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Abstract

For an arbitrary connected topological space consider the set of the
regular closed sets. With appropriately defined Boolean operations this
set forms a (complete) Boolean algebra.

In the case of the m-dimensional Euclidean space we have a special
subset of the regular closed sets called polytopes. One of their significant
properties is the finite characteristic that they can be represented as a
finite union of other polytopes. In addition to that they form a subalgebra
of the Boolean algebra of the regular closed sets.

Let us say that n sets are in contact if their set theoretical intersection
is non-empty.

The objective of this research is within an appropriate formal system
to axiomatise the contact properties in the aforementioned sense of the
Boolean algebras of the polytopes of the m-dimensional space and the
regular closed sets of the connected topological spaces.
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1 INTRODUCTION. FORMAL LANGUAGE AND NOTIONS

1 Introduction. Formal language and notions

1.1 Introductory notes.

Let us say that n sets of an arbitrary topological space are in n-ary contact
if their set theoretical intersection is non-empty. Now, consider the connected
topological spaces. We would like to study the properties of the n-ary contact
with respect to the regular closed sets of such topological spaces.

An approach to this is being examined in [2] by Dimitar Vakarelov by the
means of the so called sequent algebras. Nevertheless, for this purpose is being
used a formal language, which in its essence is of a second-order logic.

As per [1] Philippe Balbiani and Tinko Tinchev study the general notion of
the so called ”Boolean logics with relations”. They use a quantifier-free fragment
of a first-order logic language to express Boolean notions and their relation
properties. Convenient semantic structures are being introduced as well.

In this research we adopt the language and the semantic structures of [1]
with an intended interpretation of the relation symbols being the n-ary contact.
We aim to axiomatise the valid formulas of the language with respect to that
semantics in the topological context of the Boolean subalgebras of the regular
closed sets of some connected topological space.

To approach this problem as a representative of a connected topological
space is used the m-dimensional Euclidean space. It is devised an appropriate
axiomatisation of the Boolean algebra of the regular closed sets of Rm. Also,
it is considered a special subset of the regular closed sets of Rm, namely the
polytopes. One can think of them in the case of R2 as the set of the finite
unions of convex polygons or their (closed) complement (with respect to the
whole real plane). The polytopes form a subalgebra of the Boolean algebra of
the regular closed sets of the particular m-dimensional topological space. Such
an algebra is also axiomatised appropriately. Moreover, the main result of this
study shows that the logic of the Boolean algebra of the polytopes of Rm for
m ≥ 2 is the same as the logic of the Boolean algebra of the regular closed
sets of any connected topological space. The last fact trivially is because the
axiomatisations of those Boolean algebras are the same.

For the Boolean algebra of the polytopes of R1 is demonstrated to have an
axiomatisation that is different than the one of the polytopes of Rm for m ≥ 2.
The difference is the property that distinguishes the polytopes of R1 from the
regular closed sets of R1.

To attain the completeness of the corresponding axiomatisations with re-
spect to the aforementioned intended Boolean algebras substantially a common
approach is used.
First, the correctness with respect to any Boolean subalgebra of the regular
closed sets of a connected topological space is easy.
With respect to completeness the following steps are made. As a remark, when
we talk about satisfiability of a formula in a Boolean algebra we mean the ap-
propriate first-order language semantic structure with a carrier the intended
in the particular context Boolean algebra having interpretation of the relation
symbols the n-ary contact.

• For a formula not deducible in the formal system by appropriate (”ex-
ternal” with respect to the exposition of this research) means is being
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1 INTRODUCTION. FORMAL LANGUAGE AND NOTIONS

obtained a finite relational structure (called a Kripke frame) in which the
axioms are valid and the intended formula is refutable.

• The relational structure appears of a kind for which a relevant connected
graph representation is being associated to. By a particular sequence of
modifications that graph is then transformed into an acyclic connected
one. Significant is that the associated Kripke structure to the resulting
graph is a p-morphic preimage of the originating structure.

• Moreover, it is being elaborated on an appropriate procedure for any of the
intended algebras that applied on the acyclic connected graph eventually
produces a Kripke structure with particular properties that is isomorphic
to the associated to the acyclic graph one.
So far, this means in the resulting Kripke structure the intended formula
is refutable.

• With regard to that Kripke structure its carrier has elements of the in-
tended Boolean algebra the structure being obtained for. Furthermore,
the set-theoretical Boolean algebra generated by this structure appears
isomorphic to the Boolean algebra generated by the elements of its car-
rier. It follows that the intended formula is refutable in the generated by
the carrier Boolean algebra.

• On the other hand, the relations are interpreted as the n-ary contact.
As a result, the generated by the carrier of the Kripke structure Boolean
algebra is a subalgebra of the intended one. Then the formula cannot be
valid in the intended Boolean algebra.

These results are developed within the exposition in the following way.
Further in this Section 1 are introduced the necessary notions and adopted

results needed throughout the study. It is being clarified the formal language
(Section 1.2), the adopted notions and results from [1] (Section 1.3), the notions
with respect to graphs (Section 1.4). In Section 1.5 the very basic definitions
and results regarding topological spaces needed later are being developed. In
Section 1.6 the definitions and properties of regular closed sets and polytopes
and their corresponding Boolean algebras are being highlighted. Finally (Sec-
tion 1.7), the n-ary contact relation is being formally defined.

Section 2 introduces the auxiliary notions of a contact n-frame (Section 2.1)
and an n-graph or contact n-graph (Section 2.2). The contact n-frames are in
some sense generalised relational structures, namely Kripke frames, which im-
pose on the interpretation of the relations properties analogous to those of the
n-ary contact relation. In short, they are used as the linkage between a general
finite Boolean algebra satisfying certain set of axioms and a finite Boolean alge-
bra of particular elements (regular closed sets or polytopes of Rm) interpreting
the relations as the n-ary contact. This is achieved by the essential property of
the finite contact n-frames that is their unique one-to-one correspondence with
a special class of graphs, namely the contact n-graphs (Section 2.3). This result
is established by the pair of Claim 2.3.4 and Claim 2.3.5. Having the afore-
mentioned correspondence, they are demonstrated the connectedness property
and a specific condition on the ternary contact of a contact n-frame to have an
intuitive meaning on the corresponding graph structures (Section 2.4).

2



1 INTRODUCTION. FORMAL LANGUAGE AND NOTIONS

Let us consider a finite acyclic contact n-graph and its corresponding contact
n-frame. Section 3 elaborates on procedures for obtaining a Kripke frame with
interpretation of the relations the n-ary contact and specific properties of the
carrier that is isomorphic to the given contact n-frame. In short, the properties
of the carrier are such that its elements are the atoms of a finite Boolean algebra
subalgebra of a particular Boolean algebra of polytopes or regular closed sets.
Section 3.1 treats the Boolean algebra of the polytopes of Rm for m ≥ 2 and
Section 3.2 is for the Boolean algebra of the regular closed sets of Rm for m ≥
1. Section 3.3 within particular conditions for the given acyclic contact n-
graph (effectively, those obtained in Section 2.4) demonstrates an approach for the
polytopes of R1.

Now, consider an arbitrary connected contact n-graph. Section 4 shows a
procedure for transforming that contact n-graph into a connected acyclic one
whose corresponding contact n-frame is a p-morphic preimage of the corre-
sponding to the originating graph contact n-frame (Claim 4.2.1). Furthermore,
they are highlighted the properties of the originating graph being preserved in
the resulting one.

The relatively short Section 5 in advance lists the axioms which will be used
later in Section 7 to define the Boolean logic of n-ary contact and the appropriate
axiomatisation of the considered classes of Boolean algebras of regular closed
sets. The purpose of Section 5 is to study the implications of the validity of
those axioms with respect to the contact n-frames. The auxiliary result to be
used later is Proposition 5.2.3.

Section 6 considers the semantic structures for representing the Boolean al-
gebras, namely the Boolean frames, and demonstrates few results about finite
Boolean algebras of polytopes and regular closed sets being of essential impor-
tance later in the exposition The latter is treated in Section 6.2. Furthermore
(Section 6.3), they are being demonstrated essential correspondences between
the finite Boolean algebras (Boolean frames) and the finite relational structures
(Kripke frames). One can check Claim 6.3.1 and Claim 6.3.2.

Section 7 is where the Boolean logic of n-ary contact is formally defined and
examined. Section 7.1 introduces the intended semantic structures and defines
the relevant formal systems of the axiomatisations to be studied. Section 7.2
demonstrates the correctness of the formal systems. Section 7.3 is where the
completeness of the formal systems is being proven as per the aforementioned
steps. This is where all the former results find their appropriate use. The key
achievements are Proposition 7.3.1, Proposition 7.3.2 and Proposition 7.3.3.
Section 7.4 summarises and recaps the aimed outcome of this study. A good
illustration are Corollary 7.4.2 and Corollary 7.4.5.

1.2 Formal language

In essence n-ary contact logic adopts a reduction of the language of the Boolean
logic as introduced in [1], Section 2, ”Syntax”. That is we have exactly one n-ary
relation symbol for each natural n ≥ 1. A more refined definition is provided as
follows.

Recall, for a language LR of a Boolean logic we have countably infinite set
R of relation symbols each being n-ary relation for some natural n ≥ 0. To LR
we attribute the following logical symbols:

3



1 INTRODUCTION. FORMAL LANGUAGE AND NOTIONS

• Parentheses: ’(’, ’)’

• Comma: ’,’

• Countably many Boolean variables: denoted by lower case Latin letters
x, y and so.

• Boolean functions: ’0’, ’−’ and ’∪’

• Connectives: ’⊥’, ’¬’ and ’∨’

• Binary relation symbol: ’≡’

Eventually, we assume that no relation symbol of R occurs in the set of the
logical symbols.

Definition. As a language for the n-ary contact logic we consider a Boolean
language LR, where R consists of exactly one n-ary relation symbol per each
positive n.

Again, ρ denotes the arity function mapping the relation symbols from R
to appropriate natural numbers indicating the intended arity of the respective
relation symbol. Hence, by definition of a language for an n-ary contact logic
we imply ρ being injective.

Recall the inductive definition of a term of LR.

• A Boolean variable is a term.

• The Boolean function symbol 0 is a term.

• If τ is a term then also is −τ .

• If τ1 and τ2 are terms then also is (τ1 ∪ τ2)

Atomic formulas of LR:

• If P is an n-ary relation symbol and τ1, . . . , τn are terms then P (τ1, . . . , τn)
is an atomic formula.

• If τ1 and τ2 are terms then (τ1 ≡ τ2) is atomic formula.

Formulas of LR:

• An atomic formula is a formula.

• ⊥ is a formula.

• If ϕ is a formula then also is ¬ϕ.

• If ϕ1 and ϕ2 are formulas then also is (ϕ1 ∨ ϕ2).

Recall also the abbreviations adopted:

• 1 denotes −0.

• (τ1 ∩ τ2) denotes −(−τ1 ∪ −τ2).

• > denotes ¬⊥

4



1 INTRODUCTION. FORMAL LANGUAGE AND NOTIONS

• (ϕ1 ∧ ϕ2) denotes ¬(¬ϕ1 ∨ ¬ϕ2)

• (ϕ1 =⇒ ϕ2) denotes (¬ϕ1 ∨ ϕ2)

• (ϕ1 ⇐⇒ ϕ2) denotes ((ϕ1 =⇒ ϕ2) ∧ (ϕ2 =⇒ ϕ1))

For any set of formulas ∆ by BV (∆) we denote the set of Boolean variables
occurring in ∆. Whenever ∆ = {ϕ} we simply write BV (ϕ). In a similar way
for any term τ by BV (τ) we denote the set of Boolean variables occurring in τ .
By ϕ[x1, . . . , xn] for formula ϕ we indicate that BV (ϕ) ⊆ {x1, . . . , xn}.

1.3 Adopted Boolean logic notions

We recall some of the notions adopted from [1], ”Boolean logics with relations”.
Furthermore, will summarise the basic formal understanding when dealing with
graphs.

1.3.1 Kripke frames

A Kripke frame for LR is a structure F = <S, I> where S is a non-empty
set and I is an interpretation function mapping the relation symbols of R to
appropriate relations on S. That is for arbitrary P of R then I(P ) is ρ(P )-ary
relation on S. A valuation on F is function V mapping the Boolean variables
to subsets of S. Recall the recursive extension Ṽ of V on the terms of LR:

• Ṽ(x) = V(x)

• Ṽ(0) = ∅

• Ṽ(−τ) = S \ Ṽ(τ)

• Ṽ(τ1 ∪ τ2) = Ṽ(τ1) ∪ Ṽ(τ2)

A Kripke model for LR is a structure M = <F ,V> where F = <S, I> is a
Kripke frame for LR and V is a valuation on F . Recall the inductive definition
of a formula ϕ true in a Kripke model M denoted by M 
 ϕ.

• M 
 P (τ1, . . . , τn) iff there exists s1 ∈ Ṽ(τ1), . . . , there exists

sn ∈ Ṽ(τn) such that <s1, . . . , sn> ∈ I(P )

• M 
 (τ1 ≡ τ2) iff Ṽ(τ1) = Ṽ(τ2)

• M 1 ⊥

• M 
 ¬ϕ iff M 1 ϕ

• M 
 (ϕ1 ∨ ϕ2) iff M 
 ϕ1 or M 
 ϕ2

Recall that a set of formulas Σ is called satisfiable in given Kripke frame
should there be a Kripke model based on that frame (equivalently, there is
a valuation on that frame) such that all the formulas in Σ are true in that
model (respectively, in the model for the Kripke frame and the valuation). Σ
is satisfiable in a class of Kripke frames if exists Kripke frame from that class
such that Σ is satisfiable in it. A formula ϕ is valid in a Kripke frame F if ϕ
is true in every Kripke model for the frame F . We denote it F 
 ϕ. A set

5



1 INTRODUCTION. FORMAL LANGUAGE AND NOTIONS

of formulas Φ is valid in a Kripke frame F if every formula in Φ is valid in F .
We denote it F 
 Φ. For a set of formulas Φ by CKΦ we denote the class of all
Kripke frames in which Φ is valid.

1.3.2 Boolean frames

A Boolean frame for LR is a structure F = <A, 0A,−A,∪A, I > for which
is satisfied <A, 0A,−A,∪A> is a non-degenerate Boolean algebra and I is an
interpretation function mapping the relation symbols of R to appropriate rela-
tions on A. That is for arbitrary P of R then I(P ) is ρ(P )-ary relation on A.
Furthermore, they must be satisfied:

• for any a1, . . . , ai−1, ai, ai+1, . . . , an inA if<a1, . . . , ai−1, ai, ai+1, . . . , an>
is in I(P ) then ai 6= 0A

• for all a1, . . . , ai−1, a′i, a
′′
i , ai+1, . . . , an in A:

<a1, . . . , ai−1, (a
′
i ∪ a′′i ), ai+1, . . . , an> ∈ I(P )

iff

<a1, . . . , ai−1, a
′
i, ai+1, . . . , an> ∈ I(P )

or

<a1, . . . , ai−1, a
′′
i , ai+1, . . . , an> ∈ I(P )

A valuation on F is a function V mapping the Boolean variables to elements
of A. Recall the recursive extension Ṽ of V on the terms of LR:

• Ṽ(x) = V(x)

• Ṽ(0) = 0A

• Ṽ(−τ) = −AṼ(τ)

• Ṽ(τ1 ∪ τ2) = Ṽ(τ1) ∪A Ṽ(τ2)

A Boolean model for LR is a structure M = <F ,V> where the structure
F = <A, 0A,−A,∪A, I> is a Boolean frame for LR and V is a valuation on
F . Recall the inductive definition of a formula ϕ true in a Boolean model M
denoted by M 
 ϕ.

• M 
 P (τ1, . . . , τn) iff <Ṽ(τ1), . . . , Ṽ(τn)> ∈ I(P )

• M 
 (τ1 ≡ τ2) iff Ṽ(τ1) = Ṽ(τ2)

• M 1 ⊥

• M 
 ¬ϕ iff M 1 ϕ

• M 
 (ϕ1 ∨ ϕ2) iff M 
 ϕ1 or M 
 ϕ2

Recall that a set of formulas Σ is called satisfiable in given Boolean frame
should there be a Boolean model based on that frame (equivalently, there is
a valuation on that frame) such that all the formulas in Σ are true in that
model (respectively, in the model for the Boolean frame and the valuation). Σ

6



1 INTRODUCTION. FORMAL LANGUAGE AND NOTIONS

is satisfiable in a class of Boolean frames if exists Boolean frame from that class
such that Σ is satisfiable in it. A formula ϕ is valid in a Boolean frame F if ϕ
is true in every Boolean model for the frame F . We denote it F 
 ϕ. A set
of formulas Φ is valid in a Boolean frame F if every formula in Φ is valid in F .
We denote it F 
 Φ. For a set of formulas Φ by CBΦ we denote the class of all
Boolean frames in which Φ is valid.

1.3.3 Correspondence

Given F = <S, I>. Recall, by Boolean frame over F we denote the structure
B(F) = <A′, 0A′ ,−A′ ,∪A′ , I ′> such that:

• <A′, 0A′ ,−A′ ,∪A′> is the Boolean algebra of all subsets of S

• I ′ is mapping the relation symbols P of R to appropriate relations I ′(P )
on A′ such that for any a1, . . . , an ∈ A′:

<a1, . . . , an> ∈ IB(P )

iff

exists s1 ∈ a1, . . . , exists sn ∈ an such that <s1, . . . , sn> ∈ I(P )

Remark that, by definition, any valuation V on a Kripke frame F is valuation
on B(F) and vice versa. Furthermore, the resulting recursive valuations on F
and B(F) are the same. This is trivially inferred due to the simple fact that
the zero and the join functions of the Boolean algebra A′ are exactly the set

theoretical empty set and union for the set of all subsets of S. Really, let Ṽ
′

and

Ṽ
′′

be the recursive valuations for F and B(F) respectively. Then, by induction

on the definition of Ṽ
′

and Ṽ
′′

subsequently we have:

• For any Boolean variable x: Ṽ
′
(x) = V(x) = Ṽ

′′
(x)

• Ṽ
′
(0) = ∅ = 0A′ = Ṽ

′′
(0)

• By inductive hypothesis Ṽ
′
(τ) = Ṽ

′′
(τ) then:

Ṽ
′
(−τ) = S \ Ṽ

′
(τ) = −A′ Ṽ

′′
(τ) = Ṽ

′′
(−τ)

• By inductive hypothesis Ṽ
′
(τ1) = Ṽ

′′
(τ1) and Ṽ

′
(τ2) = Ṽ

′′
(τ2) then:

Ṽ
′
(τ1 ∪ τ2) = Ṽ

′
(τ1) ∪ Ṽ

′
(τ2) = Ṽ

′′
(τ1) ∪A′ Ṽ

′′
(τ2) = Ṽ

′′
(τ1 ∪ τ2)

Next we cite ”Proposition 5” from [1], section 4.1 ”From Kripke frames to
Boolean frames”.

Proposition 1.3.1. Let F = <S, I> be a Kripke frame. Consider the Boolean
frame over F denoted by B(F) = <A′, 0A′ ,−A′ ,∪A′ , I ′>. Let V be a valuation
on F (and as clarified, equivalently on B(F)). Then for every formula ϕ:

<B(F),V> 
 ϕ iff <F ,V> 
 ϕ

Proof. Trivially by induction on the complexity of the formula ϕ.

7



1 INTRODUCTION. FORMAL LANGUAGE AND NOTIONS

1.3.4 Formal system

As per [1], Section 7.1, ”Axiomatization” for any set of formulas Φ the set of
axioms of the formal system LΦ is defined and separated in the following groups:

(1) Sentential axioms

(2) Identity axioms: (for τ , τ1, τ2 and τ3 Boolean terms)

• (τ ≡ τ)

• (τ1 ≡ τ2) =⇒ (τ2 ≡ τ1)

• (τ1 ≡ τ2) ∧ (τ2 ≡ τ3) =⇒ (τ1 ≡ τ3)

(3) Congruence axioms (τ1, τ2, τ3 and τ4 Boolean terms)

• (τ1 ≡ τ2) =⇒ (−τ1 ≡ −τ2)

• (τ1 ≡ τ3) ∧ (τ2 ≡ τ4) =⇒ ((τ1 ∪ τ2) ≡ (τ3 ∪ τ4))

(4) Boolean axioms: For all Boolean terms τ1 and τ2, if τ1 and τ2 are equivalent
Boolean terms of Boolean logic then the following formula is an axiom of
LΦ:

• (τ1 ≡ τ2)

(5) Non-degenerate axiom:

• ¬(0 ≡ 1)

(6) Proximity axioms: (consider P the n-ary relation symbol, 1 ≤ i ≤ n, and
τ1, . . . , τi−1, τi, τ

′
i , τ
′′
i , τi+1, . . . , τn arbitrary Boolean terms)

• P (τ1, . . . , τi−1, τi, τi+1, . . . , τn) =⇒ ¬(τi ≡ 0)

• (τi ≡ (τ ′i ∪ τ ′′i )) =⇒

(P (τ1, . . . , τi−1, τi, τi+1, . . . , τn)⇐⇒
(P (τ1, . . . , τi−1, τ

′
i , τi+1, . . . , τn) ∨ P (τ1, . . . , τi−1, τ

′′
i , τi+1, . . . , τn)))

(7) Φ-axioms: Every formula obtained from a formula of Φ by simultaneously
and uniformly substituting Boolean terms for the Boolean variables it
contains.

Modus ponens is the only rule of inference for LΦ.
LΦ-deduction of formula ϕ from given set of formulas Σ is a finite sequence

of formulas ϕ1, . . . , ϕs such that:

• Every ϕi, where 1 ≤ i ≤ s, is either:

– An axiom of LΦ

– Formula from the set Σ

– Obtained by Modus ponens from formulas ϕj and ϕk from the se-
quence, where j < i, k < i and ϕk is the formula (ϕj =⇒ ϕi)

• ϕs is the formula ϕ

We say ϕ is LΦ-deducible from Σ, denoted as Σ `LΦ
ϕ, should it exist

LΦ-deduction of ϕ from Σ.
We say ϕ is LΦ-deducible in the particular case when Σ = ∅ and denote it

by `LΦ
ϕ.

8
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1.3.5 Completeness of Boolean logics

Later in the exposition, for proving particular completeness properties of our
n-ary contact logic, we resort to the more general case results for Boolean log-
ics as studied in [1]. In particular, we refer to ”Proposition 26”, section 7.5
”Completeness with respect to the Boolean semantics” and cite it here as the
following:

Proposition 1.3.2. Let Σ be a set of formulas and ϕ be a formula such that
Σ 
CB

Φ
ϕ. If BV (Σ) is finite then Σ `LΦ ϕ.

Effectively, we will be applying Proposition 1.3.2 for empty set Σ. Hence,
for convenience sake, we state the form we will use.

Proposition 1.3.3. For every set of formulas Φ and formula ϕ of the language
LR:


CB
Φ
ϕ implies `LΦ ϕ

1.4 Graphs notions

The definition and notions with respect to graphs are as in [4], ”Graphs: The-
ory and Algorithms”. Will highlight some of them for the sake of common
understanding used in the exposition later.

Denoting a graph by G = (V,E), where V and E are finite sets (unless
otherwise explicitly mentioned). The elements of V are called vertices and
those of E edges. Each edge is associated with pair of vertices. We say that any
of those vertices is incident on the edge. Furthermore, any edge a vertex being
incident with is also called incident on the vertex.

In general we consider undirected graphs which means the pairs of vertices
associated to the edges are non-ordered. We will tacitly assume directed graphs
in the case of rooted trees. By assumption the direction of all edges is from the
root of the tree towards the leafs.

Remark that by definition there is no restriction that every edge is associated
with distinct pair of vertices (such graphs may be referred as multi graphs). We
call two edges associated with a same pair of vertices parallel edges or multi
edges. Should the pair of vertices associated with an edge be singleton then we
call that edge self-loop at the given vertex or simply a loop. Graph having no
parallel edges or self-loops is called simple.

We call a graph bipartite if its set of vertices can be coloured into two colours
such that for every edge of the graph its two incident vertices are in different
colour.

A graph with no edges is called empty.

1.5 Topological spaces and notions. Topological space Rm

Here we briefly introduce the used notions and understanding related to topo-
logical spaces. Furthermore, we clarify what is the intended meaning of the
topological space Rm.

9
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1.5.1 Topological spaces. Notions

Definition. T = <X, τ> is topological space if:

• X is a non-empty set and τ ⊆ P(X)

• ∅ ∈ τ and X ∈ τ

• If A1, A2 ∈ τ then A1 ∩A2 is an element of τ

• If {Ai}i∈I is a family of elements of τ then ∪i∈IAi is also an element of τ

τ is called a topology on X.

Open set in topological space T = <X, τ> is any of the elements of the
topology τ .

Closed set is a complement with respect to X of an open set.
We state the definition above in a more convenient form.

Definition. In topological space T = <X, τ>:

• A is an open set iff A ∈ τ

• A is a closed set iff X \A ∈ τ

Remark the dual nature of the terms open and closed sets. It allows to
define topological space by τ being the closed sets instead and the open sets
being their complements with respect to X. Within this exposition though we
use the definition already given, namely where τ is the set of the open sets.

Given topological space T = <X, τ> we define interior and closure of a set.
Consider A subset of X.

Definition. Interior of a set A, denoted by Int(A), is:

Int(A) � ∪{B ∈ τ | B ⊆ A}

Hence, alternatively, the interior of a set A is the biggest open set subset of A.

Definition. Closure of a set A, denoted by Cl(A), is:

Cl(A) � ∩{B | X \B ∈ τ and A ⊆ B}

Hence, alternatively, the closure of a set A is the smallest closed set for which
A is its subset.

Remark the dual nature of interior and closure of a set. In particular:

• Cl(A) = X \ Int(X \A)

• Int(A) = X \ Cl(X \A)

For the definitions of open and closed sets then we have:

• A is open iff A ∈ τ iff A = Int(A)

• A is closed iff X \A ∈ τ iff A = Cl(A)

10
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Trivially by definition:

Int(A) ⊆ A ⊆ Cl(A)

Definition. Boundary points of the set A are the elements of the set:

Cl(A) \ Int(A)

Then, in addition to the above, the definitions of open and closed sets can
be restated in the following equivalent way:

• A is open iff A does not contain any of its boundary points

• A is closed iff A contains all its boundary points

Again, consider topological space T = <X, τ>

Definition. The topological space T is called connected if there exist no open
non-empty A1 and A2 subsets of X such that A1 ∩A2 = ∅ and A1 ∪A2 = X.

Remark that if T is connected then the only pair A1 and A2 of subsets of X
such that A1 ∩A2 = ∅ and A1 ∪A2 = X is the sets ∅ and X.

By definition of a connected topological space the following definitions are
equivalent:

• There exist no non-empty open A1 andA2 subsets ofX such thatA1∩A2 =
∅ and A1 ∪A2 = X.

• There exist no non-empty closed A1 and A2 subsets of X such that A1 ∩
A2 = ∅ and A1 ∪A2 = X.

• The only subsets of X being both open and closed (clopen) are ∅ and X.

• The only subsets of X having empty set of boundary points are ∅ and X.

1.5.2 Topological space Rm

Consider the Euclidean metric in the Euclidean space Rm.
When we say an open ball o for point x of Rm we mean the set of all points

being with Euclidean distance to x less than given fixed real positive r. We can
think of r as the radius of the ”ball”. Remark the collision with the term open
set determined in Section 1.5.1. As a comment, this is not a collision at all as
effectively open ball eventually is an open subset of the topological space Rm
which we are going to define shortly. Nevertheless this result is not going to be
explicitly stated as not being essential to the exposition. Confusion should be
avoided as the usage of the term open ball will be non-ambiguous and clear by
the context.

Consider <Rm, τ> where τ is defined as:

• A ∈ τ iff for every x ∈ A there exists an open ball o 3 x such
that o ⊆ A

Remark that <Rm, τ> is topological space. Really:

- ∅ and X are in τ by trivial reasons.

11
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- Let A1 and A2 be from τ . Consider arbitrary x ∈ A1 ∩ A2. By A1 there
is an open ball o1 3 x such that o1 ⊆ A1 and by A2 there is o2 3 x such
that o2 ⊆ A2. Hence o1 ∩ o2 ⊆ A1 ∩A2. Trivially, o1 ∩ o2 is an open ball.
Furthermore, o1 ∩ o2 is an open ball for x. x was arbitrary element of
A1 ∩A2 therefore A1 ∩A2 is from τ .

- Consider {Ai}i<I family of elements of τ . For an arbitrary x ∈ ∪i∈IAi
we have that there exists j ∈ I such that x ∈ Aj . Then there is an open
ball o 3 x such that o ⊆ Aj . This means o ⊆ ∪i∈IAi. x was arbitrary
therefore ∪i∈IAi is from τ .

For simplicity when we say topological space Rm we should mean the topo-
logical space <Rm, τ> as just defined.

Consider the topological space Rm. Having the notions of open, closed set
and boundary points of a set in arbitrary topological space then, when in Rm,
those can in addition be restated in the following way:

• A is an open set iff for every x ∈ A there exists an open ball
o 3 x such that o ⊆ A

• a is a boundary point for A iff for every open ball o 3 a there
exist in o both points from A and points from the complement of A with
respect to Rm (that is o ∩A 6= ∅ and o ∩ (Rm \A) 6= ∅)

• A is a closed set iff for every x ∈ A either there exists an open
ball o 3 x such that o ⊆ A (in particular, x is from the interior of A)
or for every open ball o 3 x there exist in o both points from A and
points from the complement of A with respect to Rm (in particular, x is
a boundary point for A)

Finally, remark that:

• The topological space Rm is connected.

Proof notes: Assume the contrary, namely, there exist non-empty open sets A
and B subsets of Rm satisfying A ∩ B = ∅ and A ∪ B = Rm. Take arbitrary
a ∈ A and b ∈ B. Apparently a 6= b. Consider the segment s being the section
between a and b (including a and b) of the straight line connecting a and b in
Rm. We build a countable sequence of segments subsets of s in the following
way. Let s0 be s. Consider the Euclidean distance between a and b and take the
point in the middle of the segment s0, denote it by a1. If a1 ∈ A then s1 is the
segment between a1 and b (including a1 and b). Otherwise a1 ∈ B then s1 is the
segment between a and a1 (including a and a1). Remark that the length of the
segment s1 is half the length of s0. In this way we build the countable sequence
of segments {si}i<ω each segment being with positive length and half the length
of the former one in the sequence. Then the length of the segments si converges
down to 0 when i tends to infinity. Therefore the sequence {si}i→∞ → c, where
c is point from s (the latter statement requires some further formal refinement).
Remark that, by definition of the sequence {si}i<ω, for every natural i then
c ∈ si. Consider arbitrary open ball o 3 c. Then by the remark just being made
there is a natural N such that for every i > N is satisfied si ⊆ o. By the choice
of the elements of the sequence {si}i<ω we imply that there are points from A

12
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and points from B in o. o was arbitrary. Then, by A and B open sets it means
c is neither in A nor in B. This is a contradiction with A ∪B = Rm.

1.6 Regular closed sets and polytopes of Rm. Boolean
algebras of the regular closed sets and polytopes

Within the exposition they will extensively be used the notions of regular closed
subsets and polytopes of Rm. Basically for a regular closed subset of Rm is
adopted the very standard notion. The meaning of polytopes though has evolved
throughout the years so we will define what being intended here.

The regular closed subsets and polytopes of Rm determine a class of Boolean
algebras. They are of special interest for us because the classes of Boolean
frames to be studied later will all be with carriers exactly such Boolean algebras.
Furthermore, it will also be given the definition of the standard n-ary contact
relation in arbitrary topological space. The n-ary contact relations in Rm on the
other hand will be the interpretation of the relation symbols of the n-ary contact
language (defined in Section 1.2) in those same classes of Boolean frames.

1.6.1 Regular closed sets

Consider arbitrary topological space T = <X, τ>
First, let us observe several additional properties of the interior and the

closure. Following consider arbitrary sets A and B of T.

• (Idempotency) The following equations hold:

Int(Int(A)) = Int(A) Cl(Cl(A)) = Cl(A)

Proof. Trivially by definition.

• (Monotonicity) If A ⊆ B then:

Int(A) ⊆ Int(B) Cl(A) ⊆ Cl(B)

Proof. Int(A) ⊆ A hence Int(A) ⊆ B. Int(A) is open set then by the latter
and by definition: Int(A) ⊆ Int(B). For the closure either in analogy or by the
just proven fact for the interior and by their duality property. In particular,
A ⊆ B then X \B ⊆ X \A. Thus Int(X \B) ⊆ Int(X \A). Therefore:

Cl(A) = X \ Int(X \A) ⊆ X \ Int(X \B) = Cl(B)

• Linear property of the interior with respect to the set-theoretical inter-
section and the closure with respect to the set-theoretical union:

Int(A ∩B) = Int(A) ∩ Int(B)

Cl(A ∪B) = Cl(A) ∪ Cl(B)

Remark that the linear properties of the interior and the closure are not valid if
the set-theoretical intersection and union are exchanged in the above equations.

13
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Proof. We have Int(A) ⊆ A and Int(B) ⊆ B. Then, trivially:

Int(A) ∩ Int(B) ⊆ A ∩B

Int(A) and Int(B) are open sets then, by definition, such one also is (Int(A)∩
Int(B)). Hence, by idempotency and monotonicity, it follows:

Int(A) ∩ Int(B) = Int(Int(A) ∩ Int(B)) ⊆ Int(A ∩B)

For the opposite direction, trivially, for A we have A∩B ⊆ A and by monotonic-
ity : Int(A∩B) ⊆ Int(A). The same holds for B, namely Int(A∩B) ⊆ Int(B).
Therefore:

Int(A ∩B) ⊆ Int(A) ∩ Int(B)

The statement for the closure is by analogous reasoning to the one just
proven for the interior. Alternatively, it can simply be attained by the duality
of the interior and the closure using the demonstrated fact for the interior.
Namely:

Cl(A ∪B) = X \ Int(X \ (A ∪B)) = X \ Int((X \A) ∩ (X \B)) =

= X \ (Int(X \A) ∩ Int(X \B)) = (X \ Int(X \A)) ∪ (X \ Int(X \B)) =

= Cl(A) ∪ Cl(B)

We are prepared to define and study the notion of regular closed set of the
arbitrary topological space T.

Definition. A regular closed set of T is a subset of the space X being equal
to the closure of its interior. In particular, A is a regular closed set if A =
Cl(Int(A)).

Obviously:

• A regular closed set is a closed set.

Furthermore, trivially:

• ∅ and the space X are regular closed sets.

We call the operation Cl(Int(A)) on an arbitrary set A regularisation and
the set Cl(Int(A)) regularised. Therefore regular closed sets are those equal to
their regularised sets. Furthermore, the regularised sets are the regular closed
sets. In particular:

• For an arbitrary set A of T then Cl(Int(A)) is a regular closed set.

This statement is equivalent to:

• For an arbitrary set A of T it holds:

Cl(Int(A)) = Cl(Int(Cl(Int(A))))

14
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Proof. By definition of interior we have Int(Cl(Int(A))) ⊆ Cl(Int(A)). Then,
by the monotonicity, we obtain Cl(Int(Cl(Int(A)))) ⊆ Cl(Cl(Int(A))). Now
by idempotency eventually:

Cl(Int(Cl(Int(A)))) ⊆ Cl(Int(A))

For the opposite direction we have Int(A) ⊆ Cl(Int(A)). By monotonicity
and idempotency, consequently, we obtain: Int(A) ⊆ Int(Cl(Int(A))). By
monotonicity once again:

Cl(Int(A)) ⊆ Cl(Int(Cl(Int(A))))

The following statements hold:

• For arbitrary regular closed sets A and B then (A ∪ B) also is a regular
closed set.

• For arbitrary regular closed set A then Cl(X \ A) also is a regular closed
set.

Proof.
For the first one we have to demonstrate: A ∪B = Cl(Int(A ∪B)).

By monotonicity applied on A ⊆ A ∪ B we obtain that: Cl(Int(A)) ⊆
Cl(Int(A ∪B)) Now, by A being a regular closed set, namely A = Cl(Int(A)),
we have A ⊆ Cl(Int(A ∪B)). In analogy B ⊆ Cl(Int(A ∪B)). By those:

A ∪B ⊆ Cl(Int(A ∪B))

For the other direction, we have Int(A ∪ B) ⊆ A ∪ B. By monotonicity, idem-
potency and the linear properties of the closure, subsequently:

Cl(Int(A ∪B)) ⊆ Cl(A ∪B) = Cl(A) ∪ Cl(B)

A and B are closed sets hence A = Cl(A) and B = Cl(B). Therefore:

Cl(Int(A ∪B)) ⊆ A ∪B

For the second one we have to demonstrate: Cl(X \A) = Cl(Int(Cl(X \A))).
This is true by the duality of the interior and the closure. In particular,

subsequently, we obtain:

Cl(Int(Cl(X \A))) = Cl(Int(X \ Int(A))) = Cl(X \ Cl(Int(A)))

By this and A being a regular closed set, namely A = Cl(Int(A)), then the
intended equality holds.

1.6.2 Boolean algebras of regular closed sets

Again, consider an arbitrary topological space T = <X, τ>. Denote by RC(T)
the set of the regular closed sets of T. Consider the structure:

RC = <RC(T),−RC ,∪RC ,∩RC>,

where for arbitrary A and B being regular closed sets the operations ∪RC , ∩RC
and −RC are defined as:
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• A ∪RC B = A ∪B

• A ∩RC B = Cl(Int(A ∩B))

• −RCA = Cl(X \A)

As per Section 1.6.1 the result of applying ∪RC , ∩RC or −RC on arbitrary
regular closed sets is a regular closed set. Our goal then is to see that RC is a
Boolean algebra.

First of all, remark that the de Morgan laws are satisfied. Namely:

• A ∩RC B = −RC((−RCA) ∪RC (−RCB))

• A ∪RC B = −RC((−RCA) ∩RC (−RCB))

Proof. By definition and using the properties demonstrated in Section 1.6.1,
subsequently:

−RC((−RCA) ∪RC (−RCB)) =

= Cl(X \ ((−RCA) ∪RC (−RCB))) =

= Cl(X \ (Cl(X \A) ∪ Cl(X \B))) =

= Cl(X \ Cl((X \A) ∪ (X \B))) =

= Cl(X \ Cl(X \ (A ∩B))) =

= Cl(X \ (X \ Int(A ∩B))) =

= Cl(Int(A ∩B)) = A ∩RC B

For the other equation:

−RC((−RCA) ∩RC (−RCB)) =

= Cl(X \ ((−RCA) ∩RC (−RCB))) =

= Cl(X \ Cl(Int((−RCA) ∩ (−RCB)))) =

= Cl(X \ Cl(Int(Cl(X \A) ∩ Cl(X \B)))) =

= Cl(X \ Cl(Int(Cl(X \A)) ∩ Int(Cl(X \B))))

Remark that for arbitrary regular closed set A:

Int(Cl(X \A)) = X \ Cl(X \ Cl(X \A)) =

= X \ Cl(Int(A)) = X \A

Now, by substituting these in the former equation we obtain:

= Cl(X \ Cl((X \A) ∩ (X \B))) =

= Cl(X \ Cl(X \ (A ∪B))) = Cl(Int(A ∪B))

Recall, for regular closed sets A and B, as per Section 1.6.1, we have:

Cl(Int(A ∪B)) = A ∪B,

by which the equation is proven.
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To show that RC is a Boolean algebra we need to verify a sufficient set of
axioms. We adopt one as by [3]. In particular (expectedly, by ’∪’ and ’∩’ are
denoted the Boolean algebra operations join and meet respectively):

(A1)
A ∪B = B ∪A, A ∩B = B ∩A

(A2)
A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C

(A3)
(A ∩B) ∪B = B, (A ∪B) ∩B = B

(A4)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(A5)
(A ∩ −A) ∪B = B, (A ∪ −A) ∩B = B

As a comment, it is a known fact (also mentioned in [3]) that axiom (A4) could
be omitted. Nevertheless we will consider the original set of axioms so (A4) will
be demonstrated as well.

(A1)

Trivially by definition and the associativity of set-theoretical union and inter-
section.

(A2)

A∪RC (B ∪RC C) = (A∪RC B)∪RC C is trivial by definition of ’∪RC ’. For the
other one first remark the following property (a kind of a ”dual” form of the
regularisation).

• For an arbitrary set A of T:

Int(Cl(A)) = Int(Cl(Int(Cl(A))))

Proof of the property: By definition of closure: Int(Cl(A)) ⊆ Cl(Int(Cl(A))).
By Section 1.6.1 monotonicity and idempotency, subsequently:

Int(Cl(A)) = Int(Int(Cl(A))) ⊆ Int(Cl(Int(Cl(A))))

For the other direction, by definition of interior, we have Int(Cl(A)) ⊆ Cl(A).
Then by Section 1.6.1 monotonicity and idempotency, subsequently:

Cl(Int(Cl(A))) ⊆ Cl(Cl(A)) = Cl(A)

Now, by monotonicity :

Int(Cl(Int(Cl(A)))) ⊆ Int(Cl(A))
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Remark that whenever A is closed then, by A = Cl(A) and the demonstrated
property, we imply:

• For an arbitrary closed set A:

Int(A) = Int(Cl(Int(A)))

Now:

A ∩RC (B ∩RC C) = Cl(Int(A ∩ Cl(Int(B ∩ C)))) =

= Cl(Int(A) ∩ Int(Cl(Int(B ∩ C))))

Recall B and C are closed sets then, by the demonstrated property:

Int(Cl(Int(B ∩ C))) = Int(B ∩ C)

Using this in the former equation we obtain:

= Cl(Int(A) ∩ Int(B ∩ C)) = Cl(Int(A) ∩ Int(B) ∩ Int(C)))

By similar reasoning we obtain the same result for (A ∩RC B) ∩RC C as well.
Hence, the equality holds.

(A3)

First, remark the following property:

• For arbitrary sets A and B of T:

A ∪ Int(A ∩B) = A

Proof of the property: Trivially, by Int(A ∩B) ⊆ (A ∩B):

A ⊆ A ∪ Int(A ∩B) ⊆ A ∪ (A ∩B) = A

This proves the equality.

Now:
(A ∩RC B) ∪RC B = Cl(Int(A ∩B)) ∪B

B is regular closed set then B is closed hence B = Cl(B). Then, by the property
just demonstrated and the linear property of the closure as per Section 1.6.1,
subsequently:

Cl(Int(A ∩B)) ∪B = Cl(Int(A ∩B)) ∪ Cl(B) =

= Cl(Int(A ∩B) ∪B) = Cl(B) = B

For the other equality it is directly by definition and by A and B (in partic-
ular B) being regular closed sets, namely:

(A ∪RC B) ∩RC B = Cl(Int((A ∪B) ∩B)) =

= Cl(Int(B)) = B

(A4)
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It is sufficient to demonstrate one of the equations as long as the other is a
direct implication of the former by applying de Morgan laws. We will prove the
equation: A ∩RC (B ∪RC C) = (A ∩RC B) ∪RC (A ∩RC C). For its left side we
have:

A ∩RC (B ∪RC C) = Cl(Int(A ∩ (B ∪RC C)))) =

= Cl(Int(A ∩ (B ∪ C)))) =

= Cl(Int((A ∩B) ∪ (A ∩ C)))

For the right side of the equation:

(A ∩RC B) ∪RC (A ∩RC C) = (A ∩RC B) ∪ (A ∩RC C) =

= Cl(Int(A ∩B)) ∪ Cl(Int(A ∩ C))

A, B and C are closed sets then also are (A ∩ B) and (A ∩ C). Therefore, by
directly applying the observation below on the closed sets (A∩B) and (A∩C),
the equality will hold. It remains to prove then the following observation:

• Let A and B be closed sets of T. Then:

Cl(Int(A ∪B)) = Cl(Int(A)) ∪ Cl(Int(B))

Remark that by this equality it is directly implied the fact that for any
regular closed sets A and B then (A ∪ B) is also a regular closed set. We have
proven the latter explicitly for the sake of simplicity as long as the current
property is a slightly less trivial observation.

Proof of the observation: By A ⊆ (A ∪ B) and by monotonicity as per Sec-
tion 1.6.1, subsequently:

Cl(Int(A)) ⊆ Cl(Int(A ∪B))

Combining it with the analogous result for B we imply:

Cl(Int(A)) ∪ Cl(Int(B)) ⊆ Cl(Int(A ∪B))

For the other direction it is sufficient to demonstrate that:

Int(A ∪B) ⊆ Cl(Int(A)) ∪ Cl(Int(B))

Having this then, by Cl(Int(A))∪Cl(Int(B)) being a closed set and the mono-
tonicity and idempotency as per Section 1.6.1, subsequently we will imply:

Cl(Int(A ∪B)) ⊆ Cl(Cl(Int(A)) ∪ Cl(Int(B))) =

= Cl(Int(A)) ∪ Cl(Int(B)),

which will prove the equality.
Now, to show Int(A ∪ B) ⊆ Cl(Int(A)) ∪ Cl(Int(B)), for the sake of con-

tradiction, assume the contrary. This means:

Int(A ∪B) ∩ (X \ (Cl(Int(A)) ∪ Cl(Int(B)))) 6= ∅
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By the duality of the interior and the closure we have :

X \ (Cl(Int(A)) ∪ Cl(Int(B))) =

X \ (Cl(Int(A) ∪ Int(B))) =

= Int(X \ (Int(A) ∪ Int(B)))

Then, by that and the former inequality:

∅ 6= Int(A ∪B) ∩ Int(X \ (Int(A) ∪ Int(B))) =

= Int((A ∪B) ∩ (X \ (Int(A) ∪ Int(B)))) =

= Int((A ∪B) \ (Int(A) ∪ Int(B)))

Denote:
U = Int((A ∪B) \ (Int(A) ∪ Int(B)))

Hence U is an open non-empty set and:

U ⊆ (A ∪B) \ (Int(A) ∪ Int(B))

Assume U ⊆ A. U is open then by definition U ⊆ Int(A) which is a contradic-
tion. It follows that both U * A and U * B. Then:

U ∩ (X \A) 6= ∅

A is closed then (X \ A) is open hence U ∩ (X \ A) is an open non-empty set.
By U ⊆ (A ∪B) we have:

U ∩ (X \A) ⊆ (A ∪B) ∩ (X \A) =

= (A ∪B) \A = B \A ⊆ B

Nevertheless, U * B hence (U ∩ (X \ A)) * B. We have a contradiction thus
our assumption is wrong which proves the observation.

(A5)

Again, it is sufficient to prove one of the equations as long as the other is a
direct implication of the former by applying the de Morgan laws. We will prove
(A ∩RC (−RCA)) ∪RC B = B. The following is satisfied:

A ∩RC (−RCA) =

= Cl(Int(A ∩ (−RCA))) =

= Cl(Int(A ∩ Cl(X \A))) =

= Cl(Int(A ∩ (X \ Int(A)))) =

= Cl(Int(A \ Int(A)))

Remark that:

• For an arbitrary set A is satisfied:

Int(A \ Int(A)) = ∅
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Proof of the property: Let U = Int(A \ Int(A)) and assume that U 6= ∅. U ⊆
(A \ Int(A)) then U ∩ Int(A) = ∅. Trivially, U ∪ Int(A) is an open set. Fur-
thermore, U ∪ Int(A) ⊆ A. Hence, by definition, U ∪ Int(A) ⊆ Int(A) thus
U ⊆ Int(A), which is a contradiction.

Applying this observation it follows that:

A ∩RC (−RCA) = ∅

Now, using this, we have:

(A ∩RC (−RCA)) ∪RC B =

(A ∩RC (−RCA)) ∪B =

∅ ∪B = B

Eventually we have demonstrated that RC is a Boolean algebra. As a com-
ment, it is a known fact that, furthermore, RC is a complete Boolean algebra
(intuitively, one allowing infinite meets and joins). Nevertheless the latter will
be not needed in our exposition.

Finally, by the equation above, for the zero of the Boolean algebra RC we
have:

0RC = (A ∩RC (−RCA)) = ∅

For the unit of RC, by definition, subsequently:

1RC = (A ∪RC (−RCA)) =

= A ∪ Cl(X \A) ⊇ A ∪ (X \A) = X

Therefore:

• The zero of the Boolean algebra RC is the empty set.

• The unit of the Boolean algebra RC is the space X of the topological
space T.

1.6.3 Polytopes of Rm

Consider the topological space Rm for fixed m, m ≥ 1.
By a half-space of Rm we intend the standard notion in analogy to half-

space of R3. Then a half-space of R2 is a half-plane, of R1 is a ray. Formally, a
half-space of Rm is the set of points satisfying the inequality:

a1x1 + . . .+ anxn ≥ b,

for appropriate real coefficient b and not all zero real coefficients a1, . . . , an.

Definition. Inductive definition of a polytope of Rm:

• The empty set is a polytope of Rm.

• Any intersection with a non-empty interior of finitely many half-spaces is
a polytope of Rm.

• A union of finitely many polytopes of Rm is a polytope of Rm.
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Trivially, by definition Rm itself is also a polytope (as being the set of all
points in the empty intersection of half-spaces).

In particular, a polytope of R1 is a union of finitely many subsets of R1 each
being intersection (with non-empty interior) of finitely many rays. This means a
polytope of R1 effectively is a union of finitely many (genuine) rays or segments
of R1. Polytope in R2 will be a union of finitely many subsets of R2 each being
intersection (with non-empty interior) of finitely many half-planes.

Remark that any polytope of Rm can be considered a polytope of Rn for
m ≤ n. The polytope of Rm can be considered as obtained by the Rm projection
of Rn. Apparently the subset of Rn whose projection results in the polytope of
Rm is a polytope by definition.

Consider the equivalent topological notions as highlighted in Section 1.5.2.
Then, by the formal definition above of a half-space (the points satisfying a non-
strong inequality), it is easy to infer that a half-space contains all its boundary
points. In particular, any point satisfying the equality will also satisfy the
definition of a boundary point in Rm. Then a half-space in Rm is a closed set.
Furthermore, it is easy to see that the interior of a half-space are the points
satisfying the strong inequality. By this we imply that the closure of the interior
of a half-space is the half-space itself. Therefore:

• The half-spaces are regular closed sets.

Furthermore, this similar reasoning can easily be generalised for a finite inter-
section of half-spaces (such that the intersection is with a non-empty interior),
namely the points satisfying the finite set of the inequalities defining each of the
half-spaces. Thus we have:

• An intersection of finitely many half-spaces being with non-empty interior
is a regular closed set.

By Section 1.6.1, union of regular closed sets is a regular closed set. Now, by
applying the inductive definition of a polytope it follows that:

• The polytopes are regular closed sets.

1.6.4 Boolean algebras of regular closed sets and polytopes of Rm

As per Section 1.6.3, consider the topological space Rm. In Section 1.6.2 we have
demonstrated that the set of all regular closed sets forms a Boolean algebra with
the well defined Boolean operations ’∪RC ’, ’∩RC ’ and ’−RC ’. Our purpose now
is to demonstrate that the set of all polytopes of Rm forms a Boolean algebra
subalgebra of the Boolean algebra of the regular closed sets of Rm.

Recall that, as per Section 1.6.3, the polytopes are regular closed sets.
Consider the Boolean algebra complement operation ’−RC ’ as defined in

Section 1.6.2.
With a similar reasoning as in Section 1.6.3, we also imply that the set-

theoretical complement of a half-space is the interior of the counter half-space
(formally, the one obtained by negating all the coefficients of the given half-
space). Then the closure of that set will be the counter half-space of the given
half-space. Then:

• The Boolean algebra complement operation ’−RC ’ applied on a half-space
is a half-space.
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Now, consider a finite intersection of half-spaces having a non-empty interior.
Then, the set-theoretical complement of that set is the finite union of the set
theoretical complements of each of the half-spaces participating in the finite
intersection. As clarified, the set-theoretical complement of a half-space is the
interior of the counter half-space. Therefore the set-theoretical complement of
an intersection of finitely many half-spaces is the union of the interiors of their
corresponding counter half-spaces. Now, by the linearity of the closure as per
Section 1.6.1 then the closure of that set is the finite union of the regularisations
of the respective counter half-spaces. As already shown in Section 1.6.3, half-
spaces are regular closed sets hence they are preserved under regularisation. By
definition of politope we conclude:

• The Boolean algebra complement operation ’−RC ’ applied on a finite in-
tersection of half-spaces having a non-empty interior results in a polytope.

Now, consider the set-theoretical complement of an arbitrary polytope. The cases
of the polytope being the empty set or Rm are trivial so, in general, consider
the polytope is a finite union of finite intersections of half-spaces (with a non-
empty interior). Then, the set-theoretical complement is the intersection of the
unions of the interiors of the corresponding counter half-spaces. Reorganising
this properly we obtain a finite union of finite intersections of the interiors of
the counter half-spaces. The closure of that finite union is then the union of
the closures of each such finite intersection. As clarified, the closure of a finite
intersection of the interiors of half-spaces is the intersection of the half-spaces.
Therefore we have a finite union of finite intersections of half-spaces, hence, a
polytope. Finally:

• The Boolean algebra complement operation ’−RC ’ applied on a polytope
results in a polytope.

Furthermore, trivially, by definition of polytopes, a union of finitely many
polytopes is a polytope. Then:

• The Boolean algebra join operation ’∪RC ’ applied on polytopes results in
a polytope.

Using the de Morgan laws and the results for the Boolean algebra comple-
ment and join operations we imply:

• The Boolean algebra meet operation ’∩RC ’ applied on polytopes results in
a polytope.

To recapitulate, we have demonstrated that the polytopes are regular closed
sets and they are preserved under the operations of the Boolean algebra of the
regular closed sets. Finally:

• The polytopes of Rm form a Boolean algebra subalgebra of the Boolean
algebra of the regular closed sets of Rm.

As a subalgebra of the Boolean algebra of the regular closed sets of Rm, then
the Boolean algebra of the polytopes of Rm has the same zero and unit elements.
Therefore, as per Section 1.6.2, we have:

• The zero of the Boolean algebra of the polytopes of Rm as well as of the
Boolean algebra of the regular closed sets of Rm is the empty set.
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• The unit of the Boolean algebra of the polytopes of Rm as well as of the
Boolean algebra of the regular closed sets of Rm is the set Rm.

Denote by PRC(Rm) the set of the polytopes of Rm. Consider the structure:

PRC = <PRC(Rm),−RC ,∪RC ,∩RC>,

where the Boolean operations −RC , ∪RC and ∩RC are as per Section 1.6.2.
From here on, by RC will be denoted the Boolean algebra of the regular closed
sets of Rm, namely:

RC = <RC(Rm),−RC ,∪RC ,∩RC>

Therefore:

• PRC is the Boolean algebra of the polytopes of Rm subalgebra of the
Boolean algebra RC of the regular closed sets of Rm.

1.7 n-ary contact relation

Consider an arbitrary topological space T = <X, τ> and arbitrary A1, . . . , An
subsets of the space X, where n ≥ 1.

Definition. We say that A1, . . . , An are in n-ary contact if the set-theoretical
intersection of A1, . . . , An is non-empty.

Denote this relation by CTn. Then the definition says:

<A1, . . . , An> ∈ CTn iff A1 ∩ . . . ∩An 6= ∅

Apparently A1, . . . , An are in n-ary contact only if A1, . . . , An are all
non-empty.

Consider an arbitrary set S ⊆ P(X). Whenever we use CTn as a relation on
the field S then we naturally mean the restriction of CTn to the field S, namely:

CTn ∩ (S × . . .× S︸ ︷︷ ︸
n

)

We will use n-ary contact always in the context of Rm hence will omit the
topological space superscript and simply write Cn instead.
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2 n-graphs, Contact n-frames and Contact n-
graphs

This section studies Kripke frames with specific properties. Non-formally, one
can think those intended properties impose in some sense ”finite” contact be-
haviour to the considered Kripke frames. Contact, from relation symbols in-
terpretation perspective, that is the n-ary relations behave in a way like the
standard notion of n-ary contact. Furthermore, those interpretations will have
a finite character, that is, intuitively, for some n < ω then every k-ary relation
(k-ary relation symbol interpretation) for k ≥ n will not add any additional
information compared to what already available by the n-ary relation.

An essential commodity of the finite frames from the mentioned class of
Kripke frames will be that they can be ”encoded” into convenient graph struc-
ture and thus manipulated by graph operations and properties.

2.1 Contact n-frames

Definition 2.1.1. Given Kripke frame F =<S, I> for LR. Consider k ≥ 1.
Denote by Rk the k-ary relation I(P ), where P is the k-ary relation symbol in
R.
We call F a contact n-frame for LR if:

(a) <s1, . . . , sk> ∈ Rk implies for every σ : {1, . . . , k} → {1, . . . , k} is satisfied
<sσ(1), . . . , sσ(k)> ∈ Rk

(b) <s1, s1, s2, . . . , sk> ∈ Rk+1 if and only if <s1, s2, . . . , sk> ∈ Rk

(c) <s, s> ∈ R2

(d) For n are satisfied:

(d.1) They exist distinct s1, . . . , sn such that <s1, . . . , sn> ∈ Rn
(d.2) For every k ≥ 1, for every s1, . . . , sk such that <s1, . . . , sk> ∈ Rk

then {s1, . . . , sk} ≤ n

Remark 2.1.1. By (c) and (b) we imply that R1 = S.

Now, due to Remark 2.1.1 we adopt the following:

Notation. Contact n-frames will be denoted by:

F =<S,R2, . . . , Rn, . . .>

that is contact n-frame F with carrier S and interpretation of:

• The unary relation symbol as S

• The k-ary relation symbol for k ≥ 2 as Rk

and explicitly pointing out the n-ary relation Rn.

Consider contact n-frame F =<W,R2, . . . , Rn, . . .>, W 6= ∅. By Defini-
tion 2.1.1 point (a) for every tuple <w1, . . . , wk>, such that <w1, . . . , wk> ∈ Rk,
an arbitrary permutation of w1, . . . , wk is also in Rk. By this the following def-
inition is correct:
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• Rqk �
{
{w1, . . . , wk}

∣∣ <w1, . . . , wk> ∈ Rk & {w1, . . . , wk} = q
}
, k ≥ 2

Observation 2.1.1. The following are satisfied:

• Whenever q > k then
Rqk = ∅

• Whenever 1 ≤ q ≤ k1, k2 then

Rqk1
= Rqk2

Proof. Should q > k then immediately by the definition of Rqk.
The case k1 = k2 is trivially satisfied.
Without loss of generality let k1 < k2. Let q ≤ k1 < k2. Consider w1, . . . , wq

distinct. By definition of Rqk and (a):

{w1, . . . , wq} ∈ Rqk1

iff
{w
′

1, . . . , w
′

k1
} = {w1, . . . , wq} and <w

′

1, . . . , w
′

k1
> ∈ Rk1

By (b) k2 − k1 times we obtain:
iff

<w
′

1, . . . , w
′

1︸ ︷︷ ︸
k2−k1

, w
′

1, . . . , w
′

k1
> ∈ Rk2

and {w
′

1, . . . , w
′

k1
} = {w1, . . . , wq}

which by Rqk definition and (a):
iff

{w1, . . . , wq} ∈ Rqk2

2.2 n-graphs. Contact n-graphs

2.2.1 n-graphs

Definition 2.2.1. A graph is called n-graph for a positive natural n if its set
of vertices can be split into two disjoint sets W and V such that:

• W is a non-empty set.

• Every edge of the graph is incident on one vertex from W and the other
from V .

• Every vertex from V is incident on at least 2 edges.

• Every vertex from V is incident on not more than n edges.

• If n > 1 then exists vertex from V incident on exactly n edges. Otherwise,
in the case when n = 1, then V is empty.

Definition. Given an n-graph, let W and V be the split of the vertices of the
graph in accordance to Definition 2.2.1. Then:

26



2 CONTACT FRAMES AND GRAPHS

• We call the elements of W terminal vertices.

• We call the elements of V (if any) conector vertices.

• We call a connector vertex k-vertex if incident on exactly k edges.

Lemma 2.2.1. Any non-empty n-graph is bipartite. An appropriate partition-
ing is the disjoint sets of the terminal and the connector vertices.

Proof. We colour every terminal vertex (let’s say) in black and every connector
vertex in white. Then by definition of n-graph every edge naturally satisfies the
condition for a bipartite graph, namely, to have its incident vertices in different
colour.

Lemma 2.2.1 allows us to define the following:

Notation. We denote an n-graph by G = (W,V,E) where:

• W is the set of terminal vertices

• V is the set of connector vertices

• E is the set of edges

Remark. By Definition 2.2.1, 1-graph is empty (that is it has no edges).
Having an n-graph G = (W,V,E) then within the standard notion of a graph

it is G = (W∪V,E).
Furthermore, again by Definition 2.2.1, every k-vertex is incident on exactly

k edges, where k ≥ 2.

2.2.2 Contact n-graphs

Definition. Given graph G = (V,E) and vertex v ∈ V . By AdjG(v) we denote
all the adjacent vertices of vertex v in G:

AdjG(v) �
{
v′
∣∣ v ∈ V & (v, v′) ∈ E

}
Definition 2.2.2. Contact n-graph G is a graph satisfying the following con-
ditions:

(0) G is n-graph

(1) G is simple

(2) If any connector vertices v′ and v′′ satisfy AdjG(v′) ⊆ AdjG(v′′) then
v′ = v′′

By the definition of contact n-graph we easily make the following observation.

Observation 2.2.1. Acyclic n-graph is contact n-graph.

Proof. The graph is n-graph so Definition 2.2.2 (0) is satisfied and (1) is true
by the graph being acyclic.

For Definition 2.2.2 (2), denote the acyclic n-graph by G = (W,V,E).
Consider v′, v′′ ∈ V such that AdjG(v′) ⊆ AdjG(v′′). By Definition 2.2.1

AdjG(v′) ≥ 2 hence there are distinct vertices w1 and w2 from W such that
{w1, w2} ⊆ AdjG(v′) ⊆ AdjG(v′′). Assume v′ 6= v′′. Then v′-w1-v′′-w2-v′ is a
circuit but the graph is acyclic hence a contradiction.
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2.3 n-frames to n-graphs correspondence

Definition 2.3.1. Let F =<W,R2, . . . , Rn, . . .> be a finite contact n-frame.
Denote by G = (W,V,E) a graph such that W and V are disjoint sets of
vertices the union of which is all vertices of G, V is non-necessarily non-empty
and E is the set of edges of G.

The graph G = (W,V,E) is called induced by F (denoted by F −→ G) if:

• W is the carrier of F

• V ⊆ P(W ) such that:

(g1) v ∈ V iff exists k ≥ 2 such that:

v ∈ Rkn and for all i and for all b if b ∈ Rin and v ⊆ b then v = b

• For the set of edges E it holds:

(g2) E =
{
{w, v}

∣∣ w ∈W & v ∈ V & w ∈ v
}

Remark 2.3.1. By (g2) we immediately imply:

(g3) For any v ∈ V :
AdjG(v) = v

Claim 2.3.1. F is finite contact n-frame and G is the graph induced by F .
Then G is a contact n-graph.

Proof. Denote F =<W,R2, . . . , Rn, . . .> and G = (W,V,E). Will demonstrate
all the conditions of Definition 2.2.2 of contact n-graph one by one.

(0): G is n-graph:

• W 6= ∅ by definition of Kripke frame.

• e ∈ E then immediately by Definition 2.3.1 (g2) e is incident on a vertex
from W and a vertex from V .

• Consider v ∈ V . Then by Definition 2.3.1 (g1) there is k ≥ 2 such

that v ∈ Rkn. Then by Remark 2.3.1 (g3) AdjG(v) = k. Remark that
by Definition 2.3.1 (g2) E does not contain parallel or self-loop edges.
Therefore v is incident on exactly k edges. On one hand, by k ≥ 2, this
means v is incident on at least 2 edges. On the other, by Observation 2.1.1,
k ≤ n which means v is incident on not more than n edges.

• Consider n = 1. Assume it exists v ∈ V . By Definition 2.3.1 (g1) then
exists k ≥ 2 such that v ∈ Rkn. Apparently then k > n and hence, by
Observation 2.1.1, Rkn is empty which is a contradiction. Therefore V is
empty.
Consider n > 1. Assume there is no v ∈ V such that v = n.
By Definition 2.1.1 (d.1) of contact connected frame we imply Rnn 6= ∅.
By that and (g1) for every a ∈ Rnn it exists i and exists b such that b ∈ Rin
and a ⊆ b, and a 6= b. For a concrete a take arbitrary witnessess i and

b. By a ∈ Rnn we imply a = n. b ∈ Rin hence b = i. a ⊆ b thus n ≤ i.
Furthermore, a 6= b so n < i. Therefore, by Observation 2.1.1, Rin = ∅,
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but this contradicts b ∈ Rin. Hence our assumption is wrong. This means

there is v ∈ V such that v = n. By Remark 2.3.1 (g3): AdjG(v) = n.
Recall that by Definition 2.3.1 (g2) there are no parallel edges hence v is
incident on exactly n edges.

(1): Again, by Definition 2.3.1 (g2) no self-loop or parallel edges are possi-
ble.

(2): Let v′, v′′ ∈ V and AdjG(v′) ⊆ AdjG(v′′). Then by Remark 2.3.1
(g3) v′ ⊆ v′′. By Definition 2.3.1 (g1) they exist k1 and k2, both greater or
equal 2, such that v′ ∈ Rk1

n and v′′ ∈ Rk2
n . Now by those, v′ ⊆ v′′ and again

Definition 2.3.1 (g1) we imply v′ = v′′.

Claim 2.3.2. For any k ≥ 2 the following statements are equivalent:

(i) <w1, . . . , wk> ∈ Rk

(ii) Either w1 = . . . = wk or exists v ∈ V such that {w1, . . . , wk} ⊆ AdjG(v)

Proof.

• From (i) to (ii)

Let <w1, . . . , wk> ∈ Rk and let w1, . . . , wk be not all equal. Denote v =
{w1, . . . , wk}. Apparently then for k′ = v we have k′ ≥ 2 and v ∈ Rk′n . Consider
the set:

I =
{
i
∣∣ i ≤ n & (∃b ∈ Rin)(v ⊆ b & v 6= b)

}
In case I is empty then, by Observation 2.1.1 (namely Rin = ∅ whenever i > n),
we imply that for every i and for every b then if both b ∈ Rin and v ⊆ b are
satisfied then v = b. Having this, by Definition 2.3.1 (g1), k′ ≥ 2 and v ∈ Rk′n
we obtain v ∈ V . Then, by Remark 2.3.1 (g3), trivially v is a witness to (ii).
Now let I be non-empty.
By definition I is finite hence it has a maximal element. Denote it by i0. i0 ∈ I
then it exists b such that b ∈ Ri0n , v ⊆ b and v 6= b. Consider b0 a witness to
that existence.
Assume b0 /∈ V .
b0 ∈ Ri0n and b0 /∈ V then, due to Definition 2.3.1 (g1), they exist i and b such
that b ∈ Rin, b0 ⊆ b and b0 6= b. Take witnesses i1 and b1.

Now, by b0 ⊆ b1 we have b0 ≤ b1. Furthermore, by b0 6= b1, then b0 < b1.

Trivially, by b0 ∈ Ri0n and b1 ∈ Ri1n , we have b0 = i0 and b1 = i1. Eventually
i0 < i1.
On the other hand, by b0 ⊆ b1 we have v ⊆ b1. Furthermore, v 6= b0 hence
v 6= b1. Eventually i1 ∈ I and by i0 maximal i1 ≤ i0. This is a contradiction.
Therefore our assumption is wrong thus b0 ∈ V . By v ⊆ b0 and Remark 2.3.1
(g3) b0 is a witness to (ii).

• From (ii) to (i)

Let {w1, . . . , wk} ⊆ P(W ).
If w1 = . . . = wk then by first applying Definition 2.1.1 (c) and then (b) k − 1
times consequently we obtain <w1, . . . , w1> ∈ Rk and by this satisfying (i).
Now, denote v = {w1, . . . , wk} and consider v ≥ 2. Let v′ ∈ V such that
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v ⊆ AdjG(v′) as per (ii). By Remark 2.3.1 (g3) the latter is equivalent with
v ⊆ v′. Let then {w1, . . . , wk} = {w′1, . . . , w′k1

}, where w′1, . . . , w
′
k1

are all

distinct and 2 ≤ k1 ≤ k. Thus v = k1. Let k2 = v′. Hence k1 ≤ k2. Consider
then v′ the following way:

v′ = {w′1, . . . , w′k1
, w′k1+1, . . . , w

′
k2
}

v′ ∈ V then by Definition 2.3.1 (g1) and k2 = v′ we have v′ ∈ Rk2
n . By

Observation 2.1.1 Rk2
n = Rk2

k2
hence <w′1, . . . , w

′
k2
> ∈ Rk2

. By appropriately
applying Definition 2.1.1 (a) we obtain:

<w′1, . . . , w
′
1︸ ︷︷ ︸

k2−k1

, w′1, . . . , w
′
k1
> ∈ Rk2

By applying Definition 2.1.1 (b) k2 − k1 times:

<w′1, . . . , w
′
k1
> ∈ Rk1

Now by appropriately applying (finitely many times) Definition 2.1.1 points (a)
and (b) we obtain:

<w1, . . . , wk> ∈ Rk

Definition 2.3.2. Given contact n-graph G = (W,V,E).
The structure F =<W,R2, . . . , Rn, . . .> is called the Kripke frame induced by
G (denoted by G −→ F) if satisfied:

• The carrier of the Kripke frame is the set of the terminal vertices W of G

• The unary relation symbol of LR is interpreted as W

• For every k ≥ 2 the k-ary relation symbol of LR is interpreted as the k-ary
relation Rk defined as:

(r) <w1, . . . , wk> ∈ Rk
iff

either w1 = . . . = wk or exists v ∈ V such that

{w1, . . . , wk} ⊆ AdjG(v)

Claim 2.3.3. G is contact n-graph and F is the Kripke frame induced by G.
Then F is contact n-frame.

Proof. Denote G = (W,V,E) and F =<W,R2, . . . , Rn, . . .>. We demonstrate
the conditions in Definition 2.1.1 of a contact n-frame.

(a): Let<w1, . . . , wk> ∈ Rk. Consider arbitrary σ : {1, . . . , k} → {1, . . . , k}.
Should w1 = . . . = wk then trivially <w1, . . . , wk> = <wσ(1), . . . , wσ(k)> hence
<wσ(1), . . . , wσ(k)> ∈ Rk.
Otherwise, obviously {wσ(1), . . . , wσ(k)} ⊆ {w1, . . . , wk}. By Definition 2.3.2
(r) exists v ∈ V such that {w1, . . . , wk} ⊆ AdjG(v) thus {wσ(1), . . . , wσ(k)} ⊆
AdjG(v). Hence again by Definition 2.3.2 (r) we imply<wσ(1), . . . , wσ(k)> ∈ Rk.
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(b): Should w1 = . . . = wk then by Definition 2.3.2 (r) trivially both
<w1, w1, w2, . . . , wk> ∈ Rk+1 and <w1, . . . , wk> ∈ Rk are satisfied.
Otherwise by Definition 2.3.2 (r): <w1, w1, w2, . . . , wk> ∈ Rk+1

iff
{w1, . . . , wk} ⊆ AdjG(v) for some v ∈ V , by which and again by Definition 2.3.2
(r) we have:
iff
<w1, . . . , wk> ∈ Rk.

(c): Follows immediately by Definition 2.3.2 (r).
(d): The case when n = 1 hence, by R1 = W , we have Definition 2.1.1

(d.1) trivially satisfied. Furthermore, by Definition 2.2.1, V = ∅ and thus, by
Definition 2.3.2 (r), we obtain <w1, . . . , wk> ∈ Rk iff w1 = . . . = wk. The
latter trivially satisfies Definition 2.1.1 (d.2).
Now, consider n > 1. By Definition 2.2.1 of n-graph there is vn ∈ V such that

vn is n-vertex in G. Considering Definition 2.2.2 (1) clearly AdjG(vn) = n. Let
then AdjG(vn) = {w1, . . . , wn} where w1, . . . , wn are distinct. Hence, by Def-
inition 2.3.2 (r), we obtain <w1, . . . , wn> ∈ Rn which satisfies Definition 2.1.1
(d.1).
Consider arbitrary k ≥ 2. Let <w1, . . . , wk> ∈ Rk. By Definition 2.3.2 (r) ei-

ther {w1, . . . , wk} = 1 or there is v′ ∈ V such that {w1, . . . , wk} ⊆ AdjG(v′). By

Definition 2.2.1 of n-graph we have AdjG(v′) ≤ n. Eventually {w1, . . . , wk} ≤ n
which satisfies Definition 2.1.1 (d.2).

Remark. Consider finite contact n-frame F .
Let G be the induced graph by F . Then by Claim 2.3.1 G is contact n-graph.
Let then F ′ be the Kripke frame induced by G. By Claim 2.3.3 F ′ is contact

n-frame.

The relationship between F and F ′ is given by the following claim.

Claim 2.3.4. F = F ′

Proof. By Definition 2.3.1 and then by Definition 2.3.2 the carrier of F is pre-
served in F ′.

By Claim 2.3.2 and Definition 2.3.2 (r) for every k ≥ 2 the k-ary relations
of F and F ′ are equal.

Remark. Consider contact n-graph G.
Let F be the Kripke frame induced by G. By Claim 2.3.3 F is contact

n-frame.
Let then G′ be the graph induced by F . By Claim 2.3.1 G′ is contact n-

graph.

The relationship between G and G′ is given by the following claim.

Claim 2.3.5. G ∼= G′

Proof. Denote G = (W,V,E). By Definition 2.3.2 and then by Definition 2.3.1
the terminal vertices of G are preserved in G′. Thus denote G′ = (W,V ′, E′).
Denote F =<W,R2, . . . , Rn, . . .> the contact n-frame induced by G.

Adopt the following well defined mappings:
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• fW (w) = w

• fV (v) = AdjG(v)

where Dom(fW ) = W and Dom(fV ) = V . Trivially fW ∩ fV = ∅. Will
demonstrate:

• fW : W ��W

• fV : V �� V ′

• (w, v) ∈ E iff (fW (w), fV (v)) ∈ E′

Having these satisfied then f = fW ∪ fV is isomorphism between G and G′.

• fW : W ��W

Trivially satisfied by definition of fW .

• fV : V �� V ′

. fV is well defined. In particulars if v ∈ V then fV (v) ∈ V ′:

Let AdjG(v) = {w1, . . . , wk} such that {w1, . . . , wk} = k, k ≥ 2. By Defini-
tion 2.3.2 (r) we imply <w1, . . . , wk> ∈ Rk hence fV (v) ∈ Rkk and by Observa-
tion 2.1.1 it means fV (v) ∈ Rkn.

Let i and b be such that b ∈ Rin and fV (v) ⊆ b. We have fV (v) = k. Also b = i
by b ∈ Rin. Thus k ≤ i by fV (v) ⊆ b. Let then b = {w1, . . . , wk, wk+1, . . . , wi}.
By Observation 2.1.1 Rin = Rii hence b ∈ Rii which gives <w1, . . . , wi> ∈ Ri.
Now by Definition 2.3.2 (r) (and i ≥ k ≥ 2) exists v′ ∈ V such that b =
{w1, . . . , wi} ⊆ AdjG(v′) hence AdjG(v) ⊆ AdjG(v′). By the latter and Defini-
tion 2.2.2 (2) we obtain v = v′. All those give us:

fV (v) = AdjG(v) ⊆ b ⊆ AdjG(v′) = AdjG(v) = fV (v)

Eventually fV (v) = b hence the right side of Definition 2.3.1 (g1) is satisfied
thus fV (v) ∈ V ′.

. fV is injection:

For any v1, v2 ∈ V should fV (v1) = fV (v2) then by Definition 2.2.2 (2) we
imply v1 = v2.

. fV is surjection:

Consider v′ ∈ V ′. By Definition 2.3.1 (g1) for G′ we have k, 2 ≤ k ≤ n,

such that v′ ∈ Rkn. By this on one hand v′ = {w1, . . . , wk}, v′ = k, and,
on the other, by Observation 2.1.1 v′ ∈ Rkk thus <w1, . . . , wk> ∈ Rk. Then
by Definition 2.3.2 (r) for G exists v ∈ V such that v′ ⊆ AdjG(v) = fV (v).
Furthermore, fV (v) ∈ V ′ as demonstrated in definition correctness of fV . Now
by Definition 2.3.1 (g1) for G′ there is i such that fV (v) ∈ Rin. Eventually:

v′ ⊆ fV (v), v′ ∈ Rkn, fV (v) ∈ Rin

That result by Definition 2.3.1 (g1) gives v′ = fV (v).
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• (w, v) ∈ E iff (fW (w), fV (v)) ∈ E′

(w, v) ∈ E

by G
iff w ∈ AdjG(v)

by fW and fV
iff fW (w) ∈ fV (v)

by fW , fV bijections and by Definition 2.3.1 (g2)

iff (fW (w), fV (v)) ∈ E′

Remark. By Claim 2.3.1 given a finite contact n-frame we associate to it contact
n-graph, namely, the induced graph by the contact n-frame. By Claim 2.3.3
given a contact n-graph we associate to it a finite contact n-frame, namely,
the induced frame by the contact n-graph. Remark that by Claim 2.3.4 and
Claim 2.3.5 we can think that there is one-to-one correspondence between the
class of finite contact n-frames and the class of contact n-graphs up to isomor-
phism.

2.4 Few properties of n-graphs and n-frames

Definition 2.4.1. We call a contact n-frame F connected if it holds:

(e) F 
 (¬(x ≡ 0) ∧ ¬(−x ≡ 0)) =⇒ P (x,−x)

Claim 2.4.1. A finite contact n-frame is connected iff its induced graph is
connected.

Proof. Let F =<W,R2, . . . , Rn, . . .> be a finite contact n-frame. Denote G =
(W,V,E) the induced contact n-graph by F .

• From left to right:

Assume G is not connected graph.
Let U1, . . . , Ul be the partitioning of the vertices W ∪V into the components of
the graph G. By G not connected then l ≥ 2.
Assume Ui ∩W = ∅ for some i, 1 ≤ i ≤ l. Then Ui ⊆ V . Let v ∈ Ui, where v
is arbitrary element of the non-empty Ui. By Definition 2.3.1 (g1) exists k ≥ 2
such that v ∈ Rkn thus v = k. By those, Definition 2.3.1 (g2) and Remark 2.3.1
exists w0 ∈W such that w0 ∈ AdjG(v). The induced graph by Ui is component
for G and v ∈ Ui hence AdjG(v) ⊆ Ui. It follows that w0 ∈ Ui, thus Ui ∩W 6= ∅
which is a contradiction. Therefore for every i, 1 ≤ i ≤ l:

Ui ∩W 6= ∅

Now assume W ⊆ Ui for some i, 1 ≤ i ≤ l. Then for every j, 1 ≤ j ≤ l and
i 6= j by Ui ∩ Uj = ∅ will have Uj ∩W = ∅. This is a contradiction with what
just demonstrated. Therefore for every i, 1 ≤ i ≤ l:

Ui ∩W 6= W
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Consider W ′ = U1 ∩W . Thus W ′ 6= ∅ and W ′ 6= W . Hence W \W ′ 6= ∅.
Consider the valuation V on F such that V(x) = W ′ and is arbitrary for any
Boolean variable other than x. Hence for V is true:

Ṽ(x) = V(x) = W ′ 6= ∅ = V(0)

Ṽ(−x) = W \ V(x) = W \W ′ 6= ∅ = V(0)

It follows that:

<F ,V> 
 ¬(x ≡ 0)

<F ,V> 
 ¬(−x ≡ 0)

Then, by F connected, hence, satisfying Definition 2.4.1 (e) we imply:

<F ,V> 
 P (x,−x)

By V(x) = W ′ this means exists w1 ∈ W ′ and exists w2 ∈ W \W ′ such that
<w1, w2> ∈ R2. By Claim 2.3.2 either w1 = w2 or exists v ∈ V such that
{w1, w2} ⊆ AdjG(v). The former is not possible as long as W ′ ∩ (W \W ′) = ∅.
Therefore, by the latter, w1-v-w2 is a path in G. w1 ∈ W ′ thus w1 ∈ U1. U1 is
component for G therefore it follows that w2 ∈ U1. Hence w2 ∈ W ′. This is a
contradiction with w2 ∈W \W ′.
As a result our assumption is wrong hence G is connected.

• From right to left:

Consider arbitrary valuation V on the Kripke frame F . Let the following be
satisfied:

<F ,V> 
 ¬(x ≡ 0)

<F ,V> 
 ¬(−x ≡ 0)

Hence V(x) 6= ∅ and W \ V(x) 6= ∅. Consider then arbitrary w′ ∈ V(x) and
w′′ ∈W \ V(x). Apparently w′ 6= w′′. By G connected there is a path between
w′ and w′′. By Lemma 2.2.1 and Definition 2.3.1 (g2) the path is an alternating
sequence of elements between the terminal vertices W and the connector vertices
V . Take an arbitrary such path: w′-v1-w′1-. . . -vr-w

′′, where v1, . . . , vr are the
connector vertices and the others are terminal vertices. By w′ ∈ V(x), w′′ ∈
W \ V(x) and V(x) ∩ (W \ V(x)) = ∅ in the path there are subsequent vertices
w1-v-w2, where w1, w2 ∈W and v ∈ V , such that w1 ∈ V(x) and w2 ∈W \V(x).
Therefore {w1, w2} ⊆ AdjG(v). Hence, by Claim 2.3.2, <w1, w2> ∈ R2, which
gives:

<F ,V> 
 P (x,−x)

It follows then in all cases:

<F ,V> 
 (¬(x ≡ 0) ∧ ¬(−x ≡ 0)) =⇒ P (x,−x)

V was an arbitrary valuation therefore the intended formula (e):

(¬(x ≡ 0) ∧ ¬(−x ≡ 0)) =⇒ P (x,−x)

is valid in F hence (as per Definition 2.4.1) F is connected.
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Claim 2.4.2. Let F be a contact n-frame. Then the following statements are
equivalent:

(i) In F is valid

P (x1, x2, x3) =⇒ (¬(x1 ∩ x2 ≡ 0) ∨ ¬(x2 ∩ x3 ≡ 0) ∨ ¬(x1 ∩ x3 ≡ 0))

(ii) F is contact n-frame for n ≤ 2

Proof.

• From (i) to (ii)

Consider arbitrary <s1, s2, s3> ∈ R3 and valuation V on F such that:

V(x) =

{
{si} x = xi

arbitrary x /∈ {x1, x2, x3}

Then it is true <F ,V> 
 P (x1, x2, x3), by which and (i) we imply

<F ,V> 
 ¬(x1 ∩ x2 ≡ 0) ∨ ¬(x2 ∩ x3 ≡ 0) ∨ ¬(x1 ∩ x3 ≡ 0)

iff

Ṽ(x1) ∩ Ṽ(x2) 6= ∅ or Ṽ(x2) ∩ Ṽ(x3) 6= ∅ or Ṽ(x1) ∩ Ṽ(x3) 6= ∅

iff
s1 = s2 or s2 = s3 or s1 = s3

Therefore for arbitrary <s1, s2, s3> ∈ R3 is satisfied {s1, s2, s3} < 3.
Now, assume F is a contact n-frame for n ≥ 3. Take a witness <s′1, . . . , s

′
n> ∈

Rn, with {s′1, . . . , s′n} = n. Thus {s′1, s′2, s′3} = 3. Then by Definition 2.1.1 (a)
we imply <s′1, . . . , s

′
1, s
′
2, s
′
3> ∈ Rn. Consequently, by Definition 2.1.1 (b) ap-

plied n−3 times, we obtain <s′1, s
′
2, s
′
3> ∈ R3. Nevertheless we’ve demonstrated

the latter implies {s′1, s′2, s′3} < 3 hence a contradiction.

• From (ii) to (i)

Consider V be an arbitrary valuation on F . Let <F ,V> 
 P (x1, x2, x3). Then

there are s1 ∈ Ṽ(x1), s2 ∈ Ṽ(x2), s3 ∈ Ṽ(x3), such that <s1, s2, s3> ∈ R3.

By (ii): {s1, s2, s3} ≤ 2. Without loss of generality, let then s1 = s2. It

follows that Ṽ(x1) ∩ Ṽ(x2) 6= ∅, by which <F ,V> 
 ¬(x1 ∩ x2 ≡ 0) and thus
<F ,V> 
 ¬(x1 ∩ x2 ≡ 0) ∨ ¬(x2 ∩ x3 ≡ 0) ∨ ¬(x1 ∩ x3 ≡ 0). Eventually:

<F ,V> 
 P (x1, x2, x3) =⇒ (¬(x1∩x2 ≡ 0)∨¬(x2∩x3 ≡ 0)∨¬(x1∩x3 ≡ 0))

The valuation V was arbitrary therefore (i) is satisfied.
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3 Kripke frames with contact semantics in Rm

In this section for given finite connected acyclic n-graph (hence, by Observa-
tion 2.2.1, also being a contact n-graph) will elaborate on procedures for ob-
taining a Kripke frame corresponding to the graph for which:

• The carrier of the frame will be a finite set such that:

– All its elements will either be polytopes or regular closed sets of Rm.

– Any two distinct elements of the set may have points in common, if
any, only some of their boundary points (in short, the intersection of
any two distinct elements of the set will have empty interior).

– The union of all elements of the set will be Rm.

• The interpretation of the k-ary relation symbol of LR will be the standard
k-ary contact relation (see Section 1.7).

• The Kripke frame will correspond to the n-graph, that is, it will be iso-
morphic to the n-frame induced by that (contact) n-graph.

Non formally, these procedures will ”partition” Rm (that is, any two distinct
elements/subsets will have empty interior of their intersection) in such a way
that the elements/subsets of that partitioning will map one-to-one with the set
of the terminal vertices of the n-graph. Furthermore, any k elements will have
a non-empty intersection if and only if their corresponding terminal vertices of
the n-graph be adjacent to common connector vertex. Having those properties
satisfied, we will see such a partitioning used as a carrier of a Kripke frame for
which the interpretation of the relation symbols of LR is the standard contact
relation (for the corresponding arity) then this frame will be isomorphic to the
induced by the n-graph (contact) n-frame. Last but not the least, as mentioned,
the elements of this partitioning will all either be polytopes or regular closed
sets of Rm. The important is that they will effectively be the atoms of a finite
Boolean subalgebra of either the Boolean algebra of the polytopes or the regular
closed sets. Therefore these procedures will allow us to ”build” (finite) Kripke
frames with carriers the atoms of Boolean subalgebras of polytopes or regular
closed sets of Rm and interpretation the standard contact relations which are
”corresponding” to given arbitrary (finite acyclic) n-graphs. Such Kripke frames
in the later sections will be used as a utility for elaborating on witnesses to
particular intended classes of Boolean frames.

The procedures and results to be demonstrated will actually be valid if ap-
plied on any connected regular closed subset of Rm instead of Rm itself.

3.1 Formal approach for polytopes of Rm, m ≥ 2

3.1.1 Procedure for polytopes of R2

When saying an angular region we mean the closure of the section of the real
plain R2 enclosed between two distinct rays having common endpoint. That
common endpoint will be called a corner point. Remark that a triangle also is
an angular region.

Given a subset of R2 and a terminal vertex w. We say this set is coloured
in w if the elements of the set are marked as w in an appropriate way. As
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an example, one can consider the Cartesian product of the given set and the
singleton of w. At any stage of the procedure any element of R2 will be coloured
in some of the terminal vertices.

Following we define a procedure which for given finite connected acyclic n-
graph will produce a finite set of polytopes of R2 such that:

• Any two distinct elements of the set will have empty interior of their
intersection.

• The union of the elements of the set will be R2.

• The set will be one-to-one mapped to the set of the terminal vertices of
the n-graph.

• Any k elements of the set will have a non-empty intersection if and only
if their corresponding terminal vertices of the n-graph have common ad-
jacent connector vertex.

The procedure considers the acyclic n-graph as a rooted tree with a root
some of the terminal vertices. Let us call this tree the n-graph rooted tree.
Each (recursive) step of the procedure works on particular distinct terminal
vertex and examines the sub-tree of the n-graph rooted tree with a root of the
sub-tree that terminal vertex.

The procedure takes as an input a terminal vertex and an angular region.
The angular region is assumed having already been coloured in the terminal
vertex. First, the procedure associates distinct points of the interior of the an-
gular region with each of the direct connector descendants of the input terminal
vertex. Let us call each such point a connector point. Then each connector
point has corresponding to it connector vertex. For each of those connector
points and their associated connector vertices:

• The procedure takes the direct terminal descendants of the connector
vertex.

• For each such terminal vertex it associates an angular region having as a
corner point the connector point.

• Every such angular region is a subset of the interior of the input angular
region.

• Every two such regions have no point in common but their corner points,
namely, the connector point.

• Then the procedure colours each of those angular regions in their associ-
ated terminal vertex.

A′

�
�
�
���

A
A
A
AAU�

��

�
�
����

Figure 1: An angular region with a corner point A′
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• Eventually, for each of those angular regions the procedure is applied
recursively on the angular region and the terminal vertex associated to it.

Remark that, as a result, every two such new angular regions have a point in
common only connector point being their corner point only if their associated
terminal vertices are direct terminal descendants of the connector vertex asso-
ciated to the connector point. Otherwise any two new angular regions have no
point in common.

Before applying the procedure the entire R2 is coloured in the root of the
n-graph rooted tree. As an initial input then the procedure takes the chosen
root of the n-graph rooted tree and an (arbitrary) angular region subset of the
coloured already R2.

Eventually the procedure traverses every vertex of the n-graph rooted tree.
Upon completion, to each terminal vertex is mapped the polytope defined as
the closure of the subset of R2 coloured in the terminal vertex. Intuitively, the
result of the procedure is such that R2 is ”partitioned” into polytopes in a way
that in some sense being isomorphic to the n-graph. That is, the connector
points are one to one to the connector vertices of the n-graph and the polytopes
of the ”partitioning” are one to one to their corresponding terminal vertices.
Furthermore, any k polytopes have common point some of the connector points
if and only if their corresponding terminal vertices are adjacent to the connector
vertex associated with the connector point. Additionally, it will also become
clear that if any k terminal vertices are not adjacent to any common connector
vertex then their corresponding k polytopes have empty intersection.

Following is a detailed definition of the procedure.
Assumptions:

• Given G = (W,V,E) finite connected acyclic n-graph, W , V and E non-
empty.

• W = {w1, . . . , ws} is enumerated, where W = s.

• The finite set of connector vertices V is enumerated properly. By Av
for v ∈ V we denote Ai for the appropriate index i of v in V such that

1 ≤ i ≤ V and v = vi.

• We consider G as a rooted tree for particularly chosen root vertex. Any
sub-tree of G will also be considered rooted tree where the root will be
clear by the context. All terms then like predecessor, descendant etc. will
be with respect to the current (rooted) sub-tree under consideration.

Procedure 3.1. Polytopes of R2

Input :

• C : angular region

• A′ : the corner point of the angular region C

• w′ : the root of the sub-tree of G being currently traversed, w′ ∈W

Procedure Steps:
1

• Consider C being coloured in w′.
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2

• If w′ has no descendants then the current procedure recursive call finishes.

• Otherwise:

Let the direct descendants of w′ be vk1
1 , . . . , vkll . By definition of n-graph

they are connector vertices. By vkii we denote ki-vertex.

• For each vkii designate distinct point from C from the interior of C. Call
it A

v
ki
i

.

A′q











J
J
J
J
J

A
v
k1
1q A

v
kl
l

q. . .

Let wi1, . . . , w
i
ki−1 be the terminal vertices direct descendants of vkii .

w′

vki
i

wi
1 wi

ki−1

. . .

• For every wij cut a (non-empty) angular region from C and take its closure,

denote it by U ij , such that:

(i) U ij has corner vertex Akivi

(ii) None of the boundary points of C is in any of U ij

(iii) A′ /∈ U ij

(iv) U ij is a polytope of R2 a subset of C

(v) U ij1 ∩ U
i
j2

= {Akivi}, j1 6= j2

(vi) U i1j1 ∩ U
i2
j2

= ∅, i1 6= i2

Remark that condition (iii) is direct inference of (ii) and (iv) follows immediately

from what agreed as angular region. Both explicitly stated for convenience only.
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. . .

L
L
L
L
L
L
L
L
L
L
L
L
L

J
J
J
J
J
J
J
J
J
J
J
J
J

U1
1 U1

k1−1 U l1 U lkl−1

3

• Colour U ij in wij

4

• For every wij apply the procedure (recursively), that is for every i, 1 ≤ i ≤
l, and every j, 1 ≤ j ≤ ki − 1:

– Apply the procedure recursively from 1 with the following input:

∗ C := U ij

∗ A′ := Akivi
∗ w′ := wij

Application:
Consider C0 be a connected polytope of R2. Then:

• Choose any w′ from the terminal vertices W of G. Consider this point as
the root of the tree G.

0

• Colour C0 in w′.

• Choose an arbitrary point A0 from the interior of C0.
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• Choose an angular region being from the interior of C0 with a corner
point A0. Consider that angular region as C.

• Apply Procedure 3.1 on C, A0 and w′.

Completion:
Upon completion of the procedure define Wi for i such that 1 ≤ i ≤ s:

• Wi � the closure of the union of the closures of all regions coloured in wi

As a note, the set {W1, . . . ,Ws} will be the finite set of polytopes promised.
Apparently it will be one-to-one to the set of the vertices {w1, . . . , ws} (trivially,
the colour defining each of the elements). Furthermore, the union of the elements
will clearly be Rm and each two elements will have empty intersection of their
interiors. In addition to that every k elements will be in k-ary contact if and
only if the corresponding terminal vertices have common adjacent connector
vertex.

Remark 3.1.1. Procedure 3.1 is valid for Rm for any m ≥ 2. It is simply that
the procedure should be applied on the R2 projection of Rm (or its considered
connected regular closed subset).

3.1.2 Observations

Following, the intended properties of the set {W1, . . . ,Ws} and the promised
results are demonstrated.

Observation 3.1.1. The following statements are immediately from the defi-
nition of Procedure 3.1:

• 1 is correctly required as being sound with both 0 (the initial input) and
4 (the recursive step).

• By definition every U ij is non-empty hence every recursive call of the pro-

cedure, as per 4 , is on input non-empty (current) angular region C.

• The procedure eventually completes.

Proof note: Every recursive step of Procedure 3.1 runs on particular terminal
vertex of G considered as a root of the related sub-tree of G. Furthermore, the
procedure does never backtrack hence each terminal vertex is traversed only
once. G is finite hence the procedure always completes after finite number of
steps (in particular exactly s).

Observation 3.1.2. For every i, 1 ≤ i ≤ s:

• Wi is defined and is completely determined at the step when terminal vertex
wi is being the current root vertex of the traversed by the procedure sub-tree
of G

• Wi 6= ∅
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Proof. Once again, Procedure 3.1 does never backtrack. Furthermore, by 2
and 4 , the procedure traverses every terminal vertex of G and only once.
Then, by definition of Wi, 0 , 1 and, either by 2 or, by 3 , Wi is being
completely determined at completion of the step (i.e. recursive call) of traversing
the particular terminal vertex wi.

By the former, the definition of Wi, Observation 3.1.1 (the input angular
region C non-empty) and, either by both 1 and 2 or by 3 , we imply that
Wi is a non-empty set.

Observation 3.1.3. All elements in {W1, . . . ,Ws} are polytopes of R2.

Proof. By definition of Procedure 3.1 the initial C is a polytope. Furthermore,
(iv) and 4 guarantee at every recursive step C being a polytope. Let the initial
input terminal vertex be wi0 .
Whenever a recursive step terminates at 2 then by definition of Wi and Ob-
servation 3.1.2, trivially, Wi = C considering the current root vertex being wi.
Hence the set Wi is a polytope. (Remark that if wi = wi0 then Wi0 = C0 which
means Wi0 is a polytope. In such a case G should have been degenerate graph
containing only one terminal vertex and no connector verices or edges. This is
not an n-graph for n ≥ 2. Nevertheless for such a graph the procedure gives
trivial solution, namely, C0 = W1, where w1 is the only vertex of G. Think of
such graph/tree as a particular/exceptional case).
Otherwise, again by Observation 3.1.2, Wi is determined after 3 . By (iv) the
corresponding regions U i

′

j are polytopes.
If the current root terminal vertex wi 6= wi0 then by definition of Wi and that
C and all U i

′

j are polytopes we imply Wi is a polytope.
Should wi = wi0 then by definition of Wi we have that Wi0 is the closure of
the union of C0 \C on one hand and C minus the union of the appropriate U i

′

j

regions on the other. Hence Wi0 is the closure of C0 minus the union of the
appropriate U i

′

j and by all those being polytopes we imply Wi0 is a polytope.

Observation 3.1.4.

C0 =

s⋃
i=1

Wi

Proof. By 0 at the initial step C0 is coloured in one colour (the initial root
vertex w′). Then, either by both 1 and 2 or by 3 , at any step of the
procedure the whole C0 is kept coloured. As per Observation 3.1.2 and its
reasoning each Wi is being determined at the step of traversing terminal vertex
wi and is non-empty. Furthermore, by C0 being a regular closed set and the
definition of Wi we imply Wi ⊆ C0 because all elements of Wi are elements
of C0. Then by the former, after traversing all terminal vertices, hence upon
completion of the procedure, the equality is satisfied by definition of Wi because
eventually every element of C is in at least one Wi.

Observation 3.1.5.

Int(Wi) ∩ Int(Wj) = ∅ 1 ≤ i < j ≤ s
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Proof. By Observation 3.1.2 Wi′ is completely determined either by 1 , should
the procedure terminate at 2 , or by 3 , should the procedure continue recur-
sively by 4 . By definition of Wi′ and by 2 , 3 and 4 Wi may have common
point with Wj only if the point is boundary for both Wi and Wj . It follows
then Int(Wi) ∩ Int(Wj) = ∅.

Observation 3.1.6. wi is a terminal vertex for G, 1 ≤ i ≤ s, and v is a
connector vertex. Then:

wi ∈ AdjG(v) implies Av ∈Wi.

Proof.
Case 1): v is direct descendent of wi.
Then 2 fails. By 1 the current C is coloured in wi. Av ∈ C by definition

of Av. Then, by (i), Av is a boundary point for U i
′

j′ where wi = wi
′

j′ . Then by

definition of Wi and 3 we imply Av ∈Wi.
Case 2): wi is direct descendent of v.
In general, consider current root vertex w and corner point A′ for C. A′ ∈ C

and by 1 C is coloured in w. In the case 2 and by definition of Wi it trivially
follows Wi = C thus A′ ∈ Wi. Otherwise by definition of Wi, 3 and (iii) we
imply A′ ∈ Wi. Now by this observation applied on 4 when being called for
the vertex wi in which case A′ = Av we obtain Av ∈Wi.

Observation 3.1.7. v is a connector vertex, wi1 , . . . , wik are terminal vertices
(not necessarily distinct), 1 ≤ ij ≤ s.

If {wi1 , . . . , wik} ⊆ AdjG(v) then Wi1 , . . . ,Wik are in k-ary contact.

Proof. By Observation 3.1.6 Av is a witness to the k-ary contact of Wi1 , . . . ,
Wik .

Observation 3.1.8. Let wi1 and wi2 be distinct terminal vertices.
If there is no connector vertex v such that {wi1 , wi2} ⊆ AdjG(v) then Wi1

and Wi2 are not in binary contact (that is Wi1 ∩Wi2 = ∅).

Proof.

1) Without loss of generality let wi2 be descendent of wi1 .

Let v be the direct successor of wi1 in the (single) path towards wi2 , thus v
connector vertex. Let wi3 be the direct successor of v towards wi2 , wi3 terminal
vertex. Then wi3 6= wi2 otherwise v is their common adjacent connector vertex
which is a contradiction.
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wi1

v

wi3

. . .

wi2

As per Procedure 3.1 consider the region U ij where wij = wi3 . Continuing
this way towards wi2 eventually we obtain a sequence U1, . . . , Ur−1, where r is
the number of terminal vertices in the path wi1-. . . -wi2 (unique by G acyclic
and connected) and thus r ≥ 3 (by definition) such that:

• U1 = U ij where wij = wi3

• Ur−1 = U i
′

j′ where wi
′

j′ = wi2

By 4 and (iv):

• U1 ⊇ . . . ⊇ Ur−1

By Ur−1 = U i
′

j′ and 4 , 2 , 3 and definition of Wi we obtain Wi2 ⊆ Ur−1.
By r ≥ 3 and (ii) U2 has no common point with any of the boundary points
of U1. Hence by definition of Wi and 3 we imply Wi1 ∩ U2 = ∅. By this and
Wi2 ⊆ Ur−1 ⊆ U2 it follows that Wi1 ∩Wi2 = ∅.

2) None of wi1 and wi2 is descendent of the other.

2.1) Their closest common ancestor is connector vertex.

Call it v. In such a case there are direct successors of v, wi3 and wi4 , such that:

• Either wi1 is descendant of wi3 or wi1 = wi3

• Either wi2 is descendant of wi4 or wi2 = wi4

• wi1 6= wi3 or wi2 6= wi4

Let w be the direct terminal predecessor of v. Such exists because as an initial
root vertex of the tree G we choose terminal vertex (and the graph is bipartite
by Lemma 2.2.1).
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w

v

wi3 wi4

. . . . . .

wi1 wi2

Then, as per Procedure 3.1, with respect to v there are U ij1 and U ij2 such

that wij1 = wi3 and wij2 = wi4 . Continuing this way towards wi1 and wi2 we
obtain sequences U ′1, . . . , U

′
r1 and U ′′1 , . . . , U

′′
r2 such that:

• U ′1 = U ij1

• U ′′1 = U ij2

• U ′r1 = U i
′

j′1
such that wi

′

j′1
= wi1

• U ′′r2 = U i
′′

j′2
such that wi

′′

j′2
= wi2

By 4 and (iv):

• U ′1 ⊇ . . . ⊇ U ′r1
• U ′′1 ⊇ . . . ⊇ U ′′r2

As a simple remark if wi1 = wi3 then r1 = 1 and if wi2 = wi4 then r2 = 1.
By those and by 4 , 2 , 3 and definition of Wi we imply:

• Wi1 ⊆ U ′r1
• Wi2 ⊆ U ′′r2

By (v) U ′1 ∩ U ′′1 = {Av} hence Wi1 ∩Wi2 ⊆ {Av}. By wi1 6= wi3 or wi2 6= wi4
at least one of r1 and r2 is greater than 1. Without loss of generality assume
r1 > 1. Then we have Wi1 ⊆ U ′r1 ⊆ U ′2 ⊆ U ′1. By (iii) Av /∈ U ′2 therefore
Av /∈Wi1 . It follows then Wi1 ∩Wi2 = ∅.

2.2) The closest common ancestor of wi1 and wi2 is terminal vertex.

Call it w. Then there are distinct connector vertices v1 and v2 such that v1

and v2 are direct successors of w and wi1 , wi2 are descendants of v1 and v2

respectively. Let wi3 and wi4 be the terminal direct successors of v1 and v2

respectively such that:

• wi1 is descendant of wi3 or wi1 = wi3

• wi2 is descendant of wi4 or wi2 = wi4
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w

v1 v2

wi3 wi4

. . . . . .

wi1 wi2

Then, as per Procedure 3.1, in a similar manner as per now, we associate

U
i′3
j3

and U
i′4
j4

corresponding to wi3 and wi4 respectively. Remark that i′3 6= i′4
because v1 6= v2. In similar way as per now we obtain sequences:

• U ′1, . . . , U ′r1
• U ′′1 , . . . , U ′′r2

such that:

• U ′1 = U
i′3
j3

where w
i′3
j3

= wi3

• U ′′1 = U
i′4
j4

where w
i′4
j4

= wi4

• U ′r1 = U
i′1
j1

where w
i′1
j1

= wi1

• U ′′r2 = U
i′2
j2

where w
i′2
j2

= wi2

By 4 and (iv):

• U ′1 ⊇ . . . ⊇ U ′r1
• U ′′1 ⊇ . . . ⊇ U ′′r2

By those, by 4 , 2 , 3 and by definition of Wi it follows that:

• Wi1 ⊆ U ′r1
• Wi2 ⊆ U ′′r2

Furthermore, applying (vi) we have U ′1 ∩ U ′′1 = ∅. Now by the latter and those
above we obtain Wi1 ∩Wi2 = ∅

Observation 3.1.9. If Wi1 , . . . ,Wik are in k-ary contact then exists connector
vertex v such that {wi1 , . . . , wik} ⊆ AdjG(v).

Proof. Induction on k.
The case k = 2 follows directly by Observation 3.1.8.
Let the claim be true for k ≥ 2. Consider k + 1.
Should i1, . . . , ik+1 be not distinct then the claim follows directly by induc-

tive hypothesis. Consider then i1, . . . , ik+1 distinct.
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Wi1 , . . . ,Wik+1
are in contact. Then Wi1 , . . . ,Wik are in contact. By in-

ductive hypothesis there is a connector vertex v1 such that {wi1 , . . . , wik} ⊆
AdjG(v1). Furthermore, Wi1 , . . . ,Wik−1

,Wik+1
are in contact. Again by induc-

tive hypothesis exists connector vertex v2 such that {wi1 , . . . , wik−1
, wik+1

} ⊆
AdjG(v2).

Assume v1 6= v2. We have k ≥ 2. If k > 2, hence, consider the trail wi1-
v1-wi2-v2-wi1 . This is a circuit, which contradicts G being acyclic. It remains
the case when k = 3. Then we have {wi1 , wi2} ⊆ AdjG(v1) and {wi1 , wi3} ⊆
AdjG(v2). Furthermore, again by inductive hypothesis, consider the connector
vertex v3 such that {wi2 , wi3} ⊆ AdjG(v3). Assume v3 is equal neither to v1

nor to v2. Then consider the trail wi1-v1-wi2 -v3-wi3 -v2-wi1 . This is a circuit
which is a contradiction. Then, without loss of generality, let v1 = v3. Then
the trail wi1-v1-wi3 -v2-wi1 is a circuit. Therefore v1 = v2 by which we obtain
{wi1 , . . . , wik+1

} ⊆ AdjG(v1). v1 is a witness to the existence.

Observation 3.1.10. Wi1 , . . . ,Wik are in k-ary contact
iff
there exists connector vertex v such that {wi1 , . . . , wik} ⊆ AdjG(v)

Proof. The statement is the combined result of Observation 3.1.7 and Observa-
tion 3.1.9.

Remark. By Observation 2.2.1 the acyclic n-graph G is contact n-graph.

Claim 3.1.1. Let Fc be the Kripke frame with carrier {W1, . . . ,Ws} and in-
terpretation of the relation symbols of LR the standard contact relation for the
corresponding arity of the symbols. Let F be the contact n-frame induced by the
contact n-graph G.

Then Fc ∼= F .

Proof. Consider the mapping f(wi) = Wi. By Observation 3.1.2 f is bijection
between W and {W1, . . . ,Ws}.

Denote, as per normal, the contact n-frame F =<W,R2, . . . , Rn, . . .>. De-
note Fc = <{W1, . . . ,Ws}, Ic>, where for the k-ary relation symbol P of LR it
is satisfied Ic(P ) = Ck. Remark that Fc is a Kripke frame. Then we have:

<wi1 , . . . , wik> ∈ Rk
(by Claim 2.3.2) iff

there exists connector vertex v such that {wi1 , . . . , wik} ⊆ AdjG(v)

(by Observation 3.1.10) iff

Wi1 , . . . ,Wik are in k-ary contact

iff

<f(wi1), . . . , f(wik)> ∈ Ck

Therefore f is an isomorphism between F and Fc.
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3.2 Formal approach for regular closed sets of Rm, m ≥ 1

In Section 3.1 was demonstrated how to ”partition” R2 into polytopes such
that their union is R2 itself or its regular closed connected subset (Observa-
tion 3.1.4) and that ”partitioning” is a carrier of a Kripke frame with standard
k-ary contact semantics that is isomorphic to the induced by the graph G con-
tact (n-) frame (Claim 3.1.1). An essential property of that ”partitioning” is
the intersection of the interiors of any two distinct polytopes of it is empty
(Observation 3.1.3).

Considering k-ary contact for k > 2 such a result is not possible for polytopes
of R1 though. For any three polytopes in contact it is easy to see that some two
of them will have intersection with a non-empty interior (this will be shown
later in the exposition). Informally, this limitation is due to the fact a polytope
is a finite union of segments or rays of R1. Should we allow infinite such unions
then the restriction is alleviated.

In this section will demonstrate how analogous result to the one in Section 3.1
can be obtained when instead of polytopes we allow regular closed sets of R1

being possibly infinite unions of segments and rays in R1.

3.2.1 Procedure for regular closed sets of R1

In its essence the approach for regular closed sets of R1 will be a decent modi-
fication of the ideas in Procedure 3.1. The new procedure will avail of the fact
that a union of infinitely many disjoint segments tending to particular point not
being in any of those segments eventually is a regular closed set and that is the
union of those segments and the point they tend to.

Roughly, again, we will first colour the whole R1 in the root vertex of the n-
graph rooted tree and then will use an arbitrary segment of the already coloured
set as an input together with the root vertex. Then, in analogy to Procedure 3.1:

• The input segment is sliced into as many segments as the number of the
direct connector descendants of the input root terminal vertex.

• In the interior of each of those segments is dedicated point to the respective
connector vertex the segment is created for. We call it a connector point.

• It is taken monotonic sequence in each of the segments tending to the
connector point of the segment.

• Such a sequence forms an infinite family of segments (each defined by two
subsequent points of the sequence) tending to the connector point. Each
element of such a family is then separated in as many segments as the
direct terminal descendant vertices of the corresponding connector vertex
are. Finally, the left half of each of those finitely many sub-segments is
coloured in their corresponding terminal vertex.

• Then the procedure is applied recursively but considering only the first
element of every one of the infinite families of segments. That is, for each
of those first elements for every their new sub-segment coloured in related
terminal descendant. The input is such a segment and the terminal vertex
the segment is coloured in.
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As a result of this procedure if we take the closure of the union of all segments
coloured in particular terminal vertex then each two such sets have connector
point in common should their corresponding terminal vertices be adjacent to
the corresponding connector vertex. This is because the connector points are
in the closure of both sets, despite the fact that each two segments from the
corresponding unions coloured differently have no point in common from their
interiors. Furthermore, it will be satisfied that k such sets have point in com-
mon if and only if their corresponding terminal vertices are adjacent to common
connector vertex. Finally, they will also hold the rest of the properties as for
the result of Procedure 3.1.

Assumptions:
We adopt the same assumptions as in Section 3.1.1.
In addition from here on consider only closed segments of R1 unless stated

otherwise. Hence, by segment we mean closed interval [S0, S1] ⊆ R1 where
S0 < S1.

S0 S1 Segment in R1

Procedure 3.2. Regular closed subsets of R1

Input : [S0, S1] : the current segment, w′ : the terminal vertex as the root of the
sub-tree of the tree G being currently traversed.
Procedure steps:
1

• Consider [S0, S1] as coloured in w′.

2

• If w′ has no descendants in G then the current procedure recursive call
finishes.

• Otherwise:

3

• Take an internal segment [S′0, S
′
1] ⊆ [S0, S1] such that S0 < S′0 < S′1 < S1

(padding left and right)

S0 S′0 S′1 S1

w′︷︸︸︷ w′︷︸︸︷
Let the direct descendants of w′ be vk1

1 , . . . , vkll , where vkii is a connector

ki-vertex. Let their direct descendants be wi1, . . . , w
i
ki−1 for vkii respectively,

where wij are terminal vertices.

4

• Slice [S′0, S
′
1] into l segments [B0, B1], . . . , [Bl−1, Bl] such that B0 = S′0,

Bl = S′1 and Bi < Bi+1.
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S0 S′0 = B0 B1 B2
. . . . . .

Bl−1 Bl = S′1 S1

5

• For each of those segments [Bi−1, Bi] take (a witness to vkii ) A
v
ki
i

different

from the boundary points, namely: Bi−1 < A
v
ki
i

< Bi.

Bi−1 A
v
ki
i

Bi

w′︷︸︸︷

• In each of those l segments [Bi−1, Avki
i

] take a strictly increasing sequence

of distinct points all different from A
v
ki
i

with first point in the sequence

Bi−1 and tending to A
v
ki
i

.

Bi−1 = T0 T1 T2

. . .

Tn

..→
A

v
ki
i

Bi

• For each of those increasing sequences, for each segment formed by two
subsequent points in the sequence [Tr, Tr+1]:

– divide the segment into ki − 1 segments

Tr

(1) (2)

. . . . . .

(ki − 2)

Tr+1

(ki − 1)

6

– The j-th for all 1 ≤ j ≤ ki − 1 of those ki − 1 segments divide into
two halves. The left one colour in wij .

6.1

Remark : In this way we form countably many segments coloured in wij . Each
such segment is surrounded by coloured in w′ (the parrent terminal vertex)
segments (or rays) thus no two such segments have a point in common. By
the choice of the sequences {Tr}r→∞ the union of all those countably many
segments coloured in wij has A

v
ki
i

in its closure.

7

• For all the intended vertices wij take one segment from the countably many

coloured in wij , say the first one with respect to the infinite sequence of
points tending to A

v
ki
i

, and on it apply the procedure (recursively) that

is for every i, 1 ≤ i ≤ l, for every j, 1 ≤ j ≤ ki − 1:

– the input segment [S0, S1] be the chosen segment coloured in wij

– the root terminal vertex w′ be wij
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Application:
By C let us denote R1. As a remark, it is sufficient C to be a non-empty

connected regular closed subset of R1. Thus we will call C the initial connected
regular closed set and in this way abstracting from which set we have exactly
chosen it to be.

• Choose terminal vertex w′ as the root of the tree G.

0

• Colour C in w′.

• Choose an arbitrary segment [S0, S1] ⊆ C.

• Apply the procedure with input [S0, S1] as an initial segment and w′ as
the root of the tree G.

Completion:
Upon completion of the procedure define Wi for every i, 1 ≤ i ≤ s:

• Wi � the closure of the union of the closures of all regions being coloured
in wi

Remark 3.2.1. Procedure 3.2 is valid for Rm for any m ≥ 1. It is simply that
the procedure should be applied on the R1 projection of Rm (or its considered
connected regular closed subset).

3.2.2 Observations

Observation 3.2.1. The following statements are immediately from the defi-
nition of Procedure 3.2:

• 1 is correctly required as being consistent with both 0 (the initial input)
and 7 (the recursive step).

• The procedure eventually completes.

Proof note: The reasoning with respect to the completion of the procedure re-
peats the one in Observation 3.1.1. Informally, it is because both Procedure 3.1
and Procedure 3.2 are quite common in manner, in particular, the way the input
tree is being recursively traversed.

Observation 3.2.2. For every i, 1 ≤ i ≤ s:

• Wi is defined and is completely determined at the step when terminal vertex
wi is being the current root vertex of the traversed by the procedure sub-tree
of G

• Wi 6= ∅

Proof. Procedure 3.2 does never backtrack. Furthermore, by 2 and 7 , the
procedure traverses every terminal vertex ofG and only once. Then by definition

of Wi, 0 , 1 and, either by 2 or, by both 6 and remark 6.1 , Wi is being

completely determined at the step of traversing the particular terminal vertex
wi.
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By the former, the definition of Wi, 1 and, either by 2 or by both 6 and

remark 6.1 , we imply Wi is non-empty set by definition as union of (non-empty)

segments or rays (rays possibly appear when wi is the initial input choice for
root of the tree G).

Observation 3.2.3. All elements in {W1, . . . ,Ws} are regular closed sets of R1.

Proof. By definition Procedure 3.2 is applied on segment of R1 which is guar-
anteed as per Observation 3.2.1.

Consider Wi. First suppose wi is not the initial input terminal vertex chosen
as a root of the tree G. If the procedure finishes at 2 then, trivially, Wi is
a regular closed set of R1 by the input segment being such. Otherwise, by 5
and 6 , from the initial segment coloured already in wi are being subtracted
countably many segments the result of which is what is left coloured in wi and
by Observation 3.2.2 Wi is finally determined at this point. Then, by definition
of Wi, it is clear that Wi is a regular closed set of R1.

Now, the case when wi is the initial input terminal vertex, as per the Appli-
cation of Procedure 3.2, then, by definition of Wi, Wi is as per the case when
wi is not the initial input terminal vertex union the closure of the regular closed
connected subset of R1 C subtracted by the chosen as initial input segment.
The latter is obviously a regular closed set of R1 hence, considering the former
case, Wi is a finite union of regular closed sets of R1 thus Wi also being such.

Observation 3.2.4. For the initial connected regular closed set C it holds:

C =

s⋃
i=1

Wi

Proof. By 0 initially C is coloured in w′ being the initial root (terminal) vertex.

Then by 1 and either by 2 or by both 6 and 6.1 at each recursive step of the

procedure the whole C is kept coloured (not necessarily in the same colour). By
Observation 3.2.2 each Wi is being determined at the step of traversing terminal
vertex wi and is non-empty. Furthermore, by C being a regular closed set and
the definition of Wi we imply Wi ⊆ C because all elements of Wi are elements
of C. Hence, by the former, after traversing all terminal vertices, which implies
completion of the procedure, the equality is satisfied by definition of Wi because
eventually every element of C is in at least one Wi.

Observation 3.2.5.

Int(Wi) ∩ Int(Wj) = ∅ 1 ≤ i < j ≤ s

Proof. By Observation 3.2.2 Wi′ is completely determined either by 1 , should

the procedure terminate at 2 , or by 6 and remark 6.1 , should the procedure

continue recursively by 7 . Considering those, the initial input conditions and
definition of Wi′ , then Wi′ is a union of the closure of rays (as a remark rays may
appear only if wi′ is the initial input root of the tree G) and segments (possibly
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countably many) coloured in wi′ which have no non-empty intersection with the
closure of segments or rays coloured in different colour but the boundary points.
Therefore, by i 6= j, no interior point of Wi is in Wj and vice versa, hence, the
equality holds.

Observation 3.2.6. wi is a terminal vertex for G, 1 ≤ i ≤ s, and v is a
connector vertex. Then:

wi ∈ AdjG(v) implies Av ∈Wi.

Proof.
Case 1): v is direct descendant of wi.
By 5 and 6 Av is a boundary point for segment [Av, Bi′ ] (for appropriate

i′ as per 5 ) coloured in wi. By Observation 3.2.2 and definition of Wi we have
Av ∈Wi

Case 2): wi is direct descendant of v.

Then by Observation 3.2.2, 6 , 6.1 and definition of Wi follows that Av ∈
Wi.

Observation 3.2.7. Let wi and wj be distinct terminal vertices.
If there is no connector vertex v such that {wi, wj} ⊆ AdjG(v) then Wi and

Wj are not in binary contact (that is Wi ∩Wj = ∅).

Proof. 1) wi or wj is descendant of the other.
Without loss of generality assume wj is descendant of wi. Let v be the

direct (connector) descendant of wi on the (single by G being tree) path down
to wj . Let wj1 be the (terminal) direct descendant of v. Apparently wj1 6= wj ,
otherwise {wi, wj} ⊆ AdjG(v) which is a contradiction.

wi

v

wj1

. . .

wj

By 6 and 7 there is appropriate segment U on which as per 7 the pro-
cedure is applied recursively for root wj1 . Remark that by Observation 3.2.2,
definition of Wi and by considering 1 and 6 we imply Wi ∩ Int(U) = ∅ be-
cause the only common points for Wi and U could be boundary points of both
sets.

In this way down the path from wj1 to wj we obtain sequence U1, . . . , Ur of
segments such that:
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• U1 ⊇ . . . ⊇ Ur

• U = U1

• Ur is the initial segment for the application of the Procedure 3.2 for root
wj as per 7

By wj1 6= wj we have r ≥ 2. Then by the last bullet, Observation 3.2.2 and
considering 1 , 2 and 6 we imply Wj ⊆ Ur−1. Furthermore, 3 guarantees
Wj ⊆ Int(Ur−1). Recall Ur−1 ⊆ U1 = U and Wi∩ Int(U) = ∅ hence Wi∩Wj =
∅.

2) The first common ancestor of wi and wj is connector vertex.

Call it v. Then there is direct terminal descendant of v different from wi and
wj and one of wi and wj is its descendant. Without loss of generality let wi be
descendant of that vertex wi1 thus having wi1 6= wi and wi1 6= wj . Let the first
terminal descendant towards wj be wj1 , hence, non-necessarily different from
wj .

v

wi1 wj1

. . . . . .

wi wj

As in case 1) here for both branches from wi1 down to wi and from wj1 down
to wj we form sequences of segments U1

1 , . . . , U
1
r1 and U2

1 , . . . , U
2
r2 such that:

• U1
1 ⊇ . . . ⊇ U1

r1

• U2
1 ⊇ . . . ⊇ U2

r2

• U1
r1 : the initial segment for wi (as per 7 )

• U2
r2 : the initial segment for wj (as per 7 )

• U1
1 : the initial segment for wi1 (as per 7 )

• U2
1 : the initial segment for wj1 (as per 7 )

By wi1 6= wi as in 1) we obtain

• r1 ≥ 2

• Wi ⊆ Int(U1
r1−1)

Therefore Wi ⊆ Int(U1
1 ).

2.1) wj1 6= wj
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Then r2 ≥ 2. In analogy as above Wj ⊆ Int(U2
r2−1) hence Wj ⊆ Int(U2

1 ). By

6 we imply U1
1 ∩ U2

1 = ∅ by which follows that Wi ∩Wj = ∅.

2.2) wj1 = wj

Then by Observation 3.2.2, 6 and definition of Wj it follows that Wj and U1
1

may have common points only if being boundary points for both sets. Hence
Wj ∩ Int(U1

1 ) = ∅. Recall Wi ⊆ Int(U1
1 ) then Wi ∩Wj = ∅.

3) The first common ancestor of wi and wj is terminal vertex.

Call it w. Therefore there are distinct v1 and v2 connector vertices and
distinct wi1 and wj1 terminal vertices such that:

• v1 and v2 are direct descendants of w

• wi1 is direct descendent of v1

• wj1 is direct descendent of v2

• wi is descendant of wi1 or wi = wi1

• wj is descendant of wj1 or wj = wj1

w

v1 v2

wi1 wj1

. . . . . .

wi wj

wi1 6= wj1 because otherwise wi = wj or one of wi and wj is descendant of
the other, or the common ancestor of wi and wj is terminal vertex other than
w eventually all in contradiction to 3) and the choice of w.

Then by 4 there are segments:

• [Bl1−1, Bl1 ] for Av1

• [Bl2−1, Bl2 ] for Av2

such that (Bl1−1, Bl1)∩(Bl2−1, Bl2) = ∅. Furthermore, in analogy to the reason-
ing in the former cases, as per 5 and 6 there would be appropriate segments
U1 and U2 for wi1 and wj1 respectively for which 7 is applied on. For them we
have:

• U1 ⊆ (Bl1−1, Bl1)

• U2 ⊆ (Bl2−1, Bl2)
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In the case when wi 6= wi1 then, in analogy to the former cases, we infer Wi ⊆ U1

hence Wi ⊆ (Bl1−1, Bl1). Otherwise, when wi = wi1 by Observation 3.2.2,

5 , 6 , remark 6.1 and definition of Wi′ we imply Wi ⊆ (Bl1−1, Bl1). Thus,

applying the same reasoning for wj and wj1 , eventually we obtain:

• Wi ⊆ (Bl1−1, Bl1)

• Wj ⊆ (Bl2−1, Bl2)

Therefore Wi ∩Wj = ∅.

Observation 3.2.8. v is a connector vertex, wi1 , . . . , wik are terminal vertices
(not necessarily distinct), 1 ≤ ij ≤ s.

If {wi1 , . . . , wik} ⊆ AdjG(v) then Wi1 , . . . ,Wik are in k-ary contact .

Proof. By Observation 3.2.6 for any j, 1 ≤ j ≤ k, Av ∈ Wij hence Av is a
witness to a k-ary contact of Wi1 , . . . ,Wik .

Observation 3.2.9. If Wi1 , . . . ,Wik are in k-ary contact then exists connector
vertex v such that {wi1 , . . . , wik} ⊆ AdjG(v).

Proof. By induction on k. k = 2 is directly by Observation 3.2.7. The inductive
step is exactly the same as already made in Observation 3.1.9.

Observation 3.2.10. Wi1 , . . . ,Wik are in k-ary contact
iff
there exists connector vertex v such that {wi1 , . . . , wik} ⊆ AdjG(v)

Proof. The statement is the combined result of Observation 3.2.8 and Observa-
tion 3.2.9.

Recall that by Observation 2.2.1 the acyclic n-graph G is a contact n-graph.

Claim 3.2.1. Let Fc be the Kripke frame with carrier {W1, . . . ,Ws} and in-
terpretation of the relation symbols of LR the standard contact relation for the
corresponding arity of the symbols. Let F be the contact n-frame induced by the
contact n-graph G.

Then Fc ∼= F .

Proof. The proof is exactly the same as the one of the analogous Claim 3.1.1
but using Observation 3.2.10 instead of Observation 3.1.10.

Remark that the statement in the following observation is valid for any
regular closed set. Moreover, we already have that all elements Wi are regular
closed sets by Observation 3.2.3. Despite seemingly unnecessary extra effort, we
cite and prove the observation for the sake of reference and for attaining better
understanding why the statement is valid in the particular case.

Observation 3.2.11. Let a be an arbitrary element of Wi.
Then for every open o 3 a is satisfied o ∩ Int(Wi) 6= ∅.
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Proof. Trivially for a ∈ Int(Wi).
Consider a a boundary point of Wi. By 1 , 5 , 6 and 7 if the procedure

finishes at 2 then, by definition of Wi, the latter will be (the closure of) an
infinite union of segments plus Av. Otherwise, considering Observation 3.2.2
and the definition of Wi, the latter is formed by the choice in 4 and 5 and
eventually by 6 . Remark that, again, considering also the case when wi is the
initial input terminal vertex, Wi is (the closure) of a union of infinite number
of segments as per 5 and 6 , (finite number) of rays (because the initial input
is connected set) and Av. Therefore in any case the boundary points of Wi are
either:

• boundary points for the segments or rays in the union

• Av

In the first case the claim is true. In the second case, when a = Av, then by 5
there are (infinitely many) segments from the union forming Wi which are in o.
And this means their interior is in o so we conclude o ∩ Int(Wi) 6= ∅.

3.3 Formal approach for 2-graphs and polytopes of R1

As per the introductory notes of Section 3.2, whenever three polytopes of R1

are in ternary contact then some two of them have intersection with non-empty
interior. Furthermore, this was the reason in the general case for an acyclic
n-graph to be not possible to obtain results analogous to those in Section 3.1 in
the case of polytopes of R1.

Should we be able to define specific requirements for the acyclic n-graph by
which to alleviate the mentioned obstructing condition then we may be able to
attain the desired results for the class of n-graphs satisfying those requirements.

Informally, if we express the obstructing condition as a formula of LR then
it resembles the one in Claim 2.4.2 (i). By Claim 2.4.2 we have that an n-frame
in which such a formula is valid effectively is a 2-frame. Considering Claim 2.3.3
and making the parallel with Claim 3.1.1 and Claim 3.2.1 we conclude that if
the acyclic n-graph is 2-graph then we may probably achieve the results as in
Section 3.1 and Section 3.2 but for polytopes of R1.

In this section we obtain the desired results for polytopes of R1 when the
acyclic n-graph is a 2-graph, hence, it really is a sufficient requirement.

3.3.1 Procedure for polytopes of R1 for acyclic 2-graph

Assumptions:

• Given G = (W,V,E) finite connected acyclic 2-graph, W , V and E non-
empty. Hence AdjG(v) = 2 for every v ∈ V .

• W = {w1, . . . , ws}, W = s.

• As per now, we consider G as a rooted tree for particularly chosen root
vertex as well as any sub-tree of G in which case the root will be clear
by the context. All terms then like predecessor, descendant etc. will be
relative to the currently considered (rooted) sub-tree.
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Procedure 3.3. Polytopes in R1 for 2-graph
Input :

• [S0, S1] ⊆ R1 : the current segment

• w′ : the terminal vertex as the root of the sub-tree of the tree G being
currently traversed

Procedure Steps:
1

• Consider [S0, S1] as coloured in w′.

2

• If w′ has no descendants then the current procedure recursive call finishes
here.

• Otherwise:

Let the direct (hence connector) descendants of w′ be v1, . . . , vl. By every
vi of those being a 2-vertex then let their direct descendants (hence terminal)
be w1, . . . , wl respectively.
3

• Choose l distinct non-intersecting proper segments in [S0, S1] that is seg-
ments [B0, B1], [B2, B3], . . . , [B2l−2, B2l−1] such that:

– Bi < Bi+1, for 0 ≤ i < 2l − 1

– S0 < B0 and B2l−1 < S1

4

• Colour segment [B2i−2, B2i−1] in wi (1 ≤ i ≤ l)

S0 B0

w′︷ ︸︸ ︷
B1

w1︷ ︸︸ ︷
B2

w′︷ ︸︸ ︷
B3

w2︷ ︸︸ ︷
. . . . . .

B2l−2 B2l−1

wl︷ ︸︸ ︷
S1

w′︷ ︸︸ ︷

5

• Apply the procedure recursively on each segment [B2i−2, B2i−1], 1 ≤ i ≤ l:

– [S0, S1] is assigned [B2i−2, B2i−1]

– w′ is assigned wi

Application:
By C let us denote R1. As a remark, it is sufficient C to be a non-empty

connected regular closed subset of R1. Thus we will call C the initial connected
regular closed set and in this way abstracting from which set we have exactly
chosen it to be.

• Choose terminal vertex w′ as the root of the tree G.

0

• Colour C in w′.
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• Choose an arbitrary segment [S0, S1] ⊆ C.

• Apply the procedure on [S0, S1] (the initial segment) and w′ as the root
of the tree G.

Completion:
Upon completion of the procedure define Wi for every i, 1 ≤ i ≤ s:

• Wi � the closure of the union of the closures of all regions being coloured
in wi

Remark 3.3.1. Procedure 3.3 is valid for Rm for any m ≥ 1. It is simply that
the procedure should be applied on the R1 projection of Rm (or its considered
connected regular closed subset).

3.3.2 Observations

Observation 3.3.1. The following statements are immediately from the defi-
nition of Procedure 3.3:

• 1 is correctly required as being consistent with both 0 (the initial input)
and 5 (the recursive step).

• The procedure eventually completes.

Proof note: The reasoning with respect to the completion of the procedure re-
peats the one in Observation 3.1.1. Informally, it is because both Procedure 3.1
and Procedure 3.3 are quite common in manner, in particular, the way the input
tree is being recursively traversed.

As a short remark, the recursive step as per 5 is made on already coloured
in wi segment [B2i−2, B2i−1] due to 4 hence consistent with requirement 1 .

Observation 3.3.2. For every i, 1 ≤ i ≤ s:

• Wi is defined and is completely determined at the step when terminal vertex
wi is being the current root vertex of the traversed by the procedure sub-tree
of G

• Wi 6= ∅

Proof. Procedure 3.3 does never backtrack. Furthermore, by 2 and 5 , the
procedure traverses every terminal vertex ofG and only once. Then by definition
of Wi, 0 , 1 and either by 2 or by 4 Wi is being completely determined at
the step of traversing the particular terminal vertex wi.

By the former, the definition of Wi, 1 and either by 2 or by both 3
and 4 we imply Wi is non-empty set by definition as a union of (non-empty)
segments or rays (rays possibly appear when wi is the initial input choice for
root of the tree G).

Observation 3.3.3. All elements in {W1, . . . ,Ws} are polytopes of R1.
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Proof. By Observation 3.3.1 1 guarantees the input segment as being such
hence polytope of R1.

Considering Observation 3.3.2, if the procedure finishes at 2 for input vertex
wi then only the current input segment is coloured wi by 4 and 5 . Hence, by
definition of Wi, Wi is this segment itself thus polytope of R1. Remark that if
wi is the initial input vertex then G is degenerate graph consisting of the vertex
wi only. This is not 2-graph. Nevertheless the procedure gives trivial solution
for such a graph/tree, namely, C = W1, where w1 is the only vertex of G. Think
of such graph/tree as a particular/exceptional case then.

Now, when the procedure continues recursively as per 5 , let the current
vertex be wi.

First, let wi be not the initial input root vertex chosen for the tree G.
By 3 and 4 and considering Observation 3.3.2 the coloured in wi regions
are effectively union of finitely many non-necessarily closed non-intersecting
segments in R1. Therefore their closure is polytope of R1. By definition of Wi

this closure is exactly Wi by which Wi is a polytope.
The case when wi is the initial input root vertex chosen for the tree G then

considering Observation 3.3.2 the regions coloured in wi are the following. On
one hand, those from the chosen as initial input segment from the regular closed
connected set C after application of the procedure. Then, as per the former case,
the closure of their union is a polytope. On the other hand, in wi is coloured the
remnant of C subtracted the chosen as initial input segment. The closure of the
latter is a polytope as well. Therefore the closure of the union of all coloured in
wi sets is a polytope. By definition of Wi that union is exactly Wi.

Observation 3.3.4. For the initial connected regular closed set C it holds:

C =

s⋃
i=1

Wi

Proof. By 0 initially C is coloured in w′ being the initial root (terminal) ver-
tex. Then by 1 and, either by 2 or by 4 , at each recursive step of the
procedure the whole C is kept coloured (not necessarily in the same colour). By
Observation 3.3.2 each Wi is being determined at the step of traversing terminal
vertex wi and is non-empty. Furthermore, by C being a regular closed set and
definition of Wi we imply Wi ⊆ C as long as all elements of Wi are elements
of C. Hence, by the former, after traversing all terminal vertices, which implies
completion of the procedure, the equality is satisfied again by definition of Wi

because eventually every element of C is in at least one Wi.

Observation 3.3.5.

Int(Wi) ∩ Int(Wj) = ∅ 1 ≤ i < j ≤ s

Proof. By Observation 3.3.2 any Wi′ is completely determined either by 1 ,
should the procedure terminate at 2 , or by 4 , should the procedure continue
recursively by 5 . Considering those, the initial input conditions, 3 and def-
inition of Wi′ , then Wi′ is a union of the closure of rays (as a remark rays
may appear only if wi′ is the initial input root of the tree G) and segments,
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both finitely many, coloured in wi′ which have no non-empty intersection with
the closure of segments or rays coloured in different colour but their boundary
points. Therefore, by i 6= j, no interior point of Wi is in Wj and vice versa,
hence, the equality holds.

Observation 3.3.6. v is a connector vertex, wi1 , . . . , wik are terminal vertices
(not necessarily distinct), 1 ≤ ij ≤ s.

If {wi1 , . . . , wik} ⊆ AdjG(v) then Wi1 , . . . ,Wik are in k-ary contact.

Proof. By G being a 2-graph then {wi1 , . . . , wik} ≤ 2. In the case when

{wi1 , . . . , wik} = 1 then by Observation 3.3.2 and definition of Wi trivially
Wi1 , . . . ,Wik are in contact as all being the same non-empty set.

Let then {wi1 , . . . , wik} = {wi, wj}, for i 6= j. Without loss of generality
assume wj is descendant of wi in the rooted tree G. Then by Observation 3.3.2,
definition of Wi and by 3 , 4 and 5 we conclude Wi and Wj are in contact
as per the definition of the segments and colouring made in 3 and 4 .

Observation 3.3.7. Let wi and wj be distinct terminal vertices.
If there is no connector vertex v such that {wi, wj} ⊆ AdjG(v) then Wi and

Wj are not in binary contact (that is Wi ∩Wj = ∅).

Proof. Neither wi nor wj is direct terminal descendant of the other otherwise
there will be connector vertex v which will contradict the initial condition.
Furthermore, wi and wj cannot have closest common predecessor connector
vertex because the initial choice for a root of the tree G is terminal vertex
thus such a connector vertex will have two distinct direct descendant (terminal)
vertices plus one parent (terminal) vertex which is a contradiction to G being a
2-graph. Therefore we have the following two possible cases.

Case 1: wi or wj is descendant of the other.
Without loss of generality assume wj is descendant of wi. Let wj1 be the

first terminal descendant of wi towards wj (single path due to G tree). Hence
wj1 6= wj . By 3 and 5 there is proper segment [Br1−1, Br1 ] on which 5 is
applied for the vertex wj1 . By Observation 3.3.2 and definition of Wi we infer
Wi may have intersection points with [Br1−1, Br1 ] only if being boundary for
both sets. Hence Wi ∩ Int([Br1−1, Br1 ]) = ∅.

In analogy to the choice of [Br1−1, Br1 ] for wj1 continuing downwards wj we
obtain sequence of segments [Br1−1, Br1 ], . . . , [Brt−1, Brt ], where [Brt−1, Brt ] is
the segment on which 5 is applied for wj . Hence, t ≥ 2 due to wj1 6= wj .
Now again by Observation 3.3.2 and by definition of Wj we imply that Wj ⊆
[Brt−1, Brt ].

Remark that by t ≥ 2 and by the choice of segments in 3 it is satisfied
[Brt′+1−1, Brt′+1

] ⊆ Int([Brt′−1, Brt′ ]). Hence, applying this inductively, we
conclude Wj ⊆ Int([Br1−1, Br1 ]). Recall that Wi ∩ Int([Br1−1, Br1 ]) = ∅ by
which Wi ∩Wj = ∅.

Case 2: wi, wj have closest common predecessor terminal vertex.
Call it w. Let the direct connector descendants of w towards wi and wj be

v1 and v2 respectively. Apparently v1 6= v2, otherwise contradiction with the
choice of w. Let then the direct descendants of v1 and v2 be wi1 and wj1 towards
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wi and wj respectively. By definition wi is descendant of wi1 or wi = wi1 , the
same applies for the relation between wj and wj1 .

As per the above reasoning, by 3 and 5 there are proper segments [Br1
1−1,

Br1
1
] and [Br2

1−1, Br2
1
] on which 5 is applied for the vertices wi1 and wj1 respec-

tively. Again, as per the above reasoning, we obtain sequences: [Br1
1−1, Br1

1
], . . . ,

[Br1
t1
−1, Br1

t1
] and [Br2

1−1, Br2
1
], . . . , [Br2

t2
−1, Br2

t2
], where [Br1

t1
−1, Br1

t1
] is the

segment on which 5 is applied for wi and [Br2
t2
−1, Br2

t2
] is the one for wj . Hence,

by Observation 3.3.2 and definition of Wi and Wj we have Wi ⊆ [Br1
t1
−1, Br1

t1
]

and Wj ⊆ [Br2
t2
−1, Br2

t2
].

Again by 3 we remark that [Br1
t′1+1
−1, Br1

t′1+1
] ⊆ [Br1

t′1
−1, Br1

t′1
] as well as

[Br2
t′2+1
−1, Br2

t′2+1
] ⊆ [Br2

t′2
−1, Br2

t′2
]. Applying it inductively we obtain Wi ⊆

[Br1
1−1, Br1

1
] and Wj ⊆ [Br2

1−1, Br2
1
].

Considering 3 and by v1 6= v2 we conclude [Br1
1−1, Br1

1
] ∩ [Br2

1−1, Br2
1
] = ∅.

This gives Wi ∩Wj = ∅.

Observation 3.3.8. If Wi1 , . . . ,Wik are in k-ary contact then exists connector
vertex v such that {wi1 , . . . , wik} ⊆ AdjG(v).

Proof. If {wi1 , . . . , wik} = 1 then the claim is satisfied by G connected n-graph.

Let then {wi1 , . . . , wik} > 1. Assume {wi1 , . . . , wik} > 2. Let wj1 , wj2
and wj3 be the first three distinct among wi1 , . . . , wik . Wj1 , Wj2 and Wj3 are
in contact as well as any two of them. Then by Observation 3.3.7 there are
connector vertices v1, v2 and v3 such that {wj1 , wj2} ⊆ AdjG(v3), {wj1 , wj3} ⊆
AdjG(v2) and {wj2 , wj3} ⊆ AdjG(v1). v1, v2, v3 are distinct otherwise, by G

being a 2-graph, {wj1 , wj2 , wj3} ≤ 2 which is a contradiction with the choice
of wj1 , wj2 and wj3 . Nevertheless the trail wj1-v3-wj2 -v1-wj3-v2-wj1 is a circuit
which is a contradiction with G acyclic.

Therefore {wi1 , . . . , wik} = 2. Now we apply Observation 3.3.7 directly.

Remark. Observation 3.3.8 can be proven exactly as Observation 3.1.9 but using
Observation 3.3.7 in the base of the induction instead.

Observation 3.3.9. Wi1 , . . . ,Wik are in k-ary contact
iff
there exists connector vertex v such that {wi1 , . . . , wik} ⊆ AdjG(v)

Proof. The statement is the combined result of Observation 3.3.6 and Observa-
tion 3.3.8.

Claim 3.3.1. Let Fc be the Kripke frame with carrier {W1, . . . ,Ws} and in-
terpretation of the relation symbols of LR the standard contact relation for the
corresponding arity of the symbols. Let F be the contact n-frame induced by the
contact n-graph G.

Then Fc ∼= F .

Proof. The proof is exactly the same as the one of the analogous Claim 3.1.1
but only using Observation 3.3.9 instead of Observation 3.1.10.
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4 p-morphic preimages of contact n-frames

In the former Section 3 for given contact n-graph were achieved useful results as
per obtaining corresponding to the graph Kripke frame with standard contact
semantics illustrative examples being Claim 3.1.1, Claim 3.2.1 and Claim 3.3.1.
An essential property of the originating n-graph was to be acyclic. As long as
the approaches from Section 3 could be applied on that class of contact n-graphs
rational motivation is to elaborate on a facility that provides sensible association
between arbitrary finite contact n-frames and those induced by acyclic contact
n-graphs.

In this section we will demonstrate a formal procedure which for given con-
tact n-frame induced by an arbitrary contact n-graph transforms the graph into
an acyclic contact n-graph such that the induced by it contact n-frame is a
p-morphic preimage of the originating contact n-frame.

4.1 Formal procedure on n-graphs

Consider an arbitrary n-graph G = (W,V,E).

Procedure Step 4.1.

• Choose an arbitrary circuit from the graph G. Denote it by C.

• Choose an arbitrary terminal vertex from the circuit. Denote it by w.

• Choose one of the (two) adjacent connector (by Definition 2.2.1) vertices
of w in the circuit C. Denote it by v.

• Remove the edge (v, w) from E.

• Add a new distinct terminal vertex w′ to W .

• Add a new edge (v, w′) to E.

Procedure 4.1.

• While there is a circuit in G apply Procedure Step 4.1

4.2 Observations

Consider arbitrary n-graph and denote it by the standard notation for a graph:
G = (V,E). Denote the terminal vertices of G by W hence W ⊆ V .

Consider single application of Procedure Step 4.1 over the n-graph G. Then
the resulting graph G′ = (V ′, E′) is as follows:

• V ′ = V ∪ {w′}

• E′ = (E \ {(v, w)}) ∪ {(v, w′)}

Observation 4.2.1. G′ has less circuits than G.

Proof. Consider the intermediate graph G′′ = (V ′′, E′′) as follows:

• V ′′ = V

• E′′ = E \ {(v, w)}
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The edge (v, w) then breaks at least the chosen circuit C hence the number of
circuits of G′′ is less than that of G.

For G′ we have:

• V ′ = V ′′ ∪ {w′}

• E′ = E′′ ∪ {(v, w′)}

Apparently, the degree of the new vertex w′ is 1 hence w′ cannot participate
in a circuit. Therefore any circuit in G′ should have already been in G′′. This
means the number of the circuits in G′′ is preserved the same in G′.

Eventually, the number of the circuits in G′ is less than their number in G.

Observation 4.2.2. G′ is n-graph.

Proof. Straightforward verification that the conditions in Definition 2.2.1 of n-
graph satisfied by G are preserved also in G′.

Due to Observation 4.2.2 from here on we will denote the resulting graphs
from Procedure Step 4.1 by the standard notation we use for n-graphs. In par-
ticular, for the n-graph G = (W,V,E), the result G′ = (W ′, V, E′) of applying
the procedure step on G is defined as:

• W ′ = W ∪ {w′}

• V is the same in both G and G′

• E′ = (E \ {(v, w)}) ∪ {(v, w′)}

Observation 4.2.3. G′ = (W ′, V, E′) is a contact n-graph should G = (W,V,E)
be a contact n-graph.

Proof. Verification of the conditions as per Definition 2.2.2.
(0):

It is Observation 4.2.2.
(1):

Consider G′′ = (W,V,E′′) such that:

• W and V are as in G

• E′′ = E \ {(v, w)}

By this and G being simple, trivially, G′′ also is. For G′ we have:

• W ′ = W ∪ {w′}

• V is the same as in G and G′′

• E′ = E′′ ∪ {(v, w′)}

Remark that all edges of G′ are in G′′ but (v, w′). Furthermore, (v, w′) is a
single such edge by Procedure Step 4.1. Therefore G′ is simple by G′′ being
such.
(2):

Let v′, v′′ arbitrary connector vertices for G′ not necessarily different.
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If v′ and v′′ are both other than v then they are not incident on the new
edge (v, w′) in G′ with respect to G. Thus all their adjacent vertices are the
same as those in G. Thus the condition is satisfied by G contact n-graph.

Let then one of the vertices be v. Without loss of generality let v′′ = v. By
(v, w′) ∈ E′ then w′ ∈ AdjG′(v).

For any connector vertex v′ other than v we have w′ /∈ AdjG′(v′). Therefore,
in such a case, AdjG′(v) * AdjG′(v

′).
Let AdjG′(v

′) ⊆ AdjG′(v) and assume v′ 6= v. As clarified, then w′ /∈
AdjG′(v

′). Hence AdjG′(v
′) ⊆ (AdjG′(v) \ {w′}). As long as v′ 6= v then

AdjG(v′) = AdjG′(v
′). Remark that by definition AdjG(v) = (AdjG′(v)\{w′})∪

{w}. By these we imply AdjG(v′) ⊆ AdjG(v). Now, by G contact n-graph, it
follows that v′ = v which is a contradiction to our assumption.

Let G = (W,V,E) be a contact n-graph. As per Observation 4.2.3, let
the resulting contact n-graph after applying once Procedure Step 4.1 on G be
G′ = (W ′, V, E′). Let Procedure Step 4.1 has used terminal vertex w0 from the
chosen circuit in G and the added new one be w′0. Finally, let the used connector
vertex be v. To rewrite it exactly as per above in such a case we have:

• W ′ = W ∪ {w′0}

• V is the same in both G and G′

• E′ = (E \ {(v, w0)}) ∪ {(v, w′0)}

As per Claim 2.3.3, consider the induced by G and G′ contact n-frames F
and F ′ respectively. Denote them by:

• F =<W,R2, . . . , Rn, . . .>

• F ′ =<W ′, R′2, . . . , R
′
n, . . .>

Observation 4.2.4. Let f : W ′ �W be defined as:

f(w) =

{
w w 6= w′0
w0 w = w′0

Then f is p-morphism from F ′ onto F .

Proof.
Forward condition:

Let <w1, . . . , wk> ∈ R′k. Then by Definition 2.3.2 (r) either w1 = . . . = wk
or exists v′ ∈ V such that {w1, . . . , wk} ⊆ AdjG′(v′).

Should w1 = . . . = wk then, trivially, f(w1) = . . . = f(wk) hence, by
Definition 2.3.2 (r), we have <f(w1), . . . , f(wk)> ∈ Rk.

Let {w1, . . . , wk} ⊆ AdjG′(v′).
If v′ 6= v then, by definition, AdjG′(v

′) = AdjG(v′). Furthermore, by defi-
nition of E′, none of w1, . . . , wk is w′0. Hence f(wi) = wi for all i, 1 ≤ i ≤ k.
It follows that {f(w1), . . . , f(wk)} ⊆ AdjG(v′) and by Definition 2.3.2 (r)
<f(w1), . . . , f(wk)> ∈ Rk.

Now let v′ = v. Remark that, by definition of E′, w0 /∈ AdjG′(v) hence
w0 6= wi for all i, 1 ≤ i ≤ k.
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Consider wi, 1 ≤ i ≤ k. Remark that by definition of E and E′ we con-
clude AdjG′(v) \ {w′0} = AdjG(v) \ {w0}. Then, if wi 6= w′0, on one hand,
f(wi) = wi and, on the other, wi ∈ AdjG(v) thus f(wi) ∈ AdjG(v). Otherwise,
when wi = w′0 then f(wi) = w0 but w0 ∈ AdjG(v) by the choice of v hence,
again, f(wi) ∈ AdjG(v). It follows that {f(w1), . . . , f(wk)} ⊆ AdjG(v) which
by Definition 2.3.2 (r) means <f(w1), . . . , f(wk)> ∈ Rk.

Backward condition:
Let <w1, . . . , wk> ∈ Rk. Then by Definition 2.3.2 (r) either w1 = . . . = wk

or exists v′ ∈ V such that {w1, . . . , wk} ⊆ AdjG(v′).
Should w1 = . . . = wk then let w ∈W ′ be such that f(w) = w1 = . . . = wk.

Then, by Definition 2.3.2 (r) (in fact even by trivial reasons due to definition
of contact n-frames) <w, . . . , w> ∈ R′k.

Let {w1, . . . , wk} ⊆ AdjG(v′).
If v′ 6= v then, again, by definition, AdjG(v′) = AdjG′(v

′). Furthermore,
by w′0 /∈ W , thus w′0 /∈ {w1, . . . , wk} we have f(wi) = wi by definition of
f . Now by {w1, . . . , wk} ⊆ AdjG′(v

′) and Definition 2.3.2 (r) we conclude
<w1, . . . , wk> ∈ R′k.

Let v′ = v. By definition of E′ we have

AdjG′(v) = (AdjG(v) \ {w0}) ∪ {w′0} (1)

Let g : W �W ′ be defined as follows:

g(w) =

{
w w 6= w0

w′0 w = w0

Clearly g is an injection. Furthermore, remark that w0 /∈ Range(g). By equa-
tion 1 and definition of g it follows that:

w ∈ AdjG(v) iff g(w) ∈ AdjG′(v) for w ∈W

Therefore {g(w1), . . . , g(wk)} ⊆ AdjG′(v). Hence, by Definition 2.3.2 (r):

<g(w1), . . . , g(wk)> ∈ R′k

We will demonstrate <g(w1), . . . , g(wk)> is a witness for which it is sufficient
to show that for all i, 1 ≤ i ≤ k, then f(g(wi)) = wi. This follows immediately
from the more general observation, namely:

f(g(w)) = w for w ∈W

If w 6= w0 then g(w) = w. w ∈W thus w 6= w′0. Therefore f(g(w)) = f(w) = w.
Otherwise, when w = w0 then g(w0) = w′0 hence f(g(w0)) = f(w′0) = w0.

Observation 4.2.5. Procedure 4.1 applied on an arbitrary finite n-graph even-
tually finishes. Furthermore, the resulting graph is a finite acyclic n-graph.

Proof. By Observation 4.2.1 upon each application of Procedure Step 4.1 the
number of circuits in the resulting graph strongly decreases. The input graph
is finite thus it has finite number of circuits. Therefore Procedure 4.1 performs
only finite number of steps.
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Procedure 4.1 terminates only when there are no circuits left in the graph
hence trivially the resulting graph is acyclic.

By applying Observation 4.2.2 inductively, eventually, the resulting graph is
n-graph.

By definition of Procedure Step 4.1 at each step are being added finitely
many new vertices, in particular exactly one. Just as a note, the number of
edges is preserved. Procedure 4.1 completes in finitely many steps hence the
resulting graph is finite.

Remark 4.2.1. Consider arbitrary finite contact n-graph. By Observation 4.2.5
Procedure 4.1 finishes and the resulting graph is acyclic n-graph. Then by
inductively applying Observation 4.2.3 it follows that the resulting graph is
contact n-graph.

Furthermore, remark that by Observation 2.2.1 for arbitrary finite n-graph
the result of Procedure 4.1 will again be contact n-graph.

The benefit of the former reasoning is in that by Observation 4.2.3 it demon-
strates the n-graph is guaranteed contact within all the intermediate calls/sub-
steps of Procedure Step 4.1.

Remark 4.2.2. Consider an arbitrary finite contact n-graph G. By Claim 2.3.3
let F be the induced by G contact n-frame. As per Observation 4.2.5 let G′

be the resulting acyclic n-graph upon applying Procedure 4.1 on G. By Re-
mark 4.2.1 G′ is a contact n-graph. Let then, again as per Claim 2.3.3, F ′ be
the induced by G′ contact n-frame.

Remark 4.2.2 is the ground for stating the following:

Claim 4.2.1. F is a p-morphic image of F ′.

Proof. By Observation 4.2.5 Procedure 4.1 eventually finishes hence Procedure
Step 4.1 is performed finitely many times. Let G0, G1, . . . , Gr be the interme-
diate graphs being result of Procedure Step 4.1 within the finite run of Proce-
dure 4.1 such that:

• G0 = G

• Gr = G′

• Gi+1 is the result of Procedure Step 4.1 on Gi, 0 ≤ i ≤ r − 1

By Observation 4.2.3 Gi is a contact n-graph for each i, 0 ≤ i ≤ r. As per
Claim 2.3.3 consider F0, . . . ,Fr be the induced contact n-frames by G0, . . . , Gr
respectively, that is:

• G0 −→ F0, . . . , Gr −→ Fr

• F = F0

• F ′ = Fr

By Observation 4.2.4 Fi is a p-morphic image of Fi+1 for 0 ≤ i ≤ r−1. Denote
by fi+1 an arbitrary p-morphism from Fi+1 onto Fi, for example the one as
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per Observation 4.2.4. Composition of p-morphisms is a p-morphism therefore,
eventually, F0 is a p-morphic image of Fr by the p-morphism:

f = fr ◦ fr−1 ◦ . . . ◦ f1

Given is n-graph G. Let, again, G′ be the result of applying once Procedure
Step 4.1 on G.

Observation 4.2.6. If G is connected graph, then also is G′.

Proof. As formerly, denote G = (W,V,E) and G′ = (W ′, V, E′) such that:

• W ′ = W ∪ {w′0}

• V is the same in both G and G′

• E′ = (E \ {(v, w0)}) ∪ {(v, w′0)}

where v, w0 and w′0 are the choice of vertices as per Procedure Step 4.1.
Consider the intermediate graph G′′ = (W,V,E′′) such that:

• W and V are the same in G and G′′

• E′′ = E \ {(v, w0)}

Assume G′′ be not connected. Then consider component (W ′′ ∪ V ′′) of
G′′, where W ′′ ⊆ W and V ′′ ⊆ V . Consider the partitioning (W ′′ ∪ V ′′) and
(W ∪ V ) \ (W ′′ ∪ V ′′) in G′′. Remark that if there is an edge in G connecting
vertices from both partitions other than (v, w0) then this edge is also in G′′

which is a contradiction. Nevertheless, by G connected, follows that there is
an edge in G with vertices from both partitions. Therefore this edge certainly
is (v, w0) as the only possible. This means vertices v and w0 are in different
partitions with respect to the chosen partitioning. Recall that by the choice of
v and w0 in Procedure Step 4.1 there is a circuit in G which contains the edge
(v, w0). All edges from that circuit but (v, w0) are in G′′. Therefore there is a
path in G′′ connecting v and w0. This is a contradiction because (W ′′ ∪ V ′′) is
a component in G′′.

Now, with respect to G′′, for G′ we have:

• W ′ = W ∪ {w′0}

• E′ = E′′ ∪ {(v, w′0)}

By this and G′′ connected we imply G′ is also connected.

Observation 4.2.7. Upon applying Procedure 4.1 on a finite connected n-graph
the resulting n-graph is also connected.

Proof. By Observation 4.2.5 Procedure 4.1 finishes in finitely many steps and
the result is an n-graph. Then, by applying Observation 4.2.6, inductively, we
imply the resulting n-graph is also connected.
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LetG = (W,V,E) be an arbitrary contact n-graph and, again, G′ = (W ′, V, E′),
defined as above, be the result of applying once Procedure Step 4.1 on G.

Observation 4.2.8. G′ is a contact n-graph for the same n as for G.

Proof. G′ is a contact n-graph by Observation 4.2.3. By the equation E′ =
(E \ {(v, w0)})∪ {(v, w′0)} it is obvious that the degree of all connector vertices
of G′ is preserved exactly the same as of G.

Observation 4.2.9. Upon applying Procedure 4.1 on a finite contact n-graph
then the result is a finite contact n-graph for the same n as for the originating
contact n-graph.

Proof. By Observation 4.2.5 Procedure 4.1 finishes in finitely many steps and
the resulting graph is finite. Furthermore, by Remark 4.2.1 that graph is a
contact n-graph. Applying Observation 4.2.8 inductively we imply that the
resulting contact n-graph is n-graph for the same n as the originating one.
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5 n-ary contact axioms

Following we define the axioms of the (logic of the) n-ary contact. In the later
sections we will prove those axioms being sufficient for axiomatising particular
classes of Boolean frames, namely, those defined on subalgebras of the Boolean
algebras of the polytopes or the regular closed sets of Rm (see Section 1.6.2 and

Section 1.6.4) and having as interpretation of the relation symbols the standard
contact semantics. Here the validity of the axioms will be studied from contact
n-frames perspective.

5.1 Axioms of the n-ary contact

(c1) (ρ(P ) = n, n ≥ 0, σ : n→ n)

P (x1, . . . , xn) =⇒ P (xσ(1), . . . , xσ(n))

(c2) (ρ(P ) = n+ 1, ρ(Q) = n, n ≥ 0)

P (x1, x1, x2 . . . , xn)⇐⇒ Q(x1, x2, . . . , xn)

(c3) (ρ(P ) = 2)
¬(x ≡ 0) =⇒ P (x, x)

(c4) (ρ(P ) = 2)
¬(x ≡ 0) ∧ ¬(−x ≡ 0) =⇒ P (x,−x)

PRC1 (ρ(P ) = 3)

P (x1, x2, x3) =⇒ ¬(x1 ∩ x2 ≡ 0) ∨ ¬(x2 ∩ x3 ≡ 0) ∨ ¬(x1 ∩ x3 ≡ 0)

5.2 Validity of the axioms in the contact n-frames

Claim 5.2.1. Let F be a Kripke frame in which are valid (c1), (c2) and (c3).
Then F satisfies conditions (a), (b) and (c) of Definition 2.1.1 of a contact

n-frame.

Proof. Let F = <S, I>. We will demonstrate each of the conditions (a), (b)
and (c) of Definition 2.1.1.
(a):

Let <s1, . . . , sk> ∈ I(P ) and consider valuation:

V(x) =

{
{si} x = xi

arbitrary x /∈ {x1, . . . , xk}
(2)

By F 
 (c1) then we imply <sσ(1), . . . , sσ(k)> ∈ I(P ).
(b):

Consider relation symbols P and Q such that ρ(P ) = k+1 and ρ(Q) = k. Let
<s1, s1, . . . , sk> ∈ I(P ). Take again valuation (2). By F 
 (c2) and <F ,V> 

P (x1, x1, . . . , xk) then <F ,V> 
 Q(x1, . . . , xk) thus <s1, . . . , sk> ∈ I(Q).

The opposite direction is in analogy.
(c):
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Consider arbitrary s ∈ S and relation symbol P such that ρ(P ) = 2. Let:

V(y) =

{
{s} x = y

arbitrary x 6= y

By F 
 (c3) and V(x) 6= ∅ it follows:

<F ,V> 
 P (x, x)

Therefore <s, s> ∈ I(P ).

Claim 5.2.2. Let be given a Kripke frame satisfying conditions (a), (b) and
(c) of Definition 2.1.1 of a contact n-frame. If the Kripke frame is finite, then
it is a contact n-frame (for appropriate n).

Proof. Let F = <W, I>, where W = s < ω. By Definition 2.1.1 it remains to
show F satisfies conditions (d).

Let n be the greatest with the property that there are distinct w1, . . . , wn ∈
W such that <w1, . . . , wn> ∈ Rn for F . Such n exists as by Remark 2.1.1 with
sure n ≥ 1 and by the finiteness of W n ≤ s. Therefore, by definition, this n
satisfies (d.1).

Let <w1, . . . , wk> ∈ Rk. If k ≤ n then apparently {w1, . . . , wk} ≤ n. Con-

sider k > n and assume {w1, . . . , wk} > n. Take n + 1 distinct elements from
{w1, . . . , wk}. Without loss of generality consider them w1, . . . , wn+1. Then by
(a) for F we obtain <w1, . . . , w1︸ ︷︷ ︸

k−(n+1)

, w1, . . . , wn+1> ∈ Rk. Hence, by (b) applied

k−(n+1) times, we imply that <w1, . . . , wn+1> ∈ Rn+1. This is a contradiction
to the choice of n hence our assumption is wrong, by which (d.2) is satisfied.

Proposition 5.2.3. If (c1), (c2) and (c3) are valid in a finite Kripke frame
then the latter is a contact n-frame.

Proof. By Claim 5.2.1 the Kripke frame satisfies conditions (a), (b) and (c)
of Definition 2.1.1 of a contact n-frame. Then, by Claim 5.2.2, it is a contact
n-frame.
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6 Boolean frames and subframes. Finite Boolean
algebras of regular closed sets of Rm

In this section are discussed some properties of Boolean frames and intended
Boolean algebras which play an essential role when considering the completeness
features of the studied in the next section logic of n-ary contact.

6.1 Boolean subframes

Consider Boolean frames B and B0:

B = <A, 0A,−A,∪A, I>
B0 = <A0, 0A0

,−A0
,∪A0

, I0>

Definition 6.1.1. A Boolean frame B0 is called a Boolean subframe of B,
denoted by B0 ⊆ B, if:

• A0 ⊆ A and A0 is a non-degenerate Boolean algebra subalgebra of A

• For the n-ary relation symbol P and for every a1, . . . , an of A0 then it
holds:

<a1, . . . , an> ∈ I0(P ) iff <a1, . . . , an> ∈ I(P )

Claim 6.1.1. Consider Boolean frames B0 and B such that B0 is a subframe
of B. Let V0 and V be valuations on B0 and B respectively. The following are
satisfied:

(i) For any Boolean term τ if V0(x) = V(x) for every x from BV (τ), then:

Ṽ0(τ) = Ṽ(τ)

(ii) For any formula ϕ if V0(x) = V(x) for every x from BV (ϕ), then:

<B0,V0> 
 ϕ iff <B,V> 
 ϕ

Proof. Denote:

B = <B, 0B ,−B ,∪B , I>
B0 = <B0, 0B0

,−B0
,∪B0

, I0>

(i):
The proof is by induction on the complexity of the Boolean term τ .
Trivially, Ṽ0(τ) = Ṽ(τ) when τ = x by definition. Furthermore, the case

when τ = 0, then Ṽ0(τ) = 0B0
= 0B = Ṽ(τ).

Consider: τ = −τ1.

Ṽ0(τ) = Ṽ0(−τ1) = −B0 Ṽ0(τ1)

By the inductive hypothesis Ṽ0(τ1) = Ṽ(τ1), hence, by B0 subalgebra of B:

−B0 Ṽ0(τ1) = −BṼ(τ1) = Ṽ(τ)
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Consider: τ = τ1 ∪ τ2.

Ṽ0(τ) = Ṽ0(τ1 ∪ τ2) = Ṽ0(τ1) ∪B0
Ṽ0(τ2)

By inductive hypothesis and B0 subalgebra of B it follows:

Ṽ0(τ1) ∪B0
Ṽ0(τ2) = Ṽ(τ1) ∪B Ṽ(τ2) = Ṽ(τ1 ∪ τ2) = Ṽ(τ)

(ii):
The proof is by induction on the complexity of the formula ϕ.
The case ϕ = ⊥ is trivial.
Consider: ϕ = (τ1 ≡ τ2)

<B0,V0> 
 (τ1 ≡ τ2) iff Ṽ0(τ1) = Ṽ0(τ2)

Then by (i):

iff Ṽ(τ1) = Ṽ(τ2) iff <B,V> 
 (τ1 ≡ τ2)

Consider: ϕ = P (τ1, . . . , τn)

<B0,V0> 
 P (τ1, . . . , τn) iff <Ṽ0(τ1), . . . , Ṽ0(τn)> ∈ I0(P )

By (i): Ṽ0(τi) = Ṽ(τi) for 1 ≤ i ≤ n. Then, by B0 ⊆ B:

iff <Ṽ(τ1), . . . , Ṽ(τn)> ∈ I(P ) iff <B,V> 
 P (τ1, . . . , τn)

The cases when ϕ = ¬ϕ1 or ϕ = ϕ1 ∨ ϕ2 follow directly by the inductive
hypothesis.

Claim 6.1.2. Every formula valid in a Boolean frame is also valid in all its
subframes.

Proof. Consider Boolean frames B0 and B such that B0 is a subframe of B and
let ϕ be valid in B. Let V0 be an arbitrary valuation on B0. By B0 ⊆ B then V0

is also a valuation on B. Hence, by ϕ valid in B, it follows that <B,V0> 
 ϕ.
By Claim 6.1.1 we obtain <B0,V0> 
 ϕ. V0 was an arbitrary valuation on B0

hence ϕ is valid in B0.

6.2 Finite Boolean algebras of polytopes or regular closed
sets of Rm

Definition 6.2.1. (BRC)
We say set W satisfies conditions (BRC) (for Rm) if:

(i) Every element of W is a non-empty regular closed set of Rm

(ii) ∪W = Rm

(iii) For every a, b ∈W , if a 6= b then:

Int(a) ∩ Int(b) = ∅
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(iv) For every a ∈W , for every x ∈ a and for every open o 3 x then:

o ∩ Int(a) 6= ∅

(v) W is finite

Remark. Sets satisfying (BRC) exist. Trivial example is W = {Rm}.
Remark. (BRC) condition (ii) could be required for particular regular closed
connected subset of Rm instead of the whole Rm.

Remark. Condition (iv) effectively is an implication of (i) as it is valid for any
regular closed set of Rm. We explicitly state this condition for convenience.

Claim 6.2.1. Consider a set W satisfying (BRC). Then for every A and B
subsets of W the following are satisfied:

• ∪A ∪ ∪B = ∪(A ∪B)

• Cl(Int(∪A ∩ ∪B)) = ∪(A ∩B)

• Cl(Rm \ ∪A) = ∪(W \A)

Proof.

• ∪A ∪ ∪B = ∪(A ∪B)

Trivially satisfied.

• Cl(Int(∪A ∩ ∪B)) = ∪(A ∩B)

Consider an arbitrary x ∈ ∪(A ∩ B). Then there is e ∈ (A ∩ B) such that
x ∈ e. Hence x is in ∪A and in ∪B thus x ∈ (∪A ∩ ∪B). Therefore:

∪(A ∩B) ⊆ (∪A ∩ ∪B)

By the monotonicity as per Section 1.6.1 we imply:

Cl(Int(∪(A ∩B))) ⊆ Cl(Int(∪A ∩ ∪B))

W is satisfying (BRC) conditions, hence, every element of W is a regular closed
set. Therefore ∪(A∩B) is a union of finitely many regular closed sets, hence, a
regular closed set, therefore:

∪(A ∩B) = Cl(Int(∪(A ∩B))),

by which:
∪(A ∩B) ⊆ Cl(Int(∪A ∩ ∪B))

To prove the other direction, first, we will show the following helpful observation:

Int(∪A ∩ ∪B) ⊆ ∪(A ∩B) (3)

Before that will demonstrate:

If a ∈ A and b ∈ B and y ∈ Int(a) then if y ∈ b then a = b (4)
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Assume a 6= b. By y ∈ Int(a) there is open o 3 y such that o ⊆ Int(a).
Then by y ∈ b and by Definition 6.2.1 (iv) we imply o ∩ Int(b) 6= ∅. This gives
Int(a)∩Int(b) 6= ∅ which is a contradiction with Definition 6.2.1 (iii). Therefore
a = b which proves (4).

Now, for (3), let z ∈ Int(∪A ∩ ∪B). Then there is a ∈ A such that z ∈ a.
By z ∈ Int(∪A ∩ ∪B) there is an open o 3 z such that o ⊆ Int(∪A ∩ ∪B).
By Definition 6.2.1 (iv) o ∩ Int(a) 6= ∅. Let y ∈ o ∩ Int(a). Hence by o ⊆
Int(∪A ∩ ∪B) there is b ∈ B such that y ∈ b. Applying proprietary statement
4 on a, b and y we imply a = b, hence, a ∈ B. This proves (3).

Now, by (3) and monotonicity as per Section 1.6.1 we have:

Cl(Int(∪A ∩ ∪B)) ⊆ Cl(∪(A ∩B))

(A∩B) is a finite set of regular closed sets, thus, a set of closed sets hence their
union is a closed set. Then trivially:

Cl(∪(A ∩B)) = ∪(A ∩B),

by which finally:
Cl(Int(∪A ∩ ∪B)) ⊆ ∪(A ∩B)

• Cl(Rm \ ∪A) = ∪(W \A)

By (BRC) conditions: (Rm \ ∪A) = (∪W \ ∪A). Remark that for every x ∈
(∪W\∪A) we imply there is b ∈ (W\A) such that x ∈ b. Therefore x ∈ ∪(W\A),
thus having:

(Rm \ ∪A) ⊆ ∪(W \A)

By (BRC) conditions (W \A) is a finite set of regular closed sets therefore ∪(W \
A) is a regular closed set, in particular, it is a closed set then, by monotonicity
as per Section 1.6.1 and the latter, subsequently:

Cl(Rm \ ∪A) ⊆ Cl(∪(W \A)) = ∪(W \A)

For the other direction, first, remark that by definition of closure:

Cl(Rm \ ∪A) = Rm \ Int(Rm \ (Rm \ ∪A)) = Rm \ Int(∪A)

Then we have to demonstrate:

∪(W \A) ⊆ Rm \ Int(∪A)

Let x ∈ ∪(W \A). Hence there is a ∈W \A such that x ∈ a.
Assume a ∩ Int(∪A) 6= ∅. Take a witness y ∈ a ∩ Int(∪A). By y ∈ Int(∪A)

there is an open o 3 y such that o ⊆ Int(∪A). By Definition 6.2.1 (iv) we
have o ∩ Int(a) 6= ∅. Take a witness z, hence, z ∈ Int(a) ∩ Int(∪A). This
means there is b ∈ A such that z ∈ b. z ∈ Int(a) thus there is an open o′ 3 z
such that o′ ⊆ Int(a). By Definition 6.2.1 (iv) o′ ∩ Int(b) 6= ∅. This implies
Int(a) ∩ Int(b) 6= ∅. Applying Definition 6.2.1 (iii) the latter is possible only if
a = b. This means a ∈W \A and a ∈ A, which is a contradiction.

Therefore our assumption is wrong. Then, by a ∩ Int(∪A) = ∅, we imply
x /∈ Int(∪A). Thus x ∈ Rm \ Int(∪A).
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Definition. For an arbitrary set S by BRC(S) denote:

BRC(S) �
{
∪A

∣∣ A ∈ P(S)
}

Claim 6.2.2. The following statements hold:

(i) If a set W satisfies (BRC) conditions (Definition 6.2.1) then BRC(W ) is
a Boolean algebra subalgebra of the Boolean algebra of the regular closed
sets of Rm.

(ii) Furthermore, if in addition every element of W is a polytope of Rm then
BRC(W ) is a Boolean algebra subalgebra of the Boolean algebra of the
polytopes of Rm.

Proof. Consider ∪A ∈ BRC(W ), where A ∈ P(W ). By definition every a ∈ A
is either a regular closed set of Rm as per (i) or a polytope of Rm as per (ii).
Hence such one also is ∪A.

Consider the structure:

BRC = <BRC(W ),−RC ,∪RC ,∩RC>,

where −RC , ∪RC and ∩RC are as per Section 1.6.2. Then, by Claim 6.2.1, for
arbitrary ∪A and ∪B from BRC(W ), where A and B are elements of P(W ) we
have:

• ∪A ∪RC ∪B = ∪(A ∪B)

• ∪A ∩RC ∪B = ∪(A ∩B)

• −RC ∪A = ∪(W \A)

By this we imply that BRC is closed under the operations of the Boolean algebra
of either the regular closed sets for (i) or the polytopes for (ii) of Rm. Therefore
BRC is a Boolean algebra subalgebra of either the Boolean algebra of the regular
closed sets of Rm for (i) or the polytopes of Rm for (ii).

Remark 6.2.1. Consider the Boolean algebra as per Claim 6.2.2 (either (i) or
(ii)) BRC(W ). Remark that as per Section 1.6.4:

• The zero of the Boolean algebra is 0RC , namely, the empty set.

• The unit of the Boolean algebra is 1RC , namely, Rm.

Definition. For an arbitrary set S consider the structure:

BRC(S) = <BRC(S), 0BRC
,−BRC

,∪BRC
, IRC>

defined as follows:

• 0BRC
= ∅

• −BRC
(∪A) = ∪(S \A)

• ∪A ∪BRC
∪B = ∪(A ∪B)
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• For the n-ary relation symbol P :

<a1, . . . , an> ∈ IRC(P ) iff a1 ∩ . . . ∩ an 6= ∅

Claim 6.2.3. If a set W satisfies (BRC) conditions (Definition 6.2.1) then
BRC(W) is a Boolean frame.

Proof. By Claim 6.2.2 and Remark 6.2.1 then BRC(W ) is a Boolean algebra
subalgebra of the Boolean algebra of either the polytopes (should all elements
of W be polytopes) or the regular closed sets of Rm. Furthermore, remark that
BRC(W ) is a non-degenerate algebra iff W 6= ∅. The latter is obtained by
(BRC) Definition 6.2.1 (ii). It remains to show the interpretation IRC satisfies
the conditions for a Boolean frame.

Let <a1, . . . , an> ∈ IRC(P ). Then, by definition, a1 ∩ . . . ∩ an 6= ∅. Hence
every ai 6= ∅ = 0BRC

.
Furthermore, we have the following:

<a1, . . . , a
′
i ∪ a′′i , . . . , an> ∈ IRC(P )

iff a1 ∩ . . . ∩ (a′i ∪ a′′i ) ∩ . . . ∩ an 6= ∅
iff a1 ∩ . . . ∩ a′i ∩ . . . ∩ an 6= ∅ or a1 ∩ . . . ∩ a′′i ∩ . . . ∩ an 6= ∅
iff <a1, . . . , a

′
i, . . . , an> ∈ IRC(P ) or <a1, . . . , a

′′
i , . . . , an> ∈ IRC(P )

6.3 Associations between finite Boolean and Kripke frames

Claim 6.3.1. If B0 is a finite Boolean frame then it exists a finite Kripke frame
F such that:

B(F) ∼= B0

Proof. Denote:
B0 =<B0, 0B0

,−B0
,∪B0

, I0>

The Boolean algebra B0 is finite then it is atomic. Then denote by W the set of
all the atoms of B0. Furthermore, as per normal, consider the ordering relation:

a ≤B0
b � a ∪B0

b = b (or equivalently: a ∩B0
b = a)

Consider the structure:
F = <W, I>

where for any n-ary relation symbol P and a1, . . . , an from W is satisfied:

<a1, . . . , an> ∈ I(P ) iff <a1, . . . , an> ∈ I0(P )

Remark that F is finite Kripke frame. Denote the Boolean frame over F (as
per Section 1.3.3 equivalently [1] Section 4, ”Correspondence”) defined as:

B(F) = <P(W ), ∅, \W ,∪, IB>

where (recall by definition):

• <P(W ), ∅, \W ,∪> is the Boolean algebra of all subsets of W (\W is the
set theoretical difference with respect to the set W ).
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• For any A1, . . . , An ∈ P(W ):

<A1, . . . , An> ∈ IB(P )

iff

exists a1 ∈ A1, . . . , exists an ∈ An such that <a1, . . . , an> ∈ I(P )

Consider f : P(W )→ B0 defined as:

f(A) � ∪B0
A

Remark that by W finite then f is well defined.
Denote:

Ab =
{
a ∈W

∣∣ a ≤B0
b
}

Observation:
b = ∪B0Ab (5)

Proof of the observation:
By definition of Ab we have ∪B0

Ab ≤B0
b. Let b0 = ∪B0

Ab and assume
b 6= b0. Then, by b0 ≤B0 b, we imply b �B0 b0. Hence b ∩B0 (−B0b0) 6= 0B0 . B0

is atomic Boolean algebra then there is a ∈ W such that a ≤B0 b ∪B0 (−B0b0).
Then, on one hand, this means a ≤B0

b. It follows then a ∈ Ab, by which we
imply a ≤B0

b0. On the other hand, a ≤B0
−B0

b0 and this is a contradiction
because by a atom then a 6= 0B0

. This proves (5).

• f is surjection.

For any b ∈ B0 applying (5): b = ∪B0Ab = f(Ab).

• f is injection.

Let A′, A′′ ∈ P(W ) and A′ 6= A′′. Without loss of generality let a ∈ A′ and
a /∈ A′′. Assume f(A′) = f(A′′). a ∈ A′ then a ≤B0

(∪B0
A′). f(A′) = f(A′′),

consequently a ≤B0
(∪B0

A′′). a /∈ A′′ and a is atom, hence, for every b ∈ A′′
we have a ∩B0 b = 0B0 because a 6= b and b is also an atom. Considering
a ≤B0 (∪B0A

′′):

a = a ∩B0
(∪B0

A′′) = ∪B0

b∈A′′
(a ∩B0

b︸ ︷︷ ︸
=0B0

) = 0B0

This is a contradiction with a atom. Therefore f(A′) 6= f(A′′).
Finally we obtained that f is bijection.

• f is Boolean isomorphism.

- Will show: f(W \A) = −B0f(A)

Let b = f(W \A) = ∪B0
(W \A). By (5) and f bijection follows: W \A = Ab.

Consider A(−B0
b).

If a ∈ Ab then a ≤B0 b, thus a �B0 (−B0b), otherwise a = 0B0 which
contradicts with a atom. By the latter a /∈ A(−B0

b). On the other hand, if

a /∈ Ab then a �B0 b. By a atom we imply a ≤B0 (−B0b) by which a ∈ A(−B0
b).
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In detail, to show the implication a ≤B0
(−B0

b), assume a ∩B0
b 6= 0B0

. Then,
by (a ∩B0 b) ≤B0 a and a atom it follows a ∩B0 b = a. This is a contradiction
with a �B0 b. Hence a∩B0 b = 0B0 by which we obtain what we wanted, namely:
a ≤B0

(−B0
b).

Finally, for every a ∈W :

a /∈ Ab iff a ∈ A(−B0
b)

This means:
A−B0

b = W \Ab = W \ (W \A) = A

Now, by (5) trivially we imply:

f(W \A) = b = −B0
(−B0

b) = −B0
(∪B0

A(−B0
b)) = −B0

f(A(−B0
b)) = −B0

f(A)

- Will show: f(A′ ∪A′′) = f(A′) ∪B0 f(A′′)

By (5) we have:

f(A′) = ∪B0
A′ ≤B0

∪B0
(A′ ∪A′′) = f(A′ ∪A′′)

The same for f(A′′), therefore:

(f(A′) ∪B0
f(A′′)) ≤B0

f(A′ ∪A′′)

For the other direction, let a ≤B0 f(A′ ∪ A′′), where a is atom. Then
a ≤B0

∪B0
(A′ ∪A′′).

Assume that a /∈ (A′ ∪ A′′). This means a 6= b for every b ∈ (A′ ∪ A′′). By
(a ∩B0

b) ≤B0
a and a atom then a ∩B0

b = 0B0
or a ∩B0

b = a. The latter
means a ≤B0 b which by b atom and a 6= 0B0 follows that a = b which is a
contradiction. Therefore a ∩B0 b = 0B0 for every b ∈ (A′ ∪A′′). Then:

a = a ∩B0
(∪B0

(A′ ∪A′′)) = ∪B0

b∈(A′∪A′′)
(a ∩B0

b︸ ︷︷ ︸
=0B0

) = 0B0

This is a contradiction. Therefore a ∈ (A′ ∪ A′′). Then a ∈ A′ or a ∈ A′′, by
which a ≤B0

f(A′) or a ≤B0
f(A′′), hence a ≤B0

(f(A′) ∪B0
f(A′′)). Now by

this and (5):

f(A′ ∪A′′) = ∪B0
Af(A′∪A′′) ≤B0

(f(A′) ∪B0
f(A′′))

• f is isomorphism between Boolean frames, namely:

<A1, . . . , An> ∈ IB(P ) iff <f(A1), . . . , f(An)> ∈ I0(P )

Let <A1, . . . , An> ∈ IB(P ). Then exists a1 ∈ A1, . . . , exists an ∈ An such
that <a1, . . . , an> ∈ I(P ) hence, by definition, <a1, . . . , an> ∈ I0(P ). By B0

Boolean frame we imply <∪B0A
1, . . . ,∪B0A

n> ∈ I0(P ).
Now, let <∪B0

A1, . . . ,∪B0
An> ∈ I0(P ). By B0 Boolean frame and finite

then for some a1 ∈ A1, . . . , for some an ∈ An we have <a1, . . . , an> ∈ I0(P ).
For any i, 1 ≤ i ≤ n, Ai ⊆ W then, by definition, <a1, . . . , an> ∈ I(P ) by
which <A1, . . . , An> ∈ IB(P ).
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Claim 6.3.2. Let the set W satisfy (BRC) conditions (Definition 6.2.1) and
let F = <W, I> be a Kripke frame such that the interpretation I interprets the
n-ary relation symbol P with the standard contact relation Cn, namely:

<a1, . . . , an> ∈ I(P ) iff a1 ∩ . . . ∩ an 6= ∅

Then:
BRC(W ) ∼= B(F)

Proof. First, remark that by Claim 6.2.3 BRC(W) is a Boolean frame.
Denote B(F) as in the proof of Claim 6.3.1:

B(F) = <P(W ), ∅, \W ,∪, IB>

Consider f : P(W )→ BRC(W ) defined as:

f(A) � ∪A

Remark that by definition of BRC(W ) f is well defined.

• f is surjection.

By definition of BRC(W ) f is onto.

• f is injection.

Let A,B ∈ P(W ) and A 6= B. Without loss of generality let a ∈ A and
a /∈ B. Assume f(A) = f(B), meaning ∪A = ∪B. a ∈ A then a ⊆ ∪A hence
Int(a) ⊆ Int(∪A). By Definition 6.2.1 (i) and (iv) Int(a) is non-empty, thus,
consider arbitrary x ∈ Int(a). Then there is open o 3 x such that o ⊆ Int(a).
x ∈ Int(a) then x ∈ ∪A. ∪A = ∪B then there is b ∈ B such that x ∈ b.
By Definition 6.2.1 (iv) o ∩ Int(b) 6= ∅. Therefore Int(a) ∩ Int(b) 6= ∅. By
Definition 6.2.1 (iii) it follows that a = b thus a ∈ B, which is a contradiction.
Our assumption is wrong.

• f is Boolean isomorphism.

By Claim 6.2.3 the following are satisfied:

f(W \A) = ∪(W \A) = −BRC
(∪A) = −BRC

f(A)

f(A ∪B) = ∪(A ∪B) = (∪A) ∪BRC
(∪B) = f(A) ∪BRC

f(B)

• f is isomorphism between Boolean frames.

The following equivalences hold:

<A1, . . . , An> ∈ IB(P )

iff

exists a1 ∈ A1, . . . , exists an ∈ An such that <a1, . . . , an> ∈ I(P )

iff

exists a1 ∈ A1, . . . , exists an ∈ An such that a1 ∩ . . . ∩ an 6= ∅
iff

∪A1 ∩ . . . ∩ ∪An 6= ∅
iff

<∪A1, . . . ,∪An> ∈ IRC(P )
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7 Boolean logic of n-ary contact. Completeness

In this section the formal system of the logic of n-ary contact is defined. The
intended result is to show its completeness with respect to certain classes of
Boolean frames, namely, those with interpretation the standard contact seman-
tics and carrier subalgebra of the Boolean algebra of either the polytopes or the
regular closed sets of Rm.

7.1 Boolean semantics and axiomatisation

As mentioned, the n-ary contact logic semantically will be considered in certain
classes of Boolean frames.

7.1.1 Boolean frames of n-ary contact

Consider Rm for particular m ≥ 1.

Definition 7.1.1.

• PRC(Rm) � the class of Boolean frames with carrier (non-degenerate)
subalgebra of the Boolean algebra of the polytopes of Rm and interpreta-
tion of the relation symbols the standard contact relation

• RC(Rm) � the class of Boolean frames with carrier (non-degenerate)
subalgebra of the Boolean algebra of the regular closed sets of Rm and
interpretation of the relation symbols the standard contact relation

Apparently, every Boolean frame of PRC(Rm) also is of RC(Rm).

As an example, consider B ∈ PRC(Rm). Denote:

B = <B, 0B ,−B ,∪B , I>

Then:

• B is a (non-degenerate) subalgebra of the Boolean algebra of the polytopes
of Rm

• For the k-ary relation symbol P then I(P ) = Ck. In particular, this means:

<a1, . . . , ak> ∈ I(P ) iff a1 ∩ . . . ∩ ak 6= ∅

In analogy to the former, for the case when B ∈ RC(Rm) the difference is
only that B is (non-degenerate) subalgebra of the Boolean algebra of the regular
closed sets of Rm.

The following claim proves that the definition of the classes PRC(Rm) and
RC(Rm) is correct.

Claim 7.1.1. Consider:

B = <B, 0B ,−B ,∪B , I>,

where (for particular m ≥ 1):
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• B is a (non-degenerate) subalgebra of either the Boolean algebra of the
polytopes of Rm or the Boolean algebra of the regular closed sets of Rm.

• For the k-ary relation symbol P :

<a1, . . . , ak> ∈ I(P ) iff a1 ∩ . . . ∩ ak 6= ∅

Then B is a Boolean frame.

Proof. Let <a1, . . . , ak> ∈ I(P ). By definition: a1 ∩ . . . ∩ ak 6= ∅. Therefore
ai 6= ∅ = 0B for any i, 1 ≤ i ≤ k.

Furthermore, by definition, the following equivalences hold:

<a1, . . . , (a
′
i ∪B a′′i ), . . . , ak> ∈ I(P )

iff

a1 ∩ . . . ∩ (a′i ∪B a′′i ) ∩ . . . ∩ ak 6= ∅
iff

a1 ∩ . . . ∩ (a′i ∪ a′′i ) ∩ . . . ∩ ak 6= ∅
iff

a1 ∩ . . . ∩ a′i ∩ . . . ∩ ak 6= ∅ or a1 ∩ . . . ∩ a′′i ∩ · · · ∩ ak 6= ∅
iff

<a1, . . . , a
′
i, . . . , ak> ∈ I(P ) or <a1, . . . , a

′′
i , . . . , ak> ∈ I(P )

As per Section 1.6.4 and Section 1.6.2 PRC(m) and RC(m) are Boolean
algebras, namely, the Boolean algebra of the polytopes and the Boolean algebra
of the regular closed sets of Rm respectively.

Definition.

• Denote by PRC(Rm) the Boolean frame with a carrier the Boolean algebra
of the polytopes of Rm.

• Denote by RC(Rm) the Boolean frame with a carrier the Boolean algebra
of the regular closed sets of Rm.

In particular:

PRC(Rm) = <PRC(Rm), 0RC ,−RC ,∪RC , I>

RC(Rm) = <RC(Rm), 0RC ,−RC ,∪RC , I>,

where I interprets the k-ary relation symbol P as the standard contact relation,
namely, I(P ) = Ck.

Remark that, by Definition 7.1.1 it trivially follows that:

• PRC(Rm) is from the class PRC(Rm).

• RC(Rm) is from the class RC(Rm).

Furthermore, by Definition 6.1.1 it directly follows that:
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• Every Boolean frame B of the class PRC(Rm) is a subframe of PRC(Rm).

• Every Boolean frame B of the class RC(Rm) is a subframe of RC(Rm).

Then the following claim holds:

Claim 7.1.2. For an arbitrary formula ϕ of LR:

(i) ϕ is valid in the class PRC(Rm) iff ϕ is valid in the Boolean frame
PRC(Rm)

(ii) ϕ is valid in the class RC(Rm) iff ϕ is valid in the Boolean frame
RC(Rm)

Proof. For (i), consider ϕ be valid in PRC(Rm). Then ϕ is valid in PRC(Rm)
as a member of the class PRC(Rm). Let now ϕ be valid in PRC(Rm). Consider
an arbitrary Boolean frame B of PRC(Rm). Recall that any Boolean frame of
PRC(Rm) is a subframe of PRC(Rm). Then, by Claim 6.1.2, it follows that ϕ
is valid in B. Therefore ϕ is valid in PRC(Rm). The same reasoning applies
for (ii) as well.

Definition.

• For an arbitrary Boolean frame B denote by L(B) the logic of the Boolean
frame B, namely, all formulas valid in B.

• For an arbitrary class of Boolean frames C denote by L(C) the logic of
the class C, namely, all formulas valid in the class C.

Then Claim 7.1.2 says that:

(i) L(PRC(Rm)) = L(PRC(Rm))

(ii) L(RC(Rm)) = L(RC(Rm))

7.1.2 Formal system of logic of n-ary contact

Consider the axiom schemes as in Section 5.1.

Definition 7.1.2.

• Cont � the axioms (c1), (c2), (c3) and (c4)

• Cont+ PRC1 � Cont plus the axioms PRC1.

We adopt the formal logical system as stated in Section 1.3.4 literally being [1],
Section 7.1, ”Axiomatization”. Henceforth, will consider the formal systems:

LCont and LCont+PRC1
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7.2 Correctness

Proposition 7.2.1. (Correctness in RC(Rm), m ≥ 1)
For every formula ϕ of the language LR:

`LCont
ϕ implies 
RC(Rm) ϕ , m ≥ 1

Proof. Consider deduction ϕ1, . . . , ϕk in LCont for ϕ, where ϕk = ϕ. By induc-
tion on the length of the deduction sequence will show that every element of it
is valid in RC(Rm) which proves the Proposition.

Consider the induction step case, namely, when ϕi is obtained via M.P. by
ϕj and (ϕj =⇒ ϕi) as elements in the deduction sequence before ϕi. By
induction hypothesis for every Boolean frame B from RC(Rm) and valuation
V on B we have: <B,V> 
 ϕj and <B,V> 
 (ϕj =⇒ ϕi). Hence, trivially,
<B,V> 
 ϕi. Therefore ϕi is valid in RC(Rm).

As an induction base, we need to verify each of the axiom groups (1) to (7)
for LCont as per Section 1.3.4 (equivalently [1], Section 7.1, ”Axiomatization”).

(1) to (6) are satisfied for every Boolean frame. It remains to show (7) which
is to demonstrate all (c1) to (c4) are valid in RC(Rm).

Consider B of RC(Rm) and an arbitrary valuation V on B.
(c1):

Let <B,V> 
 P (x1, . . . , xn). Given σ : n→ n. Then, by definition we have:

Ṽ(x1) ∩ . . . ∩ Ṽ(xn) 6= ∅

thus:
Ṽ(xσ(1)) ∩ . . . ∩ Ṽ(xσ(n)) 6= ∅

by which:
<B,V> 
 P (xσ(1), . . . , xσ(n))

(c2):

<B,V> 
 P (x1, x1, . . . , xn)

iff

Ṽ(x1) ∩ . . . ∩ Ṽ(xn) 6= ∅
iff

<B,V> 
 Q(x1, . . . , xn)

(c3):

Let <B,V> 
 ¬(x ≡ 0). Hence Ṽ(x) 6= 0B = ∅. Then, apparently Ṽ(x) ∩
Ṽ(x) 6= ∅, by which: <B,V> 
 P (x, x).
(c4):

Let:
<B,V> 
 (¬(x ≡ 0) ∧ ¬(−x ≡ 0))

By this we imply:

Ṽ(x) 6= 0B = ∅ and Ṽ(−x) 6= 0B = ∅

By B, the carrier of the Boolean frame B, being a subalgebra of the Boolean
algebra of the regular closed sets of Rm then:

Rm = Ṽ(1) = Ṽ(x ∪ −x) = Ṽ(x) ∪ Ṽ(−x)
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Ṽ(x) and Ṽ(−x) are elements of the Boolean algebra B hence they are closed sets
by definition. Furthermore, Rm is connected set (see Section 1.5.2). Therefore,

by Ṽ(x) and Ṽ(−x) being non-empty closed sets and Rm = Ṽ(x) ∪ Ṽ(−x) we
imply:

Ṽ(x) ∩ Ṽ(−x) 6= ∅

This gives:
<B,V> 
 P (x,−x)

Proposition 7.2.2. (Correctness in PRC(Rm), m ≥ 1)
For every formula ϕ of the language LR:

`LCont
ϕ implies 
PRC(Rm) ϕ , m ≥ 1

Proof. Directly by Proposition 7.2.1 and the fact that the elements of the class
PRC(Rm) are elements of RC(Rm).

Proposition 7.2.3. (Correctness in PRC(R1))
For every formula ϕ of the language LR:

`LCont+PRC1
ϕ implies 
PRC(R1) ϕ

Proof. By Proposition 7.2.2 and the proof of Proposition 7.2.1 it only remains
to show that PRC1 is valid in PRC(R1).

Consider arbitrary Boolean frame B from PRC(R1). Let V be arbitrary
valuation on B.

Let <B,V> 
 P (x1, x2, x3). Hence:

Ṽ(x1) ∩ Ṽ(x2) ∩ Ṽ(x3) 6= ∅

Let A1 = Ṽ(x1), A2 = Ṽ(x2), A3 = Ṽ(x3). Assume that for every Ai and Aj
from {A1, A2, A3}, i 6= j, we have:

Int(Ai) ∩ Int(Aj) = ∅

Let b ∈ A1 ∩ A2 ∩ A3. Without loss of generality suppose b ∈ Int(A1). Then
there is open segment o 3 b such that o ⊆ Int(A1). b ∈ A2 and A2 is a polytope
of Rm, hence, o ∩ Int(A2) 6= ∅ by which Int(A1) ∩ Int(A2) 6= ∅. This is a
contradiction with the main assumption.

Therefore b is boundary point for all A1, A2 and A3. All those elements
are polytopes then b is a boundary point for any of the finitely many closed
segments and rays the element being union of. Without loss of generality assume
the segment or the ray that b belongs to in A1 is on the ”left” of b meaning in
the interval (−∞, b]. By the same reasoning if the closed segment or ray that b
belongs to in A2 is also in the interval (−∞, b] then apparently those segments
or rays from A1 and A2 respectively will have non-empty intersection of their
interiors. This means Int(A1) ∩ Int(A2) 6= ∅ which is a contradiction with
the main assumption. Therefore, the segment or ray for A2 is in the interval
[b,+∞). Nevertheless for A3, having the same reasoning, then its segment or
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ray will either be in (−∞, b] thus Int(A1) ∩ Int(A3) 6= ∅ or in [b,+∞) thus
Int(A2) ∩ Int(A3) 6= ∅. Therefore our main assumption is wrong.

Now, without loss of generality, let Int(A1) ∩ Int(A2) 6= ∅. A1 and A2

can be presented as finite unions of non-intersecting closed segments or rays.
Therefore the union of their interiors is the interior of A1 and A2 respectively.
By Int(A1) ∩ Int(A2) 6= ∅ this means there will be point from the interior of
closed segment or ray of the union for A1 that is in the interior of closed segment
or ray of the union for A2. Denote those segments or rays s1 for A1 and s2 for
A2. We have that s1 ∩ s2 ⊆ A1 ∩ A2 hence Int(s1 ∩ s2) ⊆ Int(A1 ∩ A2). By
s1 and s2 closed segments or rays and there is b′ such that b′ ∈ Int(s1) and
b′ ∈ Int(s2) then apparently Int(s1 ∩ s2) is non-empty. By all these we imply:

Int(A1 ∩A2) 6= ∅

Therefore:

Ṽ(x1) ∩B Ṽ(x2) = Cl(Int(Ṽ(x1) ∩ Ṽ(x2))) 6= ∅ = 0B

Hence:
<B,V> 
 ¬(x1 ∩ x2 ≡ 0)

By this we obtain:
<B,V> 
 PRC1

7.3 Completeness

Proposition 7.3.1. For every formula ϕ of the language LR:


PRC(Rm) ϕ implies `LCont
ϕ , m ≥ 2

Proof. Assume:
0LCont

ϕ (6)

Then, by Proposition 1.3.3 (recall it being an inference of ”Proposition 26” in [1]

”Boolean logics with relations”) we have:

1CB
Cont

ϕ (7)

Therefore it exists Boolean frame B:

B is from CBCont (8)

and valuation V on B such that:

<B,V> 
 ¬ϕ

Let B has carrier B. Let:

A �
{
V(x)

∣∣ x ∈ BV (ϕ)
}

Let B0 be the subalgebra of B generated by A. Remark then B0 is a non-
degenerate Boolean algebra. In particular, the zero and the unit of B are those
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in B0. Furthermore, B is non-degenerate by definition thus the zero and the
unit are not equal. This is a sufficient condition for B0 to be non-degenerate.
As per Definition 6.1.1, consider then the Boolean frame B0 a subframe of B
and with carrier B0:

B0 ⊆ B

Let V0 be a valuation on B0 such that V0(x) = V(x) for all x ∈ BV (ϕ) and
V0(x) be arbitrary for any x /∈ BV (ϕ). Then by Claim 6.1.1:

<B0,V0> 
 ¬ϕ

By (8) we have:
B 
 Cont (9)

Now, by B0 ⊆ B and by Claim 6.1.2:

B0 
 Cont (10)

Remark that by A finite then the Boolean algebra B0 is finite. Then B0 is finite
and by Claim 6.3.1 it exists finite Kripke frame F0 such that:

B(F0) ∼= B0

By (10) and ”Proposition 5” in [1] ”Boolean logics with relations” cited as
Proposition 1.3.1 we imply:

F0 
 Cont (11)

Consider the valuation V ′0 on B(F0) corresponding to V0 on B0 by the isomor-
phism between B(F0) and B0. Then:

<B(F0),V ′0> 
 ¬ϕ

As per Proposition 1.3.1 V ′0 effectively is valuation on F0 and by this same
proposition we imply:

<F0,V ′0> 
 ¬ϕ

Recall (11). Then by F0 
 (c1), F0 
 (c2), F0 
 (c3) and F0 finite applying
Proposition 5.2.3 we obtain F0 is contact n-frame.

Remark that the case when B0 is the minimal non-degenerate Boolean alge-
bra then F0 has carrier singleton. In particular this means a contact 1-frame.
Despite the steps to follow are valid for this Kripke frame to avoid formal con-
flicts with definition of n-graph (in particular n ≥ 2) will consider this case a bit
later separately. Consider then the carrier of F0 with cardinality greater than
1. Now by F0 
 (c4) and Claim 2.4.1 it follows that the induced by F0 contact
n-graph G0:

G0 is connected (12)

Apply Procedure 4.1 on the connected contact n-graph G0. Let the resulting
graph be G′. By Observation 4.2.5:

G′ is acyclic

By Observation 4.2.7:
G′ is connected (13)
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Consider the induced frame by G0. Then by Claim 2.3.4 it effectively is F0.
Now, as per Claim 2.3.3 consider the induced by G′ contact n-frame F ′. Then
the conditions for Claim 4.2.1 are satisfied. Therefore:

F ′ is p-morphic preimage of F0

Let f be p-morphism from F ′ onto F0. Consider valuation V ′ on F ′ such that:

s ∈ V ′(x) iff f(s) ∈ V ′0(x)

(trivially such valuation exists). Then by <F0,V ′0> 
 ¬ϕ and p-morphisms
properties we imply:

<F ′,V ′> 
 ¬ϕ

Recall that:
G′ is acyclic and connected (14)

Then:
Apply Procedure 3.1 on G′ (as per Remark 3.1.1) (15)

Hence we obtain partitioning S = {W1, . . . ,Ws} of Rm, where:

Wi are polytopes of Rm (16)

Consider:
FRC = <S, I>

being the Kripke frame with carrier S and I mapping the k-ary relational sym-
bol, k ≥ 1, to the k-ary contact relation Ck. In particular, this means for the
k-ary relation symbol P :

<Wi1 , . . . ,Wik> ∈ I(P ) iff Wi1 ∩ . . . ∩Wik 6= ∅

Then by Claim 3.1.1:
FRC ∼= F ′ (17)

Furthermore, by <F ′,V ′> 
 ¬ϕ, then for the valuation VRC on FRC corre-
sponding to V ′ due to the isomorphism between FRC and F ′ we imply:

<FRC ,VRC> 
 ¬ϕ

We obtain:

S satisfies Definition 6.2.1 and every element of it is a polytope (18)

due to the following observations:

• By Observation 3.1.3 every element of S is a polytope

• By Observation 3.1.4: ∪S = Rm

• By Observation 3.1.5: Int(Wi1) ∩ Int(Wi2) = ∅, i1 6= i2

• By Wi ∈ S is a polytope then whichever point x of Wi is taken then any
open o 3 x will have the property: o ∩ Int(Wi) 6= ∅

• (by definition) S is finite
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Now, the case when F0 is with carrier singleton then consider S = {Rm}. Let
the carrier of F0 be {w}. Then

g(w) � Rm

is isomorphism between F0 and FRC . Trivially g is bijection. Recall that F0

satisfies the conditions for n-frame. Consider arbitrary k-ary relation symbol
P . For k ≥ 2 follows that by applying Definition 2.1.1 (c) and k − 2 times (b)
that <w, . . . , w> is in the relation of the interpretation of P . The same follows
for the case k < 2 again from (c) and applying (b). By definition of I for FRC
then, again, we imply <Rm, . . . ,Rm> ∈ I(P ) for any relation symbol P . This
means g trivially is isomorphism between the Kripke frames F0 and FRC . Now
for the valuation VRC corresponding to V ′0 by the isomorphism g then again:
<FRC ,VRC> 
 ¬ϕ. Finally, remark that the conditions of Definition 6.2.1 are
trivially satisfied by S.

Therefore, in all cases, FRC satisfies the conditions in Claim 6.3.2 by which:

BRC(S) ∼= B(FRC)

By that isomorphism, again, there is an appropriate valuation V ′RC on BRC(S)
corresponding to VRC on B(FRC) the latter being the one on FRC as per Propo-
sition 1.3.1. Then, by the same proposition and the isomorphism, we imply:

<BRC(S),V ′RC> 
 ¬ϕ

By Claim 6.2.2:

BRC(S) is a subalgebra of the Boolean algebra of the polytopes of Rm by (ii)
(19)

Therefore:
BRC(S) ∈ PRC(Rm) (20)

This means then ϕ is valid in BRC(S), hence, in particular:

<BRC(S),V ′RC> 
 ϕ

This is a contradiction. Therefore our assumption is wrong, hence:

`LCont
ϕ (21)

Proposition 7.3.2. For every formula ϕ of the language LR:


RC(Rm) ϕ implies `LCont
ϕ , m ≥ 1

Proof. Every element of PRC(Rm) is element of RC(Rm). Then for m ≥ 2 it
is direct implication of Proposition 7.3.1. For m = 1 the proof is analogous to
the one of Proposition 7.3.1. Will illustrate the points of deviation.
(15):

Apply Procedure 3.2 on G′ (as per Remark 3.2.1).
(16):

Wi are regular closed sets of R1

(17):
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By Claim 3.2.1
(18):

S satisfies Definition 6.2.1 and every element of it is a regular closed set of
R1 due to the following observations:

• By Observation 3.2.3 every element of S is a regular closed set of R1.

• By Observation 3.2.4: ∪S = R1

• By Observation 3.2.5: Int(Wi1) ∩ Int(Wi2) = ∅, i1 6= i2.

• By Observation 3.2.11 for every Wi ∈ S then whichever point x of Wi is
taken then any open o 3 x will have the property: o ∩ Int(Wi) 6= ∅

(19):
BRC(S) is a subalgebra of the Boolean algebra of the regular closed sets of

R1 by (i)
(20):
BRC(S) ∈ RC(R1)

Proposition 7.3.3. For every formula ϕ of the language LR:


PRC(R1) ϕ implies `LCont+PRC1
ϕ

Proof. The proof is analogous to the one of Proposition 7.3.1. Will illustrate
the points of deviation.

(6):
Assume: 0LCont+PRC1

ϕ
(7):
1CB

Cont+PRC1
ϕ

(8):
B is from CBCont+PRC1

(9):
B 
 Cont+ PRC1

(10):
B0 
 Cont+ PRC1

(11):
F0 
 Cont+ PRC1

(12):
Furthermore, by F0 
 PRC1 then applying Claim 2.4.2 we imply that F0

is a contact n-frame for n ≤ 2. Hence G0 is a contact n-graph for n ≤ 2.
(13):

Furthermore, by Observation 4.2.9, G′ is a contact n-graph also for n ≤ 2.
(14):

Recall as well that G′ is a contact n-graph also for n ≤ 2.
(15):

Apply Procedure 3.3 on G′.
(16):

Wi are polytopes of R1

(17):
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By Claim 3.3.1
(18):

S satisfies Definition 6.2.1 and every element of it is a polytope due to the
following observations:

• By Observation 3.3.3 every element of S is a polytope of R1.

• By Observation 3.3.4: ∪S = R1

• By Observation 3.3.5: Int(Wi1) ∩ Int(Wi2) = ∅, i1 6= i2.

(19):
BRC(S) is a subalgebra of the Boolean algebra of the polytopes of R1 by (ii)

(20):
BRC(S) ∈ PRC(R1)

(21):
`LCont+PRC1

ϕ

7.4 Corollary Notes

By the pair of propositions Proposition 7.2.2 and Proposition 7.3.1 as well as
the pair of propositions Proposition 7.2.1 and Proposition 7.3.2 we imply:

Corollary 7.4.1. Completeness of formal system LCont:

• The logic of the formal system LCont is the logic of the class of Boolean
frames PRC(Rm), for any particular m ≥ 2

• The logic of the formal system LCont is the logic of the class of Boolean
frames RC(Rm), for any particular m ≥ 1

Now, by Corollary 7.4.1 and considering Claim 7.1.2, the following corollary
holds:

Corollary 7.4.2. Characterisation of the formal system LCont:
The following logics are equivalent:

(i) The logic of the formal system LCont.

(ii) L(PRC(Rm)), where m ≥ 2.

(iii) L(RC(Rm)), where m ≥ 1.

(iv) L(PRC(Rm)), where m ≥ 2.

(v) L(RC(Rm)), where m ≥ 1.

(vi) L({PRC(Rm) | m ∈ X}), where X is a non-empty subset of the set of the
natural numbers greater or equal 2.

(vii) L({RC(Rm) | m ∈ X}), where X is a non-empty subset of the set of the
natural numbers greater or equal 1.

(viii) L(∪{PRC(Rm) | m ∈ X}), where X is a non-empty subset of the set of
the natural numbers greater or equal 2.
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(ix) L(∪{RC(Rm) | m ∈ X}), where X is a non-empty subset of the set of
the natural numbers greater or equal 1.

Now, consider an arbitrary connected topological space T. Denote by RC(T)
the Boolean frame with a carrier the Boolean algebra RC(T) and interpretation
of the relation symbols CTn for the appropriate arity of the relations.

Remark that RC(T) is correct with respect to LCont as long as the reasoning
is exactly as the one demonstrated in Proposition 7.2.1.

Denote by RCconn the class of the Boolean frames RC(T) for any connected
topological space T. Trivially, RC(Rm) is an element of the class RCconn.
Therefore, by Corollary 7.4.2, we imply that RCconn is complete with respect
to LCont. Then, in addition to Corollary 7.4.2, we also have:

Corollary 7.4.3. The following logics are equivalent:

(i) The logic of the formal system LCont.

(ii) L(RCconn)

By Corollary 7.4.2, non-formally, the classes PRC(Rm) for m ≥ 2 and
RC(Rn) for n ≥ 1 are ”indistinguishable” with respect to the set of formulas
valid in them.

The difference between the logics of PRC(R1) and PRC(Rm) for m ≥ 2 is
demonstrated by the pair Proposition 7.2.3 and Proposition 7.3.3:

Corollary 7.4.4. Completeness of the formal system LCont+PRC1

• The logic of the formal system LCont+PRC1 is the logic of the class of
Boolean frames PRC(R1)

Now, by Corollary 7.4.4 and considering Claim 7.1.2, we imply:

Corollary 7.4.5. Characterisation of formal system LCont+PRC1:
The following logics are equivalent:

(i) The logic of the formal system LCont+PRC1

(ii) L(PRC(R1))

(iii) L(PRC(R1))

By Corollary 7.4.4, non-formally, the class of Boolean frames PRC(R1) is
”distinguishable” from the classes PRC(Rm) for m ≥ 2 and RC(Rn) for n ≥ 1
due to the property of PRC(R1) being that (the axiom) PRC1 is valid in it.
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