is half the length of s_{0}. In this way we build the countable sequence of segments $\left\{s_{i}\right\}_{i<\omega}$ each segment being with positive length and half the length of the former one in the sequence. Then the length of the segments s_{i} converges down to 0 when i tends to infinity. Therefore the sequence $\left\{s_{i}\right\}_{i \rightarrow \infty} \rightarrow c$, where c is point from s (the latter statement requires some further formal refinement). Remark that, by definition of the sequence $\left\{s_{i}\right\}_{i<\omega}$, for every natural i then $c \in s_{i}$. Consider arbitrary open ball $o \ni c$. Then by the remark just being made there is a natural N such that for every $i>N$ is satisfied $s_{i} \subseteq o$. By the choice of the elements of the sequence $\left\{s_{i}\right\}_{i<\omega}$ we imply that there are points from A
and points from B in o. o was arbitrary. Then, by A and B open sets it means c is neither in A nor in B. This is a contradiction with $A \cup B=\mathbb{R}^{m}$.

1.6 Regular closed sets and polytopes of \mathbb{R}^{m}. Boolean algebras of the regular closed sets and polytopes

Within the exposition they will extensively be used the notions of regular closed subsets and polytopes of \mathbb{R}^{m}. Basically for a regular closed subset of \mathbb{R}^{m} is adopted the very standard notion. The meaning of polytopes though has evolved throughout the years so we will define what being intended here.

The regular closed subsets and polytopes of \mathbb{R}^{m} determine a class of Boolean algebras. They are of special interest for us because the classes of Boolean frames to be studied later will all be with carriers exactly such Boolean algebras. Furthermore, it will also be given the definition of the standard n-ary contact relation in arbitrary topological space. The n-ary contact relations in \mathbb{R}^{m} on the other hand will be the interpretation of the relation symbols of the n-ary contact language (defined in Section 1.2) in those same classes of Boolean frames.

1.6.1 Regular closed sets

Consider arbitrary topological space $\mathbb{T}=\langle X, \boldsymbol{\tau}\rangle$
First, let us observe several additional properties of the interior and the closure. Following consider arbitrary sets A and B of \mathbb{T}.

- (Idempotency) The following equations hold:

$$
\operatorname{Int}(\operatorname{Int}(A))=\operatorname{Int}(A) \quad C l(C l(A))=C l(A)
$$

Proof. Trivially by definition.

- (Monotonicity) If $A \subseteq B$ then:

$$
\operatorname{Int}(A) \subseteq \operatorname{Int}(B) \quad C l(A) \subseteq C l(B)
$$

Proof. $\operatorname{Int}(A) \subseteq A$ hence $\operatorname{Int}(A) \subseteq B$. $\operatorname{Int}(A)$ is open set then by the latter and by definition: $\operatorname{Int}(A) \subseteq \operatorname{Int}(B)$. For the closure either in analogy or by the just proven fact for the interior and by their duality property. In particular, $A \subseteq B$ then $X \backslash B \subseteq X \backslash A$. Thus $\operatorname{Int}(X \backslash B) \subseteq \operatorname{Int}(X \backslash A)$. Therefore:

$$
C l(A)=X \backslash \operatorname{Int}(X \backslash A) \subseteq X \backslash \operatorname{Int}(X \backslash B)=C l(B)
$$

- Linear property of the interior with respect to the set-theoretical intersection and the closure with respect to the set-theoretical union:

$$
\begin{gathered}
\operatorname{Int}(A \cap B)=\operatorname{Int}(A) \cap \operatorname{Int}(B) \\
C l(A \cup B)=C l(A) \cup C l(B)
\end{gathered}
$$

Remark that the linear properties of the interior and the closure are not valid if the set-theoretical intersection and union are exchanged in the above equations.

Proof. We have $\operatorname{Int}(A) \subseteq A$ and $\operatorname{Int}(B) \subseteq B$. Then, trivially:

$$
\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq A \cap B
$$

$\operatorname{Int}(A)$ and $\operatorname{Int}(B)$ are open sets then, by definition, such one also is $(\operatorname{Int}(A) \cap$ Int (B)). Hence, by idempotency and monotonicity, it follows:

$$
\operatorname{Int}(A) \cap \operatorname{Int}(B)=\operatorname{Int}(\operatorname{Int}(A) \cap \operatorname{Int}(B)) \subseteq \operatorname{Int}(A \cap B)
$$

For the opposite direction, trivially, for A we have $A \cap B \subseteq A$ and by monotonicity: $\operatorname{Int}(A \cap B) \subseteq \operatorname{Int}(A)$. The same holds for B, namely $\operatorname{Int}(A \cap B) \subseteq \operatorname{Int}(B)$. Therefore:

$$
\operatorname{Int}(A \cap B) \subseteq \operatorname{Int}(A) \cap \operatorname{Int}(B)
$$

The statement for the closure is by analogous reasoning to the one just proven for the interior. Alternatively, it can simply be attained by the duality of the interior and the closure using the demonstrated fact for the interior. Namely:

$$
\begin{aligned}
& C l(A \cup B)=X \backslash \operatorname{Int}(X \backslash(A \cup B))=X \backslash \operatorname{Int}((X \backslash A) \cap(X \backslash B))= \\
& =X \backslash(\operatorname{Int}(X \backslash A) \cap \operatorname{Int}(X \backslash B))=(X \backslash \operatorname{Int}(X \backslash A)) \cup(X \backslash \operatorname{Int}(X \backslash B))= \\
& =C l(A) \cup C l(B)
\end{aligned}
$$

We are prepared to define and study the notion of regular closed set of the arbitrary topological space \mathbb{T}.

Definition. A regular closed set of \mathbb{T} is a subset of the space X being equal to the closure of its interior. In particular, A is a regular closed set if $A=$ $C l(\operatorname{Int}(A))$.

Obviously:

- A regular closed set is a closed set.

Furthermore, trivially:

- \emptyset and the space X are regular closed sets.

We call the operation $C l(\operatorname{Int}(A))$ on an arbitrary set A regularisation and the set $C l(\operatorname{Int}(A))$ regularised. Therefore regular closed sets are those equal to their regularised sets. Furthermore, the regularised sets are the regular closed sets. In particular:

- For an arbitrary set A of \mathbb{T} then $C l(\operatorname{Int}(A))$ is a regular closed set.

This statement is equivalent to:

- For an arbitrary set A of \mathbb{T} it holds:

$$
C l(\operatorname{Int}(A))=C l(\operatorname{Int}(C l(\operatorname{Int}(A))))
$$

Proof. By definition of interior we have $\operatorname{Int}(C l(\operatorname{Int}(A))) \subseteq C l(\operatorname{Int}(A))$. Then, by the monotonicity, we obtain $C l(\operatorname{Int}(C l(\operatorname{Int}(A)))) \subseteq C l(C l(\operatorname{Int}(A)))$. Now by idempotency eventually:

$$
C l(\operatorname{Int}(C l(\operatorname{Int}(A)))) \subseteq C l(\operatorname{Int}(A))
$$

For the opposite direction we have $\operatorname{Int}(A) \subseteq C l(\operatorname{Int}(A))$. By monotonicity and idempotency, consequently, we obtain: $\operatorname{Int}(A) \subseteq \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))$. By monotonicity once again:

$$
C l(\operatorname{Int}(A)) \subseteq C l(\operatorname{Int}(C l(\operatorname{Int}(A))))
$$

The following statements hold:

- For arbitrary regular closed sets A and B then $(A \cup B)$ also is a regular closed set.
- For arbitrary regular closed set A then $C l(X \backslash A)$ also is a regular closed set.

Proof.
For the first one we have to demonstrate: $A \cup B=C l(\operatorname{Int}(A \cup B))$.
By monotonicity applied on $A \subseteq A \cup B$ we obtain that: $C l(\operatorname{Int}(A)) \subseteq$ $C l(\operatorname{Int}(A \cup B))$ Now, by A being a regular closed set, namely $A=C l(\operatorname{Int}(A))$, we have $A \subseteq C l(\operatorname{Int}(A \cup B))$. In analogy $B \subseteq C l(\operatorname{Int}(A \cup B))$. By those:

$$
A \cup B \subseteq C l(\operatorname{Int}(A \cup B))
$$

For the other direction, we have $\operatorname{Int}(A \cup B) \subseteq A \cup B$. By monotonicity, idempotency and the linear properties of the closure, subsequently:

$$
C l(\operatorname{Int}(A \cup B)) \subseteq C l(A \cup B)=C l(A) \cup C l(B)
$$

A and B are closed sets hence $A=C l(A)$ and $B=C l(B)$. Therefore:

$$
C l(\operatorname{Int}(A \cup B)) \subseteq A \cup B
$$

For the second one we have to demonstrate: $C l(X \backslash A)=C l(\operatorname{Int}(C l(X \backslash A)))$.
This is true by the duality of the interior and the closure. In particular, subsequently, we obtain:

$$
C l(\operatorname{Int}(C l(X \backslash A)))=C l(\operatorname{Int}(X \backslash \operatorname{Int}(A)))=C l(X \backslash C l(\operatorname{Int}(A)))
$$

By this and A being a regular closed set, namely $A=C l(\operatorname{Int}(A))$, then the intended equality holds.

1.6.2 Boolean algebras of regular closed sets

Again, consider an arbitrary topological space $\mathbb{T}=\langle X, \boldsymbol{\tau}\rangle$. Denote by $R C(\mathbb{T})$ the set of the regular closed sets of \mathbb{T}. Consider the structure:

$$
R C=<R C(\mathbb{T}),-R C, \cup_{R C}, \cap_{R C}>
$$

where for arbitrary A and B being regular closed sets the operations $\cup_{R C}, \cap_{R C}$ and $-{ }_{R C}$ are defined as:

- $A \cup_{R C} B=A \cup B$
- $A \cap_{R C} B=C l(\operatorname{Int}(A \cap B))$
- $-{ }_{R C} A=C l(X \backslash A)$

As per Section 1.6.1 the result of applying $\cup_{R C}, \cap_{R C}$ or $-{ }_{R C}$ on arbitrary regular closed sets is a regular closed set. Our goal then is to see that $R C$ is a Boolean algebra.

First of all, remark that the de Morgan laws are satisfied. Namely:

- $A \cap_{R C} B=-{ }_{R C}\left(\left(-{ }_{R C} A\right) \cup_{R C}\left(-{ }_{R C} B\right)\right)$
- $A \cup_{R C} B=-{ }_{R C}\left(\left(-{ }_{R C} A\right) \cap_{R C}\left(-{ }_{R C} B\right)\right)$

Proof. By definition and using the properties demonstrated in Section 1.6.1, subsequently:

$$
\begin{aligned}
& -R C\left((-R C A) \cup_{R C}\left(-{ }_{R C} B\right)\right)= \\
& =\operatorname{Cl}\left(X \backslash\left((-R C A) \cup_{R C}(-R C B)\right)\right)= \\
& =C l(X \backslash(C l(X \backslash A) \cup C l(X \backslash B)))= \\
& =C l(X \backslash C l((X \backslash A) \cup(X \backslash B)))= \\
& =C l(X \backslash C l(X \backslash(A \cap B)))= \\
& =C l(X \backslash(X \backslash \operatorname{Int}(A \cap B)))= \\
& =C l(\operatorname{Int}(A \cap B))=A \cap_{R C} B
\end{aligned}
$$

For the other equation:

$$
\begin{aligned}
& -{ }_{R C}\left(\left(-{ }_{R C} A\right) \cap_{R C}\left(-{ }_{R C} B\right)\right)= \\
& =C l\left(X \backslash\left(\left(-{ }_{R C} A\right) \cap_{R C}\left(-{ }_{R C} B\right)\right)\right)= \\
& =C l\left(X \backslash C l\left(\operatorname{Int}\left(\left(-{ }_{R C} A\right) \cap\left(-{ }_{R C} B\right)\right)\right)\right)= \\
& =C l(X \backslash C l(\operatorname{Int}(C l(X \backslash A) \cap C l(X \backslash B))))= \\
& =C l(X \backslash C l(\operatorname{Int}(C l(X \backslash A)) \cap \operatorname{Int}(C l(X \backslash B))))
\end{aligned}
$$

Remark that for arbitrary regular closed set A :

$$
\begin{aligned}
& \operatorname{Int}(C l(X \backslash A))=X \backslash C l(X \backslash C l(X \backslash A))= \\
& =X \backslash C l(\operatorname{Int}(A))=X \backslash A
\end{aligned}
$$

Now, by substituting these in the former equation we obtain:

$$
\begin{aligned}
& =C l(X \backslash C l((X \backslash A) \cap(X \backslash B)))= \\
& =C l(X \backslash C l(X \backslash(A \cup B)))=C l(\operatorname{Int}(A \cup B))
\end{aligned}
$$

Recall, for regular closed sets A and B, as per Section 1.6.1, we have:

$$
C l(\operatorname{Int}(A \cup B))=A \cup B
$$

by which the equation is proven.

To show that $R C$ is a Boolean algebra we need to verify a sufficient set of axioms. We adopt one as by [3]. In particular (expectedly, by ' U ' and ' \cap ' are denoted the Boolean algebra operations join and meet respectively):
(A1)

$$
A \cup B=B \cup A, \quad A \cap B=B \cap A
$$

$$
\begin{equation*}
A \cup(B \cup C)=(A \cup B) \cup C, \quad A \cap(B \cap C)=(A \cap B) \cap C \tag{A2}
\end{equation*}
$$

$$
\begin{equation*}
(A \cap B) \cup B=B, \quad(A \cup B) \cap B=B \tag{A3}
\end{equation*}
$$

(A4)

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C), \quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

$$
\begin{equation*}
(A \cap-A) \cup B=B, \quad(A \cup-A) \cap B=B \tag{A5}
\end{equation*}
$$

As a comment, it is a known fact (also mentioned in [3]) that axiom (A4) could be omitted. Nevertheless we will consider the original set of axioms so (A4) will be demonstrated as well.
(A1)
Trivially by definition and the associativity of set-theoretical union and intersection.
$A \cup_{R C}\left(B \cup_{R C} C\right)=\left(A \cup_{R C} B\right) \cup_{R C} C$ is trivial by definition of ' $\cup_{R C}$ '. For the other one first remark the following property (a kind of a "dual" form of the regularisation).

- For an arbitrary set A of \mathbb{T} :

$$
\operatorname{Int}(C l(A))=\operatorname{Int}(C l(\operatorname{Int}(C l(A))))
$$

Proof of the property: By definition of closure: $\operatorname{Int}(C l(A)) \subseteq C l(\operatorname{Int}(C l(A)))$. By Section 1.6.1 monotonicity and idempotency, subsequently:

$$
\operatorname{Int}(C l(A))=\operatorname{Int}(\operatorname{Int}(C l(A))) \subseteq \operatorname{Int}(C l(\operatorname{Int}(C l(A))))
$$

For the other direction, by definition of interior, we have $\operatorname{Int}(C l(A)) \subseteq C l(A)$. Then by Section 1.6.1 monotonicity and idempotency, subsequently:

$$
C l(\operatorname{Int}(C l(A))) \subseteq C l(C l(A))=C l(A)
$$

Now, by monotonicity:

$$
\operatorname{Int}(C l(\operatorname{Int}(C l(A)))) \subseteq \operatorname{Int}(C l(A))
$$

Remark that whenever A is closed then, by $A=C l(A)$ and the demonstrated property, we imply:

- For an arbitrary closed set A :

$$
\operatorname{Int}(A)=\operatorname{Int}(C l(\operatorname{Int}(A)))
$$

Now:

$$
\begin{aligned}
& A \cap_{R C}\left(B \cap_{R C} C\right)=C l(\operatorname{Int}(A \cap C l(\operatorname{Int}(B \cap C))))= \\
& =C l(\operatorname{Int}(A) \cap \operatorname{Int}(C l(\operatorname{Int}(B \cap C))))
\end{aligned}
$$

Recall B and C are closed sets then, by the demonstrated property:

$$
\operatorname{Int}(C l(\operatorname{Int}(B \cap C)))=\operatorname{Int}(B \cap C)
$$

Using this in the former equation we obtain:

$$
=C l(\operatorname{Int}(A) \cap \operatorname{Int}(B \cap C))=C l(\operatorname{Int}(A) \cap \operatorname{Int}(B) \cap \operatorname{Int}(C)))
$$

By similar reasoning we obtain the same result for $\left(A \cap_{R C} B\right) \cap_{R C} C$ as well. Hence, the equality holds.
(A3)
First, remark the following property:

- For arbitrary sets A and B of \mathbb{T} :

$$
A \cup \operatorname{Int}(A \cap B)=A
$$

Proof of the property: Trivially, by $\operatorname{Int}(A \cap B) \subseteq(A \cap B)$:

$$
A \subseteq A \cup \operatorname{Int}(A \cap B) \subseteq A \cup(A \cap B)=A
$$

This proves the equality.
Now:

$$
\left(A \cap_{R C} B\right) \cup_{R C} B=C l(\operatorname{Int}(A \cap B)) \cup B
$$

B is regular closed set then B is closed hence $B=C l(B)$. Then, by the property just demonstrated and the linear property of the closure as per Section 1.6.1, subsequently:

$$
\begin{aligned}
& C l(\operatorname{Int}(A \cap B)) \cup B=C l(\operatorname{Int}(A \cap B)) \cup C l(B)= \\
& =C l(\operatorname{Int}(A \cap B) \cup B)=C l(B)=B
\end{aligned}
$$

For the other equality it is directly by definition and by A and B (in particular B) being regular closed sets, namely:

$$
\begin{align*}
& \left(A \cup_{R C} B\right) \cap_{R C} B=C l(\operatorname{Int}((A \cup B) \cap B))= \\
& =C l(\operatorname{Int}(B))=B \tag{A4}
\end{align*}
$$

It is sufficient to demonstrate one of the equations as long as the other is a direct implication of the former by applying de Morgan laws. We will prove the equation: $A \cap_{R C}\left(B \cup_{R C} C\right)=\left(A \cap_{R C} B\right) \cup_{R C}\left(A \cap_{R C} C\right)$. For its left side we have:

$$
\begin{aligned}
& \left.A \cap_{R C}\left(B \cup_{R C} C\right)=C l\left(\operatorname{Int}\left(A \cap\left(B \cup_{R C} C\right)\right)\right)\right)= \\
& =C l(\operatorname{Int}(A \cap(B \cup C))))= \\
& =C l(\operatorname{Int}((A \cap B) \cup(A \cap C)))
\end{aligned}
$$

For the right side of the equation:

$$
\begin{aligned}
& \left(A \cap_{R C} B\right) \cup_{R C}\left(A \cap_{R C} C\right)=\left(A \cap_{R C} B\right) \cup\left(A \cap_{R C} C\right)= \\
& =C l(\operatorname{Int}(A \cap B)) \cup C l(\operatorname{Int}(A \cap C))
\end{aligned}
$$

A, B and C are closed sets then also are $(A \cap B)$ and $(A \cap C)$. Therefore, by directly applying the observation below on the closed sets $(A \cap B)$ and $(A \cap C)$, the equality will hold. It remains to prove then the following observation:

- Let A and B be closed sets of \mathbb{T}. Then:

$$
C l(\operatorname{Int}(A \cup B))=C l(\operatorname{Int}(A)) \cup C l(\operatorname{Int}(B))
$$

Remark that by this equality it is directly implied the fact that for any regular closed sets A and B then $(A \cup B)$ is also a regular closed set. We have proven the latter explicitly for the sake of simplicity as long as the current property is a slightly less trivial observation.

Proof of the observation: By $A \subseteq(A \cup B)$ and by monotonicity as per Section 1.6.1 subsequently:

$$
C l(\operatorname{Int}(A)) \subseteq C l(\operatorname{Int}(A \cup B))
$$

Combining it with the analogous result for B we imply:

$$
C l(\operatorname{Int}(A)) \cup C l(\operatorname{Int}(B)) \subseteq C l(\operatorname{Int}(A \cup B))
$$

For the other direction it is sufficient to demonstrate that:

$$
\operatorname{Int}(A \cup B) \subseteq C l(\operatorname{Int}(A)) \cup C l(\operatorname{Int}(B))
$$

Having this then, by $C l(\operatorname{Int}(A)) \cup C l(\operatorname{Int}(B))$ being a closed set and the monotonicity and idempotency as per Section 1.6.1, subsequently we will imply:

$$
\begin{aligned}
& C l(\operatorname{Int}(A \cup B)) \subseteq C l(C l(\operatorname{Int}(A)) \cup C l(\operatorname{Int}(B)))= \\
& =C l(\operatorname{Int}(A)) \cup C l(\operatorname{Int}(B)),
\end{aligned}
$$

which will prove the equality.
Now, to show $\operatorname{Int}(A \cup B) \subseteq C l(\operatorname{Int}(A)) \cup C l(\operatorname{Int}(B))$, for the sake of contradiction, assume the contrary. This means:

$$
\operatorname{Int}(A \cup B) \cap(X \backslash(C l(\operatorname{Int}(A)) \cup C l(\operatorname{Int}(B)))) \neq \emptyset
$$

By the duality of the interior and the closure we have :

$$
\begin{aligned}
& X \backslash(C l(\operatorname{Int}(A)) \cup C l(\operatorname{Int}(B)))= \\
& X \backslash(C l(\operatorname{Int}(A) \cup \operatorname{Int}(B)))= \\
& =\operatorname{Int}(X \backslash(\operatorname{Int}(A) \cup \operatorname{Int}(B)))
\end{aligned}
$$

Then, by that and the former inequality:

$$
\begin{aligned}
& \emptyset \neq \operatorname{Int}(A \cup B) \cap \operatorname{Int}(X \backslash(\operatorname{Int}(A) \cup \operatorname{Int}(B)))= \\
& =\operatorname{Int}((A \cup B) \cap(X \backslash(\operatorname{Int}(A) \cup \operatorname{Int}(B))))= \\
& =\operatorname{Int}((A \cup B) \backslash(\operatorname{Int}(A) \cup \operatorname{Int}(B)))
\end{aligned}
$$

Denote:

$$
U=\operatorname{Int}((A \cup B) \backslash(\operatorname{Int}(A) \cup \operatorname{Int}(B)))
$$

Hence U is an open non-empty set and:

$$
U \subseteq(A \cup B) \backslash(\operatorname{Int}(A) \cup \operatorname{Int}(B))
$$

Assume $U \subseteq A . U$ is open then by definition $U \subseteq \operatorname{Int}(A)$ which is a contradiction. It follows that both $U \nsubseteq A$ and $U \nsubseteq B$. Then:

$$
U \cap(X \backslash A) \neq \emptyset
$$

A is closed then $(X \backslash A)$ is open hence $U \cap(X \backslash A)$ is an open non-empty set. By $U \subseteq(A \cup B)$ we have:

$$
\begin{aligned}
& U \cap(X \backslash A) \subseteq(A \cup B) \cap(X \backslash A)= \\
& =(A \cup B) \backslash A=B \backslash A \subseteq B
\end{aligned}
$$

Nevertheless, $U \nsubseteq B$ hence $(U \cap(X \backslash A)) \nsubseteq B$. We have a contradiction thus our assumption is wrong which proves the observation.
(A5)
Again, it is sufficient to prove one of the equations as long as the other is a direct implication of the former by applying the de Morgan laws. We will prove $\left(A \cap_{R C}\left(-{ }_{R C} A\right)\right) \cup_{R C} B=B$. The following is satisfied:

$$
\begin{aligned}
& A \cap_{R C}(-R C A)= \\
& =C l\left(\operatorname{Int}\left(A \cap\left(-{ }_{R C} A\right)\right)\right)= \\
& =C l(\operatorname{Int}(A \cap C l(X \backslash A)))= \\
& =C l(\operatorname{Int}(A \cap(X \backslash \operatorname{Int}(A))))= \\
& =C l(\operatorname{Int}(A \backslash \operatorname{Int}(A)))
\end{aligned}
$$

Remark that:

- For an arbitrary set A is satisfied:

$$
\operatorname{Int}(A \backslash \operatorname{Int}(A))=\emptyset
$$

Proof of the property: Let $U=\operatorname{Int}(A \backslash \operatorname{Int}(A))$ and assume that $U \neq \emptyset . U \subseteq$ $(A \backslash \operatorname{Int}(A))$ then $U \cap \operatorname{Int}(A)=\emptyset$. Trivially, $U \cup \operatorname{Int}(A)$ is an open set. Furthermore, $U \cup \operatorname{Int}(A) \subseteq A$. Hence, by definition, $U \cup \operatorname{Int}(A) \subseteq \operatorname{Int}(A)$ thus $U \subseteq \operatorname{Int}(A)$, which is a contradiction.

Applying this observation it follows that:

$$
A \cap_{R C}\left(-{ }_{R C} A\right)=\emptyset
$$

Now, using this, we have:

$$
\begin{aligned}
& \left(A \cap_{R C}\left(-{ }_{R C} A\right)\right) \cup_{R C} B= \\
& \left(A \cap_{R C}\left(-{ }_{R C} A\right)\right) \cup B= \\
& \emptyset \cup B=B
\end{aligned}
$$

Eventually we have demonstrated that $R C$ is a Boolean algebra. As a comment, it is a known fact that, furthermore, $R C$ is a complete Boolean algebra (intuitively, one allowing infinite meets and joins). Nevertheless the latter will be not needed in our exposition.

Finally, by the equation above, for the zero of the Boolean algebra $R C$ we have:

$$
0_{R C}=\left(A \cap_{R C}(-R C A)\right)=\emptyset
$$

For the unit of $R C$, by definition, subsequently:

$$
\begin{aligned}
& 1_{R C}=\left(A \cup_{R C}\left(-{ }_{R C} A\right)\right)= \\
& =A \cup C l(X \backslash A) \supseteq A \cup(X \backslash A)=X
\end{aligned}
$$

Therefore:

- The zero of the Boolean algebra $R C$ is the empty set.
- The unit of the Boolean algebra $R C$ is the space X of the topological space \mathbb{T}.

1.6.3 Polytopes of \mathbb{R}^{m}

Consider the topological space \mathbb{R}^{m} for fixed $m, m \geq 1$.
By a half-space of \mathbb{R}^{m} we intend the standard notion in analogy to halfspace of \mathbb{R}^{3}. Then a half-space of \mathbb{R}^{2} is a half-plane, of \mathbb{R}^{1} is a ray. Formally, a half-space of \mathbb{R}^{m} is the set of points satisfying the inequality:

$$
a_{1} x_{1}+\ldots+a_{n} x_{n} \geq b
$$

for appropriate real coefficient b and not all zero real coefficients a_{1}, \ldots, a_{n}.
Definition. Inductive definition of a polytope of \mathbb{R}^{m} :

- The empty set is a polytope of \mathbb{R}^{m}.
- Any intersection with a non-empty interior of finitely many half-spaces is a polytope of \mathbb{R}^{m}.
- A union of finitely many polytopes of \mathbb{R}^{m} is a polytope of \mathbb{R}^{m}.

Trivially, by definition \mathbb{R}^{m} itself is also a polytope (as being the set of all points in the empty intersection of half-spaces).

In particular, a polytope of \mathbb{R}^{1} is a union of finitely many subsets of \mathbb{R}^{1} each being intersection (with non-empty interior) of finitely many rays. This means a polytope of \mathbb{R}^{1} effectively is a union of finitely many (genuine) rays or segments of \mathbb{R}^{1}. Polytope in \mathbb{R}^{2} will be a union of finitely many subsets of \mathbb{R}^{2} each being intersection (with non-empty interior) of finitely many half-planes.

Remark that any polytope of \mathbb{R}^{m} can be considered a polytope of \mathbb{R}^{n} for $m \leq n$. The polytope of \mathbb{R}^{m} can be considered as obtained by the \mathbb{R}^{m} projection of \mathbb{R}^{n}. Apparently the subset of \mathbb{R}^{n} whose projection results in the polytope of \mathbb{R}^{m} is a polytope by definition.

Consider the equivalent topological notions as highlighted in Section 1.5.2. Then, by the formal definition above of a half-space (the points satisfying a nonstrong inequality), it is easy to infer that a half-space contains all its boundary points. In particular, any point satisfying the equality will also satisfy the definition of a boundary point in \mathbb{R}^{m}. Then a half-space in \mathbb{R}^{m} is a closed set. Furthermore, it is easy to see that the interior of a half-space are the points satisfying the strong inequality. By this we imply that the closure of the interior of a half-space is the half-space itself. Therefore:

- The half-spaces are regular closed sets.

Furthermore, this similar reasoning can easily be generalised for a finite intersection of half-spaces (such that the intersection is with a non-empty interior), namely the points satisfying the finite set of the inequalities defining each of the half-spaces. Thus we have:

- An intersection of finitely many half-spaces being with non-empty interior is a regular closed set.
By Section 1.6.1, union of regular closed sets is a regular closed set. Now, by applying the inductive definition of a polytope it follows that:
- The polytopes are regular closed sets.

1.6.4 Boolean algebras of regular closed sets and polytopes of \mathbb{R}^{m}

As per Section 1.6.3, consider the topological space \mathbb{R}^{m}. In Section 1.6.2 we have demonstrated that the set of all regular closed sets forms a Boolean algebra with the well defined Boolean operations ' $\cup_{R C}$ ', ' $\cap_{R C}$ ' and ' $-{ }_{R C}$ '. Our purpose now is to demonstrate that the set of all polytopes of \mathbb{R}^{m} forms a Boolean algebra subalgebra of the Boolean algebra of the regular closed sets of \mathbb{R}^{m}.

Recall that, as per Section 1.6 .3 the polytopes are regular closed sets.
Consider the Boolean algebra complement operation ' $-R C^{\prime}$ as defined in Section 1.6.2

With a similar reasoning as in Section 1.6.3, we also imply that the settheoretical complement of a half-space is the interior of the counter half-space (formally, the one obtained by negating all the coefficients of the given halfspace). Then the closure of that set will be the counter half-space of the given half-space. Then:

- The Boolean algebra complement operation ' $-{ }_{R C}$ ' applied on a half-space is a half-space.

Now, consider a finite intersection of half-spaces having a non-empty interior. Then, the set-theoretical complement of that set is the finite union of the set theoretical complements of each of the half-spaces participating in the finite intersection. As clarified, the set-theoretical complement of a half-space is the interior of the counter half-space. Therefore the set-theoretical complement of an intersection of finitely many half-spaces is the union of the interiors of their corresponding counter half-spaces. Now, by the linearity of the closure as per Section 1.6.1 then the closure of that set is the finite union of the regularisations of the respective counter half-spaces. As already shown in Section 1.6.3, halfspaces are regular closed sets hence they are preserved under regularisation. By definition of politope we conclude:

- The Boolean algebra complement operation ' $-{ }_{R C}$ ' applied on a finite intersection of half-spaces having a non-empty interior results in a polytope.

Now, consider the set-theoretical complement of an arbitrary polytope. The cases of the polytope being the empty set or \mathbb{R}^{m} are trivial so, in general, consider the polytope is a finite union of finite intersections of half-spaces (with a nonempty interior). Then, the set-theoretical complement is the intersection of the unions of the interiors of the corresponding counter half-spaces. Reorganising this properly we obtain a finite union of finite intersections of the interiors of the counter half-spaces. The closure of that finite union is then the union of the closures of each such finite intersection. As clarified, the closure of a finite intersection of the interiors of half-spaces is the intersection of the half-spaces. Therefore we have a finite union of finite intersections of half-spaces, hence, a polytope. Finally:

- The Boolean algebra complement operation ' $-_{R C}$ ' applied on a polytope results in a polytope.
Furthermore, trivially, by definition of polytopes, a union of finitely many polytopes is a polytope. Then:
- The Boolean algebra join operation ' $\cup_{R C}$ ' applied on polytopes results in a polytope.

Using the de Morgan laws and the results for the Boolean algebra complement and join operations we imply:

- The Boolean algebra meet operation ' $\cap_{R C}$ ' applied on polytopes results in a polytope.

To recapitulate, we have demonstrated that the polytopes are regular closed sets and they are preserved under the operations of the Boolean algebra of the regular closed sets. Finally:

- The polytopes of \mathbb{R}^{m} form a Boolean algebra subalgebra of the Boolean algebra of the regular closed sets of \mathbb{R}^{m}.

As a subalgebra of the Boolean algebra of the regular closed sets of \mathbb{R}^{m}, then the Boolean algebra of the polytopes of \mathbb{R}^{m} has the same zero and unit elements. Therefore, as per Section 1.6.2, we have:

- The zero of the Boolean algebra of the polytopes of \mathbb{R}^{m} as well as of the Boolean algebra of the regular closed sets of \mathbb{R}^{m} is the empty set.
- The unit of the Boolean algebra of the polytopes of \mathbb{R}^{m} as well as of the Boolean algebra of the regular closed sets of \mathbb{R}^{m} is the set \mathbb{R}^{m}.

Denote by $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$ the set of the polytopes of \mathbb{R}^{m}. Consider the structure:

$$
P R C=\left\langle P R C\left(\mathbb{R}^{m}\right),-{ }_{R C}, \cup_{R C}, \cap_{R C}\right\rangle
$$

where the Boolean operations $-_{R C}, \cup_{R C}$ and $\cap_{R C}$ are as per Section 1.6.2. From here on, by $R C$ will be denoted the Boolean algebra of the regular closed sets of \mathbb{R}^{m}, namely:

$$
R C=<R C\left(\mathbb{R}^{m}\right),-{ }_{R C}, \cup_{R C}, \cap_{R C}>
$$

Therefore:

- $P R C$ is the Boolean algebra of the polytopes of \mathbb{R}^{m} subalgebra of the Boolean algebra $R C$ of the regular closed sets of \mathbb{R}^{m}.

$1.7 n$-ary contact relation

Consider an arbitrary topological space $\mathbb{T}=<X, \boldsymbol{\tau}>$ and arbitrary A_{1}, \ldots, A_{n} subsets of the space X, where $n \geq 1$.

Definition. We say that A_{1}, \ldots, A_{n} are in n-ary contact if the set-theoretical intersection of A_{1}, \ldots, A_{n} is non-empty.

Denote this relation by $\mathcal{C}_{n}^{\mathbb{T}}$. Then the definition says:

$$
<A_{1}, \ldots, A_{n}>\in \mathcal{C}_{n}^{\mathbb{T}} \quad \text { iff } \quad A_{1} \cap \ldots \cap A_{n} \neq \emptyset
$$

Apparently A_{1}, \ldots, A_{n} are in n-ary contact only if A_{1}, \ldots, A_{n} are all non-empty.

Consider an arbitrary set $S \subseteq \mathcal{P}(X)$. Whenever we use $\mathcal{C}_{n}^{\mathbb{T}}$ as a relation on the field S then we naturally mean the restriction of $\mathcal{C}_{n}^{\mathbb{T}}$ to the field S, namely:

$$
\mathcal{C}_{n}^{\mathbb{T}} \cap(\underbrace{S \times \ldots \times S}_{n})
$$

We will use n-ary contact always in the context of \mathbb{R}^{m} hence will omit the topological space superscript and simply write \mathcal{C}_{n} instead.

$2 n$-graphs, Contact n-frames and Contact n graphs

This section studies Kripke frames with specific properties. Non-formally, one can think those intended properties impose in some sense "finite" contact behaviour to the considered Kripke frames. Contact, from relation symbols interpretation perspective, that is the n-ary relations behave in a way like the standard notion of n-ary contact. Furthermore, those interpretations will have a finite character, that is, intuitively, for some $n<\omega$ then every k-ary relation (k-ary relation symbol interpretation) for $k \geq n$ will not add any additional information compared to what already available by the n-ary relation.

An essential commodity of the finite frames from the mentioned class of Kripke frames will be that they can be "encoded" into convenient graph structure and thus manipulated by graph operations and properties.

2.1 Contact n-frames

Definition 2.1.1. Given Kripke frame $\mathcal{F}=\langle S, I\rangle$ for $L_{\mathcal{R}}$. Consider $k \geq 1$. Denote by R_{k} the k-ary relation $I(P)$, where P is the k-ary relation symbol in \mathcal{R}.
We call \mathcal{F} a contact n-frame for $L_{\mathcal{R}}$ if:
(a) $<s_{1}, \ldots, s_{k}>\in R_{k}$ implies for every $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ is satisfied $<s_{\sigma(1)}, \ldots, s_{\sigma(k)}>\in R_{k}$
(b) $<s_{1}, s_{1}, s_{2}, \ldots, s_{k}>\in R_{k+1}$ if and only if $\left\langle s_{1}, s_{2}, \ldots, s_{k}\right\rangle \in R_{k}$
(c) $\langle s, s\rangle \in R_{2}$
(d) For n are satisfied:
(d.1) They exist distinct s_{1}, \ldots, s_{n} such that $\left\langle s_{1}, \ldots, s_{n}\right\rangle \in R_{n}$
(d.2) For every $k \geq 1$, for every s_{1}, \ldots, s_{k} such that $\left\langle s_{1}, \ldots, s_{k}\right\rangle \in R_{k}$ then $\overline{\overline{\left\{s_{1}, \ldots, s_{k}\right\}}} \leq n$

Remark 2.1.1. By (c) and (b) we imply that $R_{1}=S$.
Now, due to Remark 2.1.1 we adopt the following:
Notation. Contact n-frames will be denoted by:

$$
\mathcal{F}=<S, R_{2}, \ldots, R_{n}, \ldots>
$$

that is contact n-frame \mathcal{F} with carrier S and interpretation of:

- The unary relation symbol as S
- The k-ary relation symbol for $k \geq 2$ as R_{k}
and explicitly pointing out the n-ary relation R_{n}.
Consider contact n-frame $\mathcal{F}=<W, R_{2}, \ldots, R_{n}, \ldots>, W \neq \emptyset$. By Definition 2.1.1 point (a) for every tuple $\left\langle w_{1}, \ldots, w_{k}\right\rangle$, such that $\left\langle w_{1}, \ldots, w_{k}\right\rangle \in R_{k}$, an arbitrary permutation of w_{1}, \ldots, w_{k} is also in R_{k}. By this the following definition is correct:
- $R_{k}^{q} \leftrightharpoons\left\{\left\{w_{1}, \ldots, w_{k}\right\} \mid<w_{1}, \ldots, w_{k}>\in R_{k} \& \overline{\overline{\left\{w_{1}, \ldots, w_{k}\right\}}}=q\right\}, k \geq 2$

Observation 2.1.1. The following are satisfied:

- Whenever $q>k$ then

$$
R_{k}^{q}=\emptyset
$$

- Whenever $1 \leq q \leq k_{1}, k_{2}$ then

$$
R_{k_{1}}^{q}=R_{k_{2}}^{q}
$$

Proof. Should $q>k$ then immediately by the definition of R_{k}^{q}.
The case $k_{1}=k_{2}$ is trivially satisfied.
Without loss of generality let $k_{1}<k_{2}$. Let $q \leq k_{1}<k_{2}$. Consider w_{1}, \ldots, w_{q} distinct. By definition of R_{k}^{q} and (a):

$$
\left\{w_{1}, \ldots, w_{q}\right\} \in R_{k_{1}}^{q}
$$

iff

$$
\left\{w_{1}^{\prime}, \ldots, w_{k_{1}}^{\prime}\right\}=\left\{w_{1}, \ldots, w_{q}\right\} \quad \text { and } \quad<w_{1}^{\prime}, \ldots, w_{k_{1}}^{\prime}>\in R_{k_{1}}
$$

By (b) $k_{2}-k_{1}$ times we obtain:
iff

$$
<\underbrace{w_{1}^{\prime}, \ldots, w_{1}^{\prime}}_{k_{2}-k_{1}}, w_{1}^{\prime}, \ldots, w_{k_{1}}^{\prime}>\in R_{k_{2}} \quad \text { and } \quad\left\{w_{1}^{\prime}, \ldots, w_{k_{1}}^{\prime}\right\}=\left\{w_{1}, \ldots, w_{q}\right\}
$$

which by R_{k}^{q} definition and (a):
iff

$$
\left\{w_{1}, \ldots, w_{q}\right\} \in R_{k_{2}}^{q}
$$

$2.2 n$-graphs. Contact n-graphs

2.2.1 n-graphs

Definition 2.2.1. A graph is called n-graph for a positive natural n if its set of vertices can be split into two disjoint sets W and V such that:

- W is a non-empty set.
- Every edge of the graph is incident on one vertex from W and the other from V.
- Every vertex from V is incident on at least 2 edges.
- Every vertex from V is incident on not more than n edges.
- If $n>1$ then exists vertex from V incident on exactly n edges. Otherwise, in the case when $n=1$, then V is empty.

Definition. Given an n-graph, let W and V be the split of the vertices of the graph in accordance to Definition 2.2.1. Then:

- We call the elements of W terminal vertices.
- We call the elements of V (if any) conector vertices.
- We call a connector vertex k-vertex if incident on exactly k edges.

Lemma 2.2.1. Any non-empty n-graph is bipartite. An appropriate partitioning is the disjoint sets of the terminal and the connector vertices.

Proof. We colour every terminal vertex (let's say) in black and every connector vertex in white. Then by definition of n-graph every edge naturally satisfies the condition for a bipartite graph, namely, to have its incident vertices in different colour.

Lemma 2.2.1 allows us to define the following:
Notation. We denote an n-graph by $G=(W, V, E)$ where:

- W is the set of terminal vertices
- V is the set of connector vertices
- E is the set of edges

Remark. By Definition 2.2.1. 1-graph is empty (that is it has no edges).
Having an n-graph $G=(W, V, E)$ then within the standard notion of a graph it is $G=(W \cup V, E)$.

Furthermore, again by Definition 2.2.1, every k-vertex is incident on exactly k edges, where $k \geq 2$.

2.2.2 Contact n-graphs

Definition. Given graph $G=(V, E)$ and vertex $v \in V$. By $\operatorname{Adj}_{G}(v)$ we denote all the adjacent vertices of vertex v in G :

$$
\operatorname{Adj}_{G}(v) \leftrightharpoons\left\{v^{\prime} \mid v \in V \&\left(v, v^{\prime}\right) \in E\right\}
$$

Definition 2.2.2. Contact n-graph G is a graph satisfying the following conditions:
(0) G is n-graph
(1) G is simple
(2) If any connector vertices v^{\prime} and $v^{\prime \prime}$ satisfy $\operatorname{Adj}_{G}\left(v^{\prime}\right) \subseteq \operatorname{Adj}_{G}\left(v^{\prime \prime}\right)$ then $v^{\prime}=v^{\prime \prime}$

By the definition of contact n-graph we easily make the following observation.
Observation 2.2.1. Acyclic n-graph is contact n-graph .
Proof. The graph is n-graph so Definition 2.2 .2 (0) is satisfied and (1) is true by the graph being acyclic.

For Definition 2.2.2 (2), denote the acyclic n-graph by $G=(W, V, E)$. Consider $v^{\prime}, v^{\prime \prime} \in V$ such that $\operatorname{Adj}_{G}\left(v^{\prime}\right) \subseteq \operatorname{Adj}_{G}\left(v^{\prime \prime}\right)$. By Definition 2.2.1 $\overline{\overline{\operatorname{Adj}_{G}\left(v^{\prime}\right)}} \geq 2$ hence there are distinct vertices w_{1} and w_{2} from W such that $\left\{w_{1}, w_{2}\right\} \subseteq \operatorname{Adj}_{G}\left(v^{\prime}\right) \subseteq \operatorname{Adj}_{G}\left(v^{\prime \prime}\right)$. Assume $v^{\prime} \neq v^{\prime \prime}$. Then $v^{\prime}-w_{1}-v^{\prime \prime}-w_{2}-v^{\prime}$ is a circuit but the graph is acyclic hence a contradiction.

$2.3 n$-frames to n-graphs correspondence

Definition 2.3.1. Let $\mathcal{F}=<W, R_{2}, \ldots, R_{n}, \ldots>$ be a finite contact n-frame. Denote by $G=(W, V, E)$ a graph such that W and V are disjoint sets of vertices the union of which is all vertices of G, V is non-necessarily non-empty and E is the set of edges of G.

The graph $G=(W, V, E)$ is called induced by $\mathcal{F}($ denoted by $\mathcal{F} \longrightarrow G)$ if:

- W is the carrier of \mathcal{F}
- $V \subseteq \mathcal{P}(W)$ such that:
(g1) $v \in V \quad$ iff \quad exists $k \geq 2$ such that:
$v \in R_{n}^{k} \quad$ and \quad for all i and for all b if $b \in R_{n}^{i}$ and $v \subseteq b$ then $v=b$
- For the set of edges E it holds:
(g2) $E=\{\{w, v\} \mid w \in W \quad \& \quad v \in V \quad \& \quad w \in v\}$
Remark 2.3.1. By (g2) we immediately imply:
(g3) For any $v \in V$:

$$
A d j_{G}(v)=v
$$

Claim 2.3.1. \mathcal{F} is finite contact n-frame and G is the graph induced by \mathcal{F}.
Then G is a contact n-graph.
Proof. Denote $\mathcal{F}=<W, R_{2}, \ldots, R_{n}, \ldots>$ and $G=(W, V, E)$. Will demonstrate all the conditions of Definition 2.2 .2 of contact n-graph one by one.
(0): G is n-graph:

- $W \neq \emptyset$ by definition of Kripke frame.
- $e \in E$ then immediately by Definition 2.3.1 (g2) e is incident on a vertex from W and a vertex from V.
- Consider $v \in V$. Then by Definition 2.3.1 (g1) there is $k \geq 2$ such that $v \in R_{n}^{k}$. Then by Remark 2.3.1 (g3) $\overline{\overline{A d j_{G}(v)}}=k$. Remark that by Definition 2.3.1 (g2) E does not contain parallel or self-loop edges. Therefore v is incident on exactly k edges. On one hand, by $k \geq 2$, this means v is incident on at least 2 edges. On the other, by Observation 2.1.1, $k \leq n$ which means v is incident on not more than n edges.
- Consider $n=1$. Assume it exists $v \in V$. By Definition 2.3.1 (g1) then exists $k \geq 2$ such that $v \in R_{n}^{k}$. Apparently then $k>n$ and hence, by Observation 2.1.1, R_{n}^{k} is empty which is a contradiction. Therefore V is empty.
Consider $n>1$. Assume there is no $v \in V$ such that $\overline{\bar{v}}=n$.
By Definition 2.1.1 (d.1) of contact connected frame we imply $R_{n}^{n} \neq \emptyset$. By that and (g1) for every $a \in R_{n}^{n}$ it exists i and exists b such that $b \in R_{n}^{i}$ and $a \subseteq b$, and $a \neq b$. For a concrete a take arbitrary witnessess i and b. By $a \in R_{n}^{n}$ we imply $\overline{\bar{a}}=n . \quad b \in R_{n}^{i}$ hence $\overline{\bar{b}}=i$. $a \subseteq b$ thus $n \leq i$. Furthermore, $a \neq b$ so $n<i$. Therefore, by Observation 2.1.1. $R_{n}^{i}=\emptyset$,
but this contradicts $b \in R_{n}^{i}$. Hence our assumption is wrong. This means there is $v \in V$ such that $\overline{\bar{v}}=n$. By Remark 2.3.1 (g3): $\overline{\overline{\operatorname{Adj} j_{G}(v)}}=n$. Recall that by Definition 2.3.1 (g2) there are no parallel edges hence v is incident on exactly n edges.
(1): Again, by Definition 2.3 .1 (g2) no self-loop or parallel edges are possible.
(2): Let $v^{\prime}, v^{\prime \prime} \in V$ and $\operatorname{Adj}_{G}\left(v^{\prime}\right) \subseteq \operatorname{Adj}_{G}\left(v^{\prime \prime}\right)$. Then by Remark 2.3.1 (g3) $v^{\prime} \subseteq v^{\prime \prime}$. By Definition $2.3 .1(\mathrm{~g} 1)$ they exist k_{1} and k_{2}, both greater or equal 2 , such that $v^{\prime} \in R_{n}^{k_{1}}$ and $v^{\prime \prime} \in R_{n}^{k_{2}}$. Now by those, $v^{\prime} \subseteq v^{\prime \prime}$ and again Definition 2.3.1 (g1) we imply $v^{\prime}=v^{\prime \prime}$.

Claim 2.3.2. For any $k \geq 2$ the following statements are equivalent:
(i) $<w_{1}, \ldots, w_{k}>\in R_{k}$
(ii) Either $w_{1}=\ldots=w_{k}$ or exists $v \in V$ such that $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \operatorname{Adj} j_{G}(v)$

Proof.

- From (i) to (ii)

Let $\left\langle w_{1}, \ldots, w_{k}\right\rangle \in R_{k}$ and let w_{1}, \ldots, w_{k} be not all equal. Denote $v=$ $\left\{w_{1}, \ldots, w_{k}\right\}$. Apparently then for $k^{\prime}=\overline{\bar{v}}$ we have $k^{\prime} \geq 2$ and $v \in R_{n}^{k^{\prime}}$. Consider the set:

$$
I=\left\{i \mid i \leq n \quad \& \quad\left(\exists b \in R_{n}^{i}\right)(v \subseteq b \& v \neq b)\right\}
$$

In case I is empty then, by Observation 2.1.1 (namely $R_{n}^{i}=\emptyset$ whenever $i>n$), we imply that for every i and for every b then if both $b \in R_{n}^{i}$ and $v \subseteq b$ are satisfied then $v=b$. Having this, by Definition 2.3.1 (g1), $k^{\prime} \geq 2$ and $v \in R_{n}^{k^{\prime}}$ we obtain $v \in V$. Then, by Remark 2.3.1 (g3), trivially v is a witness to (ii). Now let I be non-empty.
By definition I is finite hence it has a maximal element. Denote it by $i_{0} . i_{0} \in I$ then it exists b such that $b \in R_{n}^{i_{0}}, v \subseteq b$ and $v \neq b$. Consider b_{0} a witness to that existence.
Assume $b_{0} \notin V$.
$b_{0} \in R_{n}^{i_{0}}$ and $b_{0} \notin V$ then, due to Definition 2.3.1 (g1), they exist i and b such that $b \in R_{n}^{i}, b_{0} \subseteq b$ and $b_{0} \neq b$. Take witnesses i_{1} and b_{1}.
Now, by $b_{0} \subseteq b_{1}$ we have $\overline{\overline{b_{0}}} \leq \overline{\overline{b_{1}}}$. Furthermore, by $b_{0} \neq b_{1}$, then $\overline{\overline{b_{0}}}<\overline{\overline{b_{1}}}$. Trivially, by $b_{0} \in R_{n}^{i_{0}}$ and $b_{1} \in R_{n}^{i_{1}}$, we have $\overline{\overline{b_{0}}}=i_{0}$ and $\overline{\overline{b_{1}}}=i_{1}$. Eventually $i_{0}<i_{1}$.
On the other hand, by $b_{0} \subseteq b_{1}$ we have $v \subseteq b_{1}$. Furthermore, $v \neq b_{0}$ hence $v \neq b_{1}$. Eventually $i_{1} \in I$ and by i_{0} maximal $i_{1} \leq i_{0}$. This is a contradiction. Therefore our assumption is wrong thus $b_{0} \in V$. By $v \subseteq b_{0}$ and Remark 2.3.1 (g3) b_{0} is a witness to (ii).

- From (ii) to (i)

Let $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathcal{P}(W)$.
If $w_{1}=\ldots=w_{k}$ then by first applying Definition 2.1.1 (c) and then (b) $k-1$ times consequently we obtain $\left\langle w_{1}, \ldots, w_{1}\right\rangle \in R_{k}$ and by this satisfying (i).
Now, denote $v=\left\{w_{1}, \ldots, w_{k}\right\}$ and consider $\overline{\bar{v}} \geq 2$. Let $v^{\prime} \in V$ such that
$v \subseteq \operatorname{Adj}_{G}\left(v^{\prime}\right)$ as per (ii). By Remark 2.3.1 (g3) the latter is equivalent with $v \subseteq v^{\prime}$. Let then $\left\{w_{1}, \ldots, w_{k}\right\}=\left\{w_{1}^{\prime}, \ldots, w_{k_{1}}^{\prime}\right\}$, where $w_{1}^{\prime}, \ldots, w_{k_{1}}^{\prime}$ are all distinct and $2 \leq k_{1} \leq k$. Thus $\overline{\bar{v}}=k_{1}$. Let $k_{2}=\overline{\overline{v^{\prime}}}$. Hence $k_{1} \leq k_{2}$. Consider then v^{\prime} the following way:

$$
v^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{k_{1}}^{\prime}, w_{k_{1}+1}^{\prime}, \ldots, w_{k_{2}}^{\prime}\right\}
$$

$v^{\prime} \in V$ then by Definition 2.3.1 (g1) and $k_{2}=\overline{\overline{v^{\prime}}}$ we have $v^{\prime} \in R_{n}^{k_{2}}$. By Observation 2.1.1 $R_{n}^{k_{2}}=R_{k_{2}}^{k_{2}}$ hence $<w_{1}^{\prime}, \ldots, w_{k_{2}}^{\prime}>\in R_{k_{2}}$. By appropriately applying Definition 2.1.1 (a) we obtain:

$$
<\underbrace{w_{1}^{\prime}, \ldots, w_{1}^{\prime}}_{k_{2}-k_{1}}, w_{1}^{\prime}, \ldots, w_{k_{1}}^{\prime}>\in R_{k_{2}}
$$

By applying Definition 2.1.1 (b) $k_{2}-k_{1}$ times:

$$
<w_{1}^{\prime}, \ldots, w_{k_{1}}^{\prime}>\in R_{k_{1}}
$$

Now by appropriately applying (finitely many times) Definition 2.1.1 points (a) and (b) we obtain:

$$
<w_{1}, \ldots, w_{k}>\in R_{k}
$$

Definition 2.3.2. Given contact n-graph $G=(W, V, E)$.
The structure $\mathcal{F}=<W, R_{2}, \ldots, R_{n}, \ldots>$ is called the Kripke frame induced by G (denoted by $G \longrightarrow \mathcal{F}$) if satisfied:

- The carrier of the Kripke frame is the set of the terminal vertices W of G
- The unary relation symbol of $L_{\mathcal{R}}$ is interpreted as W
- For every $k \geq 2$ the k-ary relation symbol of $L_{\mathcal{R}}$ is interpreted as the k-ary relation R_{k} defined as:
(r) $<w_{1}, \ldots, w_{k}>\in R_{k}$
iff
either $w_{1}=\ldots=w_{k}$ or exists $v \in V$ such that

$$
\left\{w_{1}, \ldots, w_{k}\right\} \subseteq A d j_{G}(v)
$$

Claim 2.3.3. G is contact n-graph and \mathcal{F} is the Kripke frame induced by G.
Then \mathcal{F} is contact n-frame.
Proof. Denote $G=(W, V, E)$ and $\mathcal{F}=<W, R_{2}, \ldots, R_{n}, \ldots>$. We demonstrate the conditions in Definition 2.1.1 of a contact n-frame.
(a): Let $<w_{1}, \ldots, w_{k}>\in R_{k}$. Consider arbitrary $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$. Should $w_{1}=\ldots=w_{k}$ then trivially $\left\langle w_{1}, \ldots, w_{k}\right\rangle=\left\langle w_{\sigma(1)}, \ldots, w_{\sigma(k)}\right\rangle$ hence $<w_{\sigma(1)}, \ldots, w_{\sigma(k)}>\in R_{k}$.
Otherwise, obviously $\left\{w_{\sigma(1)}, \ldots, w_{\sigma(k)}\right\} \subseteq\left\{w_{1}, \ldots, w_{k}\right\}$. By Definition 2.3.2
(r) exists $v \in V$ such that $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \operatorname{Adj}_{G}(v)$ thus $\left\{w_{\sigma(1)}, \ldots, w_{\sigma(k)}\right\} \subseteq$ $\operatorname{Adj}_{G}(v)$. Hence again by Definition 2.3.2(r) we imply $\left\langle w_{\sigma(1)}, \ldots, w_{\sigma(k)}\right\rangle \in R_{k}$.
(b): Should $w_{1}=\ldots=w_{k}$ then by Definition 2.3.2 (r) trivially both $<w_{1}, w_{1}, w_{2}, \ldots, w_{k}>\in R_{k+1}$ and $\left.<w_{1}, \ldots, w_{k}\right\rangle \in R_{k}$ are satisfied.
Otherwise by Definition 2.3 .2 (r): $\left.<w_{1}, w_{1}, w_{2}, \ldots, w_{k}\right\rangle \in R_{k+1}$
iff
$\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \operatorname{Adj}_{G}(v)$ for some $v \in V$, by which and again by Definition 2.3.2
(r) we have:
iff
$<w_{1}, \ldots, w_{k}>\in R_{k}$.
(c): Follows immediately by Definition 2.3.2 (r).
(d): The case when $n=1$ hence, by $R_{1}=W$, we have Definition 2.1.1 (d.1) trivially satisfied. Furthermore, by Definition 2.2.1, $V=\emptyset$ and thus, by Definition 2.3.2 (r), we obtain $\left\langle w_{1}, \ldots, w_{k}\right\rangle \in R_{k} \quad$ iff $\quad w_{1}=\ldots=w_{k}$. The latter trivially satisfies Definition 2.1.1(d.2).
Now, consider $n>1$. By Definition 2.2.1 of n-graph there is $v^{n} \in V$ such that v^{n} is n-vertex in G. Considering Definition 2.2.2 (1) clearly $\overline{\overline{\operatorname{Adj} j_{G}\left(v^{n}\right)}}=n$. Let then $\operatorname{Adj}_{G}\left(v^{n}\right)=\left\{w_{1}, \ldots, w_{n}\right\}$ where w_{1}, \ldots, w_{n} are distinct. Hence, by Definition 2.3.2 (r), we obtain $\left\langle w_{1}, \ldots, w_{n}\right\rangle \in R_{n}$ which satisfies Definition 2.1.1 (d.1).

Consider arbitrary $k \geq 2$. Let $\left\langle w_{1}, \ldots, w_{k}\right\rangle \in R_{k}$. By Definition 2.3.2 (r) either $\overline{\overline{\left\{w_{1}, \ldots, w_{k}\right\}}}=1$ or there is $v^{\prime} \in V$ such that $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \overline{\operatorname{Adj} j_{G}\left(v^{\prime}\right)}$. By Definition 2.2.1 of n-graph we have $\overline{\overline{\operatorname{Adj} j_{G}\left(v^{\prime}\right)}} \leq n$. Eventually $\overline{\overline{\left\{w_{1}, \ldots, w_{k}\right\}}} \leq n$ which satisfies Definition 2.1.1 (d.2).

Remark. Consider finite contact n-frame \mathcal{F}.
Let G be the induced graph by \mathcal{F}. Then by Claim 2.3.1 G is contact n-graph.
Let then \mathcal{F}^{\prime} be the Kripke frame induced by G. By Claim 2.3.3 \mathcal{F}^{\prime} is contact n-frame.

The relationship between \mathcal{F} and \mathcal{F}^{\prime} is given by the following claim.
Claim 2.3.4. $\mathcal{F}=\mathcal{F}^{\prime}$
Proof. By Definition 2.3 .1 and then by Definition 2.3 .2 the carrier of \mathcal{F} is preserved in \mathcal{F}^{\prime}.

By Claim 2.3.2 and Definition 2.3 .2 (\mathbf{r}) for every $k \geq 2$ the k-ary relations of \mathcal{F} and \mathcal{F}^{\prime} are equal.

Remark. Consider contact n-graph G.
Let \mathcal{F} be the Kripke frame induced by G. By Claim 2.3.3 \mathcal{F} is contact n-frame.

Let then G^{\prime} be the graph induced by \mathcal{F}. By Claim 2.3.1 G^{\prime} is contact n graph.

The relationship between G and G^{\prime} is given by the following claim.
Claim 2.3.5. $G \cong G^{\prime}$
Proof. Denote $G=(W, V, E)$. By Definition 2.3 .2 and then by Definition 2.3.1 the terminal vertices of G are preserved in G^{\prime}. Thus denote $G^{\prime}=\left(W, V^{\prime}, E^{\prime}\right)$. Denote $\mathcal{F}=<W, R_{2}, \ldots, R_{n}, \ldots>$ the contact n-frame induced by G.

Adopt the following well defined mappings:

- $f_{W}(w)=w$
- $f_{V}(v)=A d j_{G}(v)$
where $\operatorname{Dom}\left(f_{W}\right)=W$ and $\operatorname{Dom}\left(f_{V}\right)=V$. Trivially $f_{W} \cap f_{V}=\emptyset$. Will demonstrate:
- $f_{W}: W \mapsto W$
- $f_{V}: V \mapsto V^{\prime}$
- $(w, v) \in E \quad$ iff $\quad\left(f_{W}(w), f_{V}(v)\right) \in E^{\prime}$

Having these satisfied then $f=f_{W} \cup f_{V}$ is isomorphism between G and G^{\prime}.

- $f_{W}: W \mapsto W$

Trivially satisfied by definition of f_{W}.

- $f_{V}: V \mapsto V^{\prime}$
. f_{V} is well defined. In particulars if $v \in V$ then $f_{V}(v) \in V^{\prime}$:
Let $\operatorname{Adj}_{G}(v)=\left\{w_{1}, \ldots, w_{k}\right\}$ such that $\overline{\overline{\left\{w_{1}, \ldots, w_{k}\right\}}}=k, k \geq 2$. By Definition 2.3.2 (\mathbf{r}) we imply $<w_{1}, \ldots, w_{k}>\in R_{k}$ hence $f_{V}(v) \in R_{k}^{k}$ and by Observation 2.1.1 it means $f_{V}(v) \in R_{n}^{k}$.
Let i and b be such that $b \in R_{n}^{i}$ and $f_{V}(v) \subseteq b$. We have $\overline{\overline{f_{V}(v)}}=k$. Also $\overline{\bar{b}}=i$ by $b \in R_{n}^{i}$. Thus $k \leq i$ by $f_{V}(v) \subseteq b$. Let then $b=\left\{w_{1}, \ldots, w_{k}, w_{k+1}, \ldots, w_{i}\right\}$. By Observation 2.1.1 $R_{n}^{i}=R_{i}^{i}$ hence $b \in R_{i}^{i}$ which gives $\left\langle w_{1}, \ldots, w_{i}\right\rangle \in R_{i}$. Now by Definition 2.3 .2 (r) (and $i \geq k \geq 2$) exists $v^{\prime} \in V$ such that $b=$ $\left\{w_{1}, \ldots, w_{i}\right\} \subseteq \operatorname{Adj}{ }_{G}\left(v^{\prime}\right)$ hence $A d j_{G}(v) \subseteq A d j_{G}\left(v^{\prime}\right)$. By the latter and Definition 2.2.2 (2) we obtain $v=v^{\prime}$. All those give us:

$$
f_{V}(v)=A d j_{G}(v) \subseteq b \subseteq A d j_{G}\left(v^{\prime}\right)=A d j_{G}(v)=f_{V}(v)
$$

Eventually $f_{V}(v)=b$ hence the right side of Definition 2.3.1 (g1) is satisfied thus $f_{V}(v) \in V^{\prime}$.
. f_{V} is injection:
For any $v_{1}, v_{2} \in V$ should $f_{V}\left(v_{1}\right)=f_{V}\left(v_{2}\right)$ then by Definition 2.2.2 (2) we imply $v_{1}=v_{2}$.
. f_{V} is surjection:
Consider $v^{\prime} \in V^{\prime}$. By Definition 2.3.1 (g1) for G^{\prime} we have $k, 2 \leq k \leq n$, such that $v^{\prime} \in R_{n}^{k}$. By this on one hand $v^{\prime}=\left\{w_{1}, \ldots, w_{k}\right\}, \overline{\overline{v^{\prime}}}=k$, and, on the other, by Observation 2.1.1 $v^{\prime} \in R_{k}^{k}$ thus $\left\langle w_{1}, \ldots, w_{k}\right\rangle \in R_{k}$. Then by Definition 2.3.2 (\mathbf{r}) for G exists $v \in V$ such that $v^{\prime} \subseteq \operatorname{Adj}_{G}(v)=f_{V}(v)$. Furthermore, $f_{V}(v) \in V^{\prime}$ as demonstrated in definition correctness of f_{V}. Now by Definition 2.3.1 (g1) for G^{\prime} there is i such that $f_{V}(v) \in R_{n}^{i}$. Eventually:

$$
v^{\prime} \subseteq f_{V}(v), \quad v^{\prime} \in R_{n}^{k}, \quad f_{V}(v) \in R_{n}^{i}
$$

That result by Definition 2.3.1 (g1) gives $v^{\prime}=f_{V}(v)$.

- $(w, v) \in E \quad$ iff $\quad\left(f_{W}(w), f_{V}(v)\right) \in E^{\prime}$

$$
(w, v) \in E
$$

by G

$$
i f f \quad w \in A d j_{G}(v)
$$

by f_{W} and f_{V}

$$
\text { iff } \quad f_{W}(w) \in f_{V}(v)
$$

by f_{W}, f_{V} bijections and by Definition 2.3.1 (g2)

$$
\text { iff } \quad\left(f_{W}(w), f_{V}(v)\right) \in E^{\prime}
$$

Remark. By Claim 2.3.1 given a finite contact n-frame we associate to it contact n-graph, namely, the induced graph by the contact n-frame. By Claim 2.3.3 given a contact n-graph we associate to it a finite contact n-frame, namely, the induced frame by the contact n-graph. Remark that by Claim 2.3.4 and Claim 2.3.5 we can think that there is one-to-one correspondence between the class of finite contact n-frames and the class of contact n-graphs up to isomorphism.

2.4 Few properties of n-graphs and n-frames

Definition 2.4.1. We call a contact n-frame \mathcal{F} connected if it holds:
(e) $\mathcal{F} \Vdash(\neg(x \equiv 0) \wedge \neg(-x \equiv 0)) \Longrightarrow P(x,-x)$

Claim 2.4.1. A finite contact n-frame is connected iff its induced graph is connected.

Proof. Let $\mathcal{F}=<W, R_{2}, \ldots, R_{n}, \ldots>$ be a finite contact n-frame. Denote $G=$ (W, V, E) the induced contact n-graph by \mathcal{F}.

- From left to right:

Assume G is not connected graph.
Let U_{1}, \ldots, U_{l} be the partitioning of the vertices $W \cup V$ into the components of the graph G. By G not connected then $l \geq 2$.
Assume $U_{i} \cap W=\emptyset$ for some $i, 1 \leq i \leq l$. Then $U_{i} \subseteq V$. Let $v \in U_{i}$, where v is arbitrary element of the non-empty U_{i}. By Definition 2.3.1 (g1) exists $k \geq 2$ such that $v \in R_{n}^{k}$ thus $\overline{\bar{v}}=k$. By those, Definition 2.3.1 (g2) and Remark 2.3.1 exists $w_{0} \in W$ such that $w_{0} \in \operatorname{Adj} j_{G}(v)$. The induced graph by U_{i} is component for G and $v \in U_{i}$ hence $A d j_{G}(v) \subseteq U_{i}$. It follows that $w_{0} \in U_{i}$, thus $U_{i} \cap W \neq \emptyset$ which is a contradiction. Therefore for every $i, 1 \leq i \leq l$:

$$
U_{i} \cap W \neq \emptyset
$$

Now assume $W \subseteq U_{i}$ for some $i, 1 \leq i \leq l$. Then for every $j, 1 \leq j \leq l$ and $i \neq j$ by $U_{i} \cap U_{j}=\emptyset$ will have $U_{j} \cap W=\emptyset$. This is a contradiction with what just demonstrated. Therefore for every $i, 1 \leq i \leq l$:

$$
U_{i} \cap W \neq W
$$

Consider $W^{\prime}=U_{1} \cap W$. Thus $W^{\prime} \neq \emptyset$ and $W^{\prime} \neq W$. Hence $W \backslash W^{\prime} \neq \emptyset$.
Consider the valuation \mathcal{V} on \mathcal{F} such that $\mathcal{V}(x)=W^{\prime}$ and is arbitrary for any Boolean variable other than x. Hence for \mathcal{V} is true:

$$
\begin{aligned}
& \widetilde{\mathcal{V}}(x)=\mathcal{V}(x)=W^{\prime} \neq \emptyset=\mathcal{V}(0) \\
& \widetilde{\mathcal{V}}(-x)=W \backslash \mathcal{V}(x)=W \backslash W^{\prime} \neq \emptyset=\mathcal{V}(0)
\end{aligned}
$$

It follows that:

$$
\begin{array}{lll}
<\mathcal{F}, \mathcal{V}> & \Vdash & \neg(x \equiv 0) \\
<\mathcal{F}, \mathcal{V}> & \Vdash & \neg(-x \equiv 0)
\end{array}
$$

Then, by \mathcal{F} connected, hence, satisfying Definition 2.4.1 (e) we imply:

$$
<\mathcal{F}, \mathcal{V}>\Vdash P(x,-x)
$$

By $\mathcal{V}(x)=W^{\prime}$ this means exists $w_{1} \in W^{\prime}$ and exists $w_{2} \in W \backslash W^{\prime}$ such that $<w_{1}, w_{2}>\in R_{2}$. By Claim 2.3.2 either $w_{1}=w_{2}$ or exists $v \in V$ such that $\left\{w_{1}, w_{2}\right\} \subseteq A d j_{G}(v)$. The former is not possible as long as $W^{\prime} \cap\left(W \backslash W^{\prime}\right)=\emptyset$. Therefore, by the latter, $w_{1}-v-w_{2}$ is a path in $G . w_{1} \in W^{\prime}$ thus $w_{1} \in U_{1} . U_{1}$ is component for G therefore it follows that $w_{2} \in U_{1}$. Hence $w_{2} \in W^{\prime}$. This is a contradiction with $w_{2} \in W \backslash W^{\prime}$.
As a result our assumption is wrong hence G is connected.

- From right to left:

Consider arbitrary valuation \mathcal{V} on the Kripke frame \mathcal{F}. Let the following be satisfied:

$$
\begin{array}{lll}
<\mathcal{F}, \mathcal{V}> & \Vdash & \neg(x \equiv 0) \\
<\mathcal{F}, \mathcal{V}> & \Vdash & \neg(-x \equiv 0)
\end{array}
$$

Hence $\mathcal{V}(x) \neq \emptyset$ and $W \backslash \mathcal{V}(x) \neq \emptyset$. Consider then arbitrary $w^{\prime} \in \mathcal{V}(x)$ and $w^{\prime \prime} \in W \backslash \mathcal{V}(x)$. Apparently $w^{\prime} \neq w^{\prime \prime}$. By G connected there is a path between w^{\prime} and $w^{\prime \prime}$. By Lemma 2.2.1 and Definition 2.3.1 (g2) the path is an alternating sequence of elements between the terminal vertices W and the connector vertices V. Take an arbitrary such path: $w^{\prime}-v_{1}-w_{1}^{\prime}-\ldots-v_{r}-w^{\prime \prime}$, where v_{1}, \ldots, v_{r} are the connector vertices and the others are terminal vertices. By $w^{\prime} \in \mathcal{V}(x), w^{\prime \prime} \in$ $W \backslash \mathcal{V}(x)$ and $\mathcal{V}(x) \cap(W \backslash \mathcal{V}(x))=\emptyset$ in the path there are subsequent vertices $w_{1}-v-w_{2}$, where $w_{1}, w_{2} \in W$ and $v \in V$, such that $w_{1} \in \mathcal{V}(x)$ and $w_{2} \in W \backslash \mathcal{V}(x)$. Therefore $\left\{w_{1}, w_{2}\right\} \subseteq A d j_{G}(v)$. Hence, by Claim 2.3.2, $<w_{1}, w_{2}>\in R_{2}$, which gives:

$$
<\mathcal{F}, \mathcal{V}>\Vdash P(x,-x)
$$

It follows then in all cases:

$$
<\mathcal{F}, \mathcal{V}>\Vdash(\neg(x \equiv 0) \wedge \neg(-x \equiv 0)) \Longrightarrow P(x,-x)
$$

\mathcal{V} was an arbitrary valuation therefore the intended formula (e):

$$
(\neg(x \equiv 0) \wedge \neg(-x \equiv 0)) \Longrightarrow P(x,-x)
$$

is valid in \mathcal{F} hence (as per Definition 2.4.1) \mathcal{F} is connected.

Claim 2.4.2. Let \mathcal{F} be a contact n-frame. Then the following statements are equivalent:
(i) In \mathcal{F} is valid

$$
P\left(x_{1}, x_{2}, x_{3}\right) \Longrightarrow\left(\neg\left(x_{1} \cap x_{2} \equiv 0\right) \vee \neg\left(x_{2} \cap x_{3} \equiv 0\right) \vee \neg\left(x_{1} \cap x_{3} \equiv 0\right)\right)
$$

(ii) \mathcal{F} is contact n-frame for $n \leq 2$

Proof.

- From (i) to (ii)

Consider arbitrary $\left\langle s_{1}, s_{2}, s_{3}\right\rangle \in R_{3}$ and valuation \mathcal{V} on \mathcal{F} such that:

$$
\mathcal{V}(x)= \begin{cases}\left\{s_{i}\right\} & x=x_{i} \\ \text { arbitrary } & x \notin\left\{x_{1}, x_{2}, x_{3}\right\}\end{cases}
$$

Then it is true $<\mathcal{F}, \mathcal{V}\rangle \Vdash P\left(x_{1}, x_{2}, x_{3}\right)$, by which and (i) we imply

$$
<\mathcal{F}, \mathcal{V}>\Vdash \neg\left(x_{1} \cap x_{2} \equiv 0\right) \vee \neg\left(x_{2} \cap x_{3} \equiv 0\right) \vee \neg\left(x_{1} \cap x_{3} \equiv 0\right)
$$

iff

$$
\widetilde{\mathcal{V}}\left(x_{1}\right) \cap \widetilde{\mathcal{V}}\left(x_{2}\right) \neq \emptyset \quad \text { or } \quad \widetilde{\mathcal{V}}\left(x_{2}\right) \cap \widetilde{\mathcal{V}}\left(x_{3}\right) \neq \emptyset \quad \text { or } \quad \widetilde{\mathcal{V}}\left(x_{1}\right) \cap \widetilde{\mathcal{V}}\left(x_{3}\right) \neq \emptyset
$$

iff

$$
s_{1}=s_{2} \quad \text { or } \quad s_{2}=s_{3} \quad \text { or } \quad s_{1}=s_{3}
$$

Therefore for arbitrary $<s_{1}, s_{2}, s_{3}>\in R_{3}$ is satisfied $\overline{\overline{\left\{s_{1}, s_{2}, s_{3}\right\}}}<3$.
Now, assume \mathcal{F} is a contact n-frame for $n \geq 3$. Take a witness $\left.<s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right\rangle \in$ R_{n}, with $\overline{\overline{\left\{s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right\}}}=n$. Thus $\overline{\overline{\left\{s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}\right\}}}=3$. Then by Definition 2.1.1 (a) we imply $<s_{1}^{\prime}, \ldots, s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}>\in R_{n}$. Consequently, by Definition 2.1.1 (b) applied $n-3$ times, we obtain $\left.<s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}\right\rangle \in R_{3}$. Nevertheless we've demonstrated the latter implies $\overline{\overline{\left\{s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}\right\}}}<3$ hence a contradiction.

- From (ii) to (i)

Consider \mathcal{V} be an arbitrary valuation on \mathcal{F}. Let $\langle\mathcal{F}, \mathcal{V}\rangle \Vdash P\left(x_{1}, x_{2}, x_{3}\right)$. Then there are $s_{1} \in \widetilde{\mathcal{V}}\left(x_{1}\right), s_{2} \in \widetilde{\mathcal{V}}\left(x_{2}\right), s_{3} \in \widetilde{\mathcal{V}}\left(x_{3}\right)$, such that $\left\langle s_{1}, s_{2}, s_{3}\right\rangle \in R_{3}$. By (ii): $\overline{\overline{\left\{s_{1}, s_{2}, s_{3}\right\}}} \leq 2$. Without loss of generality, let then $s_{1}=s_{2}$. It follows that $\widetilde{\mathcal{V}}\left(x_{1}\right) \cap \widetilde{\mathcal{V}}\left(x_{2}\right) \neq \emptyset$, by which $<\mathcal{F}, \mathcal{V}>\Vdash \neg\left(x_{1} \cap x_{2} \equiv 0\right)$ and thus $<\mathcal{F}, \mathcal{V}>\Vdash \neg\left(x_{1} \cap x_{2} \equiv 0\right) \vee \neg\left(x_{2} \cap x_{3} \equiv 0\right) \vee \neg\left(x_{1} \cap x_{3} \equiv 0\right)$. Eventually:
$<\mathcal{F}, \mathcal{V}>\Vdash P\left(x_{1}, x_{2}, x_{3}\right) \Longrightarrow\left(\neg\left(x_{1} \cap x_{2} \equiv 0\right) \vee \neg\left(x_{2} \cap x_{3} \equiv 0\right) \vee \neg\left(x_{1} \cap x_{3} \equiv 0\right)\right)$
The valuation \mathcal{V} was arbitrary therefore (i) is satisfied.

3 Kripke frames with contact semantics in \mathbb{R}^{m}

In this section for given finite connected acyclic n-graph (hence, by Observation 2.2.1, also being a contact n-graph) will elaborate on procedures for obtaining a Kripke frame corresponding to the graph for which:

- The carrier of the frame will be a finite set such that:
- All its elements will either be polytopes or regular closed sets of \mathbb{R}^{m}.
- Any two distinct elements of the set may have points in common, if any, only some of their boundary points (in short, the intersection of any two distinct elements of the set will have empty interior).
- The union of all elements of the set will be \mathbb{R}^{m}.
- The interpretation of the k-ary relation symbol of $L_{\mathcal{R}}$ will be the standard k-ary contact relation (see Section 1.7).
- The Kripke frame will correspond to the n-graph, that is, it will be isomorphic to the n-frame induced by that (contact) n-graph.

Non formally, these procedures will "partition" \mathbb{R}^{m} (that is, any two distinct elements/subsets will have empty interior of their intersection) in such a way that the elements/subsets of that partitioning will map one-to-one with the set of the terminal vertices of the n-graph. Furthermore, any k elements will have a non-empty intersection if and only if their corresponding terminal vertices of the n-graph be adjacent to common connector vertex. Having those properties satisfied, we will see such a partitioning used as a carrier of a Kripke frame for which the interpretation of the relation symbols of $L_{\mathcal{R}}$ is the standard contact relation (for the corresponding arity) then this frame will be isomorphic to the induced by the n-graph (contact) n-frame. Last but not the least, as mentioned, the elements of this partitioning will all either be polytopes or regular closed sets of \mathbb{R}^{m}. The important is that they will effectively be the atoms of a finite Boolean subalgebra of either the Boolean algebra of the polytopes or the regular closed sets. Therefore these procedures will allow us to "build" (finite) Kripke frames with carriers the atoms of Boolean subalgebras of polytopes or regular closed sets of \mathbb{R}^{m} and interpretation the standard contact relations which are "corresponding" to given arbitrary (finite acyclic) n-graphs. Such Kripke frames in the later sections will be used as a utility for elaborating on witnesses to particular intended classes of Boolean frames.

The procedures and results to be demonstrated will actually be valid if applied on any connected regular closed subset of \mathbb{R}^{m} instead of \mathbb{R}^{m} itself.

3.1 Formal approach for polytopes of $\mathbb{R}^{m}, m \geq 2$

3.1.1 Procedure for polytopes of \mathbb{R}^{2}

When saying an angular region we mean the closure of the section of the real plain \mathbb{R}^{2} enclosed between two distinct rays having common endpoint. That common endpoint will be called a corner point. Remark that a triangle also is an angular region.

Given a subset of \mathbb{R}^{2} and a terminal vertex w. We say this set is coloured in w if the elements of the set are marked as w in an appropriate way. As
an example, one can consider the Cartesian product of the given set and the singleton of w. At any stage of the procedure any element of \mathbb{R}^{2} will be coloured in some of the terminal vertices.

Following we define a procedure which for given finite connected acyclic ngraph will produce a finite set of polytopes of \mathbb{R}^{2} such that:

- Any two distinct elements of the set will have empty interior of their intersection.
- The union of the elements of the set will be \mathbb{R}^{2}.
- The set will be one-to-one mapped to the set of the terminal vertices of the n-graph.
- Any k elements of the set will have a non-empty intersection if and only if their corresponding terminal vertices of the n-graph have common adjacent connector vertex.
The procedure considers the acyclic n-graph as a rooted tree with a root some of the terminal vertices. Let us call this tree the n-graph rooted tree. Each (recursive) step of the procedure works on particular distinct terminal vertex and examines the sub-tree of the n-graph rooted tree with a root of the sub-tree that terminal vertex.

The procedure takes as an input a terminal vertex and an angular region. The angular region is assumed having already been coloured in the terminal vertex. First, the procedure associates distinct points of the interior of the angular region with each of the direct connector descendants of the input terminal vertex. Let us call each such point a connector point. Then each connector point has corresponding to it connector vertex. For each of those connector points and their associated connector vertices:

- The procedure takes the direct terminal descendants of the connector vertex.
- For each such terminal vertex it associates an angular region having as a corner point the connector point.
- Every such angular region is a subset of the interior of the input angular region.
- Every two such regions have no point in common but their corner points, namely, the connector point.
- Then the procedure colours each of those angular regions in their associated terminal vertex.

Figure 1: An angular region with a corner point A^{\prime}

- Eventually, for each of those angular regions the procedure is applied recursively on the angular region and the terminal vertex associated to it.

Remark that, as a result, every two such new angular regions have a point in common only connector point being their corner point only if their associated terminal vertices are direct terminal descendants of the connector vertex associated to the connector point. Otherwise any two new angular regions have no point in common.

Before applying the procedure the entire \mathbb{R}^{2} is coloured in the root of the n-graph rooted tree. As an initial input then the procedure takes the chosen root of the n-graph rooted tree and an (arbitrary) angular region subset of the coloured already \mathbb{R}^{2}.

Eventually the procedure traverses every vertex of the n-graph rooted tree. Upon completion, to each terminal vertex is mapped the polytope defined as the closure of the subset of \mathbb{R}^{2} coloured in the terminal vertex. Intuitively, the result of the procedure is such that \mathbb{R}^{2} is "partitioned" into polytopes in a way that in some sense being isomorphic to the n-graph. That is, the connector points are one to one to the connector vertices of the n-graph and the polytopes of the "partitioning" are one to one to their corresponding terminal vertices. Furthermore, any k polytopes have common point some of the connector points if and only if their corresponding terminal vertices are adjacent to the connector vertex associated with the connector point. Additionally, it will also become clear that if any k terminal vertices are not adjacent to any common connector vertex then their corresponding k polytopes have empty intersection.

Following is a detailed definition of the procedure.
Assumptions:

- Given $G=(W, V, E)$ finite connected acyclic n-graph, W, V and E nonempty.
- $W=\left\{w_{1}, \ldots, w_{s}\right\}$ is enumerated, where $\overline{\bar{W}}=s$.
- The finite set of connector vertices V is enumerated properly. By A_{v} for $v \in \underline{V}$ we denote A_{i} for the appropriate index i of v in V such that $1 \leq i \leq \overline{\bar{V}}$ and $v=v_{i}$.
- We consider G as a rooted tree for particularly chosen root vertex. Any sub-tree of G will also be considered rooted tree where the root will be clear by the context. All terms then like predecessor, descendant etc. will be with respect to the current (rooted) sub-tree under consideration.

Procedure 3.1. Polytopes of \mathbb{R}^{2}

Input:

- C : angular region
- A^{\prime} : the corner point of the angular region C
- w^{\prime} : the root of the sub-tree of G being currently traversed, $w^{\prime} \in W$

Procedure Steps:
(1)

- Consider C being coloured in w^{\prime}.
(2)
- If w^{\prime} has no descendants then the current procedure recursive call finishes.
- Otherwise:

Let the direct descendants of w^{\prime} be $v_{1}^{k_{1}}, \ldots, v_{l}^{k_{l}}$. By definition of n-graph they are connector vertices. By $v_{i}^{k_{i}}$ we denote k_{i}-vertex.

- For each $v_{i}^{k_{i}}$ designate distinct point from C from the interior of C. Call it $A_{v_{i}^{k_{i}}}$.

Let $w_{1}^{i}, \ldots, w_{k_{i}-1}^{i}$ be the terminal vertices direct descendants of $v_{i}^{k_{i}}$.

- For every w_{j}^{i} cut a (non-empty) angular region from C and take its closure, denote it by U_{j}^{i}, such that:
(i) U_{j}^{i} has corner vertex $A_{v_{i}}^{k_{i}}$
(ii) None of the boundary points of C is in any of U_{j}^{i}
(iii) $A^{\prime} \notin U_{j}^{i}$
(iv) U_{j}^{i} is a polytope of \mathbb{R}^{2} a subset of C
(v) $U_{j_{1}}^{i} \cap U_{j_{2}}^{i}=\left\{A_{v_{i}}^{k_{i}}\right\}, \quad j_{1} \neq j_{2}$
(vi) $U_{j_{1}}^{i_{1}} \cap U_{j_{2}}^{i_{2}}=\emptyset, \quad i_{1} \neq i_{2}$

Remark that condition (iii) is direct inference of (ii) and (iv) follows immediately from what agreed as angular region. Both explicitly stated for convenience only.

(3)

- Colour U_{j}^{i} in w_{j}^{i}
(4)
- For every w_{j}^{i} apply the procedure (recursively), that is for every $i, 1 \leq i \leq$ l, and every $j, 1 \leq j \leq k_{i}-1$:
- Apply the procedure recursively from (1) with the following input:

$$
\begin{aligned}
* C & :=U_{j}^{i} \\
* A^{\prime} & :=A_{v_{i}}^{k_{i}} \\
* w^{\prime} & :=w_{j}^{i}
\end{aligned}
$$

Application:

Consider C_{0} be a connected polytope of \mathbb{R}^{2}. Then:

- Choose any w^{\prime} from the terminal vertices W of G. Consider this point as the root of the tree G.
(0)
- Colour C_{0} in w^{\prime}.
- Choose an arbitrary point A_{0} from the interior of C_{0}.
- Choose an angular region being from the interior of C_{0} with a corner point A_{0}. Consider that angular region as C.
- Apply Procedure 3.1 on C, A_{0} and w^{\prime}.

Completion:
Upon completion of the procedure define W_{i} for i such that $1 \leq i \leq s$:

- $W_{i} \leftrightharpoons$ the closure of the union of the closures of all regions coloured in w_{i}

As a note, the set $\left\{W_{1}, \ldots, W_{s}\right\}$ will be the finite set of polytopes promised. Apparently it will be one-to-one to the set of the vertices $\left\{w_{1}, \ldots, w_{s}\right\}$ (trivially, the colour defining each of the elements). Furthermore, the union of the elements will clearly be \mathbb{R}^{m} and each two elements will have empty intersection of their interiors. In addition to that every k elements will be in k-ary contact if and only if the corresponding terminal vertices have common adjacent connector vertex.
Remark 3.1.1. Procedure 3.1 is valid for \mathbb{R}^{m} for any $m \geq 2$. It is simply that the procedure should be applied on the \mathbb{R}^{2} projection of \mathbb{R}^{m} (or its considered connected regular closed subset).

3.1.2 Observations

Following, the intended properties of the set $\left\{W_{1}, \ldots, W_{s}\right\}$ and the promised results are demonstrated.

Observation 3.1.1. The following statements are immediately from the definition of Procedure 3.1:

- (1) is correctly required as being sound with both (0) (the initial input) and (4) (the recursive step).
- By definition every U_{j}^{i} is non-empty hence every recursive call of the procedure, as per (4), is on input non-empty (current) angular region C.
- The procedure eventually completes.

Proof note: Every recursive step of Procedure 3.1 runs on particular terminal vertex of G considered as a root of the related sub-tree of G. Furthermore, the procedure does never backtrack hence each terminal vertex is traversed only once. G is finite hence the procedure always completes after finite number of steps (in particular exactly s).

Observation 3.1.2. For every $i, 1 \leq i \leq s$:

- W_{i} is defined and is completely determined at the step when terminal vertex w_{i} is being the current root vertex of the traversed by the procedure sub-tree of G
- $W_{i} \neq \emptyset$

Proof. Once again, Procedure 3.1 does never backtrack. Furthermore, by (2) and (4), the procedure traverses every terminal vertex of G and only once. Then, by definition of W_{i}, (0), (1) and, either by (2) or, by (3), W_{i} is being completely determined at completion of the step (i.e. recursive call) of traversing the particular terminal vertex w_{i}.

By the former, the definition of W_{i}, Observation 3.1.1 (the input angular region C non-empty) and, either by both (1) and (2) or by (3), we imply that W_{i} is a non-empty set.

Observation 3.1.3. All elements in $\left\{W_{1}, \ldots, W_{s}\right\}$ are polytopes of \mathbb{R}^{2}.
Proof. By definition of Procedure 3.1 the initial C is a polytope. Furthermore, (iv) and (4) guarantee at every recursive step C being a polytope. Let the initial input terminal vertex be $w_{i_{0}}$.
Whenever a recursive step terminates at (2) then by definition of W_{i} and Observation 3.1.2 trivially, $W_{i}=C$ considering the current root vertex being w_{i}. Hence the set W_{i} is a polytope. (Remark that if $w_{i}=w_{i_{0}}$ then $W_{i_{0}}=C_{0}$ which means $W_{i_{0}}$ is a polytope. In such a case G should have been degenerate graph containing only one terminal vertex and no connector verices or edges. This is not an n-graph for $n \geq 2$. Nevertheless for such a graph the procedure gives trivial solution, namely, $C_{0}=W_{1}$, where w_{1} is the only vertex of G. Think of such graph/tree as a particular/exceptional case).
Otherwise, again by Observation 3.1.2. W_{i} is determined after (3). By (iv) the corresponding regions $U_{j}^{i^{\prime}}$ are polytopes.
If the current root terminal vertex $w_{i} \neq w_{i_{0}}$ then by definition of W_{i} and that C and all $U_{j}^{i^{\prime}}$ are polytopes we imply W_{i} is a polytope.
Should $w_{i}=w_{i_{0}}$ then by definition of W_{i} we have that $W_{i_{0}}$ is the closure of the union of $C_{0} \backslash C$ on one hand and C minus the union of the appropriate $U_{j}^{i^{\prime}}$ regions on the other. Hence $W_{i_{0}}$ is the closure of C_{0} minus the union of the appropriate $U_{j}^{i^{\prime}}$ and by all those being polytopes we imply $W_{i_{0}}$ is a polytope.

Observation 3.1.4.

$$
C_{0}=\bigcup_{i=1}^{s} W_{i}
$$

Proof. By (0) at the initial step C_{0} is coloured in one colour (the initial root vertex w^{\prime}). Then, either by both (1) and (2) or by (3), at any step of the procedure the whole C_{0} is kept coloured. As per Observation 3.1.2 and its reasoning each W_{i} is being determined at the step of traversing terminal vertex w_{i} and is non-empty. Furthermore, by C_{0} being a regular closed set and the definition of W_{i} we imply $W_{i} \subseteq C_{0}$ because all elements of W_{i} are elements of C_{0}. Then by the former, after traversing all terminal vertices, hence upon completion of the procedure, the equality is satisfied by definition of W_{i} because eventually every element of C is in at least one W_{i}.

Observation 3.1.5.

$$
\operatorname{Int}\left(W_{i}\right) \cap \operatorname{Int}\left(W_{j}\right)=\emptyset \quad 1 \leq i<j \leq s
$$

Proof. By Observation 3.1.2 $W_{i^{\prime}}$ is completely determined either by (1), should the procedure terminate at (2), or by (3), should the procedure continue recursively by (4). By definition of $W_{i^{\prime}}$ and by (2), (3) and (4) W_{i} may have common point with W_{j} only if the point is boundary for both W_{i} and W_{j}. It follows then $\operatorname{Int}\left(W_{i}\right) \cap \operatorname{Int}\left(W_{j}\right)=\emptyset$.

Observation 3.1.6. w_{i} is a terminal vertex for $G, 1 \leq i \leq s$, and v is a connector vertex. Then:
$w_{i} \in \operatorname{Adj}_{G}(v)$ implies $A_{v} \in W_{i}$.
Proof.
Case 1): v is direct descendent of w_{i}.
Then (2) fails. By (1) the current C is coloured in $w_{i} . A_{v} \in C$ by definition of A_{v}. Then, by (i), A_{v} is a boundary point for $U_{j^{\prime}}^{i^{\prime}}$ where $w_{i}=w_{j^{\prime}}^{i^{\prime}}$. Then by definition of W_{i} and (3) we imply $A_{v} \in W_{i}$.

Case 2): w_{i} is direct descendent of v.
In general, consider current root vertex w and corner point A^{\prime} for $C . A^{\prime} \in C$ and by (1) C is coloured in w. In the case (2) and by definition of W_{i} it trivially follows $W_{i}=C$ thus $A^{\prime} \in W_{i}$. Otherwise by definition of W_{i}, (3) and (iii) we imply $A^{\prime} \in W_{i}$. Now by this observation applied on (4) when being called for the vertex w_{i} in which case $A^{\prime}=A_{v}$ we obtain $A_{v} \in W_{i}$.

Observation 3.1.7. v is a connector vertex, $w_{i_{1}}, \ldots, w_{i_{k}}$ are terminal vertices (not necessarily distinct), $1 \leq i_{j} \leq s$.

If $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq \operatorname{Adj} j_{G}(v)$ then $W_{i_{1}}, \ldots, W_{i_{k}}$ are in k-ary contact.
Proof. By Observation 3.1.6 A_{v} is a witness to the k-ary contact of $W_{i_{1}}, \ldots$, $W_{i_{k}}$.

Observation 3.1.8. Let $w_{i_{1}}$ and $w_{i_{2}}$ be distinct terminal vertices.
If there is no connector vertex v such that $\left\{w_{i_{1}}, w_{i_{2}}\right\} \subseteq A d j j_{G}(v)$ then $W_{i_{1}}$ and $W_{i_{2}}$ are not in binary contact (that is $W_{i_{1}} \cap W_{i_{2}}=\emptyset$).
Proof.

1) Without loss of generality let $w_{i_{2}}$ be descendent of $w_{i_{1}}$.

Let v be the direct successor of $w_{i_{1}}$ in the (single) path towards $w_{i_{2}}$, thus v connector vertex. Let $w_{i_{3}}$ be the direct successor of v towards $w_{i_{2}}, w_{i_{3}}$ terminal vertex. Then $w_{i_{3}} \neq w_{i_{2}}$ otherwise v is their common adjacent connector vertex which is a contradiction.

As per Procedure 3.1 consider the region U_{j}^{i} where $w_{j}^{i}=w_{i_{3}}$. Continuing this way towards $w_{i_{2}}$ eventually we obtain a sequence U_{1}, \ldots, U_{r-1}, where r is the number of terminal vertices in the path $w_{i_{1}}-\ldots-w_{i_{2}}$ (unique by G acyclic and connected) and thus $r \geq 3$ (by definition) such that:

- $U_{1}=U_{j}^{i}$ where $w_{j}^{i}=w_{i_{3}}$
- $U_{r-1}=U_{j^{\prime}}^{i^{\prime}}$ where $w_{j^{\prime}}^{i^{\prime}}=w_{i_{2}}$

By (4) and (iv):

- $U_{1} \supseteq \ldots \supseteq U_{r-1}$

By $U_{r-1}=U_{j^{\prime}}^{i^{\prime}}$ and (4), (2), (3) and definition of W_{i} we obtain $W_{i_{2}} \subseteq U_{r-1}$. By $r \geq 3$ and (ii) U_{2} has no common point with any of the boundary points of U_{1}. Hence by definition of W_{i} and (3) we imply $W_{i_{1}} \cap U_{2}=\emptyset$. By this and $W_{i_{2}} \subseteq U_{r-1} \subseteq U_{2}$ it follows that $W_{i_{1}} \cap W_{i_{2}}=\emptyset$.
2) None of $w_{i_{1}}$ and $w_{i_{2}}$ is descendent of the other.
2.1) Their closest common ancestor is connector vertex.

Call it v. In such a case there are direct successors of $v, w_{i_{3}}$ and $w_{i_{4}}$, such that:

- Either $w_{i_{1}}$ is descendant of $w_{i_{3}}$ or $w_{i_{1}}=w_{i_{3}}$
- Either $w_{i_{2}}$ is descendant of $w_{i_{4}}$ or $w_{i_{2}}=w_{i_{4}}$
- $w_{i_{1}} \neq w_{i_{3}}$ or $w_{i_{2}} \neq w_{i_{4}}$

Let w be the direct terminal predecessor of v. Such exists because as an initial root vertex of the tree G we choose terminal vertex (and the graph is bipartite by Lemma 2.2.1.

Then, as per Procedure 3.1. with respect to v there are $U_{j_{1}}^{i}$ and $U_{j_{2}}^{i}$ such that $w_{j_{1}}^{i}=w_{i_{3}}$ and $w_{j_{2}}^{i}=w_{i_{4}}$. Continuing this way towards $w_{i_{1}}$ and $w_{i_{2}}$ we obtain sequences $U_{1}^{\prime}, \ldots, U_{r_{1}}^{\prime}$ and $U_{1}^{\prime \prime}, \ldots, U_{r_{2}}^{\prime \prime}$ such that:

- $U_{1}^{\prime}=U_{j_{1}}^{i}$
- $U_{1}^{\prime \prime}=U_{j_{2}}^{i}$
- $U_{r_{1}}^{\prime}=U_{j_{1}^{\prime}}^{i^{\prime}} \quad$ such that $w_{j_{1}^{\prime}}^{i^{\prime}}=w_{i_{1}}$
- $U_{r_{2}}^{\prime \prime}=U_{j_{2}^{\prime}}^{i^{\prime \prime}} \quad$ such that $w_{j_{2}^{\prime}}^{i^{\prime \prime}}=w_{i_{2}}$

By (4) and (iv):

- $U_{1}^{\prime} \supseteq \ldots \supseteq U_{r_{1}}^{\prime}$
- $U_{1}^{\prime \prime} \supseteq \ldots \supseteq U_{r_{2}}^{\prime \prime}$

As a simple remark if $w_{i_{1}}=w_{i_{3}}$ then $r_{1}=1$ and if $w_{i_{2}}=w_{i_{4}}$ then $r_{2}=1$.
By those and by (4), (2), (3) and definition of W_{i} we imply:

- $W_{i_{1}} \subseteq U_{r_{1}}^{\prime}$
- $W_{i_{2}} \subseteq U_{r_{2}}^{\prime \prime}$

By (v) $U_{1}^{\prime} \cap U_{1}^{\prime \prime}=\left\{A_{v}\right\}$ hence $W_{i_{1}} \cap W_{i_{2}} \subseteq\left\{A_{v}\right\}$. By $w_{i_{1}} \neq w_{i_{3}}$ or $w_{i_{2}} \neq w_{i_{4}}$ at least one of r_{1} and r_{2} is greater than 1 . Without loss of generality assume $r_{1}>1$. Then we have $W_{i_{1}} \subseteq U_{r_{1}}^{\prime} \subseteq U_{2}^{\prime} \subseteq U_{1}^{\prime}$. By (iii) $A_{v} \notin U_{2}^{\prime}$ therefore $A_{v} \notin W_{i_{1}}$. It follows then $W_{i_{1}} \cap W_{i_{2}}=\emptyset$.
2.2) The closest common ancestor of $w_{i_{1}}$ and $w_{i_{2}}$ is terminal vertex.

Call it w. Then there are distinct connector vertices v_{1} and v_{2} such that v_{1} and v_{2} are direct successors of w and $w_{i_{1}}, w_{i_{2}}$ are descendants of v_{1} and v_{2} respectively. Let $w_{i_{3}}$ and $w_{i_{4}}$ be the terminal direct successors of v_{1} and v_{2} respectively such that:

- $w_{i_{1}}$ is descendant of $w_{i_{3}}$ or $w_{i_{1}}=w_{i_{3}}$
- $w_{i_{2}}$ is descendant of $w_{i_{4}}$ or $w_{i_{2}}=w_{i_{4}}$

Then, as per Procedure 3.1, in a similar manner as per now, we associate $U_{j_{3}}^{i_{3}^{\prime}}$ and $U_{j_{4}}^{i_{4}^{\prime}}$ corresponding to $w_{i_{3}}$ and $w_{i_{4}}$ respectively. Remark that $i_{3}^{\prime} \neq i_{4}^{\prime}$ because $v_{1} \neq v_{2}$. In similar way as per now we obtain sequences:

- $U_{1}^{\prime}, \ldots, U_{r_{1}}^{\prime}$
- $U_{1}^{\prime \prime}, \ldots, U_{r_{2}}^{\prime \prime}$
such that:
- $U_{1}^{\prime}=U_{j_{3}}^{i_{3}^{\prime}} \quad$ where $w_{j_{3}}^{i_{3}^{\prime}}=w_{i_{3}}$
- $U_{1}^{\prime \prime}=U_{j_{4}}^{i_{4}^{\prime}} \quad$ where $w_{j_{4}}^{i_{4}^{\prime}}=w_{i_{4}}$
- $U_{r_{1}}^{\prime}=U_{j_{1}}^{i_{1}^{\prime}} \quad$ where $w_{j_{1}}^{i_{1}^{\prime}}=w_{i_{1}}$
- $U_{r_{2}}^{\prime \prime}=U_{j_{2}}^{i_{2}^{\prime}} \quad$ where $w_{j_{2}}^{i_{2}^{\prime}}=w_{i_{2}}$

By (4) and (iv):

- $U_{1}^{\prime} \supseteq \ldots \supseteq U_{r_{1}}^{\prime}$
- $U_{1}^{\prime \prime} \supseteq \ldots \supseteq U_{r_{2}}^{\prime \prime}$

By those, by (4), (2), (3) and by definition of W_{i} it follows that:

- $W_{i_{1}} \subseteq U_{r_{1}}^{\prime}$
- $W_{i_{2}} \subseteq U_{r_{2}}^{\prime \prime}$

Furthermore, applying (vi) we have $U_{1}^{\prime} \cap U_{1}^{\prime \prime}=\emptyset$. Now by the latter and those above we obtain $W_{i_{1}} \cap W_{i_{2}}=\emptyset$

Observation 3.1.9. If $W_{i_{1}}, \ldots, W_{i_{k}}$ are in k-ary contact then exists connector vertex v such that $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq \operatorname{Adj}_{G}(v)$.

Proof. Induction on k.
The case $k=2$ follows directly by Observation 3.1.8.
Let the claim be true for $k \geq 2$. Consider $k+1$.
Should i_{1}, \ldots, i_{k+1} be not distinct then the claim follows directly by inductive hypothesis. Consider then i_{1}, \ldots, i_{k+1} distinct.
$W_{i_{1}}, \ldots, W_{i_{k+1}}$ are in contact. Then $W_{i_{1}}, \ldots, W_{i_{k}}$ are in contact. By inductive hypothesis there is a connector vertex v_{1} such that $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq$ $\operatorname{Adj}_{G}\left(v_{1}\right)$. Furthermore, $W_{i_{1}}, \ldots, W_{i_{k-1}}, W_{i_{k+1}}$ are in contact. Again by inductive hypothesis exists connector vertex v_{2} such that $\left\{w_{i_{1}}, \ldots, w_{i_{k-1}}, w_{i_{k+1}}\right\} \subseteq$ $\operatorname{Adj}_{G}\left(v_{2}\right)$.

Assume $v_{1} \neq v_{2}$. We have $k \geq 2$. If $k>2$, hence, consider the trail $w_{i_{1}-}$ $v_{1}-w_{i_{2}}-v_{2}-w_{i_{1}}$. This is a circuit, which contradicts G being acyclic. It remains the case when $k=3$. Then we have $\left\{w_{i_{1}}, w_{i_{2}}\right\} \subseteq \operatorname{Adj} j_{G}\left(v_{1}\right)$ and $\left\{w_{i_{1}}, w_{i_{3}}\right\} \subseteq$ $\operatorname{Adj}_{G}\left(v_{2}\right)$. Furthermore, again by inductive hypothesis, consider the connector vertex v_{3} such that $\left\{w_{i_{2}}, w_{i_{3}}\right\} \subseteq \operatorname{Adj}_{G}\left(v_{3}\right)$. Assume v_{3} is equal neither to v_{1} nor to v_{2}. Then consider the trail $w_{i_{1}}-v_{1}-w_{i_{2}}-v_{3}-w_{i_{3}}-v_{2}-w_{i_{1}}$. This is a circuit which is a contradiction. Then, without loss of generality, let $v_{1}=v_{3}$. Then the trail $w_{i_{1}}-v_{1}-w_{i_{3}}-v_{2}-w_{i_{1}}$ is a circuit. Therefore $v_{1}=v_{2}$ by which we obtain $\left\{w_{i_{1}}, \ldots, w_{i_{k+1}}\right\} \subseteq \operatorname{Adj}_{G}\left(v_{1}\right) . v_{1}$ is a witness to the existence.

Observation 3.1.10. $W_{i_{1}}, \ldots, W_{i_{k}}$ are in k-ary contact

iff

there exists connector vertex v such that $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq A d j_{G}(v)$
Proof. The statement is the combined result of Observation 3.1.7 and Observation 3.1.9

Remark. By Observation 2.2.1 the acyclic n-graph G is contact n-graph.
Claim 3.1.1. Let \mathcal{F}^{c} be the Kripke frame with carrier $\left\{W_{1}, \ldots, W_{s}\right\}$ and interpretation of the relation symbols of $L_{\mathcal{R}}$ the standard contact relation for the corresponding arity of the symbols. Let \mathcal{F} be the contact n-frame induced by the contact n-graph G.

Then $\mathcal{F}^{c} \cong \mathcal{F}$.
Proof. Consider the mapping $f\left(w_{i}\right)=W_{i}$. By Observation $3.1 .2 f$ is bijection between W and $\left\{W_{1}, \ldots, W_{s}\right\}$.

Denote, as per normal, the contact n-frame $\left.\mathcal{F}=<W, R_{2}, \ldots, R_{n}, \ldots\right\rangle$. Denote $\mathcal{F}^{c}=<\left\{W_{1}, \ldots, W_{s}\right\}, I^{c}>$, where for the k-ary relation symbol P of $L_{\mathcal{R}}$ it is satisfied $I^{c}(P)=\mathcal{C}_{k}$. Remark that \mathcal{F}^{c} is a Kripke frame. Then we have:

$$
\begin{aligned}
& <w_{i_{1}}, \ldots, w_{i_{k}}>\in R_{k} \\
& \quad \text { (by Claim 2.3.2) iff } \\
& \text { there exists connector vertex } v \text { such that }\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq \operatorname{Adj} j_{G}(v) \\
& \quad \text { (by Observation 3.1.10) iff } \\
& W_{i_{1}}, \ldots, W_{i_{k}} \text { are in } k \text {-ary contact } \\
& \quad \text { iff } \\
& <f\left(w_{i_{1}}\right), \ldots, f\left(w_{i_{k}}\right)>\in \mathcal{C}_{k}
\end{aligned}
$$

Therefore f is an isomorphism between \mathcal{F} and \mathcal{F}^{c}.

3.2 Formal approach for regular closed sets of $\mathbb{R}^{m}, m \geq 1$

In Section 3.1 was demonstrated how to "partition" \mathbb{R}^{2} into polytopes such that their union is \mathbb{R}^{2} itself or its regular closed connected subset (Observation 3.1.4 and that "partitioning" is a carrier of a Kripke frame with standard k-ary contact semantics that is isomorphic to the induced by the graph G contact (n-) frame (Claim 3.1.1). An essential property of that "partitioning" is the intersection of the interiors of any two distinct polytopes of it is empty (Observation 3.1.3).

Considering k-ary contact for $k>2$ such a result is not possible for polytopes of \mathbb{R}^{1} though. For any three polytopes in contact it is easy to see that some two of them will have intersection with a non-empty interior (this will be shown later in the exposition). Informally, this limitation is due to the fact a polytope is a finite union of segments or rays of \mathbb{R}^{1}. Should we allow infinite such unions then the restriction is alleviated.

In this section will demonstrate how analogous result to the one in Section 3.1 can be obtained when instead of polytopes we allow regular closed sets of \mathbb{R}^{1} being possibly infinite unions of segments and rays in \mathbb{R}^{1}.

3.2.1 Procedure for regular closed sets of \mathbb{R}^{1}

In its essence the approach for regular closed sets of \mathbb{R}^{1} will be a decent modification of the ideas in Procedure 3.1. The new procedure will avail of the fact that a union of infinitely many disjoint segments tending to particular point not being in any of those segments eventually is a regular closed set and that is the union of those segments and the point they tend to.

Roughly, again, we will first colour the whole \mathbb{R}^{1} in the root vertex of the n graph rooted tree and then will use an arbitrary segment of the already coloured set as an input together with the root vertex. Then, in analogy to Procedure 3.1.

- The input segment is sliced into as many segments as the number of the direct connector descendants of the input root terminal vertex.
- In the interior of each of those segments is dedicated point to the respective connector vertex the segment is created for. We call it a connector point.
- It is taken monotonic sequence in each of the segments tending to the connector point of the segment.
- Such a sequence forms an infinite family of segments (each defined by two subsequent points of the sequence) tending to the connector point. Each element of such a family is then separated in as many segments as the direct terminal descendant vertices of the corresponding connector vertex are. Finally, the left half of each of those finitely many sub-segments is coloured in their corresponding terminal vertex.
- Then the procedure is applied recursively but considering only the first element of every one of the infinite families of segments. That is, for each of those first elements for every their new sub-segment coloured in related terminal descendant. The input is such a segment and the terminal vertex the segment is coloured in.

As a result of this procedure if we take the closure of the union of all segments coloured in particular terminal vertex then each two such sets have connector point in common should their corresponding terminal vertices be adjacent to the corresponding connector vertex. This is because the connector points are in the closure of both sets, despite the fact that each two segments from the corresponding unions coloured differently have no point in common from their interiors. Furthermore, it will be satisfied that k such sets have point in common if and only if their corresponding terminal vertices are adjacent to common connector vertex. Finally, they will also hold the rest of the properties as for the result of Procedure 3.1 .

Assumptions:

We adopt the same assumptions as in Section 3.1.1
In addition from here on consider only closed segments of \mathbb{R}^{1} unless stated otherwise. Hence, by segment we mean closed interval $\left[S_{0}, S_{1}\right] \subseteq \mathbb{R}^{1}$ where $S_{0}<S_{1}$.

Procedure 3.2. Regular closed subsets of \mathbb{R}^{1}
Input: $\left[S_{0}, S_{1}\right]$: the current segment, w^{\prime} : the terminal vertex as the root of the sub-tree of the tree G being currently traversed.
Procedure steps:
(1)

- Consider $\left[S_{0}, S_{1}\right]$ as coloured in w^{\prime}.
(2)
- If w^{\prime} has no descendants in G then the current procedure recursive call finishes.
- Otherwise:
(3)
- Take an internal segment $\left[S_{0}^{\prime}, S_{1}^{\prime}\right] \subseteq\left[S_{0}, S_{1}\right]$ such that $S_{0}<S_{0}^{\prime}<S_{1}^{\prime}<S_{1}$ (padding left and right)

Let the direct descendants of w^{\prime} be $v_{1}^{k_{1}}, \ldots, v_{l}^{k_{l}}$, where $v_{i}^{k_{i}}$ is a connector k_{i}-vertex. Let their direct descendants be $w_{1}^{i}, \ldots, w_{k_{i}-1}^{i}$ for $v_{i}^{k_{i}}$ respectively, where w_{j}^{i} are terminal vertices. (4)

- Slice $\left[S_{0}^{\prime}, S_{1}^{\prime}\right]$ into l segments $\left[B_{0}, B_{1}\right], \ldots,\left[B_{l-1}, B_{l}\right]$ such that $B_{0}=S_{0}^{\prime}$, $B_{l}=S_{1}^{\prime}$ and $B_{i}<B_{i+1}$.

- For each of those segments $\left[B_{i-1}, B_{i}\right]$ take (a witness to $v_{i}^{k_{i}}$) $A_{v_{i}^{k_{i}}}$ different from the boundary points, namely: $B_{i-1}<A_{v_{i}^{k_{i}}}<B_{i}$.

- In each of those l segments $\left[B_{i-1}, A_{v_{i}^{k_{i}}}\right]$ take a strictly increasing sequence of distinct points all different from $A_{v_{i}^{k_{i}}}$ with first point in the sequence B_{i-1} and tending to $A_{v_{i}^{k_{i}}}$.

- For each of those increasing sequences, for each segment formed by two subsequent points in the sequence $\left[T_{r}, T_{r+1}\right]$:
- divide the segment into $k_{i}-1$ segments

(6)
- The j-th for all $1 \leq j \leq k_{i}-1$ of those $k_{i}-1$ segments divide into two halves. The left one colour in w_{j}^{i}.

(6.1)

Remark: In this way we form countably many segments coloured in w_{j}^{i}. Each such segment is surrounded by coloured in w^{\prime} (the parrent terminal vertex) segments (or rays) thus no two such segments have a point in common. By the choice of the sequences $\left\{T_{r}\right\}_{r \rightarrow \infty}$ the union of all those countably many segments coloured in w_{j}^{i} has $A_{v_{i}^{k_{i}}}$ in its closure.
(7)

- For all the intended vertices w_{j}^{i} take one segment from the countably many coloured in w_{j}^{i}, say the first one with respect to the infinite sequence of points tending to $A_{v_{i}^{k_{i}}}$, and on it apply the procedure (recursively) that is for every $i, 1 \leq i \leq l$, for every $j, 1 \leq j \leq k_{i}-1$:
- the input segment $\left[S_{0}, S_{1}\right]$ be the chosen segment coloured in w_{j}^{i}
- the root terminal vertex w^{\prime} be w_{j}^{i}

Application:

By C let us denote \mathbb{R}^{1}. As a remark, it is sufficient C to be a non-empty connected regular closed subset of \mathbb{R}^{1}. Thus we will call C the initial connected regular closed set and in this way abstracting from which set we have exactly chosen it to be.

- Choose terminal vertex w^{\prime} as the root of the tree G.
- Colour C in w^{\prime}.
- Choose an arbitrary segment $\left[S_{0}, S_{1}\right] \subseteq C$.
- Apply the procedure with input $\left[S_{0}, S_{1}\right]$ as an initial segment and w^{\prime} as the root of the tree G.

Completion:

Upon completion of the procedure define W_{i} for every $i, 1 \leq i \leq s$:

- $W_{i} \leftrightharpoons$ the closure of the union of the closures of all regions being coloured in w_{i}

Remark 3.2.1. Procedure 3.2 is valid for \mathbb{R}^{m} for any $m \geq 1$. It is simply that the procedure should be applied on the \mathbb{R}^{1} projection of \mathbb{R}^{m} (or its considered connected regular closed subset).

3.2.2 Observations

Observation 3.2.1. The following statements are immediately from the definition of Procedure 3.2:

- (1) is correctly required as being consistent with both (0) (the initial input) and (7) (the recursive step).
- The procedure eventually completes.

Proof note: The reasoning with respect to the completion of the procedure repeats the one in Observation 3.1.1. Informally, it is because both Procedure 3.1 and Procedure 3.2 are quite common in manner, in particular, the way the input tree is being recursively traversed.
Observation 3.2.2. For every $i, 1 \leq i \leq s$:

- W_{i} is defined and is completely determined at the step when terminal vertex w_{i} is being the current root vertex of the traversed by the procedure sub-tree of G
- $W_{i} \neq \emptyset$

Proof. Procedure 3.2 does never backtrack. Furthermore, by (2) and (7), the procedure traverses every terminal vertex of G and only once. Then by definition of W_{i}, (0), (1) and, either by (2) or, by both (6) and remark (6.1), W_{i} is being completely determined at the step of traversing the particular terminal vertex w_{i}.

By the former, the definition of W_{i}, (1) and, either by (2) or by both (6) and remark 6.1, we imply W_{i} is non-empty set by definition as union of (non-empty) segments or rays (rays possibly appear when w_{i} is the initial input choice for root of the tree G).

Observation 3.2.3. All elements in $\left\{W_{1}, \ldots, W_{s}\right\}$ are regular closed sets of \mathbb{R}^{1}.
Proof. By definition Procedure 3.2 is applied on segment of \mathbb{R}^{1} which is guaranteed as per Observation 3.2.1

Consider W_{i}. First suppose w_{i} is not the initial input terminal vertex chosen as a root of the tree G. If the procedure finishes at (2) then, trivially, W_{i} is a regular closed set of \mathbb{R}^{1} by the input segment being such. Otherwise, by (5) and (6), from the initial segment coloured already in w_{i} are being subtracted countably many segments the result of which is what is left coloured in w_{i} and by Observation $3.2 .2 W_{i}$ is finally determined at this point. Then, by definition of W_{i}, it is clear that W_{i} is a regular closed set of \mathbb{R}^{1}.

Now, the case when w_{i} is the initial input terminal vertex, as per the Application of Procedure 3.2, then, by definition of W_{i}, W_{i} is as per the case when w_{i} is not the initial input terminal vertex union the closure of the regular closed connected subset of $\mathbb{R}^{1} C$ subtracted by the chosen as initial input segment. The latter is obviously a regular closed set of \mathbb{R}^{1} hence, considering the former case, W_{i} is a finite union of regular closed sets of \mathbb{R}^{1} thus W_{i} also being such.

Observation 3.2.4. For the initial connected regular closed set C it holds:

$$
C=\bigcup_{i=1}^{s} W_{i}
$$

Proof. By (0) initially C is coloured in w^{\prime} being the initial root (terminal) vertex. Then by (1) and either by (2) or by both (6) and (6.1) at each recursive step of the procedure the whole C is kept coloured (not necessarily in the same colour). By Observation 3.2 .2 each W_{i} is being determined at the step of traversing terminal vertex w_{i} and is non-empty. Furthermore, by C being a regular closed set and the definition of W_{i} we imply $W_{i} \subseteq C$ because all elements of W_{i} are elements of C. Hence, by the former, after traversing all terminal vertices, which implies completion of the procedure, the equality is satisfied by definition of W_{i} because eventually every element of C is in at least one W_{i}.

Observation 3.2.5.

$$
\operatorname{Int}\left(W_{i}\right) \cap \operatorname{Int}\left(W_{j}\right)=\emptyset \quad 1 \leq i<j \leq s
$$

Proof. By Observation $3.2 .2 W_{i^{\prime}}$ is completely determined either by (1), should the procedure terminate at (2), or by (6) and remark (6.1), should the procedure continue recursively by (7). Considering those, the initial input conditions and definition of $W_{i^{\prime}}$, then $W_{i^{\prime}}$ is a union of the closure of rays (as a remark rays may appear only if $w_{i^{\prime}}$ is the initial input root of the tree G) and segments (possibly
countably many) coloured in $w_{i^{\prime}}$ which have no non-empty intersection with the closure of segments or rays coloured in different colour but the boundary points. Therefore, by $i \neq j$, no interior point of W_{i} is in W_{j} and vice versa, hence, the equality holds.

Observation 3.2.6. w_{i} is a terminal vertex for $G, 1 \leq i \leq s$, and v is a connector vertex. Then:
$w_{i} \in \operatorname{Adj}_{G}(v)$ implies $A_{v} \in W_{i}$.
Proof.
Case 1): v is direct descendant of w_{i}.
By (5) and (6) A_{v} is a boundary point for segment $\left[A_{v}, B_{i^{\prime}}\right]$ (for appropriate i^{\prime} as per (5) coloured in w_{i}. By Observation 3.2.2 and definition of W_{i} we have $A_{v} \in W_{i}$

Case 2): w_{i} is direct descendant of v.
Then by Observation 3.2.2 (6), 6.1 and definition of W_{i} follows that $A_{v} \in$ W_{i}.

Observation 3.2.7. Let w_{i} and w_{j} be distinct terminal vertices.
If there is no connector vertex v such that $\left\{w_{i}, w_{j}\right\} \subseteq A d j_{G}(v)$ then W_{i} and W_{j} are not in binary contact (that is $W_{i} \cap W_{j}=\emptyset$).
Proof. 1) w_{i} or w_{j} is descendant of the other.
Without loss of generality assume w_{j} is descendant of w_{i}. Let v be the direct (connector) descendant of w_{i} on the (single by G being tree) path down to w_{j}. Let $w_{j_{1}}$ be the (terminal) direct descendant of v. Apparently $w_{j_{1}} \neq w_{j}$, otherwise $\left\{w_{i}, w_{j}\right\} \subseteq \operatorname{Adj}_{G}(v)$ which is a contradiction.

By (6) and (7) there is appropriate segment U on which as per (7) the procedure is applied recursively for root $w_{j_{1}}$. Remark that by Observation 3.2.2, definition of W_{i} and by considering (1) and (6) we imply $W_{i} \cap \operatorname{Int}(U)=\emptyset$ because the only common points for W_{i} and U could be boundary points of both sets.

In this way down the path from $w_{j_{1}}$ to w_{j} we obtain sequence U_{1}, \ldots, U_{r} of segments such that:

- $U_{1} \supseteq \ldots \supseteq U_{r}$
- $U=U_{1}$
- U_{r} is the initial segment for the application of the Procedure 3.2 for root w_{j} as per (7)

By $w_{j_{1}} \neq w_{j}$ we have $r \geq 2$. Then by the last bullet, Observation 3.2 .2 and considering (1), (2) and (6) we imply $W_{j} \subseteq U_{r-1}$. Furthermore, (3) guarantees $W_{j} \subseteq \operatorname{Int}\left(U_{r-1}\right)$. Recall $U_{r-1} \subseteq U_{1}=U$ and $W_{i} \cap \operatorname{Int}(U)=\emptyset$ hence $W_{i} \cap W_{j}=$ \emptyset.
2) The first common ancestor of w_{i} and w_{j} is connector vertex.

Call it v. Then there is direct terminal descendant of v different from w_{i} and w_{j} and one of w_{i} and w_{j} is its descendant. Without loss of generality let w_{i} be descendant of that vertex $w_{i_{1}}$ thus having $w_{i_{1}} \neq w_{i}$ and $w_{i_{1}} \neq w_{j}$. Let the first terminal descendant towards w_{j} be $w_{j_{1}}$, hence, non-necessarily different from w_{j}.

As in case 1) here for both branches from $w_{i_{1}}$ down to w_{i} and from $w_{j_{1}}$ down to w_{j} we form sequences of segments $U_{1}^{1}, \ldots, U_{r_{1}}^{1}$ and $U_{1}^{2}, \ldots, U_{r_{2}}^{2}$ such that:

- $U_{1}^{1} \supseteq \ldots \supseteq U_{r_{1}}^{1}$
- $U_{1}^{2} \supseteq \ldots \supseteq U_{r_{2}}^{2}$
- $U_{r_{1}}^{1}$: the initial segment for w_{i} (as per (7))
- $U_{r_{2}}^{2}$: the initial segment for w_{j} (as per (7))
- U_{1}^{1} : the initial segment for $w_{i_{1}}$ (as per (7))
- U_{1}^{2} : the initial segment for $w_{j_{1}}$ (as per (7))

By $w_{i_{1}} \neq w_{i}$ as in 1) we obtain

- $r_{1} \geq 2$
- $W_{i} \subseteq \operatorname{Int}\left(U_{r_{1}-1}^{1}\right)$

Therefore $W_{i} \subseteq \operatorname{Int}\left(U_{1}^{1}\right)$.
2.1) $w_{j_{1}} \neq w_{j}$

Then $r_{2} \geq 2$. In analogy as above $W_{j} \subseteq \operatorname{Int}\left(U_{r_{2}-1}^{2}\right)$ hence $W_{j} \subseteq \operatorname{Int}\left(U_{1}^{2}\right)$. By (6) we imply $U_{1}^{1} \cap U_{1}^{2}=\emptyset$ by which follows that $W_{i} \cap W_{j}=\emptyset$.

$$
\text { 2.2) } w_{j_{1}}=w_{j}
$$

Then by Observation 3.2.2. (6) and definition of W_{j} it follows that W_{j} and U_{1}^{1} may have common points only if being boundary points for both sets. Hence $W_{j} \cap \operatorname{Int}\left(U_{1}^{1}\right)=\emptyset$. Recall $W_{i} \subseteq \operatorname{Int}\left(U_{1}^{1}\right)$ then $W_{i} \cap W_{j}=\emptyset$.
3) The first common ancestor of w_{i} and w_{j} is terminal vertex.

Call it w. Therefore there are distinct v_{1} and v_{2} connector vertices and distinct $w_{i_{1}}$ and $w_{j_{1}}$ terminal vertices such that:

- v_{1} and v_{2} are direct descendants of w
- $w_{i_{1}}$ is direct descendent of v_{1}
- $w_{j_{1}}$ is direct descendent of v_{2}
- w_{i} is descendant of $w_{i_{1}}$ or $w_{i}=w_{i_{1}}$
- w_{j} is descendant of $w_{j_{1}}$ or $w_{j}=w_{j_{1}}$

$w_{i_{1}} \neq w_{j_{1}}$ because otherwise $w_{i}=w_{j}$ or one of w_{i} and w_{j} is descendant of the other, or the common ancestor of w_{i} and w_{j} is terminal vertex other than w eventually all in contradiction to 3) and the choice of w.

Then by (4) there are segments:

- $\left[B_{l_{1}-1}, B_{l_{1}}\right]$ for $A_{v_{1}}$
- $\left[B_{l_{2}-1}, B_{l_{2}}\right]$ for $A_{v_{2}}$
such that $\left(B_{l_{1}-1}, B_{l_{1}}\right) \cap\left(B_{l_{2}-1}, B_{l_{2}}\right)=\emptyset$. Furthermore, in analogy to the reasoning in the former cases, as per (5) and (6) there would be appropriate segments U_{1} and U_{2} for $w_{i_{1}}$ and $w_{j_{1}}$ respectively for which (7) is applied on. For them we have:
- $U_{1} \subseteq\left(B_{l_{1}-1}, B_{l_{1}}\right)$
- $U_{2} \subseteq\left(B_{l_{2}-1}, B_{l_{2}}\right)$

In the case when $w_{i} \neq w_{i_{1}}$ then, in analogy to the former cases, we infer $W_{i} \subseteq U_{1}$ hence $W_{i} \subseteq\left(B_{l_{1}-1}, B_{l_{1}}\right)$. Otherwise, when $w_{i}=w_{i_{1}}$ by Observation 3.2.2, (5), (6), remark (6.1) and definition of $W_{i^{\prime}}$ we imply $W_{i} \subseteq\left(B_{l_{1}-1}, B_{l_{1}}\right)$. Thus, applying the same reasoning for w_{j} and $w_{j_{1}}$, eventually we obtain:

- $W_{i} \subseteq\left(B_{l_{1}-1}, B_{l_{1}}\right)$
- $W_{j} \subseteq\left(B_{l_{2}-1}, B_{l_{2}}\right)$

Therefore $W_{i} \cap W_{j}=\emptyset$.

Observation 3.2.8. v is a connector vertex, $w_{i_{1}}, \ldots, w_{i_{k}}$ are terminal vertices (not necessarily distinct), $1 \leq i_{j} \leq s$.

If $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq \operatorname{Adj}_{G}(v)$ then $W_{i_{1}}, \ldots, W_{i_{k}}$ are in k-ary contact .
Proof. By Observation 3.2 .6 for any $j, 1 \leq j \leq k, A_{v} \in W_{i_{j}}$ hence A_{v} is a witness to a k-ary contact of $W_{i_{1}}, \ldots, W_{i_{k}}$.

Observation 3.2.9. If $W_{i_{1}}, \ldots, W_{i_{k}}$ are in k-ary contact then exists connector vertex v such that $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq \operatorname{Adj} j_{G}(v)$.
Proof. By induction on $k . k=2$ is directly by Observation 3.2.7. The inductive step is exactly the same as already made in Observation 3.1.9.

Observation 3.2.10. $W_{i_{1}}, \ldots, W_{i_{k}}$ are in k-ary contact
iff
there exists connector vertex v such that $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq \operatorname{Adj}_{G}(v)$
Proof. The statement is the combined result of Observation 3.2.8 and Observation 3.2.9.

Recall that by Observation 2.2 .1 the acyclic n-graph G is a contact n-graph.
Claim 3.2.1. Let \mathcal{F}^{c} be the Kripke frame with carrier $\left\{W_{1}, \ldots, W_{s}\right\}$ and interpretation of the relation symbols of $L_{\mathcal{R}}$ the standard contact relation for the corresponding arity of the symbols. Let \mathcal{F} be the contact n-frame induced by the contact n-graph G.

Then $\mathcal{F}^{c} \cong \mathcal{F}$.
Proof. The proof is exactly the same as the one of the analogous Claim 3.1.1 but using Observation 3.2.10 instead of Observation 3.1.10.

Remark that the statement in the following observation is valid for any regular closed set. Moreover, we already have that all elements W_{i} are regular closed sets by Observation 3.2.3. Despite seemingly unnecessary extra effort, we cite and prove the observation for the sake of reference and for attaining better understanding why the statement is valid in the particular case.

Observation 3.2.11. Let a be an arbitrary element of W_{i}.
Then for every open $o \ni a$ is satisfied $o \cap \operatorname{Int}\left(W_{i}\right) \neq \emptyset$.

Proof. Trivially for $a \in \operatorname{Int}\left(W_{i}\right)$.
Consider a a boundary point of W_{i}. By (1), (5), (6) and (7) if the procedure finishes at (2) then, by definition of W_{i}, the latter will be (the closure of) an infinite union of segments plus A_{v}. Otherwise, considering Observation 3.2.2 and the definition of W_{i}, the latter is formed by the choice in (4) and (5) and eventually by (6). Remark that, again, considering also the case when w_{i} is the initial input terminal vertex, W_{i} is (the closure) of a union of infinite number of segments as per (5) and (6), (finite number) of rays (because the initial input is connected set) and A_{v}. Therefore in any case the boundary points of W_{i} are either:

- boundary points for the segments or rays in the union
- A_{v}

In the first case the claim is true. In the second case, when $a=A_{v}$, then by (5) there are (infinitely many) segments from the union forming W_{i} which are in o. And this means their interior is in o so we conclude $o \cap \operatorname{Int}\left(W_{i}\right) \neq \emptyset$.

3.3 Formal approach for 2-graphs and polytopes of \mathbb{R}^{1}

As per the introductory notes of Section 3.2 , whenever three polytopes of \mathbb{R}^{1} are in ternary contact then some two of them have intersection with non-empty interior. Furthermore, this was the reason in the general case for an acyclic n-graph to be not possible to obtain results analogous to those in Section 3.1 in the case of polytopes of \mathbb{R}^{1}.

Should we be able to define specific requirements for the acyclic n-graph by which to alleviate the mentioned obstructing condition then we may be able to attain the desired results for the class of n-graphs satisfying those requirements.

Informally, if we express the obstructing condition as a formula of $L_{\mathcal{R}}$ then it resembles the one in Claim 2.4.2 (i). By Claim 2.4.2 we have that an n-frame in which such a formula is valid effectively is a 2 -frame. Considering Claim 2.3.3 and making the parallel with Claim 3.1.1 and Claim 3.2.1 we conclude that if the acyclic n-graph is 2 -graph then we may probably achieve the results as in Section 3.1 and Section 3.2 but for polytopes of \mathbb{R}^{1}.

In this section we obtain the desired results for polytopes of \mathbb{R}^{1} when the acyclic n-graph is a 2 -graph, hence, it really is a sufficient requirement.

3.3.1 Procedure for polytopes of \mathbb{R}^{1} for acyclic 2-graph

Assumptions:

- Given $G=(W, V, E)$ finite connected acyclic 2-graph, W, V and E nonempty. Hence $A d j_{G}(v)=2$ for every $v \in V$.
- $W=\left\{w_{1}, \ldots, w_{s}\right\}, \overline{\bar{W}}=s$.
- As per now, we consider G as a rooted tree for particularly chosen root vertex as well as any sub-tree of G in which case the root will be clear by the context. All terms then like predecessor, descendant etc. will be relative to the currently considered (rooted) sub-tree.

Procedure 3.3. Polytopes in \mathbb{R}^{1} for 2-graph
Input:

- $\left[S_{0}, S_{1}\right] \subseteq \mathbb{R}^{1}$: the current segment
- w^{\prime} : the terminal vertex as the root of the sub-tree of the tree G being currently traversed

Procedure Steps:
(1)

- Consider $\left[S_{0}, S_{1}\right]$ as coloured in w^{\prime}.
(2)
- If w^{\prime} has no descendants then the current procedure recursive call finishes here.
- Otherwise:

Let the direct (hence connector) descendants of w^{\prime} be v_{1}, \ldots, v_{l}. By every v_{i} of those being a 2 -vertex then let their direct descendants (hence terminal) be w^{1}, \ldots, w^{l} respectively.
(3)

- Choose l distinct non-intersecting proper segments in $\left[S_{0}, S_{1}\right]$ that is segments $\left[B_{0}, B_{1}\right],\left[B_{2}, B_{3}\right], \ldots,\left[B_{2 l-2}, B_{2 l-1}\right]$ such that:
- $B_{i}<B_{i+1}$, for $0 \leq i<2 l-1$
$-S_{0}<B_{0}$ and $B_{2 l-1}<S_{1}$
(4)
- Colour segment $\left[B_{2 i-2}, B_{2 i-1}\right]$ in $w^{i}(1 \leq i \leq l)$

(5)
- Apply the procedure recursively on each segment $\left[B_{2 i-2}, B_{2 i-1}\right], 1 \leq i \leq l$:
- $\left[S_{0}, S_{1}\right]$ is assigned $\left[B_{2 i-2}, B_{2 i-1}\right]$
$-w^{\prime}$ is assigned w^{i}

Application:

By C let us denote \mathbb{R}^{1}. As a remark, it is sufficient C to be a non-empty connected regular closed subset of \mathbb{R}^{1}. Thus we will call C the initial connected regular closed set and in this way abstracting from which set we have exactly chosen it to be.

- Choose terminal vertex w^{\prime} as the root of the tree G.
(0)
- Colour C in w^{\prime}.
- Choose an arbitrary segment $\left[S_{0}, S_{1}\right] \subseteq C$.
- Apply the procedure on $\left[S_{0}, S_{1}\right]$ (the initial segment) and w^{\prime} as the root of the tree G.

Completion:
Upon completion of the procedure define W_{i} for every $i, 1 \leq i \leq s$:

- $W_{i} \leftrightharpoons$ the closure of the union of the closures of all regions being coloured in w_{i}

Remark 3.3.1. Procedure 3.3 is valid for \mathbb{R}^{m} for any $m \geq 1$. It is simply that the procedure should be applied on the \mathbb{R}^{1} projection of \mathbb{R}^{m} (or its considered connected regular closed subset).

3.3.2 Observations

Observation 3.3.1. The following statements are immediately from the definition of Procedure 3.3:

- (1) is correctly required as being consistent with both (0) (the initial input) and (5) (the recursive step).
- The procedure eventually completes.

Proof note: The reasoning with respect to the completion of the procedure repeats the one in Observation 3.1.1. Informally, it is because both Procedure 3.1 and Procedure 3.3 are quite common in manner, in particular, the way the input tree is being recursively traversed.

As a short remark, the recursive step as per (5) is made on already coloured in w^{i} segment $\left[B_{2 i-2}, B_{2 i-1}\right]$ due to (4) hence consistent with requirement (1).

Observation 3.3.2. For every $i, 1 \leq i \leq s$:

- W_{i} is defined and is completely determined at the step when terminal vertex w_{i} is being the current root vertex of the traversed by the procedure sub-tree of G
- $W_{i} \neq \emptyset$

Proof. Procedure 3.3 does never backtrack. Furthermore, by (2) and (5), the procedure traverses every terminal vertex of G and only once. Then by definition of W_{i}, (0), (1) and either by (2) or by (4) W_{i} is being completely determined at the step of traversing the particular terminal vertex w_{i}.

By the former, the definition of W_{i}, (1) and either by (2) or by both (3) and (4) we imply W_{i} is non-empty set by definition as a union of (non-empty) segments or rays (rays possibly appear when w_{i} is the initial input choice for root of the tree G).

Observation 3.3.3. All elements in $\left\{W_{1}, \ldots, W_{s}\right\}$ are polytopes of \mathbb{R}^{1}.

Proof. By Observation 3.3.1 (1) guarantees the input segment as being such hence polytope of \mathbb{R}^{1}.

Considering Observation 3.3.2, if the procedure finishes at (2) for input vertex w_{i} then only the current input segment is coloured w_{i} by (4) and (5). Hence, by definition of W_{i}, W_{i} is this segment itself thus polytope of \mathbb{R}^{1}. Remark that if w_{i} is the initial input vertex then G is degenerate graph consisting of the vertex w_{i} only. This is not 2-graph. Nevertheless the procedure gives trivial solution for such a graph/tree, namely, $C=W_{1}$, where w_{1} is the only vertex of G. Think of such graph/tree as a particular/exceptional case then.

Now, when the procedure continues recursively as per (5), let the current vertex be w_{i}.

First, let w_{i} be not the initial input root vertex chosen for the tree G. By (3) and (4) and considering Observation 3.3.2 the coloured in w_{i} regions are effectively union of finitely many non-necessarily closed non-intersecting segments in \mathbb{R}^{1}. Therefore their closure is polytope of \mathbb{R}^{1}. By definition of W_{i} this closure is exactly W_{i} by which W_{i} is a polytope.

The case when w_{i} is the initial input root vertex chosen for the tree G then considering Observation 3.3 .2 the regions coloured in w_{i} are the following. On one hand, those from the chosen as initial input segment from the regular closed connected set C after application of the procedure. Then, as per the former case, the closure of their union is a polytope. On the other hand, in w_{i} is coloured the remnant of C subtracted the chosen as initial input segment. The closure of the latter is a polytope as well. Therefore the closure of the union of all coloured in w_{i} sets is a polytope. By definition of W_{i} that union is exactly W_{i}.

Observation 3.3.4. For the initial connected regular closed set C it holds:

$$
C=\bigcup_{i=1}^{s} W_{i}
$$

Proof. By (0) initially C is coloured in w^{\prime} being the initial root (terminal) vertex. Then by (1) and, either by (2) or by (4), at each recursive step of the procedure the whole C is kept coloured (not necessarily in the same colour). By Observation 3.3.2 each W_{i} is being determined at the step of traversing terminal vertex w_{i} and is non-empty. Furthermore, by C being a regular closed set and definition of W_{i} we imply $W_{i} \subseteq C$ as long as all elements of W_{i} are elements of C. Hence, by the former, after traversing all terminal vertices, which implies completion of the procedure, the equality is satisfied again by definition of W_{i} because eventually every element of C is in at least one W_{i}.

Observation 3.3.5.

$$
\operatorname{Int}\left(W_{i}\right) \cap \operatorname{Int}\left(W_{j}\right)=\emptyset \quad 1 \leq i<j \leq s
$$

Proof. By Observation 3.3 .2 any $W_{i^{\prime}}$ is completely determined either by (1), should the procedure terminate at (2), or by (4), should the procedure continue recursively by (5). Considering those, the initial input conditions, (3) and definition of $W_{i^{\prime}}$, then $W_{i^{\prime}}$ is a union of the closure of rays (as a remark rays may appear only if $w_{i^{\prime}}$ is the initial input root of the tree G) and segments,
both finitely many, coloured in $w_{i^{\prime}}$ which have no non-empty intersection with the closure of segments or rays coloured in different colour but their boundary points. Therefore, by $i \neq j$, no interior point of W_{i} is in W_{j} and vice versa, hence, the equality holds.

Observation 3.3.6. v is a connector vertex, $w_{i_{1}}, \ldots, w_{i_{k}}$ are terminal vertices (not necessarily distinct), $1 \leq i_{j} \leq s$.

If $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq \operatorname{Adj}_{G}(v)$ then $W_{i_{1}}, \ldots, W_{i_{k}}$ are in k-ary contact.
Proof. By G being a 2 -graph then $\overline{\overline{\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\}}} \leq 2$. In the case when $\overline{\overline{\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\}}}=1$ then by Observation 3.3.2 and definition of W_{i} trivially $W_{i_{1}}, \ldots, W_{i_{k}}$ are in contact as all being the same non-empty set.

Let then $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\}=\left\{w_{i}, w_{j}\right\}$, for $i \neq j$. Without loss of generality assume w_{j} is descendant of w_{i} in the rooted tree G. Then by Observation 3.3.2, definition of W_{i} and by (3), (4) and (5) we conclude W_{i} and W_{j} are in contact as per the definition of the segments and colouring made in (3) and (4).

Observation 3.3.7. Let w_{i} and w_{j} be distinct terminal vertices.
If there is no connector vertex v such that $\left\{w_{i}, w_{j}\right\} \subseteq A d j_{G}(v)$ then W_{i} and W_{j} are not in binary contact (that is $W_{i} \cap W_{j}=\emptyset$).
Proof. Neither w_{i} nor w_{j} is direct terminal descendant of the other otherwise there will be connector vertex v which will contradict the initial condition. Furthermore, w_{i} and w_{j} cannot have closest common predecessor connector vertex because the initial choice for a root of the tree G is terminal vertex thus such a connector vertex will have two distinct direct descendant (terminal) vertices plus one parent (terminal) vertex which is a contradiction to G being a 2 -graph. Therefore we have the following two possible cases.

Case 1: w_{i} or w_{j} is descendant of the other.
Without loss of generality assume w_{j} is descendant of w_{i}. Let $w_{j_{1}}$ be the first terminal descendant of w_{i} towards w_{j} (single path due to G tree). Hence $w_{j_{1}} \neq w_{j}$. By (3) and (5) there is proper segment $\left[B_{r_{1}-1}, B_{r_{1}}\right.$] on which (5) is applied for the vertex $w_{j_{1}}$. By Observation 3.3 .2 and definition of W_{i} we infer W_{i} may have intersection points with $\left[B_{r_{1}-1}, B_{r_{1}}\right]$ only if being boundary for both sets. Hence $W_{i} \cap \operatorname{Int}\left(\left[B_{r_{1}-1}, B_{r_{1}}\right]\right)=\emptyset$.

In analogy to the choice of $\left[B_{r_{1}-1}, B_{r_{1}}\right]$ for $w_{j_{1}}$ continuing downwards w_{j} we obtain sequence of segments $\left[B_{r_{1}-1}, B_{r_{1}}\right], \ldots,\left[B_{r_{t}-1}, B_{r_{t}}\right]$, where $\left[B_{r_{t}-1}, B_{r_{t}}\right]$ is the segment on which (5) is applied for w_{j}. Hence, $t \geq 2$ due to $w_{j_{1}} \neq w_{j}$. Now again by Observation 3.3.2 and by definition of W_{j} we imply that $W_{j} \subseteq$ [$\left.B_{r_{t}-1}, B_{r_{t}}\right]$.

Remark that by $t \geq 2$ and by the choice of segments in (3) it is satisfied $\left[B_{r_{t^{\prime}+1}-1}, B_{r_{t^{\prime}+1}}\right] \subseteq \operatorname{Int}\left(\left[B_{r_{t^{\prime}-1}}, B_{r_{t^{\prime}}}\right]\right)$. Hence, applying this inductively, we conclude $W_{j} \subseteq \operatorname{Int}\left(\left[B_{r_{1}-1}, B_{r_{1}}\right]\right)$. Recall that $W_{i} \cap \operatorname{Int}\left(\left[B_{r_{1}-1}, B_{r_{1}}\right]\right)=\emptyset$ by which $W_{i} \cap W_{j}=\emptyset$.

Case 2: w_{i}, w_{j} have closest common predecessor terminal vertex.
Call it w. Let the direct connector descendants of w towards w_{i} and w_{j} be v_{1} and v_{2} respectively. Apparently $v_{1} \neq v_{2}$, otherwise contradiction with the choice of w. Let then the direct descendants of v_{1} and v_{2} be $w_{i_{1}}$ and $w_{j_{1}}$ towards
w_{i} and w_{j} respectively. By definition w_{i} is descendant of $w_{i_{1}}$ or $w_{i}=w_{i_{1}}$, the same applies for the relation between w_{j} and $w_{j_{1}}$.

As per the above reasoning, by (3) and (5) there are proper segments $\left[B_{r_{1}^{1}-1}\right.$, $B_{r_{1}^{1}}$] and $\left[B_{r_{1}^{2}-1}, B_{r_{1}^{2}}\right.$] on which (5) is applied for the vertices $w_{i_{1}}$ and $w_{j_{1}}$ respectively. Again, as per the above reasoning, we obtain sequences: $\left[B_{r_{1}^{1}-1}, B_{r_{1}^{1}}\right], \ldots$, $\left[B_{r_{t_{1}}^{1}-1}, B_{r_{t_{1}}^{1}}\right]$ and $\left[B_{r_{1}^{2}-1}, B_{r_{1}^{2}}\right], \ldots,\left[B_{r_{t_{2}-1}^{2}}, B_{r^{2} t_{2}}\right]$, where $\left[B_{r_{t_{1}}^{1}-1}, B_{r_{t_{1}}^{1}}\right]$ is the segment on which (5) is applied for w_{i} and $\left[B_{r_{t_{2}}^{2}-1}, B_{r_{t_{2}}^{2}}\right]$ is the one for w_{j}. Hence, by Observation 3.3 .2 and definition of W_{i} and W_{j} we have $W_{i} \subseteq\left[B_{r_{t_{1}}^{1}-1}, B_{r_{t_{1}}}\right]$ and $W_{j} \subseteq\left[B_{r_{t_{2}}^{2}-1}, B_{r_{t_{2}}^{2}}\right]$.

Again by (3) we remark that $\left[B_{r_{t_{1}^{1}+1}^{1}-1}, B_{r_{t_{1}^{1}+1}^{\prime}}\right] \subseteq\left[B_{r_{t_{1}^{1}-1}}, B_{r_{t_{1}^{\prime}}^{\prime}}\right]$ as well as $\left[B_{r_{t_{2}^{\prime}+1}^{2}-1}, B_{r_{t_{2}^{\prime}+1}^{2}}\right] \subseteq\left[B_{r_{t_{2}^{\prime}-1}^{2}}, B_{r_{t_{2}^{\prime}}^{2}}\right]$. Applying it inductively we obtain $W_{i} \subseteq$ $\left[B_{r_{1}^{1}-1}, B_{r_{1}^{1}}\right]$ and $W_{j} \subseteq\left[B_{r_{1}^{2}-1}, B_{r_{1}^{2}}^{2}\right]$.

Considering (3) and by $v_{1} \neq v_{2}$ we conclude $\left[B_{r_{1}^{1}-1}, B_{r_{1}^{1}}\right] \cap\left[B_{r_{1}^{2}-1}, B_{r_{1}^{2}}\right]=\emptyset$. This gives $W_{i} \cap W_{j}=\emptyset$.

Observation 3.3.8. If $W_{i_{1}}, \ldots, W_{i_{k}}$ are in k-ary contact then exists connector vertex v such that $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq A d j_{G}(v)$.
Proof. If $\overline{\overline{\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\}}}=1$ then the claim is satisfied by G connected n-graph.
Let then $\overline{\overline{\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\}}}>1$. Assume $\overline{\overline{\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\}}}>2$. Let $w_{j_{1}}, w_{j_{2}}$ and $w_{j_{3}}$ be the first three distinct among $w_{i_{1}}, \ldots, w_{i_{k}} . W_{j_{1}}, W_{j_{2}}$ and $W_{j_{3}}$ are in contact as well as any two of them. Then by Observation 3.3.7 there are connector vertices v_{1}, v_{2} and v_{3} such that $\left\{w_{j_{1}}, w_{j_{2}}\right\} \subseteq A d j_{G}\left(v_{3}\right),\left\{w_{j_{1}}, w_{j_{3}}\right\} \subseteq$ $\operatorname{Adj}_{G}\left(v_{2}\right)$ and $\left\{w_{j_{2}}, w_{j_{3}}\right\} \subseteq \operatorname{Adj}_{G}\left(v_{1}\right) . v_{1}, v_{2}, v_{3}$ are distinct otherwise, by G being a 2-graph, $\overline{\overline{\left\{w_{j_{1}}, w_{j_{2}}, w_{j_{3}}\right\}}} \leq 2$ which is a contradiction with the choice of $w_{j_{1}}, w_{j_{2}}$ and $w_{j_{3}}$. Nevertheless the trail $w_{j_{1}}-v_{3}-w_{j_{2}}-v_{1}-w_{j_{3}}-v_{2}-w_{j_{1}}$ is a circuit which is a contradiction with G acyclic.

Therefore $\overline{\overline{\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\}}}=2$. Now we apply Observation 3.3.7 directly.
Remark. Observation 3.3 .8 can be proven exactly as Observation 3.1.9 but using Observation 3.3.7 in the base of the induction instead.

Observation 3.3.9. $W_{i_{1}}, \ldots, W_{i_{k}}$ are in k-ary contact
iff
there exists connector vertex v such that $\left\{w_{i_{1}}, \ldots, w_{i_{k}}\right\} \subseteq \operatorname{Adj} j_{G}(v)$
Proof. The statement is the combined result of Observation 3.3.6 and Observation 3.3.8

Claim 3.3.1. Let \mathcal{F}^{c} be the Kripke frame with carrier $\left\{W_{1}, \ldots, W_{s}\right\}$ and interpretation of the relation symbols of $L_{\mathcal{R}}$ the standard contact relation for the corresponding arity of the symbols. Let \mathcal{F} be the contact n-frame induced by the contact n-graph G.

Then $\mathcal{F}^{c} \cong \mathcal{F}$.
Proof. The proof is exactly the same as the one of the analogous Claim 3.1.1 but only using Observation 3.3.9 instead of Observation 3.1.10.

4 p-morphic preimages of contact n-frames

In the former Section 3 for given contact n-graph were achieved useful results as per obtaining corresponding to the graph Kripke frame with standard contact semantics illustrative examples being Claim 3.1.1, Claim 3.2.1 and Claim 3.3.1. An essential property of the originating n-graph was to be acyclic. As long as the approaches from Section 3 could be applied on that class of contact n-graphs rational motivation is to elaborate on a facility that provides sensible association between arbitrary finite contact n-frames and those induced by acyclic contact n-graphs.

In this section we will demonstrate a formal procedure which for given contact n-frame induced by an arbitrary contact n-graph transforms the graph into an acyclic contact n-graph such that the induced by it contact n-frame is a p-morphic preimage of the originating contact n-frame.

4.1 Formal procedure on n-graphs

Consider an arbitrary n-graph $G=(W, V, E)$.

Procedure Step 4.1.

- Choose an arbitrary circuit from the graph G. Denote it by C.
- Choose an arbitrary terminal vertex from the circuit. Denote it by w.
- Choose one of the (two) adjacent connector (by Definition 2.2.1) vertices of w in the circuit C. Denote it by v.
- Remove the edge (v, w) from E.
- Add a new distinct terminal vertex w^{\prime} to W.
- Add a new edge $\left(v, w^{\prime}\right)$ to E.

Procedure 4.1.

- While there is a circuit in G apply Procedure Step 4.1

4.2 Observations

Consider arbitrary n-graph and denote it by the standard notation for a graph: $G=(V, E)$. Denote the terminal vertices of G by W hence $W \subseteq V$.

Consider single application of Procedure Step 4.1 over the n-graph G. Then the resulting graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is as follows:

- $V^{\prime}=V \cup\left\{w^{\prime}\right\}$
- $E^{\prime}=(E \backslash\{(v, w)\}) \cup\left\{\left(v, w^{\prime}\right)\right\}$

Observation 4.2.1. G^{\prime} has less circuits than G.
Proof. Consider the intermediate graph $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ as follows:

- $V^{\prime \prime}=V$
- $E^{\prime \prime}=E \backslash\{(v, w)\}$

The edge (v, w) then breaks at least the chosen circuit C hence the number of circuits of $G^{\prime \prime}$ is less than that of G.

For G^{\prime} we have:

- $V^{\prime}=V^{\prime \prime} \cup\left\{w^{\prime}\right\}$
- $E^{\prime}=E^{\prime \prime} \cup\left\{\left(v, w^{\prime}\right)\right\}$

Apparently, the degree of the new vertex w^{\prime} is 1 hence w^{\prime} cannot participate in a circuit. Therefore any circuit in G^{\prime} should have already been in $G^{\prime \prime}$. This means the number of the circuits in $G^{\prime \prime}$ is preserved the same in G^{\prime}.

Eventually, the number of the circuits in G^{\prime} is less than their number in G.

Observation 4.2.2. G^{\prime} is n-graph.
Proof. Straightforward verification that the conditions in Definition 2.2.1 of n graph satisfied by G are preserved also in G^{\prime}.

Due to Observation 4.2.2 from here on we will denote the resulting graphs from Procedure Step 4.1 by the standard notation we use for n-graphs. In particular, for the n-graph $G=(W, V, E)$, the result $G^{\prime}=\left(W^{\prime}, V, E^{\prime}\right)$ of applying the procedure step on G is defined as:

- $W^{\prime}=W \cup\left\{w^{\prime}\right\}$
- V is the same in both G and G^{\prime}
- $E^{\prime}=(E \backslash\{(v, w)\}) \cup\left\{\left(v, w^{\prime}\right)\right\}$

Observation 4.2.3. $G^{\prime}=\left(W^{\prime}, V, E^{\prime}\right)$ is a contact n-graph should $G=(W, V, E)$ be a contact n-graph.

Proof. Verification of the conditions as per Definition 2.2.2.
(0):

It is Observation 4.2.2.
(1):

Consider $G^{\prime \prime}=\left(W, V, E^{\prime \prime}\right)$ such that:

- W and V are as in G
- $E^{\prime \prime}=E \backslash\{(v, w)\}$

By this and G being simple, trivially, $G^{\prime \prime}$ also is. For G^{\prime} we have:

- $W^{\prime}=W \cup\left\{w^{\prime}\right\}$
- V is the same as in G and $G^{\prime \prime}$
- $E^{\prime}=E^{\prime \prime} \cup\left\{\left(v, w^{\prime}\right)\right\}$

Remark that all edges of G^{\prime} are in $G^{\prime \prime}$ but $\left(v, w^{\prime}\right)$. Furthermore, $\left(v, w^{\prime}\right)$ is a single such edge by Procedure Step 4.1. Therefore G^{\prime} is simple by $G^{\prime \prime}$ being such.
(2):

Let $v^{\prime}, v^{\prime \prime}$ arbitrary connector vertices for G^{\prime} not necessarily different.

If v^{\prime} and $v^{\prime \prime}$ are both other than v then they are not incident on the new edge $\left(v, w^{\prime}\right)$ in G^{\prime} with respect to G. Thus all their adjacent vertices are the same as those in G. Thus the condition is satisfied by G contact n-graph.

Let then one of the vertices be v. Without loss of generality let $v^{\prime \prime}=v$. By $\left(v, w^{\prime}\right) \in E^{\prime}$ then $w^{\prime} \in A d j_{G^{\prime}}(v)$.

For any connector vertex v^{\prime} other than v we have $w^{\prime} \notin \operatorname{Adj}{ }_{G^{\prime}}\left(v^{\prime}\right)$. Therefore, in such a case, $A d j_{G^{\prime}}(v) \nsubseteq A d j_{G^{\prime}}\left(v^{\prime}\right)$.

Let $\operatorname{Adj}_{G^{\prime}}\left(v^{\prime}\right) \subseteq A d j_{G^{\prime}}(v)$ and assume $v^{\prime} \neq v$. As clarified, then $w^{\prime} \notin$ $\operatorname{Adj}_{G^{\prime}}\left(v^{\prime}\right)$. Hence $\operatorname{Adj}_{G^{\prime}}\left(v^{\prime}\right) \subseteq\left(\operatorname{Adj}_{G^{\prime}}(v) \backslash\left\{w^{\prime}\right\}\right)$. As long as $v^{\prime} \neq v$ then $\operatorname{Adj}_{G}\left(v^{\prime}\right)=\operatorname{Adj}_{G^{\prime}}\left(v^{\prime}\right)$. Remark that by definition $\operatorname{Adj}{ }_{G}(v)=\left(\operatorname{Adj} G_{G^{\prime}}(v) \backslash\left\{w^{\prime}\right\}\right) \cup$ $\{w\}$. By these we imply $\operatorname{Adj}_{G}\left(v^{\prime}\right) \subseteq \operatorname{Adj}_{G}(v)$. Now, by G contact n-graph, it follows that $v^{\prime}=v$ which is a contradiction to our assumption.

Let $G=(W, V, E)$ be a contact n-graph. As per Observation 4.2.3, let the resulting contact n-graph after applying once Procedure Step 4.1 on G be $G^{\prime}=\left(W^{\prime}, V, E^{\prime}\right)$. Let Procedure Step 4.1 has used terminal vertex w_{0} from the chosen circuit in G and the added new one be w_{0}^{\prime}. Finally, let the used connector vertex be v. To rewrite it exactly as per above in such a case we have:

- $W^{\prime}=W \cup\left\{w_{0}^{\prime}\right\}$
- V is the same in both G and G^{\prime}
- $E^{\prime}=\left(E \backslash\left\{\left(v, w_{0}\right)\right\}\right) \cup\left\{\left(v, w_{0}^{\prime}\right)\right\}$

As per Claim 2.3.3. consider the induced by G and G^{\prime} contact n-frames \mathcal{F} and \mathcal{F}^{\prime} respectively. Denote them by:

- $\mathcal{F}=<W, R_{2}, \ldots, R_{n}, \ldots>$
- $\mathcal{F}^{\prime}=<W^{\prime}, R_{2}^{\prime}, \ldots, R_{n}^{\prime}, \ldots>$

Observation 4.2.4. Let $f: W^{\prime} \rightarrow W$ be defined as:

$$
f(w)= \begin{cases}w & w \neq w_{0}^{\prime} \\ w_{0} & w=w_{0}^{\prime}\end{cases}
$$

Then f is p-morphism from \mathcal{F}^{\prime} onto \mathcal{F}.
Proof.
Forward condition:
Let $\left.<w_{1}, \ldots, w_{k}\right\rangle \in R_{k}^{\prime}$. Then by Definition 2.3.2(r) either $w_{1}=\ldots=w_{k}$ or exists $v^{\prime} \in V$ such that $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq A d j_{G^{\prime}}\left(v^{\prime}\right)$.

Should $w_{1}=\ldots=w_{k}$ then, trivially, $f\left(w_{1}\right)=\ldots=f\left(w_{k}\right)$ hence, by Definition 2.3 .2 (r), we have $<f\left(w_{1}\right), \ldots, f\left(w_{k}\right)>\in R_{k}$.

Let $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \operatorname{Adj}_{G^{\prime}}\left(v^{\prime}\right)$.
If $v^{\prime} \neq v$ then, by definition, $\operatorname{Adj}_{G^{\prime}}\left(v^{\prime}\right)=\operatorname{Adj}_{G}\left(v^{\prime}\right)$. Furthermore, by definition of E^{\prime}, none of w_{1}, \ldots, w_{k} is w_{0}^{\prime}. Hence $f\left(w_{i}\right)=w_{i}$ for all $i, 1 \leq i \leq k$. It follows that $\left\{f\left(w_{1}\right), \ldots, f\left(w_{k}\right)\right\} \subseteq \operatorname{Adj} j_{G}\left(v^{\prime}\right)$ and by Definition 2.3.2 (r) $<f\left(w_{1}\right), \ldots, f\left(w_{k}\right)>\in R_{k}$.

Now let $v^{\prime}=v$. Remark that, by definition of $E^{\prime}, w_{0} \notin \operatorname{Adj}_{G^{\prime}}(v)$ hence $w_{0} \neq w_{i}$ for all $i, 1 \leq i \leq k$.

Consider $w_{i}, 1 \leq i \leq k$. Remark that by definition of E and E^{\prime} we conclude $\operatorname{Adj}_{G^{\prime}}(v) \backslash\left\{w_{0}^{\prime}\right\}=\operatorname{Adj}_{G}(v) \backslash\left\{w_{0}\right\}$. Then, if $w_{i} \neq w_{0}^{\prime}$, on one hand, $f\left(w_{i}\right)=w_{i}$ and, on the other, $w_{i} \in \operatorname{Adj}_{G}(v)$ thus $f\left(w_{i}\right) \in \operatorname{Adj} j_{G}(v)$. Otherwise, when $w_{i}=w_{0}^{\prime}$ then $f\left(w_{i}\right)=w_{0}$ but $w_{0} \in A d j_{G}(v)$ by the choice of v hence, again, $f\left(w_{i}\right) \in \operatorname{Adj} j_{G}(v)$. It follows that $\left\{f\left(w_{1}\right), \ldots, f\left(w_{k}\right)\right\} \subseteq \operatorname{Adj}_{G}(v)$ which by Definition 2.3 .2 (r) means $<f\left(w_{1}\right), \ldots, f\left(w_{k}\right)>\in R_{k}$.

Backward condition:
Let $\left\langle w_{1}, \ldots, w_{k}\right\rangle \in R_{k}$. Then by Definition 2.3.2(r) either $w_{1}=\ldots=w_{k}$ or exists $v^{\prime} \in V$ such that $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \operatorname{Adj}_{G}\left(v^{\prime}\right)$.

Should $w_{1}=\ldots=w_{k}$ then let $w \in W^{\prime}$ be such that $f(w)=w_{1}=\ldots=w_{k}$. Then, by Definition 2.3.2 (r) (in fact even by trivial reasons due to definition of contact n-frames $)<w, \ldots, w>\in R_{k}^{\prime}$.

Let $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq A d j_{G}\left(v^{\prime}\right)$.
If $v^{\prime} \neq v$ then, again, by definition, $A d j_{G}\left(v^{\prime}\right)=\operatorname{Adj}_{G^{\prime}}\left(v^{\prime}\right)$. Furthermore, by $w_{0}^{\prime} \notin W$, thus $w_{0}^{\prime} \notin\left\{w_{1}, \ldots, w_{k}\right\}$ we have $f\left(w_{i}\right)=w_{i}$ by definition of f. Now by $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \operatorname{Adj}_{G^{\prime}}\left(v^{\prime}\right)$ and Definition 2.3.2 (r) we conclude $<w_{1}, \ldots, w_{k}>\in R_{k}^{\prime}$.

Let $v^{\prime}=v$. By definition of E^{\prime} we have

$$
\begin{equation*}
\operatorname{Adj}_{G^{\prime}}(v)=\left(\operatorname{Adj}_{G}(v) \backslash\left\{w_{0}\right\}\right) \cup\left\{w_{0}^{\prime}\right\} \tag{1}
\end{equation*}
$$

Let $g: W \multimap W^{\prime}$ be defined as follows:

$$
g(w)= \begin{cases}w & w \neq w_{0} \\ w_{0}^{\prime} & w=w_{0}\end{cases}
$$

Clearly g is an injection. Furthermore, remark that $w_{0} \notin \operatorname{Range}(g)$. By equation 1 and definition of g it follows that:

$$
w \in A d j_{G}(v) \quad \text { iff } \quad g(w) \in A d j_{G^{\prime}}(v) \quad \text { for } w \in W
$$

Therefore $\left\{g\left(w_{1}\right), \ldots, g\left(w_{k}\right)\right\} \subseteq \operatorname{Adj}_{G^{\prime}}(v)$. Hence, by Definition 2.3.2 (r):

$$
<g\left(w_{1}\right), \ldots, g\left(w_{k}\right)>\in R_{k}^{\prime}
$$

We will demonstrate $<g\left(w_{1}\right), \ldots, g\left(w_{k}\right)>$ is a witness for which it is sufficient to show that for all $i, 1 \leq i \leq k$, then $f\left(g\left(w_{i}\right)\right)=w_{i}$. This follows immediately from the more general observation, namely:

$$
f(g(w))=w \quad \text { for } w \in W
$$

If $w \neq w_{0}$ then $g(w)=w . w \in W$ thus $w \neq w_{0}^{\prime}$. Therefore $f(g(w))=f(w)=w$. Otherwise, when $w=w_{0}$ then $g\left(w_{0}\right)=w_{0}^{\prime}$ hence $f\left(g\left(w_{0}\right)\right)=f\left(w_{0}^{\prime}\right)=w_{0}$.

Observation 4.2.5. Procedure 4.1 applied on an arbitrary finite n-graph eventually finishes. Furthermore, the resulting graph is a finite acyclic n-graph.

Proof. By Observation 4.2.1 upon each application of Procedure Step 4.1 the number of circuits in the resulting graph strongly decreases. The input graph is finite thus it has finite number of circuits. Therefore Procedure 4.1 performs only finite number of steps.

Procedure 4.1 terminates only when there are no circuits left in the graph hence trivially the resulting graph is acyclic.

By applying Observation 4.2.2 inductively, eventually, the resulting graph is n-graph.

By definition of Procedure Step 4.1 at each step are being added finitely many new vertices, in particular exactly one. Just as a note, the number of edges is preserved. Procedure 4.1 completes in finitely many steps hence the resulting graph is finite.

Remark 4.2.1. Consider arbitrary finite contact n-graph. By Observation 4.2.5 Procedure 4.1 finishes and the resulting graph is acyclic n-graph. Then by inductively applying Observation 4.2.3 it follows that the resulting graph is contact n-graph.

Furthermore, remark that by Observation 2.2 .1 for arbitrary finite n-graph the result of Procedure 4.1 will again be contact n-graph.

The benefit of the former reasoning is in that by Observation 4.2.3 it demonstrates the n-graph is guaranteed contact within all the intermediate calls/substeps of Procedure Step 4.1.
Remark 4.2.2. Consider an arbitrary finite contact n-graph G. By Claim 2.3.3 let \mathcal{F} be the induced by G contact n-frame. As per Observation 4.2 .5 let G^{\prime} be the resulting acyclic n-graph upon applying Procedure 4.1 on G. By Remark 4.2.1 G^{\prime} is a contact n-graph. Let then, again as per Claim 2.3.3, \mathcal{F}^{\prime} be the induced by G^{\prime} contact n-frame.

Remark 4.2 .2 is the ground for stating the following:
Claim 4.2.1. \mathcal{F} is a p-morphic image of \mathcal{F}^{\prime}.
Proof. By Observation 4.2.5 Procedure 4.1 eventually finishes hence Procedure Step 4.1 is performed finitely many times. Let $G_{0}, G_{1}, \ldots, G_{r}$ be the intermediate graphs being result of Procedure Step 4.1 within the finite run of Procedure 4.1 such that:

- $G_{0}=G$
- $G_{r}=G^{\prime}$
- G_{i+1} is the result of Procedure Step 4.1 on $G_{i}, 0 \leq i \leq r-1$

By Observation 4.2.3 G_{i} is a contact n-graph for each $i, 0 \leq i \leq r$. As per Claim 2.3.3 consider $\mathcal{F}_{0}, \ldots, \mathcal{F}_{r}$ be the induced contact n-frames by G_{0}, \ldots, G_{r} respectively, that is:

- $G_{0} \longrightarrow \mathcal{F}_{0}, \ldots, G_{r} \longrightarrow \mathcal{F}_{r}$
- $\mathcal{F}=\mathcal{F}_{0}$
- $\mathcal{F}^{\prime}=\mathcal{F}_{r}$

By Observation 4.2.4 \mathcal{F}_{i} is a p-morphic image of \mathcal{F}_{i+1} for $0 \leq i \leq r-1$. Denote by f_{i+1} an arbitrary p-morphism from \mathcal{F}_{i+1} onto \mathcal{F}_{i}, for example the one as
per Observation 4.2.4. Composition of p-morphisms is a p-morphism therefore, eventually, \mathcal{F}_{0} is a p-morphic image of \mathcal{F}_{r} by the p-morphism:

$$
f=f_{r} \circ f_{r-1} \circ \ldots \circ f_{1}
$$

Given is n-graph G. Let, again, G^{\prime} be the result of applying once Procedure Step 4.1 on G.

Observation 4.2.6. If G is connected graph, then also is G^{\prime}.
Proof. As formerly, denote $G=(W, V, E)$ and $G^{\prime}=\left(W^{\prime}, V, E^{\prime}\right)$ such that:

- $W^{\prime}=W \cup\left\{w_{0}^{\prime}\right\}$
- V is the same in both G and G^{\prime}
- $E^{\prime}=\left(E \backslash\left\{\left(v, w_{0}\right)\right\}\right) \cup\left\{\left(v, w_{0}^{\prime}\right)\right\}$
where v, w_{0} and w_{0}^{\prime} are the choice of vertices as per Procedure Step 4.1.
Consider the intermediate graph $G^{\prime \prime}=\left(W, V, E^{\prime \prime}\right)$ such that:
- W and V are the same in G and $G^{\prime \prime}$
- $E^{\prime \prime}=E \backslash\left\{\left(v, w_{0}\right)\right\}$

Assume $G^{\prime \prime}$ be not connected. Then consider component $\left(W^{\prime \prime} \cup V^{\prime \prime}\right)$ of $G^{\prime \prime}$, where $W^{\prime \prime} \subseteq W$ and $V^{\prime \prime} \subseteq V$. Consider the partitioning $\left(W^{\prime \prime} \cup V^{\prime \prime}\right)$ and $(W \cup V) \backslash\left(W^{\prime \prime} \cup V^{\prime \prime}\right)$ in $G^{\prime \prime}$. Remark that if there is an edge in G connecting vertices from both partitions other than $\left(v, w_{0}\right)$ then this edge is also in $G^{\prime \prime}$ which is a contradiction. Nevertheless, by G connected, follows that there is an edge in G with vertices from both partitions. Therefore this edge certainly is $\left(v, w_{0}\right)$ as the only possible. This means vertices v and w_{0} are in different partitions with respect to the chosen partitioning. Recall that by the choice of v and w_{0} in Procedure Step 4.1 there is a circuit in G which contains the edge $\left(v, w_{0}\right)$. All edges from that circuit but $\left(v, w_{0}\right)$ are in $G^{\prime \prime}$. Therefore there is a path in $G^{\prime \prime}$ connecting v and w_{0}. This is a contradiction because ($W^{\prime \prime} \cup V^{\prime \prime}$) is a component in $G^{\prime \prime}$.

Now, with respect to $G^{\prime \prime}$, for G^{\prime} we have:

- $W^{\prime}=W \cup\left\{w_{0}^{\prime}\right\}$
- $E^{\prime}=E^{\prime \prime} \cup\left\{\left(v, w_{0}^{\prime}\right)\right\}$

By this and $G^{\prime \prime}$ connected we imply G^{\prime} is also connected.

Observation 4.2.7. Upon applying Procedure 4.1 on a finite connected n-graph the resulting n-graph is also connected.

Proof. By Observation 4.2.5 Procedure 4.1 finishes in finitely many steps and the result is an n-graph. Then, by applying Observation 4.2.6. inductively, we imply the resulting n-graph is also connected.

Let $G=(W, V, E)$ be an arbitrary contact n-graph and, again, $G^{\prime}=\left(W^{\prime}, V, E^{\prime}\right)$, defined as above, be the result of applying once Procedure Step 4.1 on G.

Observation 4.2.8. G^{\prime} is a contact n-graph for the same n as for G.
Proof. G^{\prime} is a contact n-graph by Observation 4.2.3. By the equation $E^{\prime}=$ $\left(E \backslash\left\{\left(v, w_{0}\right)\right\}\right) \cup\left\{\left(v, w_{0}^{\prime}\right)\right\}$ it is obvious that the degree of all connector vertices of G^{\prime} is preserved exactly the same as of G.

Observation 4.2.9. Upon applying Procedure 4.1 on a finite contact n-graph then the result is a finite contact n-graph for the same n as for the originating contact n-graph.

Proof. By Observation 4.2.5 Procedure 4.1 finishes in finitely many steps and the resulting graph is finite. Furthermore, by Remark 4.2.1 that graph is a contact n-graph. Applying Observation 4.2 .8 inductively we imply that the resulting contact n-graph is n-graph for the same n as the originating one.

$5 n$-ary contact axioms

Following we define the axioms of the (logic of the) n-ary contact. In the later sections we will prove those axioms being sufficient for axiomatising particular classes of Boolean frames, namely, those defined on subalgebras of the Boolean algebras of the polytopes or the regular closed sets of \mathbb{R}^{m} (see Section 1.6.2 and Section 1.6.4 and having as interpretation of the relation symbols the standard contact semantics. Here the validity of the axioms will be studied from contact n-frames perspective.

5.1 Axioms of the n-ary contact

(c1) $(\rho(P)=n, n \geq 0, \sigma: n \rightarrow n)$

$$
P\left(x_{1}, \ldots, x_{n}\right) \Longrightarrow P\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

(c2) $(\rho(P)=n+1, \rho(Q)=n, n \geq 0)$

$$
P\left(x_{1}, x_{1}, x_{2} \ldots, x_{n}\right) \Longleftrightarrow Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

(c3) $(\rho(P)=2)$

$$
\neg(x \equiv 0) \Longrightarrow P(x, x)
$$

(c4) $(\rho(P)=2)$

$$
\neg(x \equiv 0) \wedge \neg(-x \equiv 0) \Longrightarrow P(x,-x)
$$

PRC1 $(\rho(P)=3)$

$$
P\left(x_{1}, x_{2}, x_{3}\right) \Longrightarrow \neg\left(x_{1} \cap x_{2} \equiv 0\right) \vee \neg\left(x_{2} \cap x_{3} \equiv 0\right) \vee \neg\left(x_{1} \cap x_{3} \equiv 0\right)
$$

5.2 Validity of the axioms in the contact n-frames

Claim 5.2.1. Let \mathcal{F} be a Kripke frame in which are valid (c1), (c2) and (c3).
Then \mathcal{F} satisfies conditions $(\boldsymbol{a}),(\boldsymbol{b})$ and (\boldsymbol{c}) of Definition 2.1.1 of a contact n-frame.

Proof. Let $\mathcal{F}=<S, I>$. We will demonstrate each of the conditions (a), (b) and (c) of Definition 2.1.1.
(a):

Let $<s_{1}, \ldots, s_{k}>\in I(P)$ and consider valuation:

$$
\mathcal{V}(x)= \begin{cases}\left\{s_{i}\right\} & x=x_{i} \tag{2}\\ \text { arbitrary } & x \notin\left\{x_{1}, \ldots, x_{k}\right\}\end{cases}
$$

By $\mathcal{F} \Vdash(\mathbf{c} 1)$ then we imply $<s_{\sigma(1)}, \ldots, s_{\sigma(k)}>\in I(P)$.
(b):

Consider relation symbols P and Q such that $\rho(P)=k+1$ and $\rho(Q)=k$. Let $<s_{1}, s_{1}, \ldots, s_{k}>\in I(P)$. Take again valuation 2). By $\mathcal{F} \Vdash(\mathbf{c} 2)$ and $<\mathcal{F}, \mathcal{V}>\Vdash$ $P\left(x_{1}, x_{1}, \ldots, x_{k}\right)$ then $\left.<\mathcal{F}, \mathcal{V}\right\rangle \Vdash Q\left(x_{1}, \ldots, x_{k}\right)$ thus $<s_{1}, \ldots, s_{k}>\in I(Q)$.

The opposite direction is in analogy.
(c):

Consider arbitrary $s \in S$ and relation symbol P such that $\rho(P)=2$. Let:

$$
\mathcal{V}(y)= \begin{cases}\{s\} & x=y \\ \text { arbitrary } & x \neq y\end{cases}
$$

By $\mathcal{F} \Vdash(\mathbf{c} 3)$ and $\mathcal{V}(x) \neq \emptyset$ it follows:

$$
<\mathcal{F}, \mathcal{V}>\Vdash P(x, x)
$$

Therefore $\langle s, s\rangle \in I(P)$.

Claim 5.2.2. Let be given a Kripke frame satisfying conditions (a), (b) and (c) of Definition 2.1.1 of a contact n-frame. If the Kripke frame is finite, then it is a contact n-frame (for appropriate n).

Proof. Let $\mathcal{F}=<W, I\rangle$, where $\overline{\bar{W}}=s<\omega$. By Definition 2.1.1 it remains to show \mathcal{F} satisfies conditions (d).

Let n be the greatest with the property that there are distinct $w_{1}, \ldots, w_{n} \in$ W such that $\left\langle w_{1}, \ldots, w_{n}\right\rangle \in R_{n}$ for \mathcal{F}. Such n exists as by Remark 2.1.1 with sure $n \geq 1$ and by the finiteness of $W n \leq s$. Therefore, by definition, this n satisfies (d.1).

Let $<w_{1}, \ldots, w_{k}>\in R_{k}$. If $k \leq n$ then apparently $\overline{\overline{\left\{w_{1}, \ldots, w_{k}\right\}}} \leq n$. Consider $k>n$ and assume $\overline{\overline{\left\{w_{1}, \ldots, w_{k}\right\}}}>n$. Take $n+1$ distinct elements from $\left\{w_{1}, \ldots, w_{k}\right\}$. Without loss of generality consider them w_{1}, \ldots, w_{n+1}. Then by (a) for \mathcal{F} we obtain $<\underbrace{w_{1}, \ldots, w_{1}}_{k-(n+1)}, w_{1}, \ldots, w_{n+1}>\in R_{k}$. Hence, by (b) applied $k-(n+1)$ times, we imply that $<w_{1}, \ldots, w_{n+1}>\in R_{n+1}$. This is a contradiction to the choice of n hence our assumption is wrong, by which (d.2) is satisfied.

Proposition 5.2.3. If (c1), (c2) and (c3) are valid in a finite Kripke frame then the latter is a contact n-frame.

Proof. By Claim 5.2.1 the Kripke frame satisfies conditions (a), (b) and (c) of Definition 2.1.1 of a contact n-frame. Then, by Claim 5.2.2, it is a contact n-frame.

6 Boolean frames and subframes. Finite Boolean algebras of regular closed sets of \mathbb{R}^{m}

In this section are discussed some properties of Boolean frames and intended Boolean algebras which play an essential role when considering the completeness features of the studied in the next section logic of n-ary contact.

6.1 Boolean subframes

Consider Boolean frames \mathcal{B} and \mathcal{B}_{0} :

$$
\begin{aligned}
\mathcal{B} & \left.=<A, 0_{A},-{ }_{A}, \cup_{A}, I\right\rangle \\
\mathcal{B}_{0} & \left.=<A_{0}, 0_{A_{0}},--_{A_{0}}, \cup_{A_{0}}, I_{0}\right\rangle
\end{aligned}
$$

Definition 6.1.1. A Boolean frame \mathcal{B}_{0} is called a Boolean subframe of \mathcal{B}, denoted by $\mathcal{B}_{0} \subseteq \mathcal{B}$, if:

- $A_{0} \subseteq A$ and A_{0} is a non-degenerate Boolean algebra subalgebra of A
- For the n-ary relation symbol P and for every a_{1}, \ldots, a_{n} of A_{0} then it holds:

$$
<a_{1}, \ldots, a_{n}>\in I_{0}(P) \quad \text { iff } \quad<a_{1}, \ldots, a_{n}>\in I(P)
$$

Claim 6.1.1. Consider Boolean frames \mathcal{B}_{0} and \mathcal{B} such that \mathcal{B}_{0} is a subframe of \mathcal{B}. Let \mathcal{V}_{0} and \mathcal{V} be valuations on \mathcal{B}_{0} and \mathcal{B} respectively. The following are satisfied:
(i) For any Boolean term τ if $\mathcal{V}_{0}(x)=\mathcal{V}(x)$ for every x from $B V(\tau)$, then:

$$
\widetilde{\mathcal{V}_{0}}(\tau)=\widetilde{\mathcal{V}}(\tau)
$$

(ii) For any formula φ if $\mathcal{V}_{0}(x)=\mathcal{V}(x)$ for every x from $B V(\varphi)$, then:

$$
<\mathcal{B}_{0}, \mathcal{V}_{0}>\Vdash \varphi \quad \text { iff } \quad<\mathcal{B}, \mathcal{V}>\Vdash \varphi
$$

Proof. Denote:

$$
\begin{aligned}
\mathcal{B} & =<B, 0_{B},-{ }_{B}, \cup_{B}, I> \\
\mathcal{B}_{0} & =<B_{0}, 0_{B_{0}},-_{B_{0}}, \cup_{B_{0}}, I_{0}>
\end{aligned}
$$

(i):

The proof is by induction on the complexity of the Boolean term τ.
Trivially, $\widetilde{\mathcal{V}_{0}}(\tau)=\widetilde{\mathcal{V}}(\tau)$ when $\tau=x$ by definition. Furthermore, the case when $\tau=0$, then $\widetilde{\mathcal{V}_{0}}(\tau)=0_{B_{0}}=0_{B}=\widetilde{\mathcal{V}}(\tau)$.

Consider: $\tau=-\tau_{1}$.

$$
\widetilde{\mathcal{V}_{0}}(\tau)=\widetilde{\mathcal{V}_{0}}\left(-\tau_{1}\right)=-{ }_{B_{0}} \widetilde{\mathcal{V}_{0}}\left(\tau_{1}\right)
$$

By the inductive hypothesis $\widetilde{\mathcal{V}_{0}}\left(\tau_{1}\right)=\widetilde{\mathcal{V}}\left(\tau_{1}\right)$, hence, by B_{0} subalgebra of B :

$$
-{ }_{B_{0}} \widetilde{\mathcal{V}_{0}}\left(\tau_{1}\right)=-{ }_{B} \widetilde{\mathcal{V}}\left(\tau_{1}\right)=\widetilde{\mathcal{V}}(\tau)
$$

Consider: $\tau=\tau_{1} \cup \tau_{2}$.

$$
\widetilde{\mathcal{V}_{0}}(\tau)=\widetilde{\mathcal{V}_{0}}\left(\tau_{1} \cup \tau_{2}\right)=\widetilde{\mathcal{V}_{0}}\left(\tau_{1}\right) \cup_{B_{0}} \widetilde{\mathcal{V}_{0}}\left(\tau_{2}\right)
$$

By inductive hypothesis and B_{0} subalgebra of B it follows:

$$
\widetilde{\mathcal{V}_{0}}\left(\tau_{1}\right) \cup_{B_{0}} \widetilde{\mathcal{V}_{0}}\left(\tau_{2}\right)=\widetilde{\mathcal{V}}\left(\tau_{1}\right) \cup_{B} \widetilde{\mathcal{V}}\left(\tau_{2}\right)=\widetilde{\mathcal{V}}\left(\tau_{1} \cup \tau_{2}\right)=\widetilde{\mathcal{V}}(\tau)
$$

(ii):

The proof is by induction on the complexity of the formula φ.
The case $\varphi=\perp$ is trivial.
Consider: $\varphi=\left(\tau_{1} \equiv \tau_{2}\right)$

$$
<\mathcal{B}_{0}, \mathcal{V}_{0}>\Vdash\left(\tau_{1} \equiv \tau_{2}\right) \quad \text { iff } \quad \widetilde{\mathcal{V}_{0}}\left(\tau_{1}\right)=\widetilde{\mathcal{V}_{0}}\left(\tau_{2}\right)
$$

Then by (i):

$$
\text { iff } \quad \widetilde{\mathcal{V}}\left(\tau_{1}\right)=\widetilde{\mathcal{V}}\left(\tau_{2}\right) \quad \text { iff } \quad<\mathcal{B}, \mathcal{V}>\Vdash\left(\tau_{1} \equiv \tau_{2}\right)
$$

Consider: $\varphi=P\left(\tau_{1}, \ldots, \tau_{n}\right)$

$$
<\mathcal{B}_{0}, \mathcal{V}_{0}>\Vdash P\left(\tau_{1}, \ldots, \tau_{n}\right) \quad \text { iff } \quad<\widetilde{\mathcal{V}_{0}}\left(\tau_{1}\right), \ldots, \widetilde{\mathcal{V}_{0}}\left(\tau_{n}\right)>\in I_{0}(P)
$$

By $(i): \widetilde{\mathcal{V}_{0}}\left(\tau_{i}\right)=\widetilde{\mathcal{V}}\left(\tau_{i}\right)$ for $1 \leq i \leq n$. Then, by $\mathcal{B}_{0} \subseteq \mathcal{B}$:

$$
\text { iff }<\widetilde{\mathcal{V}}\left(\tau_{1}\right), \ldots, \widetilde{\mathcal{V}}\left(\tau_{n}\right)>\in I(P) \quad \text { iff } \quad<\mathcal{B}, \mathcal{V}>\Vdash P\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

The cases when $\varphi=\neg \varphi_{1}$ or $\varphi=\varphi_{1} \vee \varphi_{2}$ follow directly by the inductive hypothesis.

Claim 6.1.2. Every formula valid in a Boolean frame is also valid in all its subframes.

Proof. Consider Boolean frames \mathcal{B}_{0} and \mathcal{B} such that \mathcal{B}_{0} is a subframe of \mathcal{B} and let φ be valid in \mathcal{B}. Let \mathcal{V}_{0} be an arbitrary valuation on \mathcal{B}_{0}. By $\mathcal{B}_{0} \subseteq \mathcal{B}$ then \mathcal{V}_{0} is also a valuation on \mathcal{B}. Hence, by φ valid in \mathcal{B}, it follows that $\left\langle\mathcal{B}, \mathcal{V}_{0}\right\rangle \Vdash \varphi$. By Claim 6.1.1 we obtain $\left\langle\mathcal{B}_{0}, \mathcal{V}_{0}\right\rangle \Vdash \varphi$. \mathcal{V}_{0} was an arbitrary valuation on \mathcal{B}_{0} hence φ is valid in \mathcal{B}_{0}.

6.2 Finite Boolean algebras of polytopes or regular closed sets of \mathbb{R}^{m}

Definition 6.2.1. (BRC)

We say set W satisfies conditions (BRC) (for \mathbb{R}^{m}) if:
(i) Every element of W is a non-empty regular closed set of \mathbb{R}^{m}
(ii) $\cup W=\mathbb{R}^{m}$
(iii) For every $a, b \in W$, if $a \neq b$ then:

$$
\operatorname{Int}(a) \cap \operatorname{Int}(b)=\emptyset
$$

(iv) For every $a \in W$, for every $x \in a$ and for every open $o \ni x$ then:

$$
o \cap \operatorname{Int}(a) \neq \emptyset
$$

(v) W is finite

Remark. Sets satisfying (BRC) exist. Trivial example is $W=\left\{\mathbb{R}^{m}\right\}$.
Remark. (BRC) condition (ii) could be required for particular regular closed connected subset of \mathbb{R}^{m} instead of the whole \mathbb{R}^{m}.
Remark. Condition (iv) effectively is an implication of (i) as it is valid for any regular closed set of \mathbb{R}^{m}. We explicitly state this condition for convenience.

Claim 6.2.1. Consider a set W satisfying ($\boldsymbol{B R C}$). Then for every A and B subsets of W the following are satisfied:

- $\cup A \cup \cup B=\cup(A \cup B)$
- $C l(\operatorname{Int}(\cup A \cap \cup B))=\cup(A \cap B)$
- $C l\left(\mathbb{R}^{m} \backslash \cup A\right)=\cup(W \backslash A)$

Proof.

- $\cup A \cup \cup B=\cup(A \cup B)$

Trivially satisfied.

- $C l(\operatorname{Int}(\cup A \cap \cup B))=\cup(A \cap B)$

Consider an arbitrary $x \in \cup(A \cap B)$. Then there is $e \in(A \cap B)$ such that $x \in e$. Hence x is in $\cup A$ and in $\cup B$ thus $x \in(\cup A \cap \cup B)$. Therefore:

$$
\cup(A \cap B) \subseteq(\cup A \cap \cup B)
$$

By the monotonicity as per Section 1.6.1 we imply:

$$
C l(\operatorname{Int}(\cup(A \cap B))) \subseteq C l(\operatorname{Int}(\cup A \cap \cup B))
$$

W is satisfying (BRC) conditions, hence, every element of W is a regular closed set. Therefore $\cup(A \cap B)$ is a union of finitely many regular closed sets, hence, a regular closed set, therefore:

$$
\cup(A \cap B)=C l(\operatorname{Int}(\cup(A \cap B)))
$$

by which:

$$
\cup(A \cap B) \subseteq C l(\operatorname{Int}(\cup A \cap \cup B))
$$

To prove the other direction, first, we will show the following helpful observation:

$$
\begin{equation*}
\operatorname{Int}(\cup A \cap \cup B) \subseteq \cup(A \cap B) \tag{3}
\end{equation*}
$$

Before that will demonstrate:

$$
\begin{equation*}
\text { If } \quad a \in A \text { and } b \in B \text { and } y \in \operatorname{Int}(a) \quad \text { then } \quad \text { if } y \in b \text { then } a=b \tag{4}
\end{equation*}
$$

Assume $a \neq b$. By $y \in \operatorname{Int}(a)$ there is open $o \ni y$ such that $o \subseteq \operatorname{Int}(a)$. Then by $y \in b$ and by Definition 6.2.1 (iv) we imply $o \cap \operatorname{Int}(b) \neq \emptyset$. This gives $\operatorname{Int}(a) \cap \operatorname{Int}(b) \neq \emptyset$ which is a contradiction with Definition 6.2.1 (iii). Therefore $a=b$ which proves (4).

Now, for (3), let $z \in \operatorname{Int}(\cup A \cap \cup B)$. Then there is $a \in A$ such that $z \in a$. By $z \in \operatorname{Int}(\cup A \cap \cup B)$ there is an open $o \ni z$ such that $o \subseteq \operatorname{Int}(\cup A \cap \cup B)$. By Definition 6.2.1 (iv) $o \cap \operatorname{Int}(a) \neq \emptyset$. Let $y \in o \cap \operatorname{Int}(a)$. Hence by $o \subseteq$ $\operatorname{Int}(\cup A \cap \cup B)$ there is $b \in B$ such that $y \in b$. Applying proprietary statement 4 on a, b and y we imply $a=b$, hence, $a \in B$. This proves (3).

Now, by (3) and monotonicity as per Section 1.6.1 we have:

$$
C l(\operatorname{Int}(\cup A \cap \cup B)) \subseteq C l(\cup(A \cap B))
$$

$(A \cap B)$ is a finite set of regular closed sets, thus, a set of closed sets hence their union is a closed set. Then trivially:

$$
C l(\cup(A \cap B))=\cup(A \cap B)
$$

by which finally:

$$
C l(\operatorname{Int}(\cup A \cap \cup B)) \subseteq \cup(A \cap B)
$$

- $C l\left(\mathbb{R}^{m} \backslash \cup A\right)=\cup(W \backslash A)$

By (BRC) conditions: $\left(\mathbb{R}^{m} \backslash \cup A\right)=(\cup W \backslash \cup A)$. Remark that for every $x \in$ $(\cup W \backslash \cup A)$ we imply there is $b \in(W \backslash A)$ such that $x \in b$. Therefore $x \in \cup(W \backslash A)$, thus having:

$$
\left(\mathbb{R}^{m} \backslash \cup A\right) \subseteq \cup(W \backslash A)
$$

By (BRC) conditions $(W \backslash A)$ is a finite set of regular closed sets therefore $\cup(W \backslash$ A) is a regular closed set, in particular, it is a closed set then, by monotonicity as per Section 1.6.1 and the latter, subsequently:

$$
C l\left(\mathbb{R}^{m} \backslash \cup A\right) \subseteq C l(\cup(W \backslash A))=\cup(W \backslash A)
$$

For the other direction, first, remark that by definition of closure:

$$
C l\left(\mathbb{R}^{m} \backslash \cup A\right)=\mathbb{R}^{m} \backslash \operatorname{Int}\left(\mathbb{R}^{m} \backslash\left(\mathbb{R}^{m} \backslash \cup A\right)\right)=\mathbb{R}^{m} \backslash \operatorname{Int}(\cup A)
$$

Then we have to demonstrate:

$$
\cup(W \backslash A) \subseteq \mathbb{R}^{m} \backslash \operatorname{Int}(\cup A)
$$

Let $x \in \cup(W \backslash A)$. Hence there is $a \in W \backslash A$ such that $x \in a$.
Assume $a \cap \operatorname{Int}(\cup A) \neq \emptyset$. Take a witness $y \in a \cap \operatorname{Int}(\cup A)$. By $y \in \operatorname{Int}(\cup A)$ there is an open $o \ni y$ such that $o \subseteq \operatorname{Int}(\cup A)$. By Definition 6.2.1 (iv) we have $o \cap \operatorname{Int}(a) \neq \emptyset$. Take a witness z, hence, $z \in \operatorname{Int}(a) \cap \operatorname{Int}(\cup A)$. This means there is $b \in A$ such that $z \in b . \quad z \in \operatorname{Int}(a)$ thus there is an open $o^{\prime} \ni z$ such that $o^{\prime} \subseteq \operatorname{Int}(a)$. By Definition 6.2 .1 (iv) $o^{\prime} \cap \operatorname{Int}(b) \neq \emptyset$. This implies $\operatorname{Int}(a) \cap \operatorname{Int}(b) \neq \emptyset$. Applying Definition 6.2.1 (iii) the latter is possible only if $a=b$. This means $a \in W \backslash A$ and $a \in A$, which is a contradiction.

Therefore our assumption is wrong. Then, by $a \cap \operatorname{Int}(\cup A)=\emptyset$, we imply $x \notin \operatorname{Int}(\cup A)$. Thus $x \in \mathbb{R}^{m} \backslash \operatorname{Int}(\cup A)$.

Definition. For an arbitrary set S by $B_{R C}(S)$ denote:

$$
B_{R C}(S) \leftrightharpoons\{\cup A \mid A \in \mathcal{P}(S)\}
$$

Claim 6.2.2. The following statements hold:
(i) If a set W satisfies (BRC) conditions (Definition 6.2.1) then $B_{R C}(W)$ is a Boolean algebra subalgebra of the Boolean algebra of the regular closed sets of \mathbb{R}^{m}.
(ii) Furthermore, if in addition every element of W is a polytope of \mathbb{R}^{m} then $B_{R C}(W)$ is a Boolean algebra subalgebra of the Boolean algebra of the polytopes of \mathbb{R}^{m}.

Proof. Consider $\cup A \in B_{R C}(W)$, where $A \in \mathcal{P}(W)$. By definition every $a \in A$ is either a regular closed set of \mathbb{R}^{m} as per (i) or a polytope of \mathbb{R}^{m} as per (ii). Hence such one also is $\cup A$.

Consider the structure:

$$
B_{R C}=<B_{R C}(W),-R C, \cup_{R C}, \cap_{R C}>
$$

where $-{ }_{R C}, \cup_{R C}$ and $\cap_{R C}$ are as per Section 1.6.2. Then, by Claim 6.2.1, for arbitrary $\cup A$ and $\cup B$ from $B_{R C}(W)$, where A and B are elements of $\mathcal{P}(W)$ we have:

- $\cup A \cup_{R C} \cup B=\cup(A \cup B)$
- $\cup A \cap_{R C} \cup B=\cup(A \cap B)$
- ${ }^{-}{ }_{R C} \cup A=\cup(W \backslash A)$

By this we imply that $B_{R C}$ is closed under the operations of the Boolean algebra of either the regular closed sets for (i) or the polytopes for (ii) of \mathbb{R}^{m}. Therefore $B_{R C}$ is a Boolean algebra subalgebra of either the Boolean algebra of the regular closed sets of \mathbb{R}^{m} for (i) or the polytopes of \mathbb{R}^{m} for (ii).

Remark 6.2.1. Consider the Boolean algebra as per Claim 6.2.2 (either (i) or (ii)) $B_{R C}(W)$. Remark that as per Section 1.6.4

- The zero of the Boolean algebra is $0_{R C}$, namely, the empty set.
- The unit of the Boolean algebra is $1_{R C}$, namely, \mathbb{R}^{m}.

Definition. For an arbitrary set S consider the structure:

$$
\mathcal{B}_{R C}(S)=<B_{R C}(S), 0_{B_{R C}},-_{B_{R C}}, \cup_{B_{R C}}, I_{R C}>
$$

defined as follows:

- $0_{B_{R C}}=\emptyset$
- $-_{B_{R C}}(\cup A)=\cup(S \backslash A)$
- $\cup A \cup_{B_{R C}} \cup B=\cup(A \cup B)$
- For the n-ary relation symbol P :

$$
<a_{1}, \ldots, a_{n}>\in I_{R C}(P) \quad \text { iff } \quad a_{1} \cap \ldots \cap a_{n} \neq \emptyset
$$

Claim 6.2.3. If a set W satisfies ($\boldsymbol{B R C}$) conditions (Definition 6.2.1) then $\mathcal{B}_{R C}(W)$ is a Boolean frame.

Proof. By Claim 6.2.2 and Remark 6.2.1 then $B_{R C}(W)$ is a Boolean algebra subalgebra of the Boolean algebra of either the polytopes (should all elements of W be polytopes) or the regular closed sets of \mathbb{R}^{m}. Furthermore, remark that $B_{R C}(W)$ is a non-degenerate algebra iff $W \neq \emptyset$. The latter is obtained by (BRC) Definition 6.2.1 (ii). It remains to show the interpretation $I_{R C}$ satisfies the conditions for a Boolean frame.

Let $<a_{1}, \ldots, a_{n}>\in I_{R C}(P)$. Then, by definition, $a_{1} \cap \ldots \cap a_{n} \neq \emptyset$. Hence every $a_{i} \neq \emptyset=0_{B_{R C}}$.

Furthermore, we have the following:

$$
\begin{array}{ll}
& <a_{1}, \ldots, a_{i}^{\prime} \cup a_{i}^{\prime \prime}, \ldots, a_{n}>\in I_{R C}(P) \\
\text { iff } & a_{1} \cap \ldots \cap\left(a_{i}^{\prime} \cup a_{i}^{\prime \prime}\right) \cap \ldots \cap a_{n} \neq \emptyset \\
\text { iff } & a_{1} \cap \ldots \cap a_{i}^{\prime} \cap \ldots \cap a_{n} \neq \emptyset \quad \text { or } \quad a_{1} \cap \ldots \cap a_{i}^{\prime \prime} \cap \ldots \cap a_{n} \neq \emptyset \\
\text { iff } & <a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{n}>\in I_{R C}(P) \quad \text { or } \quad<a_{1}, \ldots, a_{i}^{\prime \prime}, \ldots, a_{n}>\in I_{R C}(P)
\end{array}
$$

6.3 Associations between finite Boolean and Kripke frames

Claim 6.3.1. If \mathcal{B}_{0} is a finite Boolean frame then it exists a finite Kripke frame \mathcal{F} such that:

$$
B(\mathcal{F}) \cong \mathcal{B}_{0}
$$

Proof. Denote:

$$
\mathcal{B}_{0}=<B_{0}, 0_{B_{0}},-_{B_{0}}, \cup_{B_{0}}, I_{0}>
$$

The Boolean algebra B_{0} is finite then it is atomic. Then denote by W the set of all the atoms of B_{0}. Furthermore, as per normal, consider the ordering relation:

$$
a \leq_{B_{0}} b \leftrightharpoons a \cup_{B_{0}} b=b \quad \text { (or equivalently: } a \cap_{B_{0}} b=a \text {) }
$$

Consider the structure:

$$
\mathcal{F}=\langle W, I\rangle
$$

where for any n-ary relation symbol P and a_{1}, \ldots, a_{n} from W is satisfied:

$$
<a_{1}, \ldots, a_{n}>\in I(P) \quad \text { iff } \quad<a_{1}, \ldots, a_{n}>\in I_{0}(P)
$$

Remark that \mathcal{F} is finite Kripke frame. Denote the Boolean frame over \mathcal{F} (as per Section 1.3 .3 equivalently [1] Section 4, "Correspondence") defined as:

$$
B(\mathcal{F})=<\mathcal{P}(W), \emptyset, \backslash_{W}, \cup, I_{B}>
$$

where (recall by definition):

- $<\mathcal{P}(W), \emptyset, \backslash_{W}, \cup>$ is the Boolean algebra of all subsets of $W\left(\backslash_{W}\right.$ is the set theoretical difference with respect to the set W).
- For any $A^{1}, \ldots, A^{n} \in \mathcal{P}(W)$:

$$
<A^{1}, \ldots, A^{n}>\in I_{B}(P)
$$

iff
exists $a_{1} \in A^{1}, \ldots$, exists $a_{n} \in A^{n}$ such that $<a_{1}, \ldots, a_{n}>\in I(P)$
Consider $f: \mathcal{P}(W) \rightarrow B_{0}$ defined as:

$$
f(A) \leftrightharpoons \cup_{B_{0}} A
$$

Remark that by W finite then f is well defined.
Denote:

$$
A_{b}=\left\{a \in W \mid a \leq_{B_{0}} b\right\}
$$

Observation:

$$
\begin{equation*}
b=\cup_{B_{0}} A_{b} \tag{5}
\end{equation*}
$$

Proof of the observation:
By definition of A_{b} we have $\cup_{B_{0}} A_{b} \leq_{B_{0}} b$. Let $b_{0}=\cup_{B_{0}} A_{b}$ and assume $b \neq b_{0}$. Then, by $b_{0} \leq_{B_{0}} b$, we imply $b \not \leq \mathbb{B}_{0} b_{0}$. Hence $b \cap_{B_{0}}\left(-B_{B_{0}} b_{0}\right) \neq 0_{B_{0}} . B_{0}$ is atomic Boolean algebra then there is $a \in W$ such that $a \leq_{B_{0}} b \cup_{B_{0}}\left(-{ }_{B_{0}} b_{0}\right)$. Then, on one hand, this means $a \leq_{B_{0}} b$. It follows then $a \in A_{b}$, by which we imply $a \leq_{B_{0}} b_{0}$. On the other hand, $a \leq_{B_{0}}-B_{B_{0}} b_{0}$ and this is a contradiction because by a atom then $a \neq 0_{B_{0}}$. This proves (5).

- f is surjection.

For any $b \in B_{0}$ applying (5): $b=\cup_{B_{0}} A_{b}=f\left(A_{b}\right)$.

- f is injection.

Let $A^{\prime}, A^{\prime \prime} \in \mathcal{P}(W)$ and $A^{\prime} \neq A^{\prime \prime}$. Without loss of generality let $a \in A^{\prime}$ and $a \notin A^{\prime \prime}$. Assume $f\left(A^{\prime}\right)=f\left(A^{\prime \prime}\right) . a \in A^{\prime}$ then $a \leq_{B_{0}}\left(\cup_{B_{0}} A^{\prime}\right) . f\left(A^{\prime}\right)=f\left(A^{\prime \prime}\right)$, consequently $a \leq_{B_{0}}\left(\cup_{B_{0}} A^{\prime \prime}\right)$. $a \notin A^{\prime \prime}$ and a is atom, hence, for every $b \in A^{\prime \prime}$ we have $a \cap_{B_{0}} b=0_{B_{0}}$ because $a \neq b$ and b is also an atom. Considering $a \leq_{B_{0}}\left(\cup_{B_{0}} A^{\prime \prime}\right):$

$$
a=a \cap_{B_{0}}\left(\cup_{B_{0}} A^{\prime \prime}\right)=\cup_{b \in A^{\prime \prime}}(\underbrace{a \cap_{B_{0}} b}_{=0_{B_{0}}})=0_{B_{0}}
$$

This is a contradiction with a atom. Therefore $f\left(A^{\prime}\right) \neq f\left(A^{\prime \prime}\right)$.
Finally we obtained that f is bijection.

- f is Boolean isomorphism.
- Will show: $f(W \backslash A)=-{ }_{B_{0}} f(A)$

Let $b=f(W \backslash A)=\cup_{B_{0}}(W \backslash A)$. By (5) and f bijection follows: $W \backslash A=A_{b}$. Consider $A_{\left(-B_{0} b\right)}$.
If $a \in A_{b}$ then $a \leq_{B_{0}} b$, thus $a \not \mathbb{Z}_{B_{0}}\left(-{ }_{B_{0}} b\right)$, otherwise $a=0_{B_{0}}$ which contradicts with a atom. By the latter $a \notin A_{\left({ }_{B_{0}} b\right)}$. On the other hand, if $a \notin A_{b}$ then $a \not \leq_{B_{0}} b$. By a atom we imply $a \leq_{B_{0}}\left(-_{B_{0}} b\right)$ by which $a \in A_{\left(-B_{0} b\right)}$.

In detail, to show the implication $a \leq_{B_{0}}\left(-B_{0} b\right)$, assume $a \cap_{B_{0}} b \neq 0_{B_{0}}$. Then, by $\left(a \cap_{B_{0}} b\right) \leq_{B_{0}} a$ and a atom it follows $a \cap_{B_{0}} b=a$. This is a contradiction with $a \not \mathbb{E}_{B_{0}} b$. Hence $a \cap_{B_{0}} b=0_{B_{0}}$ by which we obtain what we wanted, namely: $a \leq_{B_{0}}\left(-{ }_{B_{0}} b\right)$.
Finally, for every $a \in W$:

$$
a \notin A_{b} \quad \text { iff } \quad a \in A_{\left(-B_{0} b\right)}
$$

This means:

$$
A_{-_{B_{0}} b}=W \backslash A_{b}=W \backslash(W \backslash A)=A
$$

Now, by (5) trivially we imply:

$$
f(W \backslash A)=b=-{B_{0}}\left(-{B_{0}}_{0} b\right)=-{B_{0}}\left(\cup_{B_{0}} A_{\left(-B_{0} b\right)}\right)=-{ }_{B_{0}} f\left(A_{\left(-B_{0} b\right)}\right)=-{ }_{B_{0}} f(A)
$$

- Will show: $f\left(A^{\prime} \cup A^{\prime \prime}\right)=f\left(A^{\prime}\right) \cup_{B_{0}} f\left(A^{\prime \prime}\right)$

By (5) we have:

$$
f\left(A^{\prime}\right)=\cup_{B_{0}} A^{\prime} \leq_{B_{0}} \cup_{B_{0}}\left(A^{\prime} \cup A^{\prime \prime}\right)=f\left(A^{\prime} \cup A^{\prime \prime}\right)
$$

The same for $f\left(A^{\prime \prime}\right)$, therefore:

$$
\left(f\left(A^{\prime}\right) \cup_{B_{0}} f\left(A^{\prime \prime}\right)\right) \leq_{B_{0}} f\left(A^{\prime} \cup A^{\prime \prime}\right)
$$

For the other direction, let $a \leq_{B_{0}} f\left(A^{\prime} \cup A^{\prime \prime}\right)$, where a is atom. Then $a \leq_{B_{0}} \cup_{B_{0}}\left(A^{\prime} \cup A^{\prime \prime}\right)$.

Assume that $a \notin\left(A^{\prime} \cup A^{\prime \prime}\right)$. This means $a \neq b$ for every $b \in\left(A^{\prime} \cup A^{\prime \prime}\right)$. By $\left(a \cap_{B_{0}} b\right) \leq_{B_{0}} a$ and a atom then $a \cap_{B_{0}} b=0_{B_{0}}$ or $a \cap_{B_{0}} b=a$. The latter means $a \leq_{B_{0}} b$ which by b atom and $a \neq 0_{B_{0}}$ follows that $a=b$ which is a contradiction. Therefore $a \cap_{B_{0}} b=0_{B_{0}}$ for every $b \in\left(A^{\prime} \cup A^{\prime \prime}\right)$. Then:

$$
a=a \cap_{B_{0}}\left(\cup_{B_{0}}\left(A^{\prime} \cup A^{\prime \prime}\right)\right)=\underset{b \in\left(A^{\prime} \cup A^{\prime \prime}\right)}{\cup_{B_{0}}}(\underbrace{a \cap_{B_{0}} b}_{=0_{B_{0}}})=0_{B_{0}}
$$

This is a contradiction. Therefore $a \in\left(A^{\prime} \cup A^{\prime \prime}\right)$. Then $a \in A^{\prime}$ or $a \in A^{\prime \prime}$, by which $a \leq_{B_{0}} f\left(A^{\prime}\right)$ or $a \leq_{B_{0}} f\left(A^{\prime \prime}\right)$, hence $a \leq_{B_{0}}\left(f\left(A^{\prime}\right) \cup_{B_{0}} f\left(A^{\prime \prime}\right)\right)$. Now by this and (5):

$$
f\left(A^{\prime} \cup A^{\prime \prime}\right)=\cup_{B_{0}} A_{f\left(A^{\prime} \cup A^{\prime \prime}\right)} \leq_{B_{0}}\left(f\left(A^{\prime}\right) \cup_{B_{0}} f\left(A^{\prime \prime}\right)\right)
$$

- f is isomorphism between Boolean frames, namely:

$$
<A^{1}, \ldots, A^{n}>\in I_{B}(P) \quad \text { iff } \quad<f\left(A^{1}\right), \ldots, f\left(A^{n}\right)>\in I_{0}(P)
$$

Let $<A^{1}, \ldots, A^{n}>\in I_{B}(P)$. Then exists $a_{1} \in A^{1}, \ldots$, exists $a_{n} \in A^{n}$ such that $\left.<a_{1}, \ldots, a_{n}\right\rangle \in I(P)$ hence, by definition, $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in I_{0}(P)$. By \mathcal{B}_{0} Boolean frame we imply $<\cup_{B_{0}} A^{1}, \ldots, \cup_{B_{0}} A^{n}>\in I_{0}(P)$.

Now, let $<\cup_{B_{0}} A^{1}, \ldots, \cup_{B_{0}} A^{n}>\in I_{0}(P)$. By \mathcal{B}_{0} Boolean frame and finite then for some $a_{1} \in A^{1}, \ldots$, for some $a^{n} \in A^{n}$ we have $<a_{1}, \ldots, a_{n}>\in I_{0}(P)$. For any $i, 1 \leq i \leq n, A^{i} \subseteq W$ then, by definition, $<a_{1}, \ldots, a_{n}>\in I(P)$ by which $<A^{1}, \ldots, A^{n}>\in I_{B}(P)$.

Claim 6.3.2. Let the set W satisfy (BRC) conditions (Definition 6.2.1) and let $\mathcal{F}=\langle W, I\rangle$ be a Kripke frame such that the interpretation I interprets the n-ary relation symbol P with the standard contact relation \mathcal{C}_{n}, namely:

$$
<a_{1}, \ldots, a_{n}>\in I(P) \quad \text { iff } \quad a_{1} \cap \ldots \cap a_{n} \neq \emptyset
$$

Then:

$$
\mathcal{B}_{R C}(W) \cong B(\mathcal{F})
$$

Proof. First, remark that by Claim 6.2.3 $\mathcal{B}_{R C}(\mathrm{~W})$ is a Boolean frame.
Denote $B(\mathcal{F})$ as in the proof of Claim 6.3.1.

$$
B(\mathcal{F})=<\mathcal{P}(W), \emptyset, \backslash_{W}, \cup, I_{B}>
$$

Consider $f: \mathcal{P}(W) \rightarrow B_{R C}(W)$ defined as:

$$
f(A) \leftrightharpoons \cup A
$$

Remark that by definition of $B_{R C}(W) f$ is well defined.

- f is surjection.

By definition of $B_{R C}(W) f$ is onto.

- f is injection.

Let $A, B \in \mathcal{P}(W)$ and $A \neq B$. Without loss of generality let $a \in A$ and $a \notin B$. Assume $f(A)=f(B)$, meaning $\cup A=\cup B . a \in A$ then $a \subseteq \cup A$ hence $\operatorname{Int}(a) \subseteq \operatorname{Int}(\cup A)$. By Definition 6.2.1 (i) and (iv) Int (a) is non-empty, thus, consider arbitrary $x \in \operatorname{Int}(a)$. Then there is open $o \ni x$ such that $o \subseteq \operatorname{Int}(a)$. $x \in \operatorname{Int}(a)$ then $x \in \cup A . \cup A=\cup B$ then there is $b \in B$ such that $x \in b$. By Definition 6.2.1 (iv) $o \cap \operatorname{Int}(b) \neq \emptyset$. Therefore $\operatorname{Int}(a) \cap \operatorname{Int}(b) \neq \emptyset$. By Definition 6.2.1 (iii) it follows that $a=b$ thus $a \in B$, which is a contradiction. Our assumption is wrong.

- f is Boolean isomorphism.

By Claim 6.2.3 the following are satisfied:

$$
\begin{aligned}
& f(W \backslash A)=\cup(W \backslash A)=-B_{R C}(\cup A)=-B_{R C} f(A) \\
& f(A \cup B)=\cup(A \cup B)=(\cup A) \cup_{B_{R C}}(\cup B)=f(A) \cup_{B_{R C}} f(B)
\end{aligned}
$$

- f is isomorphism between Boolean frames.

The following equivalences hold:

$$
<A_{1}, \ldots, A_{n}>\in I_{B}(P)
$$

iff
exists $a_{1} \in A_{1}, \ldots$, exists $a_{n} \in A_{n}$ such that $<a_{1}, \ldots, a_{n}>\in I(P)$
iff
exists $a_{1} \in A_{1}, \ldots$, exists $a_{n} \in A_{n}$ such that $a_{1} \cap \ldots \cap a_{n} \neq \emptyset$
iff
$\cup A_{1} \cap \ldots \cap \cup A_{n} \neq \emptyset$
iff
$<\cup A_{1}, \ldots, \cup A_{n}>\in I_{R C}(P)$

7 Boolean logic of n-ary contact. Completeness

In this section the formal system of the logic of n-ary contact is defined. The intended result is to show its completeness with respect to certain classes of Boolean frames, namely, those with interpretation the standard contact semantics and carrier subalgebra of the Boolean algebra of either the polytopes or the regular closed sets of \mathbb{R}^{m}.

7.1 Boolean semantics and axiomatisation

As mentioned, the n-ary contact logic semantically will be considered in certain classes of Boolean frames.

7.1.1 Boolean frames of n-ary contact

Consider \mathbb{R}^{m} for particular $m \geq 1$.

Definition 7.1.1.

- $\operatorname{PRC}\left(\mathbb{R}^{m}\right) \leftrightharpoons$ the class of Boolean frames with carrier (non-degenerate) subalgebra of the Boolean algebra of the polytopes of \mathbb{R}^{m} and interpretation of the relation symbols the standard contact relation
- $\mathbf{R C}\left(\mathbb{R}^{m}\right) \leftrightharpoons$ the class of Boolean frames with carrier (non-degenerate) subalgebra of the Boolean algebra of the regular closed sets of \mathbb{R}^{m} and interpretation of the relation symbols the standard contact relation

Apparently, every Boolean frame of $\mathbf{P R C}\left(\mathbb{R}^{m}\right)$ also is of $\mathbf{R C}\left(\mathbb{R}^{m}\right)$.
As an example, consider $\mathcal{B} \in \mathbf{P R C}\left(\mathbb{R}^{m}\right)$. Denote:

$$
\mathcal{B}=\left\langle B, 0_{B},-{ }_{B}, \cup_{B}, I\right\rangle
$$

Then:

- B is a (non-degenerate) subalgebra of the Boolean algebra of the polytopes of \mathbb{R}^{m}
- For the k-ary relation symbol P then $I(P)=\mathcal{C}_{k}$. In particular, this means:

$$
<a_{1}, \ldots, a_{k}>\in I(P) \quad \text { iff } \quad a_{1} \cap \ldots \cap a_{k} \neq \emptyset
$$

In analogy to the former, for the case when $\mathcal{B} \in \mathbf{R C}\left(\mathbb{R}^{m}\right)$ the difference is only that B is (non-degenerate) subalgebra of the Boolean algebra of the regular closed sets of \mathbb{R}^{m}.

The following claim proves that the definition of the classes $\mathbf{P R C}\left(\mathbb{R}^{m}\right)$ and $\mathbf{R C}\left(\mathbb{R}^{m}\right)$ is correct.

Claim 7.1.1. Consider:

$$
\mathcal{B}=\left\langle B, 0_{B},-_{B}, \cup_{B}, I\right\rangle
$$

where (for particular $m \geq 1$):

- B is a (non-degenerate) subalgebra of either the Boolean algebra of the polytopes of \mathbb{R}^{m} or the Boolean algebra of the regular closed sets of \mathbb{R}^{m}.
- For the k-ary relation symbol P :

$$
<a_{1}, \ldots, a_{k}>\in I(P) \quad \text { iff } \quad a_{1} \cap \ldots \cap a_{k} \neq \emptyset
$$

Then \mathcal{B} is a Boolean frame.
Proof. Let $\left.<a_{1}, \ldots, a_{k}\right\rangle \in I(P)$. By definition: $a_{1} \cap \ldots \cap a_{k} \neq \emptyset$. Therefore $a_{i} \neq \emptyset=0_{B}$ for any $i, 1 \leq i \leq k$.

Furthermore, by definition, the following equivalences hold:

```
<al, ,., (a, (\mp@subsup{\cup}{B}{\prime}\mp@subsup{a}{i}{\prime\prime}),\ldots,\mp@subsup{a}{k}{}>
iff
a}\cap\cap\ldots\cap(\mp@subsup{a}{i}{\prime}\mp@subsup{\cup}{B}{}\mp@subsup{a}{i}{\prime\prime})\cap\ldots\cap\mp@subsup{a}{k}{}\not=
iff
a}\cap\cap\ldots\cap(\mp@subsup{a}{i}{\prime}\cup\mp@subsup{a}{i}{\prime\prime})\cap\ldots\cap\mp@subsup{a}{k}{}\not=
iff
a}\cap\cap\ldots\cap\mp@subsup{a}{i}{\prime}\cap\ldots\cap\mp@subsup{a}{k}{}\not=\emptyset\quad\mathrm{ or }\quad\mp@subsup{a}{1}{}\cap\ldots\cap\mp@subsup{a}{i}{\prime\prime}\cap\cdots\cap\mp@subsup{a}{k}{}\not=
iff
<a, ,\ldots, ai},\ldots,\ldots,\mp@subsup{a}{k}{\prime}>\inI(P)\quad\mathrm{ or }<<\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{i}{\prime\prime},\ldots,\mp@subsup{a}{k}{}>\inI(P
```

As per Section 1.6.4 and Section 1.6.2 $P R C(m)$ and $R C(m)$ are Boolean algebras, namely, the Boolean algebra of the polytopes and the Boolean algebra of the regular closed sets of \mathbb{R}^{m} respectively.

Definition.

- Denote by $\mathcal{P} \mathcal{R C}\left(\mathbb{R}^{m}\right)$ the Boolean frame with a carrier the Boolean algebra of the polytopes of \mathbb{R}^{m}.
- Denote by $\mathcal{R C}\left(\mathbb{R}^{m}\right)$ the Boolean frame with a carrier the Boolean algebra of the regular closed sets of \mathbb{R}^{m}.

In particular:

$$
\begin{aligned}
\mathcal{P R C}\left(\mathbb{R}^{m}\right) & =\left\langle P R C\left(\mathbb{R}^{m}\right), 0_{R C},-{ }_{R C}, \cup_{R C}, I>\right. \\
\mathcal{R C}\left(\mathbb{R}^{m}\right) & =<R C\left(\mathbb{R}^{m}\right), 0_{R C},-_{R C}, \cup_{R C}, I>
\end{aligned}
$$

where I interprets the k-ary relation symbol P as the standard contact relation, namely, $I(P)=\mathcal{C}_{k}$.

Remark that, by Definition 7.1.1 it trivially follows that:

- $\mathcal{P R C}\left(\mathbb{R}^{m}\right)$ is from the class $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$.
- $\mathcal{R C}\left(\mathbb{R}^{m}\right)$ is from the class $\mathbf{R C}\left(\mathbb{R}^{m}\right)$.

Furthermore, by Definition 6.1.1 it directly follows that:

- Every Boolean frame \mathcal{B} of the class $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$ is a subframe of $\mathcal{P} \mathcal{R C}\left(\mathbb{R}^{m}\right)$.
- Every Boolean frame \mathcal{B} of the class $\mathbf{R C}\left(\mathbb{R}^{m}\right)$ is a subframe of $\mathcal{R C}\left(\mathbb{R}^{m}\right)$.

Then the following claim holds:
Claim 7.1.2. For an arbitrary formula φ of $L_{\mathcal{R}}$:
(i) φ is valid in the class $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$ iff φ is valid in the Boolean frame $\mathcal{P} \mathcal{R C}\left(\mathbb{R}^{m}\right)$
(ii) φ is valid in the class $\boldsymbol{R} \boldsymbol{C}\left(\mathbb{R}^{m}\right)$ iff φ is valid in the Boolean frame $\mathcal{R C}\left(\mathbb{R}^{m}\right)$

Proof. For (i), consider φ be valid in $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$. Then φ is valid in $\mathcal{P R C}\left(\mathbb{R}^{m}\right)$ as a member of the class $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$. Let now φ be valid in $\mathcal{P R C}\left(\mathbb{R}^{m}\right)$. Consider an arbitrary Boolean frame \mathcal{B} of $\mathbf{P R C}\left(\mathbb{R}^{m}\right)$. Recall that any Boolean frame of $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$ is a subframe of $\mathcal{P} \mathcal{R C}\left(\mathbb{R}^{m}\right)$. Then, by Claim 6.1.2, it follows that φ is valid in \mathcal{B}. Therefore φ is valid in $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$. The same reasoning applies for (ii) as well.

Definition.

- For an arbitrary Boolean frame \mathcal{B} denote by $\mathcal{L}(\mathcal{B})$ the logic of the Boolean frame \mathcal{B}, namely, all formulas valid in \mathcal{B}.
- For an arbitrary class of Boolean frames C denote by $\mathcal{L}(C)$ the logic of the class C, namely, all formulas valid in the class C.

Then Claim 7.1.2 says that:
(i) $\mathcal{L}\left(\mathbf{P R C}\left(\mathbb{R}^{m}\right)\right)=\mathcal{L}\left(\mathcal{P R C}\left(\mathbb{R}^{m}\right)\right)$
(ii) $\mathcal{L}\left(\mathbf{R C}\left(\mathbb{R}^{m}\right)\right)=\mathcal{L}\left(\mathcal{R C}\left(\mathbb{R}^{m}\right)\right)$

7.1.2 Formal system of logic of n-ary contact

Consider the axiom schemes as in Section 5.1.

Definition 7.1.2.

- Cont \leftrightharpoons the axioms (c1), (c2), (c3) and (c4)
- Cont + PRC1 \leftrightharpoons Cont plus the axioms PRC1.

We adopt the formal logical system as stated in Section 1.3.4 literally being [1], Section 7.1, "Axiomatization". Henceforth, will consider the formal systems:

$$
\mathcal{L}_{\text {Cont }} \quad \text { and } \quad \mathcal{L}_{\text {Cont }+P R C 1}
$$

7.2 Correctness

Proposition 7.2.1. (Correctness in $\boldsymbol{R C}\left(\mathbb{R}^{m}\right), m \geq 1$)
For every formula φ of the language $L_{\mathcal{R}}$:

$$
\vdash_{\mathcal{L}_{\text {Cont }}} \varphi \quad \text { implies } \quad \Vdash_{\boldsymbol{R C}\left(\mathbb{R}^{m}\right)} \varphi \quad, \quad m \geq 1
$$

Proof. Consider deduction $\varphi_{1}, \ldots, \varphi_{k}$ in $\mathcal{L}_{\text {Cont }}$ for φ, where $\varphi_{k}=\varphi$. By induction on the length of the deduction sequence will show that every element of it is valid in $\mathbf{R C}\left(\mathbb{R}^{m}\right)$ which proves the Proposition.

Consider the induction step case, namely, when φ_{i} is obtained via M.P. by φ_{j} and $\left(\varphi_{j} \Longrightarrow \varphi_{i}\right)$ as elements in the deduction sequence before φ_{i}. By induction hypothesis for every Boolean frame \mathcal{B} from $\mathbf{R C}\left(\mathbb{R}^{m}\right)$ and valuation \mathcal{V} on \mathcal{B} we have: $\langle\mathcal{B}, \mathcal{V}\rangle \Vdash \varphi_{j}$ and $\langle\mathcal{B}, \mathcal{V}\rangle \Vdash\left(\varphi_{j} \Longrightarrow \varphi_{i}\right)$. Hence, trivially, $\langle\mathcal{B}, \mathcal{V}\rangle \Vdash \varphi_{i}$. Therefore φ_{i} is valid in $\mathbf{R C}\left(\mathbb{R}^{m}\right)$.

As an induction base, we need to verify each of the axiom groups (1) to (7) for $\mathcal{L}_{\text {Cont }}$ as per Section 1.3 .4 (equivalently [1], Section 7.1, "Axiomatization").
(1) to (6) are satisfied for every Boolean frame. It remains to show (7) which is to demonstrate all (c1) to (c4) are valid in $\mathbf{R C}\left(\mathbb{R}^{m}\right)$.

Consider \mathcal{B} of $\mathbf{R C}\left(\mathbb{R}^{m}\right)$ and an arbitrary valuation \mathcal{V} on \mathcal{B}.
(c1):
Let $\langle\mathcal{B}, \mathcal{V}\rangle \Vdash P\left(x_{1}, \ldots, x_{n}\right)$. Given $\sigma: n \rightarrow n$. Then, by definition we have:

$$
\widetilde{\mathcal{V}}\left(x_{1}\right) \cap \ldots \cap \widetilde{\mathcal{V}}\left(x_{n}\right) \neq \emptyset
$$

thus:

$$
\widetilde{\mathcal{V}}\left(x_{\sigma(1)}\right) \cap \ldots \cap \widetilde{\mathcal{V}}\left(x_{\sigma(n)}\right) \neq \emptyset
$$

by which:

$$
<\mathcal{B}, \mathcal{V}>\Vdash P\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

(c2):

$$
\begin{aligned}
& <\mathcal{B}, \mathcal{V}>\Vdash P\left(x_{1}, x_{1}, \ldots, x_{n}\right) \\
& \text { iff } \\
& \widetilde{\mathcal{V}}\left(x_{1}\right) \cap \ldots \cap \tilde{\mathcal{V}}\left(x_{n}\right) \neq \emptyset \\
& \text { iff } \\
& <\mathcal{B}, \mathcal{V}>\Vdash Q\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

(c3):
Let $\langle\mathcal{B}, \mathcal{V}\rangle \Vdash \neg(x \equiv 0)$. Hence $\widetilde{\mathcal{V}}(x) \neq 0_{B}=\emptyset$. Then, apparently $\widetilde{\mathcal{V}}(x) \cap$ $\widetilde{\mathcal{V}}(x) \neq \emptyset$, by which: $\langle\mathcal{B}, \mathcal{V}\rangle \Vdash P(x, x)$.
(c4):
Let:

$$
<\mathcal{B}, \mathcal{V}>\Vdash(\neg(x \equiv 0) \wedge \neg(-x \equiv 0))
$$

By this we imply:

$$
\widetilde{\mathcal{V}}(x) \neq 0_{B}=\emptyset \quad \text { and } \quad \widetilde{\mathcal{V}}(-x) \neq 0_{B}=\emptyset
$$

By B, the carrier of the Boolean frame \mathcal{B}, being a subalgebra of the Boolean algebra of the regular closed sets of \mathbb{R}^{m} then:

$$
\mathbb{R}^{m}=\widetilde{\mathcal{V}}(1)=\widetilde{\mathcal{V}}(x \cup-x)=\widetilde{\mathcal{V}}(x) \cup \widetilde{\mathcal{V}}(-x)
$$

$\widetilde{\mathcal{V}}(x)$ and $\widetilde{\mathcal{V}}(-x)$ are elements of the Boolean algebra B hence they are closed sets by definition. Furthermore, \mathbb{R}^{m} is connected set (see Section 1.5.2). Therefore, by $\widetilde{\mathcal{V}}(x)$ and $\widetilde{\mathcal{V}}(-x)$ being non-empty closed sets and $\mathbb{R}^{m}=\widetilde{\mathcal{V}}(x) \cup \widetilde{\mathcal{V}}(-x)$ we imply:

$$
\widetilde{\mathcal{V}}(x) \cap \widetilde{\mathcal{V}}(-x) \neq \emptyset
$$

This gives:

$$
<\mathcal{B}, \mathcal{V}>\Vdash P(x,-x)
$$

Proposition 7.2.2. (Correctness in $\boldsymbol{P R C}\left(\mathbb{R}^{m}\right), m \geq 1$)
For every formula φ of the language $L_{\mathcal{R}}$:

$$
\vdash_{\mathcal{L}_{\text {Cont }}} \varphi \quad \text { implies } \quad \vdash_{\boldsymbol{P R C}\left(\mathbb{R}^{m}\right) \varphi} \quad, \quad m \geq 1
$$

Proof. Directly by Proposition 7.2 .1 and the fact that the elements of the class $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$ are elements of $\mathbf{R C}\left(\mathbb{R}^{m}\right)$.

Proposition 7.2.3. (Correctness in $\operatorname{PRC}\left(\mathbb{R}^{1}\right)$)
For every formula φ of the language $L_{\mathcal{R}}$:

$$
\vdash_{\mathcal{L}_{C o n t+P R C 1}} \varphi \quad \text { implies } \quad \vdash_{P R C\left(\mathbb{R}^{1}\right)} \varphi
$$

Proof. By Proposition 7.2 .2 and the proof of Proposition 7.2 .1 it only remains to show that PRC1 is valid in $\operatorname{PRC}\left(\mathbb{R}^{1}\right)$.

Consider arbitrary Boolean frame \mathcal{B} from $\operatorname{PRC}\left(\mathbb{R}^{1}\right)$. Let \mathcal{V} be arbitrary valuation on \mathcal{B}.

Let $\langle\mathcal{B}, \mathcal{V}\rangle \Vdash P\left(x_{1}, x_{2}, x_{3}\right)$. Hence:

$$
\widetilde{\mathcal{V}}\left(x_{1}\right) \cap \widetilde{\mathcal{V}}\left(x_{2}\right) \cap \widetilde{\mathcal{V}}\left(x_{3}\right) \neq \emptyset
$$

Let $A_{1}=\widetilde{\mathcal{V}}\left(x_{1}\right), A_{2}=\widetilde{\mathcal{V}}\left(x_{2}\right), A_{3}=\widetilde{\mathcal{V}}\left(x_{3}\right)$. Assume that for every A_{i} and A_{j} from $\left\{A_{1}, A_{2}, A_{3}\right\}, i \neq j$, we have:

$$
\operatorname{Int}\left(A_{i}\right) \cap \operatorname{Int}\left(A_{j}\right)=\emptyset
$$

Let $b \in A_{1} \cap A_{2} \cap A_{3}$. Without loss of generality suppose $b \in \operatorname{Int}\left(A_{1}\right)$. Then there is open segment $o \ni b$ such that $o \subseteq \operatorname{Int}\left(A_{1}\right) . b \in A_{2}$ and A_{2} is a polytope of \mathbb{R}^{m}, hence, $o \cap \operatorname{Int}\left(A_{2}\right) \neq \emptyset$ by which $\operatorname{Int}\left(A_{1}\right) \cap \operatorname{Int}\left(A_{2}\right) \neq \emptyset$. This is a contradiction with the main assumption.

Therefore b is boundary point for all A_{1}, A_{2} and A_{3}. All those elements are polytopes then b is a boundary point for any of the finitely many closed segments and rays the element being union of. Without loss of generality assume the segment or the ray that b belongs to in A_{1} is on the "left" of b meaning in the interval $(-\infty, b]$. By the same reasoning if the closed segment or ray that b belongs to in A_{2} is also in the interval $(-\infty, b]$ then apparently those segments or rays from A_{1} and A_{2} respectively will have non-empty intersection of their interiors. This means $\operatorname{Int}\left(A_{1}\right) \cap \operatorname{Int}\left(A_{2}\right) \neq \emptyset$ which is a contradiction with the main assumption. Therefore, the segment or ray for A_{2} is in the interval $[b,+\infty)$. Nevertheless for A_{3}, having the same reasoning, then its segment or
ray will either be in $(-\infty, b]$ thus $\operatorname{Int}\left(A_{1}\right) \cap \operatorname{Int}\left(A_{3}\right) \neq \emptyset$ or in $[b,+\infty)$ thus $\operatorname{Int}\left(A_{2}\right) \cap \operatorname{Int}\left(A_{3}\right) \neq \emptyset$. Therefore our main assumption is wrong.

Now, without loss of generality, let $\operatorname{Int}\left(A_{1}\right) \cap \operatorname{Int}\left(A_{2}\right) \neq \emptyset . A_{1}$ and A_{2} can be presented as finite unions of non-intersecting closed segments or rays. Therefore the union of their interiors is the interior of A_{1} and A_{2} respectively. By $\operatorname{Int}\left(A_{1}\right) \cap \operatorname{Int}\left(A_{2}\right) \neq \emptyset$ this means there will be point from the interior of closed segment or ray of the union for A_{1} that is in the interior of closed segment or ray of the union for A_{2}. Denote those segments or rays s_{1} for A_{1} and s_{2} for A_{2}. We have that $s_{1} \cap s_{2} \subseteq A_{1} \cap A_{2}$ hence $\operatorname{Int}\left(s_{1} \cap s_{2}\right) \subseteq \operatorname{Int}\left(A_{1} \cap A_{2}\right)$. By s_{1} and s_{2} closed segments or rays and there is b^{\prime} such that $b^{\prime} \in \operatorname{Int}\left(s_{1}\right)$ and $b^{\prime} \in \operatorname{Int}\left(s_{2}\right)$ then apparently $\operatorname{Int}\left(s_{1} \cap s_{2}\right)$ is non-empty. By all these we imply:

$$
\operatorname{Int}\left(A_{1} \cap A_{2}\right) \neq \emptyset
$$

Therefore:

$$
\widetilde{\mathcal{V}}\left(x_{1}\right) \cap_{B} \widetilde{\mathcal{V}}\left(x_{2}\right)=C l\left(\operatorname{Int}\left(\widetilde{\mathcal{V}}\left(x_{1}\right) \cap \widetilde{\mathcal{V}}\left(x_{2}\right)\right)\right) \neq \emptyset=0_{B}
$$

Hence:

$$
<\mathcal{B}, \mathcal{V}>\Vdash \neg\left(x_{1} \cap x_{2} \equiv 0\right)
$$

By this we obtain:

$$
\langle\mathcal{B}, \mathcal{V}>\Vdash \text { PRC1 }
$$

7.3 Completeness

Proposition 7.3.1. For every formula φ of the language $L_{\mathcal{R}}$:

$$
\vdash_{\boldsymbol{P R C}\left(\mathbb{R}^{m}\right) \varphi} \quad \text { implies } \quad \vdash_{\mathcal{L}_{\text {Cont }}} \varphi \quad, \quad m \geq 2
$$

Proof. Assume:

$$
\begin{equation*}
\vdash_{\mathcal{L}_{\text {Cont }}} \varphi \tag{6}
\end{equation*}
$$

Then, by Proposition 1.3.3 (recall it being an inference of "Proposition 26" in [1] "Boolean logics with relations") we have:

$$
\begin{equation*}
\Vdash_{C \text { Cont }}^{B} \varphi \tag{7}
\end{equation*}
$$

Therefore it exists Boolean frame \mathcal{B} :

$$
\begin{equation*}
\mathcal{B} \text { is from } C_{\text {Cont }}^{B} \tag{8}
\end{equation*}
$$

and valuation \mathcal{V} on \mathcal{B} such that:

$$
<\mathcal{B}, \mathcal{V}>\Vdash \neg \varphi
$$

Let \mathcal{B} has carrier B. Let:

$$
A \leftrightharpoons\{\mathcal{V}(x) \mid x \in B V(\varphi)\}
$$

Let B_{0} be the subalgebra of B generated by A. Remark then B_{0} is a nondegenerate Boolean algebra. In particular, the zero and the unit of B are those
in B_{0}. Furthermore, B is non-degenerate by definition thus the zero and the unit are not equal. This is a sufficient condition for B_{0} to be non-degenerate. As per Definition 6.1.1, consider then the Boolean frame \mathcal{B}_{0} a subframe of \mathcal{B} and with carrier B_{0} :

$$
\mathcal{B}_{0} \subseteq \mathcal{B}
$$

Let \mathcal{V}_{0} be a valuation on \mathcal{B}_{0} such that $\mathcal{V}_{0}(x)=\mathcal{V}(x)$ for all $x \in B V(\varphi)$ and $\mathcal{V}_{0}(x)$ be arbitrary for any $x \notin B V(\varphi)$. Then by Claim 6.1.1.

$$
\left\langle\mathcal{B}_{0}, \mathcal{V}_{0}>\Vdash \neg \varphi\right.
$$

By (8) we have:

$$
\begin{equation*}
\mathcal{B} \Vdash C o n t \tag{9}
\end{equation*}
$$

Now, by $\mathcal{B}_{0} \subseteq \mathcal{B}$ and by Claim 6.1.2.

$$
\begin{equation*}
\mathcal{B}_{0} \Vdash C o n t \tag{10}
\end{equation*}
$$

Remark that by A finite then the Boolean algebra B_{0} is finite. Then \mathcal{B}_{0} is finite and by Claim 6.3.1 it exists finite Kripke frame \mathcal{F}_{0} such that:

$$
B\left(\mathcal{F}_{0}\right) \cong \mathcal{B}_{0}
$$

By 10) and "Proposition 5" in [1] "Boolean logics with relations" cited as Proposition 1.3.1 we imply:

$$
\begin{equation*}
\mathcal{F}_{0} \Vdash C o n t \tag{11}
\end{equation*}
$$

Consider the valuation \mathcal{V}_{0}^{\prime} on $B\left(\mathcal{F}_{0}\right)$ corresponding to \mathcal{V}_{0} on \mathcal{B}_{0} by the isomorphism between $B\left(\mathcal{F}_{0}\right)$ and \mathcal{B}_{0}. Then:

$$
<B\left(\mathcal{F}_{0}\right), \mathcal{V}_{0}^{\prime}>\Vdash \neg \varphi
$$

As per Proposition 1.3.1 \mathcal{V}_{0}^{\prime} effectively is valuation on \mathcal{F}_{0} and by this same proposition we imply:

$$
<\mathcal{F}_{0}, \mathcal{V}_{0}^{\prime}>\Vdash \neg \varphi
$$

Recall 11). Then by $\mathcal{F}_{0} \Vdash(\mathbf{c} 1), \mathcal{F}_{0} \Vdash(\mathbf{c} 2), \mathcal{F}_{0} \Vdash(\mathbf{c} 3)$ and \mathcal{F}_{0} finite applying Proposition 5.2.3 we obtain \mathcal{F}_{0} is contact n-frame.

Remark that the case when B_{0} is the minimal non-degenerate Boolean algebra then \mathcal{F}_{0} has carrier singleton. In particular this means a contact 1-frame. Despite the steps to follow are valid for this Kripke frame to avoid formal conflicts with definition of n-graph (in particular $n \geq 2$) will consider this case a bit later separately. Consider then the carrier of \mathcal{F}_{0} with cardinality greater than 1. Now by $\mathcal{F}_{0} \Vdash(\mathbf{c} 4)$ and Claim 2.4.1 it follows that the induced by \mathcal{F}_{0} contact n-graph G_{0} :

$$
\begin{equation*}
G_{0} \text { is connected } \tag{12}
\end{equation*}
$$

Apply Procedure 4.1 on the connected contact n-graph G_{0}. Let the resulting graph be G^{\prime}. By Observation 4.2.5.

$$
G^{\prime} \text { is acyclic }
$$

By Observation 4.2.7.

$$
\begin{equation*}
G^{\prime} \text { is connected } \tag{13}
\end{equation*}
$$

Consider the induced frame by G_{0}. Then by Claim 2.3.4 it effectively is \mathcal{F}_{0}. Now, as per Claim 2.3 .3 consider the induced by G^{\prime} contact n-frame \mathcal{F}^{\prime}. Then the conditions for Claim 4.2.1 are satisfied. Therefore:

$$
\mathcal{F}^{\prime} \text { is } p \text {-morphic preimage of } \mathcal{F}_{0}
$$

Let f be p-morphism from \mathcal{F}^{\prime} onto \mathcal{F}_{0}. Consider valuation \mathcal{V}^{\prime} on \mathcal{F}^{\prime} such that:

$$
s \in \mathcal{V}^{\prime}(x) \quad \text { iff } \quad f(s) \in \mathcal{V}_{0}^{\prime}(x)
$$

(trivially such valuation exists). Then by $\left\langle\mathcal{F}_{0}, \mathcal{V}_{0}^{\prime}\right\rangle \Vdash \neg \varphi$ and p-morphisms properties we imply:

$$
<\mathcal{F}^{\prime}, \mathcal{V}^{\prime}>\Vdash \neg \varphi
$$

Recall that:

$$
\begin{equation*}
G^{\prime} \text { is acyclic and connected } \tag{14}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\text { Apply Procedure } 3.1 \text { on } G^{\prime} \text { (as per Remark 3.1.1) } \tag{15}
\end{equation*}
$$

Hence we obtain partitioning $S=\left\{W_{1}, \ldots, W_{s}\right\}$ of \mathbb{R}^{m}, where:

$$
\begin{equation*}
W_{i} \text { are polytopes of } \mathbb{R}^{m} \tag{16}
\end{equation*}
$$

Consider:

$$
\mathcal{F}_{R C}=\langle S, I>
$$

being the Kripke frame with carrier S and I mapping the k-ary relational symbol, $k \geq 1$, to the k-ary contact relation \mathcal{C}_{k}. In particular, this means for the k-ary relation symbol P :

$$
<W_{i_{1}}, \ldots, W_{i_{k}}>\in I(P) \quad \text { iff } \quad W_{i_{1}} \cap \ldots \cap W_{i_{k}} \neq \emptyset
$$

Then by Claim 3.1.1.

$$
\begin{equation*}
\mathcal{F}_{R C} \cong \mathcal{F}^{\prime} \tag{17}
\end{equation*}
$$

Furthermore, by $<\mathcal{F}^{\prime}, \mathcal{V}^{\prime}>\Vdash \neg \varphi$, then for the valuation $\mathcal{V}_{R C}$ on $\mathcal{F}_{R C}$ corresponding to \mathcal{V}^{\prime} due to the isomorphism between $\mathcal{F}_{R C}$ and \mathcal{F}^{\prime} we imply:

$$
<\mathcal{F}_{R C}, \mathcal{V}_{R C}>\Vdash \neg \varphi
$$

We obtain:
S satisfies Definition 6.2.1 and every element of it is a polytope due to the following observations:

- By Observation 3.1.3 every element of S is a polytope
- By Observation 3.1.4 $\cup S=\mathbb{R}^{m}$
- By Observation 3.1.5. $\operatorname{Int}\left(W_{i_{1}}\right) \cap \operatorname{Int}\left(W_{i_{2}}\right)=\emptyset, i_{1} \neq i_{2}$
- By $W_{i} \in S$ is a polytope then whichever point x of W_{i} is taken then any open $o \ni x$ will have the property: $o \cap \operatorname{Int}\left(W_{i}\right) \neq \emptyset$
- (by definition) S is finite

Now, the case when \mathcal{F}_{0} is with carrier singleton then consider $S=\left\{\mathbb{R}^{m}\right\}$. Let the carrier of \mathcal{F}_{0} be $\{w\}$. Then

$$
g(w) \leftrightharpoons \mathbb{R}^{m}
$$

is isomorphism between \mathcal{F}_{0} and $\mathcal{F}_{R C}$. Trivially g is bijection. Recall that \mathcal{F}_{0} satisfies the conditions for n-frame. Consider arbitrary k-ary relation symbol P. For $k \geq 2$ follows that by applying Definition 2.1.1 (c) and $k-2$ times (b) that $\langle w, \ldots, w\rangle$ is in the relation of the interpretation of P. The same follows for the case $k<2$ again from (c) and applying (b). By definition of I for $\mathcal{F}_{R C}$ then, again, we imply $<\mathbb{R}^{m}, \ldots, \mathbb{R}^{m}>\in I(P)$ for any relation symbol P. This means g trivially is isomorphism between the Kripke frames \mathcal{F}_{0} and $\mathcal{F}_{R C}$. Now for the valuation $\mathcal{V}_{R C}$ corresponding to \mathcal{V}_{0}^{\prime} by the isomorphism g then again: $<\mathcal{F}_{R C}, \mathcal{V}_{R C}>\Vdash \neg \varphi$. Finally, remark that the conditions of Definition 6.2.1 are trivially satisfied by S.

Therefore, in all cases, $\mathcal{F}_{R C}$ satisfies the conditions in Claim 6.3.2 by which:

$$
\mathcal{B}_{R C}(S) \cong B\left(\mathcal{F}_{R C}\right)
$$

By that isomorphism, again, there is an appropriate valuation $\mathcal{V}_{R C}^{\prime}$ on $\mathcal{B}_{R C}(S)$ corresponding to $\mathcal{V}_{R C}$ on $B\left(\mathcal{F}_{R C}\right)$ the latter being the one on $\mathcal{F}_{R C}$ as per Proposition 1.3.1. Then, by the same proposition and the isomorphism, we imply:

$$
<\mathcal{B}_{R C}(S), \mathcal{V}_{R C}^{\prime}>\Vdash \neg \varphi
$$

By Claim 6.2.2
$B_{R C}(S)$ is a subalgebra of the Boolean algebra of the polytopes of \mathbb{R}^{m} by (ii)
Therefore:

$$
\begin{equation*}
\mathcal{B}_{R C}(S) \in \mathbf{P R C}\left(\mathbb{R}^{m}\right) \tag{19}
\end{equation*}
$$

This means then φ is valid in $\mathcal{B}_{R C}(\mathrm{~S})$, hence, in particular:

$$
<\mathcal{B}_{R C}(S), \mathcal{V}_{R C}^{\prime}>\Vdash \varphi
$$

This is a contradiction. Therefore our assumption is wrong, hence:

$$
\begin{equation*}
\vdash_{\mathcal{L}_{\text {Cont }}} \varphi \tag{21}
\end{equation*}
$$

Proposition 7.3.2. For every formula φ of the language $L_{\mathcal{R}}$:

$$
\vdash_{\boldsymbol{R C}\left(\mathbb{R}^{m}\right)} \varphi \quad \text { implies } \quad \vdash_{\mathcal{L}_{\text {Cont }}} \varphi \quad, \quad m \geq 1
$$

Proof. Every element of $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$ is element of $\mathbf{R C}\left(\mathbb{R}^{m}\right)$. Then for $m \geq 2$ it is direct implication of Proposition 7.3.1. For $m=1$ the proof is analogous to the one of Proposition 7.3.1. Will illustrate the points of deviation.
(15):

Apply Procedure 3.2 on G^{\prime} (as per Remark 3.2.1).
(16):
W_{i} are regular closed sets of \mathbb{R}^{1}
(17):

By Claim 3.2.1
(18):
S satisfies Definition 6.2.1 and every element of it is a regular closed set of \mathbb{R}^{1} due to the following observations:

- By Observation 3.2.3 every element of S is a regular closed set of \mathbb{R}^{1}.
- By Observation 3.2.4 $\cup S=\mathbb{R}^{1}$
- By Observation 3.2.5. $\operatorname{Int}\left(W_{i_{1}}\right) \cap \operatorname{Int}\left(W_{i_{2}}\right)=\emptyset, i_{1} \neq i_{2}$.
- By Observation 3.2 .11 for every $W_{i} \in S$ then whichever point x of W_{i} is taken then any open $o \ni x$ will have the property: $o \cap \operatorname{Int}\left(W_{i}\right) \neq \emptyset$
19):
$B_{R C}(S)$ is a subalgebra of the Boolean algebra of the regular closed sets of \mathbb{R}^{1} by (i)
(20):

$$
\mathcal{B}_{R C}(S) \in \mathbf{R C}\left(\mathbb{R}^{1}\right)
$$

Proposition 7.3.3. For every formula φ of the language $L_{\mathcal{R}}$:

$$
\vdash_{P R C\left(\mathbb{R}^{1}\right)} \varphi \quad \text { implies } \quad \vdash_{\mathcal{L}_{\text {Cont }+P R C 1}} \varphi
$$

Proof. The proof is analogous to the one of Proposition 7.3.1. Will illustrate the points of deviation.
(6):

Assume: ${\nvdash \mathcal{L}_{\text {Cont }+ \text { PRC1 }}} \varphi$
(7):
$\Vdash_{C_{C o n t+P R C 1}^{B}} \varphi$
(8):
\mathcal{B} is from $C_{\text {Cont }+ \text { PRC1 }}^{B}$
(9):
$\mathcal{B} \Vdash$ Cont + PRC1
(10):
$\mathcal{B}_{0} \Vdash$ Cont + PRC1
(11):
$\mathcal{F}_{0} \Vdash$ Cont + PRC1
(12):

Furthermore, by $\mathcal{F}_{0} \Vdash \mathbf{P R C} 1$ then applying Claim 2.4.2 we imply that \mathcal{F}_{0} is a contact n-frame for $n \leq 2$. Hence G_{0} is a contact n-graph for $n \leq 2$.
(13):

Furthermore, by Observation 4.2.9, G^{\prime} is a contact n-graph also for $n \leq 2$. (14):

Recall as well that G^{\prime} is a contact n-graph also for $n \leq 2$.
(15):

Apply Procedure 3.3 on G^{\prime}.
(16):
W_{i} are polytopes of \mathbb{R}^{1}
(17):

By Claim 3.3.1 (18):
S satisfies Definition 6.2.1 and every element of it is a polytope due to the following observations:

- By Observation 3.3 .3 every element of S is a polytope of \mathbb{R}^{1}.
- By Observation 3.3.4 $\cup S=\mathbb{R}^{1}$
- By Observation 3.3.5 $\operatorname{Int}\left(W_{i_{1}}\right) \cap \operatorname{Int}\left(W_{i_{2}}\right)=\emptyset, i_{1} \neq i_{2}$.
(19):
$B_{R C}(S)$ is a subalgebra of the Boolean algebra of the polytopes of \mathbb{R}^{1} by (ii) (20):
$\mathcal{B}_{R C}(S) \in \mathbf{P R C}\left(\mathbb{R}^{1}\right)$
(21):
$\vdash_{\mathcal{L}_{\text {Cont }+ \text { PRC } 1}} \varphi$

7.4 Corollary Notes

By the pair of propositions Proposition 7.2 .2 and Proposition 7.3.1 as well as the pair of propositions Proposition 7.2.1 and Proposition 7.3.2 we imply:
Corollary 7.4.1. Completeness of formal system $\mathcal{L}_{\text {Cont }}$:

- The logic of the formal system $\mathcal{L}_{\text {Cont }}$ is the logic of the class of Boolean frames $\boldsymbol{P R C}\left(\mathbb{R}^{m}\right)$, for any particular $m \geq 2$
- The logic of the formal system $\mathcal{L}_{\text {Cont }}$ is the logic of the class of Boolean frames $\boldsymbol{R C}\left(\mathbb{R}^{m}\right)$, for any particular $m \geq 1$

Now, by Corollary 7.4.1 and considering Claim 7.1.2, the following corollary holds:

Corollary 7.4.2. Characterisation of the formal system $\mathcal{L}_{\text {Cont }}$:
The following logics are equivalent:
(i) The logic of the formal system $\mathcal{L}_{\text {Cont }}$.
(ii) $\mathcal{L}\left(\boldsymbol{P R C}\left(\mathbb{R}^{m}\right)\right)$, where $m \geq 2$.
(iii) $\mathcal{L}\left(\boldsymbol{R C}\left(\mathbb{R}^{m}\right)\right)$, where $m \geq 1$.
(iv) $\mathcal{L}\left(\mathcal{P R C}\left(\mathbb{R}^{m}\right)\right)$, where $m \geq 2$.
(v) $\mathcal{L}\left(\mathcal{R C}\left(\mathbb{R}^{m}\right)\right)$, where $m \geq 1$.
(vi) $\mathcal{L}\left(\left\{\mathcal{P} \mathcal{R C}\left(\mathbb{R}^{m}\right) \mid m \in X\right\}\right)$, where X is a non-empty subset of the set of the natural numbers greater or equal 2.
(vii) $\mathcal{L}\left(\left\{\mathcal{R C}\left(\mathbb{R}^{m}\right) \mid m \in X\right\}\right)$, where X is a non-empty subset of the set of the natural numbers greater or equal 1.
(viii) $\left.\mathcal{L}\left(\cup\left\{\boldsymbol{P R C} \boldsymbol{(} \mathbb{R}^{m}\right) \mid m \in X\right\}\right)$, where X is a non-empty subset of the set of the natural numbers greater or equal 2.
(ix) $\mathcal{L}\left(\cup\left\{\boldsymbol{R} \boldsymbol{C}\left(\mathbb{R}^{m}\right) \mid m \in X\right\}\right)$, where X is a non-empty subset of the set of the natural numbers greater or equal 1.

Now, consider an arbitrary connected topological space \mathbb{T}. Denote by $\mathcal{R C}(\mathbb{T})$ the Boolean frame with a carrier the Boolean algebra $R C(\mathbb{T})$ and interpretation of the relation symbols $\mathcal{C}_{n}^{\mathbb{T}}$ for the appropriate arity of the relations.

Remark that $\mathcal{R C}(\mathbb{T})$ is correct with respect to $\mathcal{L}_{\text {Cont }}$ as long as the reasoning is exactly as the one demonstrated in Proposition 7.2.1.

Denote by $\mathbf{R C} \mathbf{C o n n}$ the class of the Boolean frames $\mathcal{R C}(\mathbb{T})$ for any connected topological space \mathbb{T}. Trivially, $\mathcal{R C}\left(\mathbb{R}^{m}\right)$ is an element of the class $\mathbf{R C}_{\text {conn }}$. Therefore, by Corollary 7.4.2, we imply that $\mathbf{R C} \mathbf{C o n n}_{\text {con }}$ is complete with respect to $\mathcal{L}_{\text {Cont }}$. Then, in addition to Corollary 7.4.2, we also have:

Corollary 7.4.3. The following logics are equivalent:
(i) The logic of the formal system $\mathcal{L}_{\text {Cont }}$.
(ii) $\mathcal{L}\left(\boldsymbol{R} \boldsymbol{C}_{\text {conn }}\right)$

By Corollary 7.4.2 non-formally, the classes $\mathbf{P R C}\left(\mathbb{R}^{m}\right)$ for $m \geq 2$ and $\mathbf{R C}\left(\mathbb{R}^{n}\right)$ for $n \geq 1$ are "indistinguishable" with respect to the set of formulas valid in them.

The difference between the logics of $\operatorname{PRC}\left(\mathbb{R}^{1}\right)$ and $\operatorname{PRC}\left(\mathbb{R}^{m}\right)$ for $m \geq 2$ is demonstrated by the pair Proposition 7.2 .3 and Proposition 7.3.3.

Corollary 7.4.4. Completeness of the formal system $\mathcal{L}_{\text {Cont }+ \text { PRC } 1}$

- The logic of the formal system $\mathcal{L}_{\text {Cont }+ \text { PRC1 }}$ is the logic of the class of Boolean frames $\boldsymbol{P R C}\left(\mathbb{R}^{1}\right)$

Now, by Corollary 7.4.4 and considering Claim 7.1.2 we imply:
Corollary 7.4.5. Characterisation of formal system $\mathcal{L}_{\text {Cont }+ \text { PRC1 }}$:
The following logics are equivalent:
(i) The logic of the formal system $\mathcal{L}_{\text {Cont }+ \text { PRC }}$
(ii) $\mathcal{L}\left(\boldsymbol{P R C}\left(\mathbb{R}^{1}\right)\right)$
(iii) $\mathcal{L}\left(\mathcal{P R C}\left(\mathbb{R}^{1}\right)\right)$

By Corollary 7.4.4, non-formally, the class of Boolean frames $\operatorname{PRC}\left(\mathbb{R}^{1}\right)$ is "distinguishable" from the classes $\mathbf{P R C}\left(\mathbb{R}^{m}\right)$ for $m \geq 2$ and $\mathbf{R C}\left(\mathbb{R}^{n}\right)$ for $n \geq 1$ due to the property of $\operatorname{PRC}\left(\mathbb{R}^{1}\right)$ being that (the axiom) $\mathbf{P R C 1}$ is valid in it.

References

[1] Balbiani, P., Tinchev, T.: Boolean logics with relations, Journal of Algebraic and Logic Programming, 79 (8), 2010, 707-721
[2] Vakarelov D.: Extended Mereotopology Based on Sequent Algebras, In: Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro, Toulouse, March 2016, 109-118
[3] Roman Sikorski: Boolean Algebras, Springer, 1969
[4] K. Thulasiraman, M. N. S. Swamy : Graphs: Theory and Algorithms, A Wiley-Interscience Publication, 1992

