
Sofia University ”St. Kliment Ohridski”

Faculty of Mathemathics and Informatics

Characterization of uniform
sequences of relations and

structures
Master thesis

Boyan Paunov

Supervisor : Senior Assistant Prof. Stefan Vatev

Department chair : Associate Prof. Hristo Ganchev

2018

Contents

1 General concepts 2
1.1 Computable functions and concepts 2
1.2 Enumeration reducibility and ω-enumeration reducibility . . . 3

2 Introduction to the field of study 5

3 Relatively intrinsic sequence on a structure 8
3.1 General concepts, forcing and modelling relations, forcing de-

finability . 8
3.2 Formal definability . 19

4 Relatively intrinsic sequence on a sequence of structures 28
4.1 Forcing definability . 28
4.2 Formal definability . 34

1

1 General concepts

In this chapter we will introduce the notation and remind some common
properties of the computable functions, enumeration reducability and ω −
enumeration reducability. More information can be obtained in [7].

1.1 Computable functions and concepts

We will denote with N the set of all natural numbers which includes 0. If A
is a set with χA we will denote its characteristic function i.e.

χA(x) =

{
1 if x ∈ A
0 if x 6∈ A.

A function is computable if there is a purely mechanical process to calculate
it’s values. As a general rule, when we say that a function is computable, we
assume that it is total. A function that is not total but can still be shown to
have a mechanism for calculating it’s values will be called partial computable.
With φe we will denote the partial computable function with index e.
We can encode pairs of natural numbers by a single number using the function
〈x, y〉 7→ 2x(2y+1)−1 or the function 〈x, y〉 7→ ((x+y)(x+y+1)+y)/2, which
are bijections from N2 to N whose inverses are easily computable too. One can
then encode triples by using pairs of pairs, and then encode n− tuples, and
then tuples of arbitrary size, and then tuples of tuples, etc. The same way,
we can consider standard effective bijections between N and various other
sets like Z, Q, etc. Given any such finite object a, we use paq to denote the
number coding a. By Du we denote the finite set D where u = Σy∈D2y. We
say that u is a canonical index of the set D.
For n ∈ N, we sometimes use n to denote the set {0, 1, ..., n− 1}. By 2N we
denote the set of all functions from N to {0, 1}, which we will sometimes refer
to as infinite binary sequences. For any set X, we use X<N to denote the
set of finite tuples of elements from X, which we call strings when X = 2 or
X = N. For σ ∈ X<N and τ ∈ X<N, we use στ to denote the concatenation
of these sequences. We use σ ⊆ τ to denote that σ is an initial segment of
τ . When X, Y are subsets of N, we use X ⊂ Y to denote that X is a subset
of Y . We will explicitly mention if they are different.
If A and B are sets, with A⊕B we will denote the following set

{2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}

2

We will say that A is turing reducable to B and write A ≤T B, if there is a
natural number e such that χA = φBe , where φBe is the function with index e
and has as an oracle B. The relation ≤T is reflexive and transitive. Denote

A ≡T B ⇔ A ≤T B ∧B ≤T A.

≡T is an equivalence relation. The equivalence classes we call Turing degrees.
By dT (A), we denote the equivalence class containing A. The class of all
Turing degrees we denote by DT which is an upper semi-lattice.
The languages we consider will always be countable and computable. A
language L consists of three sets of symbols {Ri : i ∈ IR}, {fi : i ∈ IF},
and {ci : i ∈ IC}; and two functions aR and aF . Each of IR, IF , and IC is
an initial segment of N. For i ∈ IR, aR(i) is the arity of Ri, the same for
the others. A language is computable if the arity functions are computable.
This only matters when the language is infinite; finite languages are trivially
computable.
Remark: on certain places we will use the notation ω to denote the set
{0, 1, 2...}.

1.2 Enumeration reducibility and ω-enumeration re-
ducibility

Definition 1. Given sets A,B ⊂ N we say that A ≤e B if there is an
enumeration operator Γz such that A = Γz(B) ,i.e.

(∀x)(x ∈ A⇔ (∃v)(〈v, x〉 ∈ Wz ∧Dv ⊂ B))

In the above definition Dv is the finite set with canonical code v and Wz

is the computably enumerable (c.e.) set with index z with respect to an
effective numbering of all c.e. sets. We can easily see that the relation ≤e is
reflexive and transitive. Let

A ≡e B ⇔ A ≤e B ∧B ≤e A.

The enumeration degree of a set A is the equivalence class relatively ≡e.

Definition 2. Let A ⊂ N and let A+ be defined as A⊕ (N\A). We say that
A is total iff A ≡e A+.

3

If X is a total set then A ≤e X ⇔ A is c.e. in X. An enumeration degree
a is total if a contains a total set. Let de(X) be the enumeration degree of
a set X. We can define an ordering on the enumeration degrees in the usual
way: de(A) ≤ de(B) ⇔ A ≤e B. Denote by De the set of all enumeration
degrees.

Definition 3. Given a set A ⊂ N, let K0
A = {〈x, z〉 : x ∈ Γz(A)}. Define A′

to be K0
A
+

. We call A′ the enumeration jump of A.

From now on whenever we use the jump operation, we will mean enumer-
ation jump.
The following properties will be used throughout the paper:

Properties 1. i) If n < m then A(n) ≤e A(m) uniformly in n and m.
ii) If A ≤e B then A′ ≤e B′.
ii′) If A ≤e B then A(n) ≤e B(n) uniformly in n.
iii) If n > 0 then A(n) is a total set.

Denote by S the set of all sequences of sets of natural numbers. For each

element
−→
B = {Bn}n<ω of S (such element from now on will be denoted just

by
−→
B), call the jump class of

−→
B the set

J−→
B

= {dT (X) : (∀n)(Bn is c.e. in X(n) uniformly in n)}.

For every two sequences
−→
A and

−→
B let

−→
A ≤ω

−→
B (
−→
A is ω − enumeration

reducible to
−→
B) if J−→

B
⊂ J−→

A
. The relation ≤ω is reflexive and transitive.

Let
−→
A ≡ω

−→
B if J−→

A
= J−→

B
. Hence ≡ω is an equivalence relation on S.

Let the ω − enumeration degree of
−→
B be dω(

−→
B) = {

−→
A :
−→
A ≡ω

−→
B } and

Dω = {dω(
−→
B) :

−→
B ∈ S}. If a = dω(

−→
A) and b = dω(

−→
B), then a ≤ω b

if
−→
A ≤ω

−→
B . Denote by 0ω = dω(Øω), where Øω is the sequence with all

members equal to Ø. There is a natural embedding of the enumeration
degrees into the ω − enumeration degrees. Given a set A denote by A ↑ ω
the sequence {An}n<ω, where A0 = A and for all n > 0 An = Ø. For every
A,B ⊂ N we have that A ≤e B iff A ↑ ω ≤ω B ↑ ω. So the mapping
k(de(A)) = dω(A ↑ ω) gives an isomorphic embedding of De to Dω. We shall
identify the enumeration degree de(A) with its representation dω(A ↑ ω) in
Dω. So when a = de(A) and b ∈ Dω then by writing a ≤ω b we mean
dω(A ↑ ω) ≤ω b.

Remark: from now on we will write
−→
A ≤ω B instead of

−→
A ≤ω B ↑ ω.

4

Definition 4. Let
−→
B be a sequence of sets which are subsets of N. We define

the respective jump sequence P (
−→
B) = {Pn(

−→
B)}n<ω by induction on n:

i)P0(
−→
B) = B0;

ii)Pn+1(
−→
B) = (Pn(

−→
B))′ ⊕Bn+1.

We can see that if X ⊂ N, then Pn(X ↑ ω) ≡e X(n) uniformly in n.
We will list some simple proprties of the jump sequence which follow easily
from the definition.

Properties 2. i) If m ≤ n then Pm(
−→
B) ≤e Pn(

−→
B) uniformly in n and m.

ii) If m ≤ n then Bm ≤e Pn(
−→
B) uniformly in n and m.

The following theorem proven by Soskov links the two reducabilities

Theorem 1. Let
−→
A 0, ...,

−→
A r, ... be a sequence of sets such that for every r,−→

A r �ω

−→
B . There is a total set X such that

−→
B ≤ω {X(n)}n<ω and

−→
A r �ω

{X(n)}n<ω for each r.

Remark: It follows that if X ⊂ N then for every sequence
−→
A we have:

An ≤e X(n) uniformly in n iff
−→
A ≤ω {X(n)}n<ω iff

−→
A ≤ω X ↑ ω. We also

have
−→
A ≡ω P (

−→
A).

An important corollary to Theorem 1 is the following:

Lemma 1. (Soskov [5]) Let
−→
A and

−→
B be two sequences of sets of natural

numbers. The following conditions are equivalent:

i)
−→
A ≤ω

−→
B i.e. for every total set X, if Bn ≤e X(n) uniformly in n, then

An ≤e X(n) uniformly in n.

ii) An ≤e Pn(
−→
B) uniformly in n, i.e. there is a computable function g, such

tthat An = Γg(n)(Pn(
−→
B) for every n.

2 Introduction to the field of study

We all know that in mathematics there are proofs that are more difficult than
others, constructions that are more complicated than others, and objects that
are harder to describe than others. The object of computable mathematics
is to study this complexity, to measure it, and to understand where it comes
from.
Here, we will concentrate on the complexity of structures. By structures,

5

we mean objects like rings, graphs or linear orderings, which consist of a
domain on which we have relations, functions and constants. Also important
is to study the interplay betwen complexity and structure. By complexity, we
mean descriptional or computational complexity, in the sense of how difficult
it is to describe or compute a certain object. By structure, we refer to
algebraic or structural properties of mathematical structures. The setting is
that of infinite countable structures and thus, within the whole hierarchy of
complexity levels, the appropriate tools to measure complexity are those used
in computability theory. The motivations for the study come from questions
of the following sort: are there syntactical properties that explain why certain
objects (like structures, relations or isomorphisms) are easier or harder to
compute or to describe?
Given a structure A, an ω− presentation of it(or copy) is a structure whose
domain is N. What we will need is the ω − presentation to be isomorphic
to A.The following definition will give a way for representing a structure in
order to analyze its computational complexity.

Definition 5. Let L be a first order language. Let {φi : i ∈ N} be an
effective enumeration of all atomic formulas with free variables from the set
{x0, x1, ...}. The atomic diagram of an ω − presentation M is the infinite
binary string D(M) ∈ 2N defined by

D(M)(i) =

{
1 if M |= φi[xj 7→ j : j ∈ N]
0 otherwise.

Definition 6. Let A be a structure (with domain N). A relation R is rela-
tively intrinsically computably enumerable (r.i.c.e.) if, for every copy B of
A, the relation RB is c.e. in D(B).

Definition 7. An infinitary Σ1 forumla is a countable infinite (or finite)
disjunction of existential formulas over a finite set of free variables. A com-
putable infinitary Σ1 formula (denoted Σc

1) is an infinite or finite disjunction
of a computable list of existential formulas over a finite set of free variables.

A detailed exposition of infinitary formulas and their properties can be
found in [6].

Definition 8. A relation R is Σc
1−definable in A with parameters if there is

a tuple p ∈ N<N and a computable sequence of Σc
1 formulas ψi,j(x1, ..., x|p|, y1, ..., yj),

for i, j ∈ N such that

R = {〈b〉 ∈ N<N : A |= ψi,|b|〈p, b〉}.

6

The elements in p are the parameters in the definition of R.

The following fundamental theorem was proven by Ash, Knight, Manasse
and Slaman [2], and independently by Chisholm [3].

Theorem 2. Let A be a structure and R a relation on it. The following are
equivalent

1. R is r.i.c.e.

2. R is Σc
1 definable in A with parameters.

Ash, Knight [1] proved further

Theorem 3. Let A be a computable structure, and let R and P be further
relations on A. Then the following are equivalent:

1. For all B ∼= A, if RB is Σ0
n relative to B, then so is PB.

2. P is definable in the structure A by a computable infinitary Σn formula
φ(x, c), with a finite tuple of parameters c, in which the relation symbol
for R appears only positively.

Soskov and Baleva [4] introduced the concept of α − intrinsic relations
to prove a generalization of the above results.

Definition 9. For a structure A, a further relation R and a sequence of

relations
−→
B , we say that R is relatively α − intrinsic on A with respect to−→

B if for every B ∼= A, if the inverse image of
−→
B is enumeration reducible to

B, then RB is enumeration reducible to B.

Definition 10. Let A ⊂ N. The set A is formally α− definable on A with

respect to the sequence
−→
B if there exists a Σ+

α formula Φ with free variables
among W1, ...,Wr, X and elements t1, ..., tr of N such that for every element
s of N the following equivalence holds:

s ∈ A⇔ A |= Φ(W1/t1, ...,Wr/tr, X/s).

Refer to [4] for the more involved definition of the Σ+
α formulas.

Theorem 4. (Soskov, Baleva [4]). For a structure A, a further relation R

and a sequence of relations
−→
B , the following are equivalent

7

1. R is relatively α− intrinsic on A with respect to
−→
B .

2. R is formally α− definable on A.

The work concentrates around the following two problems

1. Find syntactical conditions, on a given structure A and sequences of

relations
−→
A and

−→
B , guaranteeing that in all copies B of A, if the

sequence
−→
B with respect to the copy B is enumeration reducible to

B, then the sequence
−→
A with respect to the copy B is enumeration

reducible to B.

2. Find syntactical conditions, on a sequence of structures
−→
A and further

sequences of relations
−→
A and

−→
B , guaranteeing that in all copies

−→
B of−→

A , if the sequence
−→
B with respect to the copies is ω − enumeration

reducible to
−→
B, then the sequence

−→
A with respect to the copies is

ω − enumeration reducible to
−→
B.

3 Relatively intrinsic sequence on a structure

3.1 General concepts, forcing and modelling relations,
forcing definability

Suppose we are given the first order relational language L = (T1, ..., Tk). Let
A = (N, R1, ...Rk) be a structure for L, where the predicates = and 6= are
among the list R1, ..., Rk and N is the set of all natural numbers. We are also

given two sequences of subsets of N, i.e.
−→
A and

−→
B .(We assume that each of

An and Bm is a subset of N for simplicity. The proofs in the general case are
similar)
A total mapping from N onto N is called an enumaration of the structure A.

Given an enumeration f and a sequence
−→
A , by f−1(

−→
A) we will denote the

following sequence f−1(A0), f
−1(A1),

Definition 11. We say that the sequence
−→
A of subsets of N is relatively

intrinsic on A with respect to the sequence
−→
B if for every enumeration f of

A such that f−1(Bn) ≤e f−1(A)
(n)

uniformly in n, the sequence f−1(
−→
A) is

ω − enumeration reducible to f−1(A).

8

We introduce a more convenient definition of a copy, when the language
under consideration is finite. They can be shown to be Turing equivalent.

Definition 12. Let f be an enumaration of the structure A and let B be a
subset of Nn. Then, f−1(B) = {〈x1, ..., xn〉 : (f(x1), ..., f(xn)) ∈ B} and
f−1(A) = f−1(R1) ⊕ f−1(R2)... ⊕ f−1(Rk). The latter set is called the copy
of the structure A.

In particular, if f is the identity function, we will denote f−1(A) by D(A).

Definition 13. An enumeration f of A is called acceptable with repsect to−→
B if

(∀n)[f−1(Bn) ≤e f−1(A)
(n)

uniformly in n].

Definition 14. Let f be an acceptable enumeration of A with respect to
−→
B .

We denote by P f = {P f
n }n<ω the respective jump sequence of the sequence

{f−1(A)⊕ f−1(B0), f
−1(B1)..., f

−1(Bn), ...}, where

P f
n = Pn({f−1(A)⊕ f−1(B0), f

−1(B1)..., f
−1(Bn), ...}).

Lemma 2. An enumeration f on A is acceptable with respect to
−→
B iff P f ≤ω

f−1(A).

Proof. Since f is acceptable, we have that f−1(Bn) = Wh(n)(f
−1(A)

(n)
),

where h is a computable function. We shall prove by induction on n that

P f
n = Wg(n)(f

−1(A)
(n)

), where g is a computable function.

1. Let n = 0. By definition, P f
0 = f−1(A) ⊕ f−1(B0). Let h(0) = e′0.

By assumption f−1(B0) = We′0
(f−1(A)) and f−1(A) = We0(f

−1(A)),
where e0 is obtained effectively. Then we can obtain effectively an
index i0 such that P f

0 = Wi0(f
−1(A)). Let g(0) = i0.

2. Assume the statement is true for n and we will prove it for n+ 1. Us-
ing the definition of the jump sequence P f

n+1 = (P f
n)′ ⊕ f−1(Bn+1).

By assumption, we can obtain effectively an index e′n+1 such that

f−1(Bn+1) = We′n+1
(f−1(A)

(n)
). By induction hypothesis we have

P f
n = Win(f−1(A)

(n)
) where g(n) = in. By the properties of the

enumeration jump, we can effectively obtain an index en+1 such that

(P f
n)′ = Wen+1(f

−1(A)
(n+1)

). Then we can effectively obtain an index

in+1 from en+1 and e′n+1, such that P f
n+1 = Win+1(f

−1(A)
(n+1)

).

9

We have
g(0) = i0

g(n+ 1) = H(g(n), h(n))

where H is computable function.

(←) Assume P f
n ≤e f−1(A)

(n)
uniformly in n via the computable function

g i.e. P f
n = Wg(n)(f

−1(A)
(n)

). Let g(n) = en. Then we can effectively pass

from an index en such that P f
n = Wen(f−1(A)

(n)
) to an index h(n) = in such

that f−1(Bn) = Win(f−1(A)
(n)

).

Definition 15. Let f be an enumeration of A. For every n,x and e ∈ N, we
define the relations f |=n Fe(x) and f |=n ¬Fe(x) by induction on n:

i) f |=0 Fe(x) iff (∃v)[〈v, x〉 ∈ We ∧ (∀u ∈ Dv)
a) u = 〈0, 〈i, xu1 , ..., xuri〉〉 ∧ (f(xu1), ..., f(xuri)) ∈ Ri or
b) u = 〈2, xu〉 ∧ f(xu) ∈ B0]

ii) f |=n+1 Fe(x) iff (∃v)[〈v, x〉 ∈ We ∧ (∀u ∈ Dv)
((u = 〈0, eu, xu〉 ∧ f |=n Feu(xu)) ∨
(u = 〈1, eu, xu〉 ∧ f |=n ¬Feu(xu)) ∨
(u = 〈2, xu〉 ∧ f(xu) ∈ Bn+1))]

iii) f |=n ¬Fe(x) iff f 2n Fe(x)

Remark: We have an arbitrary coding of the tuples of natural numbers.
We are not interested in what exactly it looks like, but we can say that there
is an effective way to go from this coding to a coding that would resemble
the elements of the sets in their entirety.
We will need the following properties of the jump sequence:

Properties 3. i) P f
n ≤e Pn(P f) uniformly in n.

ii) Pn(P f) ≤e P f
n uniformly in n.

Lemma 3. i) Let C ⊂ N , n ∈ N . Then C ≤e P f
n iff there is e ∈ N such

that C = {x : f |=n Fe(x)}
ii) Let

−→
C be a sequence of sets.

−→
C ≤ω P f iff there exists a total computable

function g, such that Cn = {x : f |=n Fg(n)(x)}

10

Proof. i) We will prove the statement by induction on the definition of
the modelling relation. To be more precise, we will prove for every n,

C = We(P
f
n)⇔ C = {x : f |=n Fe(x)}.

1. Let n = 0
(→) Following the definition of enumeration reducability,

x ∈ C ⇔ ∃v(〈v, x〉 ∈ We ∧Dv ⊂ P f
0).

Recall that P f
0 = f−1(A) ⊕ f−1(B0). From the definition of the mod-

elling relation, we get f |=0 Fe(x). Hence C = {x : f |=0 Fe(x)}.
(←) Fix a natural number e and assume C = {x : f |=0 Fe(x)}. Hence,

x ∈ C ⇔ f |=0 Fe(x)

⇔ ∃v(〈v, x〉 ∈ We ∧Dv ⊂ P f
0)

⇔ x ∈ We(P
f
0).

Thus, we get C ≤e P f
0 .

2. Assume the statement is true for n. We will prove it for n+ 1.
(→) Let C ≤e P f

n+1 i.e. C = We(P
f
n+1) for some index e. From the def-

inition of enumeration reducability and its jump we have the following
equivalences:

x ∈ C ⇔ (∃v)(〈v, x〉 ∈ We ∧Dv ⊂ P f
n+1)

⇔ (∃v)(〈v, x〉 ∈ We ∧ ((∀u ∈ Dv)

(u = 〈0, eu, xu〉 ∧ xu ∈ Weu(P f
n))∨

(u = 〈1, eu, xu〉 ∧ xu 6∈ Weu(P f
n))∨

(u = 〈2, xu〉 ∧ xu ∈ f−1(Bn+1)))).

Let Cu = Weu(P f
n). By induction hypothesis, xu ∈ Cu ⇔ f |=n Feu(xu)

and xu 6∈ Cu ⇔ f |=n ¬Feu(xu). We can rewrite the equivalences as
follows:

x ∈ C ⇔ (∃v)(〈v, x〉 ∈ We ∧Dv ⊂ P f
n+1)

⇔ (∃v)(〈v, x〉 ∈ We ∧ ((∀u ∈ Dv)

(u = 〈0, eu, xu〉 ∧ xu ∈ Cu)∨

11

(u = 〈1, eu, xu〉 ∧ xu 6∈ Cu)∨
(u = 〈2, xu〉 ∧ xu ∈ f−1(Bn+1))))

⇔ (∃v)(〈v, x〉 ∈ We ∧ ((∀u ∈ Dv)

(u = 〈0, eu, xu〉 ∧ f |=n Feu(xu))∨
(u = 〈1, eu, xu〉 ∧ f |=n ¬Feu(xu))∨
(u = 〈2, xu〉 ∧ xu ∈ f−1(Bn+1)))).

Now by the modelling definition, we get what we needed.

(←) Let C = {x : f |=n Fe(x)}. We want to see C = We(P
f
n+1). By

assumption and the modelling definition:

x ∈ C ⇔ f |=n+1 Fe(x)⇔ (∃v)(〈v, x〉 ∈ We ∧ (∀u ∈ Dv)

((u = 〈0, eu, xu〉 ∧ f |=n Feu(xu))∨
(u = 〈1, eu, xu〉 ∧ f |=n ¬Feu(xu))∨

(u = 〈2, xu〉 ∧ f(xu) ∈ Bn+1)))

Let Cu = {x : f |=n Feu(x)}. By induction hypothesis Cu = Weu(P f
n). Thus

we have:

f |=n Feu(xu)⇔ xu ∈ Cu ⇔ xu ∈ Weu(P f
n)

f |=n ¬Feu(xu)⇔ xu 6∈ Cu ⇔ xu 6∈ Weu(P f
n)

Hence we can rewrite the equivalences in the following way:

x ∈ C ⇔ (∃v)(〈v, x〉 ∈ We ∧ (∀u ∈ Dv)

((u = 〈0, eu, xu〉 ∧ xu ∈ Weu(P f
n))∨

(u = 〈1, eu, xu〉 ∧ xu 6∈ Weu(P f
n))∨

(u = 〈2, xu〉 ∧ f(xu) ∈ Bn+1)))

Hence x ∈ We(P
f
n+1) and thus C ≤e P f

n+1.
ii) (←) We want to prove Cn ≤e Pn(P f) uniformly in n. Since P f

n ≤e Pn(P f)
uniformly in n, it will be enough to prove Cn ≤e P f

n uniformly in n. By
assumption we have for every n, Cn = {x : f |=n Fg(n)(x)}. By i)

Cn = Wg(n)(P
f
n),

12

where g is a computable function.

(→) By assumption we have Cn ≤e Pn(P f) uniformly in n. Since Pn(P f) ≤e
P f
n uniformly in n, we have Cn ≤e P f

n uniformly in n. By i)

Cn = {x : f |=n Fg(n)(x)},

where g is the computable function from the last uniformity.
Remark: To be more precise i) would look like C ≤e P f

n iff there is e ∈ N
such that C = {x : f |=n Fh(e)(x)}, where h is a computable function that
we use to pass from our coding to a coding that resembles the sets in the
jump sequence P f

n .

Definition 16. The forcing conditions, called finite parts, are finite map-
pings τ of N to N. We will denote the finite parts by letters δ, τ, ρ. For each
n, e, x ∈ N and for every finite part τ , define the forcing relations τ n Fe(x)
and τ n ¬Fe(x) following the definition of the relation ”|=n”.

i) τ 0 Fe(x) iff (∃v)(〈v, x〉 ∈ We ∧ (∀u ∈ Dv)) either
a) u = 〈0, 〈i, xu1 , ..., xuri〉〉 ∧ x

u
1 , ..., x

u
ri
∈ dom(τ) ∧ (τ(xu1), ..., τ(xuri)) ∈ Ri or

b) u = 〈2, xu〉 ∧ xu ∈ dom(τ) ∧ τ(xu) ∈ B0

ii) τ n+1 Fe(x) iff (∃v)[〈v, x〉 ∈ We ∧ (∀u ∈ Dv)
((u = 〈0, eu, xu〉 ∧ τ n Feu(xu)) ∨
(u = 〈1, eu, xu〉 ∧ τ n ¬Feu(xu)) ∨
(u = 〈2, xu〉 ∧ τ(xu) ∈ Bn+1))]

iii) τ ¬Fe(x) iff (∀ρ ⊇ τ)[ρ 1n Fe(x)]

Definition 17. Let f be an enumeration of A. We say that f is k-generic

with respect to
−→
B if for every j < k and e, x ∈ N:

(∃τ ⊆ f)(τ j Fe(x) ∨ τ j ¬Fe(x))

Lemma 4. i) If τ ⊆ ρ then τ k (¬)Fe(x) implies ρ k (¬)Fe(x);
ii) For every (k + 1)− generic enumeration f of A, f |=k (¬)Fe(x) iff
(∃τ ⊆ f)(τ k (¬)Fe(x)).

Proof. i) Let τ ⊆ ρ. We will prove the assertion by induction on k.

13

1. Let k = 0. Let τ 0 Fe(x). Then there exists v such that Dv has the
properties from the definition. From τ ⊆ ρ we have ρ 0 Fe(x).
Let τ 0 ¬Fe(x). Assume that ρ 60 ¬Fe(x). From the definition of
forcing we have that ∃δ ⊇ ρ ⊇ τ such that δ 0 Fe(x). From the
definition of forcing and δ ⊇ τ , we get δ 60 Fe(x). Contradiction.

2. Let the assertion be true for k = n. We will prove it for k + 1.
Let τ n+1 Fe(x). Then exists v such that Dv is a finite set that has
the properties form the definition of forcing. Let u ∈ Dv. From the
definition of forcing we have the following three cases:
case 1: u = 〈0, eu, xu〉 ∧ τ n Feu(xu). By induction hypothesis
ρ n Feu(xu).
case 2: u = 〈1, eu, xu〉 ∧ τ n ¬Feu(xu). By induction hypothesis
ρ ¬Feu(xu).
case 3: u = 〈2, xu〉∧ τ(xu) ∈ Bn+1. Since τ ⊆ ρ, we have ρ(xu) ∈ Bn+1.
Combining the three cases and the definition of forcing, we have ρ n+1

Fe(x).

Let τ n+1 ¬Fe(x). Assume that ρ 6n+1 ¬Fe(x). From the defini-
tion of forcing we have that ∃δ ⊇ ρ ⊇ τ such that δ n+1 Fe(x). From
the definition of forcing and δ ⊇ τ , we get δ 6n+1 Fe(x). Contradiction.

ii) We prove the assertion by induction on k.

1. Let k = 0. We look at the positive case.
(←) We have (∃τ ⊆ f)(τ 0 Fe(x)). Using the finite set Dv from the
definition of forcing and applying it to the definition of the modelling
relation, we get f |=0 Fe(x).
(→) We have f |=0 Fe(x). Using the set Dv from the definition of the
modelling relation, we can get a finite part τ ⊆ f , such that it is defined
for the elements that are part of the coding for the elements u ∈ Dv.
Now we turn our attention to the negative part. Let f be 1− generic.
(→) Let f |=0 ¬Fe(x). Assume that (6 ∃τ ⊆ f)(τ 0 ¬Fe(x)). Since f
is 1−generic, we have (∃τ ⊆ f)(τ 0 Fe(x)). By i), we get f |=0 Fe(x).
Contradiction.
(←) Fix a finite part τ ⊆ f such that τ 0 ¬Fe(x), but assume f 6|=0

¬Fe(x), which, by definition, means that f |=0 Fe(x). By the positive
case, there is a finite part δ ⊆ f such that δ 0 Fe(x). By i), we can

14

take δ to be such that τ ⊆ δ. Since τ 0 ¬Fe(x), we get δ 60 Fe(x).
Contradiction.

2. Let the assertion be true for k. We will prove it for k + 1.
Let f be k + 1− generic. We first consider the positive case.
(→) Suppose that f |=n+1 Fe(x). Then

f |=n+1 Fe(x)⇔ (∃v)(〈v, x〉 ∈ We ∧ (∀u ∈ Dv)

((u = 〈0, eu, xu〉 ∧ f |=n Feu(xu))∨

(u = 〈1, eu, xu〉 ∧ f |=n ¬Feu(xu))∨

(u = 〈2, xu〉 ∧ f(xu) ∈ Bn+1)))

By induction hypothesis (for the positive and negative case) we can
choose appropriate finite parts τu and let τ =

⋃
u τu. By i), since every

τu ⊆ τ ,
τu n Feu(xu) implies τ n Feu(xu)

τu n ¬Feu(xu) implies τ n ¬Feu(xu)

and τ(xu) ∈ Bn.It follows that f |=n+1 Fe(x) implies τ n+1 Fe(x).
Since τ ⊆ f , the conclusion follows.
(←) Suppose there is τ ⊆ f such that τ n+1 Fe(x). By the definition
of forcing and the induction hypothesis,

τ n+1 Fe(x)⇔ (∃v)(〈v, x〉 ∈ We ∧ (∀u ∈ Dv)

((u = 〈0, eu, xu〉 ∧ τ n Feu(xu))∨

(u = 〈1, eu, xu〉 ∧ τ n ¬Feu(xu))∨

(u = 〈2, xu〉 ∧ τ(xu) ∈ Bn+1)))

i.e.
(∃v)(〈v, x〉 ∈ We ∧ (∀u ∈ Dv)

((u = 〈0, eu, xu〉 ∧ f |=n Feu(xu))∨

(u = 〈1, eu, xu〉 ∧ f |=n ¬Feu(xu))∨

(u = 〈2, xu〉 ∧ f(xu) ∈ Bn+1)))

Hence f |=n+1 Fe(x).
Now for the negative case:

15

(→) Let f |=n+1 ¬Fe(x). Assume that (6 ∃τ ⊆ f)(τ n+1 ¬Fe(x)).
Since f is (k + 1) − generic, we have (∃τ ⊆ f)(τ n+1 Fe(x)). By i),
we get f |=n+1 Fe(x). Contradiction.
(←) Fix a finite part τ ⊆ f such that τ n+1 ¬Fe(x), but assume
f 6|=n+1 ¬Fe(x), which, by definition, means that f |=n+1 Fe(x). By
the positive case, there is a finite part δ ⊆ f such that δ n+1 Fe(x).
By i), we can take δ to be such that τ ⊆ δ. Since τ n+1 ¬Fe(x), we
get δ 6n+1 Fe(x). Contradiction.

Definition 18. We say that the sequence
−→
A is forcing definable on A with

respect to the sequence
−→
B if there exists a finite part δ, and a computable

function g,x ∈ N, such that for every n in N:

s ∈ An iff (∃τ ⊇ δ)(τ(x) = s ∧ τ n Fg(n)(x)).

Theorem 5. Let
−→
A be not forcing definable on A with respect to

−→
B . Then

there exists an enumeration f of A, such that f−1(
−→
A) �ω P

f .

Proof. We will construct the enumeration f on stages via finite parts δq.
We want δq ⊆ δq+1 and then we will take f =

⋃
q δq. On stages q = 3r we

will ensure that f is total and surjective. On stages q = 3r + 1 we ensure
that f is k − generic for each k > 0. On stages q = 3r + 2 we will ensure

that f satisfies the omitting condition: f−1(
−→
A) �ω P

f .
Let g0, g1, ... be an enumeration of all 1-ary computable functions. For each
n, x, e ∈ N, we denote Y n

<e,x> to be the set of all finite parts ρ such that
ρ n Fe(x).
Let δ0 be the empty finite part and suppose that δq is already defined.

1. case q = 3r : Let x0 be the least natural number which does not be-
long to dom(δq) and let s0 be the least natural number which does not
belong to ran(δq). Set δq+1(x0) = s0 and δq+1(x) = δq(x) for x 6= x0.

2. case q = 3〈e, n, x〉 + 1 : Check whether there exists a finite part
ρ ∈ Y n

<e,x>, that extends δq. If there is such a part, set δq+1 to be
the least extension(regarding the length) of δq, that belongs to Y n

<e,x>.
Otherwise set δq+1 = δq.

16

3. case q = 3r + 2 : Consider the computable function gr. Let xq be the
least natural number s.t. xq 6∈ dom(δq). For each n denote by

Cn = {x : (∃τ ⊇ δq)(τ(xq) = x ∧ τ n Fgr(n)(x))}.

Obviously the sequence of sets
−→
C is forcing definable and hence

−→
C 6=

−→
A

i.e. Cn 6= An for some n.
Let 〈x, n, q〉 be the least triple such that

(x ∈ Cn ∧ x 6∈ An) ∨ (x 6∈ Cn ∧ x ∈ An)

i) Suppose x ∈ Cn. Then there is a finite part τ such that

τ ⊇ δq ∧ τ(xq) = x ∧ τ n Fgr(n)(x).

Set δq+1 to be the least such τ .
ii) Suppose x 6∈ Cn. Then set δq+1(xq) = x and δq+1(y) = δq(y), y 6= xq.
(Here we have that δq+1 n ¬Fgr(n)(x))

The construction is finished. Let f =
⋃
q δq.

The enumeration f is total and surjective due to how it is build in the first
case. Let k ∈ N. In order to prove that f is (k+1)−generic, suppose j ≤ k.
Consider the stage q = 3〈e, j, x〉+ 1. If there is a finite part ρ ⊇ δq such that
ρ j Fe(x), then from the construction we have δq+1 j Fe(x). Otherwise
δq+1 j ¬Fe(x). Hence f is (k + 1)− generic.
To prove the omitting condition, assume the opposite, i.e. f−1(

−→
A) ≤ω P f .

Then there is a computable function gs, such that for each n,

An = {f(x) : f |=n Fgs(n)(x)}.

Since the enumeration is (n+ 1)− generic, f |=n (¬)Fgs(n)(x) iff
(∃τ ⊆ f)(τ n (¬)Fgs(n)(x)) for each x. Consider the stage q = 3s+ 2. From
the construction we have xq and n, such that one of the two cases holds:
i) δq+1(xq) 6∈ An ∧ δq+1 n Fgs(n)(xq). By the genericity of f ,
f(xq) 6∈ An and f |=n Fgs(n)(xq). Contradiction.
ii)δq+1(xq) ∈ An ∧ δq+1 n ¬Fgs(n)(xq). Hence f(xq) ∈ An and f |=n

¬Fgs(n)(xq). Contradiction.
A corollary to the above theorem is the following:

17

Lemma 5. Let
−→
A 0,
−→
A 1, ... be a sequence of sequences of sets, s.t. each

−→
A i

is not forcing definable on A with respect to
−→
B . Then there exists an enu-

meration f of A, s.t. f−1(
−→
A i) �u P

f for each i.

Proof. The proof is almost the same as in the theorem. The difference is
that on stages of the form q = 3 < r, i > +2, we consider the computable

function gr and ensure that
−→
A i 6=

−→
C , where the sequence

−→
C is defined in the

same way.

Theorem 6. Let
−→
A be a sequence of sets not forcing definable on A with

respect to
−→
B . Then there exists an acceptable with respect to

−→
B enumeration

g, such that g−1(
−→
A) �ω P

g and the enumeration degree of g−1(A) is total.

Proof. Let
−→
A be not forcing definable on A with respect to

−→
B . By The-

orem 5, there exists an enumeration f such that f−1(
−→
A) �ω P f . Hence,

by Theorem 1, there exists a total set F, such that P f ≤ω {F (n)}n<ω and

f−1(
−→
A) �ω {F (n)}n<ω. From the definition of P f and P f ≤ω {F (n)}n<ω we

have that f−1(A) ≤e F and f−1(Bn) ≤e F (n) uniformly in n.
Fix two natural numbers, say s, t such that s 6= t and natural numbers xs
and xt such that f(xs) = s, f(xt) = t. We define a function g as follows:

g(x) =

f(x/2) if x is even,
s if x = 2z + 1 and z ∈ F ,
t if x = 2z + 1 and z 6∈ F .

Clearly, g thus defined is an enumeration of A. We want to prove that
g−1(A) ≡e F .

i) Let’s fix a predicate Ri. Let x1, ..., xri be arbitrary natural numbers. We
will define natural numbers y1, ..., yri . Let 1 ≤ j ≤ ri. We have the following
three cases:
a) xj is even. Then let yj = xj/2.
b) xj = 2z + 1 and z ∈ F . Then let yj = xs.
c) xj = 2z + 1 and z 6∈ F . Then let yj = xt.
We have the following equivalence:

〈x1, ..., xri〉 ∈ g−1(Ri)⇔ 〈y1, ..., yri〉 ∈ f−1(Ri).

Hence g−1 ≤e f−1(Ri)⊕ F ⊕ F . From f−1(A) ≤e F , we have g−1(Ri) ≤e F .
Since Ri was an arbitrary predicate of the structure, we have that g−1(A) ≤e

18

F .

ii) We have the following equivalences:

z ∈ F ⇔ 2z + 1 ∈ g−1(s)⇔ g(2z + 1) = s

z 6∈ F ⇔ 2z + 1 ∈ g−1(t)⇔ g(2z + 1) = t

Since =, 6= are among the predicates of the structure, we have F ≤e g−1(A).

Combining i) and ii), we get g−1(A) ≡e F . By the properties of ≤e we

have that g−1(A)
(n) ≡e F (n) uniformly in n.

Denote by Eg, Ef the sets Eg = g−1(=), Ef = f−1(=).
We have

Ef ≤e F =⇒ Eg ≤e F =⇒ Eg ≤e F (n) uniformly in n.

Fix n. We have:

g−1(Bn) = {x : (∃y ∈ f−1(Bn))(〈x, 2y〉 ∈ Eg)}.

Hence g−1(Bn) ≤e F (n) uniformly in n. Thus, we have proved that g is an

acceptable enumeration of A with respect to
−→
B .

To finish the proof, assume that g−1(
−→
A) ≤ω {F (n)}n<ω. We have

g−1(An) = {x : 2x ∈ f−1(An)}. Hence f−1(
−→
A) ≤ω g−1(

−→
A) ≤ω {F (n)}n<ω.

By transitivity of ≤ω, we have f−1(
−→
A) ≤ω {F (n)}n<ω. Contradiction.

Theorem 7. For every sequence
−→
A , if

(∀f)[f−1(Bn) ≤e f−1(A)
(n)

uniformly in n =⇒ f−1(
−→
A) ≤ω f−1(A)]

then
−→
A is forcing definable on A with respect to

−→
B .

Proof. Assume that
−→
A is not forcing definable. By the Theorem 6, we have

an acceptable enumeration g, such that g−1(
−→
A) �ω P

g. Contradiction.

3.2 Formal definability

In this section we will show that the forcing definable sequences on the struc-
ture A coincide with the sequences which are definable on A by means of a

19

certain kind of positive computable Σ0
n formulas.

Let L = (T1, ..., Tk) be the first order relational language corresponding to
the structure A which contains the predicates =, 6=. So every Ti is ri − ary
predicate sumbol. Let {Pn}n<ω be a computable sequence of unary predi-
cates intended to represent the sets Bn. We shall also suppose that we have
a fixed sequence X0, X1, ..., Xn, ... of variables. We will use X,Y,W possibly
with subscripts as syntactival variables which vary through the variables.
We will define for each natural number n, the Σ+

n formulas. The definition is
by recursion on n, and goes along the definition of indices for the formulas.

Definition 19. 1. An elementary Σ+
0 formula with free variables among

W1, ...,Wr is an existentional formula of the form

∃Y1...∃YmΦ(W1, ...,Wr, Y1, ..., Ym),

where Φ is a finite conjunction of atomic formulas in L ∪ {P0}.

2. A Σ+
n formula is a c.e. disjunction of elementary Σ+

n formulas.

3. An elementary Σ+
n+1 formula is a formula of the form

∃Y1...∃YmΦ(W1, ...,Wr, Y1, ..., Ym),

where Φ is a finite conjunction of atoms of the form Pn+1(Yj) or Pn+1(Wi)
or Σ+

n formulas or negations of Σ+
n formulas in the language

L ∪ {P0} ∪ ... ∪ {Pn}.

Remark: We can see that the Σ+
n formulas are effectiely closed under

existential quantification and c.e. disjunctions.
Let Φ be a Σ+

n formula with free variables among W1, ...,Wn and let t1, ..., tn ∈
N. Then by A |= Φ(W1/t1, ...,Wn/tn) we denote that Φ is true on A under
the variable assignment v such that v(W1) = t1, ..., v(Wn) = tn.

Definition 20. Let
−→
A,
−→
B ,A be given. We say that

−→
A is formally definable

on A with respect to
−→
B , if there is a computable function γ and a computable

sequence {Φγ(n)}n<ω of formulas, such that for every n, Φγ(n) is a Σ+
n formula

with free variables among W1, ...,Wr and elements t1, ..., tr ∈ N, such that for
every x ∈ N :

x ∈ An ⇔ (A,
−→
B) |= Φγ(n)(W1/t1, ...,Wr/tr, X/x).

20

We shall show that every forcing definable sequence is formally definable.
Let var be an effetive mapping of the natural numbers onto the variables.
Given a natural number x, by X we shall denote the variable var(x).
Let y1 < y2 < ... < yk be the elements of a finite set D, let Q be one of the
quantifiers ∃ or ∀ and let Φ be an arbitrary formula. Then by Q(y : y ∈ D)Φ
we shall denote the formula QY1...QYkΦ.

Lemma 6. Let D = {w1, ..., wr} be a finite non-empty set of natural num-
bers and let x,e be elements of N. There exists an uniform recursive way to
construct a Σ+

n formula Φ
γ(n)
D,e,x with free variables among W1, ...,Wr such that

for every finite part δ such that dom(δ) = D, the following equivalences are
true:

(A,
−→
B) |= Φn

D,e,x(W1/δ(w1), ...,Wr/δ(wr))⇔ δ n Fe(x)

(A,
−→
B) |= Ψn

D,e,x(W1/δ(w1), ...,Wr/δ(wr))⇔ δ n ¬Fe(x)

Proof. We shall construct the formula Φ
γ(n)
D,e,x by recursion on n, following

the definition of forcing.

1. Let n = 0. Let V = {v : 〈v, x〉 ∈ We}. Consider an element v ∈ V . For
every u ∈ Dv define an atom Πu as follows:
a) u = 〈0, 〈i, xu1 , ..., xuri〉〉, where 1 ≤ i ≤ k and all xu1 , ..., x

u
ri

are elements
of D. Then let Πu = Ti(X

u
1 , ..., X

u
ri

).
b) u = 〈2, xu〉 and xu ∈ D. Then let Πu = P0(Xu)
c) Πu = W1 6= W1 in all other cases.
Let Πv =

∧
u∈Dv

Πu and Φ0
D,e,x =

∨
v∈V Πv.

Let Ψ0
D,e,x = ¬[

∨
D∗⊇D(∃

−→
Y ∈ D∗ \D)Φ0

D∗,e,x].

2. Assume it is done up till n and we will prove for n + 1. Let again
V = {v : 〈v, x〉 ∈ We and v ∈ V }. For every u ∈ Dv define a formula
Πu as follows:
a) If u = 〈0, eu, xu〉, then let Πu = Φn

D,eu,xu
.

b) If u = 〈1, eu, xu〉, then let Πu = Ψn
D,eu,xu

.
c) If u = 〈2, xu〉 and xu ∈ D, then let Πu = Pn+1(Xu).
d) Πu = W1 6= W1 in all other cases.
Now let Πv =

∧
u∈Dv

Πu and Φn+1
D,e,x =

∨
v∈V Πv.

Let Ψn+1
D,e,x = ¬[

∨
D∗⊇D(∃

−→
Y ∈ D∗ \D)Φn+1

D∗,e,x].

21

We constructed the formulas in a uniform recursive way, hence we can find a
computable function γ(n,D, e, x) which gives the code of the formula Φn

D,e,x.
We prove the statement in the lemma by induction on n.

1. Let n = 0. By the definition of the forcing relation:

δ 0 Fe(x)⇔ (∃v)(〈v, x〉 ∈ We ∧Dv ⊂ τ−1(A)⊕ τ−1(B0))

⇔ (A,
−→
B) |=

∨
v∈V

Πv

which is what we need. On the other hand

δ 0 ¬Fe(x)⇔ ¬(∃ρ ⊇ δ)[ρ 0 Fe(x)]

⇔ ¬(∃ρ ⊇ δ)[(A,
−→
B) |= Φ0

D,e,x(
−→
W \

−−→
ρ(w))]

⇔ (6 ∃D∗ ⊇ D)[(A,
−→
B) |= (∃

−→
Y ∈ D∗ \D)Φ0

D∗,e,x(
−→
W \

−−→
δ(w),

−→
Y)]

⇔ (A,
−→
B) |= ¬

∨
D∗⊇D

(∃
−→
Y ∈ D∗ \D)Φ0

D∗,e,x(
−→
W \

−−→
δ(w),

−→
Y)

⇔ (A,
−→
B) |= Ψ0

D,e,x(
−→
W \

−−→
δ(w)).

2. Assume the statement is true for n and we will prove it for n+ 1.
From the definition of the forcing relation we get:

δ n+1 Fe(x)⇔ (∃v)[〈v, x〉 ∈ We ∧ (∀u ∈ Dv)

((u = 〈0, eu, xu〉 ∧ δ n Feu(xu))∨

(u = 〈1, eu, xu〉 ∧ δ n ¬Feu(xu))∨

(u = 〈2, xu〉 ∧ δ(xu) ∈ Bn+1))]

⇔ (A,
−→
B) |=

∨
v∈V

∧
u∈Dv

Πu

⇔ (A,
−→
B) |= Φn+1

D,e,x(
−→
W \

−−→
δ(w))

where Πu formulas are as in the construction. It is easy to see that the

formula Ψn+1
D,e,x = ¬[

∨
D∗⊇D(∃

−→
Y ∈ D∗ \D)Φn+1

D∗,e,x] defines the relation
δ n+1 ¬Fe(x), we simply proceed by the definition of the forcing
relation.

22

Theorem 8. Let the sequence
−→
A be forcing definable. Then

−→
A is formally

definable.

Proof. Suppose for every s ∈ N and for every n ∈ N we have:

s ∈ An ⇔ (∃τ ⊇ δ)(τ(x) = s ∧ τ n Fg(n)(x)),

where g is a computable function and δ is a finite part. Fix n and x. Let
D = dom(δ) = {w1, ..., wr} and let δ(wi) = ti for i = 1, ..., r. By Lemma 6,

(A,
−→
B) |= ∃(y ∈ D∗ \ (D ∪ {x}))Φn

D∗,g(n),x(W1/t1, ...,Wr/tr, X/s,
−→
Y)

iff there exists a finite part τ such that dom(τ) = D∗, τ ⊇ δ, τ(x) = s and
τ n Fg(n)(x). For the set An we have,

x ∈ An ⇔ (A,
−→
B) |=

∨
D∗⊇D

∃(y ∈ D∗\(D∪{x}))Φn
D∗,g(n),x(W1/t1, ...,Wr/tr, X/s,

−→
Y)

Let γ(n) = γ(n, e, x,D) (γ is a function on one variable that also depends
on e, x,D), where

Ξn
e,x,D = ∃(y ∈ D∗ \ (D ∪ {x}))Φn

D∗,g(n),x(W1/t1, ...,Wr/tr, X/s,
−→
Y)

The function γ is computable and defines the code of the formula

Φγ(n) = ∃(y ∈ D∗ \ (D ∪ {x}))Φn
D∗,g(n),x(W1/t1, ...,Wr/tr, X/s,

−→
Y)

Hence
x ∈ An ⇔ (A,

−→
B) |= Φγ(n)(

−→
W/
−→
t ,X/s).

Thus we conclude that the sequence
−→
A is formally definable.

We will need the following useful statement:

Lemma 7. Let g be an arbitrary enumeration of A. There exists a bijective
enumeration f of A, such that f−1(A) ≤e g−1(A).

Proof. Let’s form the set Eg = {〈x, y〉 : g(x) = g(y)}. It is easy to see
that E+

g ≤e g−1(A), because =, 6= are among the predicates of the structure.
We will define using the recursion scheme a computable function h as follows:

h(0) = 0

23

h(n+ 1) = µz[(∀k ≤ n)(〈h(k), z〉 6∈ Eg)]

Define f(n) = g(h(n)). Let n1 6= n2. Without loss of generality assume
n1 < n2. If f(n1) = f(n2) then g(h(n1)) = g(h(n2)), i.e. 〈h(n1), h(n2)〉 ∈ Eg.
From n1 < n2 and the definition of h, it follows that 〈h(n1), h(n2)〉 6∈ Eg. We
obtain a contradiction, hence f(n1) 6= f(n2) and so f is injective. By the
definition of h, it is true that n1 < n2 implies h(n1) < h(n2). Assume that
f is not surjective, i.e. (∃k)(∀n)(f(n) 6= k) and so (∃k)(∀n)(g(h(n)) 6= k).
g is onto N, so (∃l)(g(l) = k) and (∀n)(〈h(n), l〉 6∈ Eg) and so exists t such
that h(t) < l and h(t + 1) > l. Hence (∃s ≤ t)(〈h(s), l〉 ∈ Eg). We get
f(s) = g(h(s)) = g(l) = k. This is a contradiction with the assumption
and hence (∀k)(∃s)(f(s) = k). Thus f is onto N. It is easy to see that
E+
g ⊕ f−1(A) ≡e g−1(A).

As a corollary to Lemma 7, we get:

Lemma 8. Let g be an arbitrary enumeration of A. Then there exists a
bijective enumeration f such that P f ≤ω P g.

Proof. Let g be an arbitrary enumeration. By Lemma 7, there is a bi-

jective enumeration f such that f−1(A) ≤e g−1(A). Let
−→
X = {f−1(A) ⊕

f−1(B0), f
−1(B1), ...} and

−→
Y = {g−1(A) ⊕ g−1(B0), g

−1(B1), ...} be two se-

quences. It is enough to prove that
−→
X ≤e P g

n uniformly in n. We will prove
the assertion by induction on n.

1. Let n = 0. We want to prove f−1(A) ⊕ f−1(B0) = We0(g
−1(A) ⊕

g−1(B0)) where the index e0 is obtained effectively. By assumption,
we have f−1(A) ≤e g−1(A). Let x ∈ f−1(B0). We have the following
equivalences:

x ∈ f−1(B0)↔ f(x) ∈ B0 ⇔ (∃z)[〈z, y〉 ∈ g−1(=) ∧ y ∈ B0]

hence we can effectively find an index e0 such that f−1(A)⊕f−1(B0) =
We0(g

−1(A)⊕ g−1(B0)).

2. Let the assertion be true for n and we will prove it for n + 1. By in-
duction hypothesis, f−1(Bn) = Wen(P g

n) and the index en is obtained
effectively. By analogous equivalences as in the base case and the prop-
erties of the jump sequence, we can effectively find an index en+1 from
en such that f−1(Bn+1) = Wen+1(P

g
n+1).

24

For the next lemma we will use the following notation: PDid will be the
jump sequence of {D(A)⊕B0, B1, ...}.

Lemma 9. Let Φ be a Σ+
n formula. We can effectively find, from the code of

the formula Φ an enumeration operator Wen, such that for arbitrary
−→
t , we

have
(A,
−→
B) |= Φ(

−→
W/
−→
t)⇔ 〈−→t 〉 ∈ Wen(PDid

n).

Proof. We will prove the assertion by induction on n.

1. Let n = 0. We have a Σ+
0 formula Φ(

−→
W) which is a c.e. disjunction of

elementary Σ+
0 formulas. Hence there is a c.e. set We0 such that

pαq ∈ We0 ⇔ (A,
−→
B) |= α(

−→
W/
−→
t)

where α(
−→
W) is a disjunct in the formula Φ(

−→
W) and α(

−→
W) has the form

(∃
−→
Y)(Pl1(

−→
W,
−→
Y) ∧ Pl2(

−→
W,
−→
Y)... ∧ Plk(

−→
W,
−→
Y)). Hence

(A,
−→
B) |= Φ(

−→
W/
−→
t)⇔

there exists elementary Σ+
0 formula α such that pαq ∈ We0 and

(A,
−→
B) |= α(

−→
W/
−→
t)

⇔ there exists a formula α and natural numbers −→u : pαq ∈ We0 and

(A,
−→
B) |= Pl1(

−→
W/
−→
t ,
−→
Y /−→u) ∧ Pl2(

−→
W/
−→
t ,
−→
Y /−→u)... ∧ Plk(

−→
W/
−→
t ,
−→
Y /−→u)

For simplicity, let’s assume we have chosen a coding such that
〈li,−→x 〉 ∈ D(A)⊕B0 ⇔ −→x ∈ Pli . Hence

(A,
−→
B) |= Φ(

−→
W/
−→
t)⇔

⇔ there exists Dv such that pαq ∈ We0 and Dv ⊂ D(A)⊕B0,

where Dv effectively determines α

⇔ there exists Dv such that 〈v,−→t 〉 ∈ We′0
and Dv ⊂ D(A)⊕B0,

where the code e′0 is effectively determined by e0.

⇔ 〈−→t 〉 ∈ We′0
(PDid

0)

25

2. Assume that there is a Σ+
n formula Φ(

−→
W/
−→
t) and a c.e. set We′n such

that
(A,
−→
B) |= Φ(

−→
W/
−→
t)⇔< −→t >∈ We′n(PDid

n)

We will examine the case n+ 1.

(A,
−→
B) |= Φ(

−→
W/
−→
t)⇔ there exists an elementary Σ+

n+1 formula α such that

pαq ∈ Wen+1 and (A,
−→
B) |= α(

−→
W/
−→
t)

where α has the form

(∃
−→
Y)((¬)β1(

−→
W/
−→
t ,
−→
Y) ∧ ... ∧ (¬)βk(

−→
W/
−→
t ,
−→
Y))

where βi are Σ+
n formulas or the membership predicate Pn+1. If β is

Pn + 1 then it cannot have ¬ in front of it.

(A,
−→
B) |= Φ(

−→
W/
−→
t)⇔ there exists an elementary Σ+

n+1 formula α such that

pαq ∈ Wen+1 and (A,
−→
B) |= α(

−→
W/
−→
t)

⇔ there exist formulas β1, ..., βk which are either the predicate Pn+1 or are

Σ+
n formulas and natural numbers −→u such that

pαq ∈ Wen+1 and (A,
−→
B) |= (¬)β1(

−→
W/
−→
t ,
−→
Y /−→u)∧...∧(¬)βk(

−→
W/
−→
t ,
−→
Y /−→u)

If βi is a Σ+
n formula, by induction hypothesis, we can effectively find

from it’s code an enumeration operator ein and for arbitrary
−→
t ,−→u :

(A,
−→
B) |= βi(

−→
W/
−→
t ,
−→
Y /−→u)⇔ 〈−→t ,−→u 〉 ∈ Wein

(PDi
n)

(A,
−→
B) |= Φ(

−→
W/
−→
t)⇔ there exists Dv and pαq ∈ Wen+1

and for i = 1...k we have 〈−→t ,−→u 〉 ∈ Wein
(PDid

n) if li = 0 and

〈−→t ,−→u 〉 6∈ Wein
(PDid

n) if l1 = 1, where li is part of the coding i.e. Dv

consists of elements of the form: 〈li, ...〉

⇔ (∃v)(〈v,−→t 〉 ∈ We′n+1
∧ (∀u ∈ Dv))

((u = 〈0, eu, xu〉 ∧ xu ∈ Weu(PDid
n))∨

(u = 〈1, eu, xu〉 ∧ xu 6∈ Weu(PDid
n))∨

26

(u = 〈2, xu〉 ∧ xu ∈ Bn+1)))

where the code e′n+1 is effectively determined from en+1

⇔ there exists c.e. set We′′n+1
and (∃v′)(〈v′,−→t 〉 ∈ We′′n+1

and Dv′ ⊂ (PDid
n)

′⊕Bn+1

where the code e′′n+1 is effectively determined from e′n+1

⇔ 〈−→t 〉 ∈ We′′n+1
(PDid

n+1)

Theorem 9. Let
−→
A be formally definable on A with respect to

−→
B . Then for

every acceptable enumeration f , we have that f−1(
−→
A) ≤ω f−1(A).

Proof. Since
−→
A is formally definable, there is a sequence of formulas

{Φγ(n)}n<ω of Σ+
n formulas and natural numbers t1, ..., tl such that:

x ∈ An ⇔ (A,
−→
B) |= Φγ(n)(W1/t1, ...,Wr/tr, X/x).

Assume that there exists an enumeration of A, say g, that is acceptable on

A with respect to
−→
B , but g−1(

−→
A) 6≤ω g−1(A). By Lemma 8, there exists a

bijective enumeration f , such that f−1(A) ≤e g−1(B) and P f ≤ω P g.
Let B be the structure with domain N and predicates f−1(R1), ..., f

−1(Rk).
Clearly A ∼= B and f−1(A) ≡e D(B). Let f(ui) = ti for i ≤ l. We have

(A,
−→
B) |= Φγ(n)(

−→
W/
−→
t)⇔ (B, f−1(

−→
B)) |= Φγ(n)(

−→
W/−→u)

Hence f−1(
−→
A) is formally definable in B. It follows that f−1(

−→
A) ≤ω P f . We

want to prove g−1(
−→
A) ≤ω {f−1(An)⊕E+

g }n<ω. We will give an explaination
how we can effectively obtain an index, let’s say en, such that g−1(An) =

Wen(Pn(f−1(
−→
A) ⊕ E+

g)). Fix n and assume without loss of generality that
n > 0. We have the following equivalences:

x ∈ g−1(An)⇔ g(x) ∈ An ⇔ g(x) = y ∧ y ∈ An ⇔ [〈x, y〉 ∈ Eg ∧ y ∈ An].

By definition Pn(f−1(
−→
A)⊕E+

g) is (Pn−1(f
−1(
−→
A)))

′
⊕(f−1(An)⊕E+

g). Hence,
by the definition of ⊕, we can effectively obtain an index en such that

g−1(An) = Wen(Pn(f−1(
−→
A)⊕E+

g)). But n was arbitrary, hence we get what

27

we needed.
Since f−1(

−→
A)⊕ E+

g ≤ω P g and by transitivity of ≤ω, we get g−1(
−→
A) ≤ω P g

and the enumeration g is acceptable. Hence g−1(
−→
A) ≤ω g−1(A). Contradic-

tion.
Putting everything together we arrive at the following:

Theorem 10. The following statements are equivalent:

i)
−→
A is relatively intrinsic on A with respect to

−→
B

ii)
−→
A is forcing definable on A with respect to

−→
B

iii)
−→
A is formally definable on A with respect to

−→
B

Proof. i) → ii) is Theorem 7.
ii) → iii) is Theorem 8.
iii) → i) is Theorem 9.

4 Relatively intrinsic sequence on a sequence

of structures

4.1 Forcing definability

We are given a relational language L = (T1, ..., Tk), a list of interpretations
(i.e. structures) A0 = (N, R0

1, ..., R
0
k),A1 = (N, R1

1, ..., R
1
k), ... where N is the

set of natural numbers, = and 6= are present among the predicates. We are

also given two sequences of subsets of N, i.e.
−→
A and

−→
B . Here we assume

that there is a computable function λx,y.xy that gives the arity of the y− th
predicate in the x− th structure.

Remark: We call the total surjective function f is enumeration of
−→
A if f is

enumeration of every single structure.

Definition 21. We will say that the sequence
−→
A is relatively intrinsic on−→

A with respect to the sequence
−→
B if for every enumertion f of

−→
A , such that

f−1(
−→
B) ≤ω f−1(

−→
A) then the sequence f−1(

−→
A) is ω− enumeration reducible

to f−1(
−→
A).

Definition 22. We call an enumeration f of
−→
A acceptable if

f−1(
−→
B) ≤ω f−1(

−→
A).

28

We modify the definition of P f in the following

Definition 23. Given an enumeration f of
−→
A denote by P f = {P f

n }n<ω
the respective jump sequence of the sequence {f−1(A0)⊕ f−1(B0), f

−1(A1)⊕
f−1(B1), ...} where

P f
n = Pn({f−1(A0)⊕ f−1(B0), f

−1(A1)⊕ f−1(B1), ...}).

Definition 24. Let f be an enumeration on
−→
A . For every n, x, e ∈ N, we

define the relations f |=n Fe(x) and f |=n ¬Fe(x) as follows:

i) f |=0 Fe(x) iff (∃v)(〈v, x〉 ∈ We ∧ (∀u ∈ Dv)) either
a) u = 〈0, 〈0, i, xu1 , ..., xuri〉〉 ∧ (f(xu1), ..., f(xuri)) ∈ R

0
i or

b) u = 〈2, xu〉 ∧ f(xu) ∈ B0

ii) f |=n+1 Fe(x) iff (∃v)[〈v, x〉 ∈ We ∧ (∀u ∈ Dv)
((u = 〈0, eu, xu〉 ∧ f |=n Feu(xu)) ∨
(u = 〈1, eu, xu〉 ∧ f |=n ¬Feu(xu)) ∨
(u = 〈2, 〈0, 〈n+ 1, i, xu1 , ..., x

u
ri
〉〉〉 ∧ (f(xu1), ..., f(xuri)) ∈ R

n+1
i) ∨

(u = 〈2, 〈2, xu〉〉 ∧ f(xu) ∈ Bn+1))]

iii) f |=n ¬Fe(x) iff f 2n Fe(x)

Lemma 10. i) Let C ⊂ N, n ∈ N. Then C ≤e P f
n iff there is an index e ∈ N

such that C = {x : f |=n Fe(x)}
ii) Let

−→
C be a sequence of sets. Then

−→
C ≤ω P f iff there exists a computable

function g, such that Cn = {x : f |= Fg(n)(x)}

Proof. i) The proof follows the same line as the proof of Lemma 3 i). We
proceed by induction on n following the definition of the modelling relation.
We have an extra case in the induction step corresponding to the new coded
structure.
ii) The proof is the same as the proof of Lemma 3 ii).

Definition 25. For each e, x, n ∈ N and for every finite part τ , define the
forcing relations τ n Fe(x) and τ n ¬Fe(x) following the definition of the
relation ”|=”.

29

i) τ 0 Fe(x) iff (∃v)[〈v, x〉 ∈ We ∧ (∀u ∈ Dv)
a) u = 〈0, 〈0, i, xu1 , ..., xuri〉〉,

xu1 , ..., x
u
ri
∈ dom(τ) and (τ(xu1), ..., τ(xuri)) ∈ R

0
i

or
b) u = 〈2, xu〉 ∧ xu ∈ dom(τ) ∧ τ(xu) ∈ B0

ii) τ n+1 Fe(x) iff (∃v)[〈v, x〉 ∈ We ∧ (∀u ∈ Dv)
((u = 〈0, eu, xu〉 ∧ τ n Feu(xu)) ∨
(u = 〈1, eu, xu〉 ∧ τ n ¬Feu(xu)) ∨
(u = 〈2, 〈0, 〈n+ 1, i, xu1 , ..., x

u
ri
〉〉〉,

xu1 , ..., x
u
ri
∈ dom(τ) and (τ(xu1), ..., τ(xuri)) ∈ R

n+1
i)∨

(u = 〈2, 〈2, xu〉〉 ∧ τ(xu) ∈ Bn+1))]

iii) τ n ¬Fe(x) iff (∀ρ ⊇ τ)[ρ 1n Fe(x)]

Definition 26. Let f be an enumeration of
−→
A . We say that f is k-generic

with respect to
−→
B if for every j < k and e, x ∈ N:

(∃τ ⊆ f)(τ j Fe(x) ∨ τ j ¬Fe(x))

Lemma 11. i) If τ ⊆ ρ then τ k (¬)Fe(x) implies ρ k (¬)Fe(x)
ii) For every (k + 1)− generic enumeration f of A, f |=k (¬)Fe(x) iff
(∃τ ⊆ f)(τ k (¬)Fe(x))

Proof. i) The proof is analogous to the proof of Lemma 4 i). In the
induction hypothesis we get the extra case u = 〈2, 〈0, 〈n+ 1, i, xu1 , ..., x

u
ri
〉〉〉∧

xu1 , ..., x
u
ri
∈ dom(τ) ∧ (τ(xu1), ..., τ(xuri)) ∈ R

n+1
i . Since τ ⊆ ρ, this case will

be true for ρ
ii) The proof is analogous to the proof of Lemma 4 ii). In the induction
hypothesis for the positive case in (→), we will chose finite parts τu that are
also defined for the elements of the domain of f such that (f(xu1), ..., f(xuri)) ∈
Rn+1
i and then we proceed as in Lemma 4.

Lemma 12. f is an acceptable enumeration on
−→
A with respect to

−→
B iff

P f ≤ω f−1(
−→
A).

30

Proof. (→) Assume f−1(Bn) ≤e Pn(f−1(
−→
A)) uniformly in n i .e. there is

a computable function h such that f−1(Bn) = Wh(n)(Pn(f−1(
−→
A))). We will

prove the statement by induction on n.

1. Let n = 0. We have f−1(B0) = We′0
(f−1(A0)), where the h(0) =

e′0. Since we can effectively obtain an index e0 such that f−1(A0) =
We0(f−1(A0)), we can obtain effectively an index i0 from e0 and e′0 such
that f−1(A0)⊕ f−1(B0) = Wi0(f

−1(A0)).

2. Assume the statement is true for n and we will prove it for n+ 1. We
have P f

n+1 = (P f
n)′⊕(f−1(An+1)⊕f−1(Bn+1)). By induction hypothesis

P f
n = Win(Pn(f−1(

−→
A))), where in is effectively obtained. By assump-

tion, we have f−1(Bn+1) = We′n+1
(Pn+1(f

−1(
−→
A))), where h(n) = e′n+1 .

By the properties of the enumeration jump, we can effectively obtain

from in an index en+1 such that (P f
n)′ = Wen+1((Pn(f−1(

−→
A)))

′
). Of

course, we can effectively obtain an index e′′n+1 such that f−1(An+1) =
We′′n+1

(f−1(An+1)). Putting everything together, we can effectively ob-

tain an index in+1 such that P f
n+1 = Win+1(Pn+1(f

−1(
−→
A))).

(←) Let P f ≤ω f−1(
−→
A). Hence we get P f

n ≤e Pn(f−1(
−→
A)) uniformly in

n i.e. P f
n = Wh(n)(Pn(f−1(

−→
A)) for a computable function h. Let n > 0

and h(n) = en. By definition P f
n = (P f

n−1)
′ ⊕ ((f−1(An) ⊕ f−1(Bn)).

Hence from an index en such that P f
n = Wen(Pn(f−1(

−→
A))), we can

effectively find an index in such that f−1(Bn) = Win(Pn(f−1(
−→
A))).

Definition 27. We say that the sequence
−→
A is forcing definable on

−→
A with

respect to the sequence
−→
B if there exists a finite part δ, and a computable

function g, x ∈ N, such that for every n of N:

s ∈ An iff (∃τ ⊇ δ)(τ(x) = s ∧ τ n Fg(n)(x)).

An analogous

Theorem 11. Let
−→
A be not forcing definable on

−→
A with respect to

−→
B . Then

there exists an enumeration f of
−→
A , s.t. f−1(

−→
A) �ω P

f .

31

Proof. The proof is the same as the proof of Theorem 5. We proceed with
constructing an enumeration f build up by finite parts δq such that δq ⊆ δq+1

and f =
⋃
q δq. On stages q = 3r we make sure the enumeration is surjective

and total, on stages q = 3r + 1 we assure f is k − generic for each k > 0,
and on stages q = 3r + 2 we assure f meets the omitting condition.

Again we can derive the following countable generalization:

Lemma 13. Let
−→
A 0,
−→
A 1, ... be a sequence of sequences of sets, s.t. each−→

A i is not forcing definable on
−→
A with respect to

−→
B . Then there exists an

enumeration f of
−→
A , s.t. f−1(

−→
A i) �u P

f for each i.

Proof. The same as the case for one structure.

Theorem 12. Let
−→
A be a sequence of sets not forcing definable on

−→
A with

respect to
−→
B . Then there exists an acceptable enumeration g, such that

g−1(
−→
A) �ω P g and the enumeration degree of g−1(

−→
A) is total. (The enu-

meration degree of g−1(An) is total for each n.)

Proof. Let
−→
A be not forcing definable on

−→
A with respect to

−→
B . From

Theorem 11, we find an enumeration f such that f−1(
−→
A) �ω P f . Hence

there is a total set F such that P f ≤ω {F (n)}n<ω and f−1(
−→
A) �ω {F (n)}n<ω.

From P f ≤ω {F (n)}n<ω we conclude that f−1(An) ≤e F (n) uniformly in n
and f−1(Bn) ≤e F (n) uniformly in n.
Fix two natural numbers, say s, t such that s 6= t and natural numbers xs
and xt s.t. f(xs) = s, f(xt) = t. We define a function g as follows:

g(x) =

f(x/2) if x is even,
s if x = 2z + 1 and z ∈ F ,
t if x = 2z + 1 and z 6∈ F .

Thus defined, g is an enumeration of
−→
A . We want to prove g−1(

−→
A) ≡ω

{F (n)}n<ω.

i) We have that g−1(
−→
A) ≤ω {F (n)}n<ω ⇔ g−1(An) ≤e Pn{F (n)} uniformly in

n. (By Lemma 1)
By induction on n and using the definitions of enumeration jump and the
fact that F is a total set we can prove that Pn({F (n)}) ≡e F (n).
Let’s fix a predicate Rj

i of the structure An. Let x1, ..., xri be arbitrary nat-
ural numbers. We will define natural numbers y1, ..., yri . Let 1 ≤ j ≤ ri.

32

a) xj is even. Then let yj = xj/2.
b) xj = 2z + 1 and z ∈ F . Then let yj = xs.
c) xj = 2z + 1 and z 6∈ F . Then let yj = xt.
We have the following equivalence :

〈x1, ..., xri〉 ∈ g−1(R
j
i)⇔ 〈y1, ..., yri〉 ∈ f−1(R

j
i).

From f−1(An) ≤e F (n) uniformly in n and the definition of a copy of a struc-
ture we have f−1(Rn

i) ≤e F (n) uniformly in n and hence g−1(Rn
i) ≤e F (n) uni-

formly in n. Since this is true for all predicates in the structure, we have that

g−1(An) ≤e F (n) uniformly in n. Hence by Lemma 1, g−1(
−→
A) ≤ω {F (n)}n<ω.

ii) Every structure in the list contains =, 6=. Without loss of generality,
let’s take the structure A0. We have the following equivalences:

z ∈ F ⇔ 2z + 1 ∈ g−1(s)⇔ g(2z + 1) = s

z 6∈ F ⇔ 2z + 1 ∈ g−1(t)⇔ g(2z + 1) = t

Hence F ≤e g−1(A0) (By the same reasoning and proof as in Theorem
6). By a property of ≤e, we have that F ′ ≤e g−1(A0)

′. Again by the
properties of ≤e we obtain F (n) ≤e g−1(A0)

(n) uniformly in n i.e. F (n) =
Wh(n)(g

−1(A0)
(n)) via the computable function h. By the properties of the

jump sequence, we have Pm(g−1(
−→
A)) ≤e Pn(g−1(

−→
A)) uniformly in n and m

and hence P0(g
−1(
−→
A)) ≤e Pn(g−1(

−→
A)) uniformly in n. From here we get

g−1(A0)
(n)

= Wl(n)(Pn(g−1(
−→
A))) via the computable function l. Using the

computable functions h and l we can conclude that F (n) ≤e Pn(g−1(
−→
A)) uni-

formly in n.

Combining i) and ii), we have g−1(
−→
A) ≡ω {F (n)}n<ω.

Denote Eg, Ef to be the sets Eg = g−1(=), Ef = f−1(=) (It doesn’t mat-
ter from which structure we take =, 6=, since they are the same sets.). From

f−1(
−→
A) �ω {F (n)}n<ω we conclude

Ef ≤e F =⇒ Eg ≤e F =⇒ Eg ≤e F (n) uniformly in n.

Fix n. We have:

g−1(Bn) = {x : (∃y ∈ f−1(Bn))(〈x, 2y〉 ∈ Eg)}.

33

Hence g−1(Bn) ≤e F (n) uniformly in n i.e. g−1(
−→
B) ≤ω g−1(

−→
A). Thus, we

have proved that g is an acceptable enumeration.

To prove the ommitting condition, assume the opposite i.e. g−1(
−→
A) ≤ω

{F (n)}n<ω. We have

g−1(An) = {x : 2x ∈ f−1(An)}.

Hence f−1(
−→
A) ≤ω g−1(

−→
A) ≤ω {F (n)}n<ω. By transitivity of ≤ω, we have

f−1(
−→
A) ≤ω {F (n)}n<ω. Contradiction.

Theorem 13. For every sequence
−→
A , if

(∀f)[f−1(
−→
B) ≤ω f−1(

−→
A) =⇒ f−1(

−→
A) ≤ω f−1(

−→
A)]

then
−→
A is forcing definable on

−→
A with respect to

−→
B .

Proof. Assume that
−→
A is not forcing definable. By the previous theorem,

we find an acceptable enumeration g, s.t. g−1(
−→
A) �ω P

g. Contradiction.

4.2 Formal definability

Again we are given a relational language L = (T1, T2, ..., Tk). The predicates
=, 6= are present. In order to prove that every forcing definable sequence is
formally definable, we will use the formulas we introduced in the previous
section with a slight difference. On each level of the elementary Σ+

n formulas,
we will add all the predicates of the An structure. Again we assume that
we have a computable sequence {Pn}n<ω of predicates that represents the

sequence
−→
B i.e. Pn(X) is true if X ∈ Bn. We will make the following

abbreviation:
L0 = {T 0

1 , ..., T
0
k },

Ln+1 = Ln ∪ {T n+1
1 , ..., T n+1

k }.

Definition 28. 1. An elementary Σ+
0 formula with free variables among

W1, ...,Wr is an existentional formula of the form

∃Y1...∃YmΦ(W1, ...,Wr, Y1, ..., Ym),

where Φ is a finite conjunction of atomic formulas in L0 ∪ {P0}.

34

2. A Σ+
n formula is a c.e. disjunction of elementary Σ+

n formulas.

3. An elementary Σ+
n+1 formula is a formula of the form

∃Y1...∃YmΦ(W1, ...,Wr, Y1, ..., Ym),

where Φ is a finite conjunction of atoms of the form Pn+1(Yj) or Pn+1(Wi)
or atoms from {T n+1

1 , ..., T n+1
k } or Σ+

n formulas or negations of Σ+
n for-

mulas in the language Ln+1 ∪ {P0} ∪ ... ∪ {Pn+1}.

With a slight modification we arrive at the following:

Definition 29. Let
−→
A,
−→
B ,
−→
A be given. We say that

−→
A is formally definable

on
−→
A with respect to

−→
B , if there is a computable sequence {Φγ(n)}n<ω of

formulas, such that for every n, Φγ(n) is a Σ+
n formula with free variables

among W1, ...,Wr and elements t1, ..., tr ∈ N, such that for every x ∈ N :

x ∈ An ⇔ (
−→
A ,
−→
B) |= Φγ(n)(W1/t1, ...,Wr/tr, X/x).

Lemma 14. Let D = {w1, ..., wr} be a finite non-empty set of natural num-
bers and let x,e be elements of N. There exists an uniform recursive way to
construct a Σ+

n formula Φn
D,e,x with free variables among W1, ...,Wr such that

for every finite part δ such that dom(δ) = D, the following equivalences are
true:

(
−→
A ,
−→
B) |= Φn

D,e,x(W1/δ(w1), ...,Wr/δ(wr))⇔ δ n Fe(x)

(
−→
A ,
−→
B) |= Ψn

D,e,x(W1/δ(w1), ...,Wr/δ(wr))⇔ δ n ¬Fe(x)

Proof. We shall construct the formula Φn
D,e,x by recursion on n, following

the definition of forcing.

1. Let n = 0. Let V = {v : 〈v, x〉 ∈ We}. Consider an element v ∈ V . For
every u ∈ Dv define an atom Πu as follows:
a) u = 〈0, 〈0, i, xu1 , ..., xuri〉〉, where 1 ≤ i ≤ k and all xu1 , ..., x

u
ri

are
elements of D. Then let Πu = T 0

i (Xu
1 , ..., X

u
ri

).
b) u = 〈2, xu〉 and xu ∈ D. Then let Πu = P0(Xu)
c) Πu = W1 6= W1 in all other cases.
Let Πv =

∧
u∈Dv

Πu and Φ0
D,e,x =

∨
v∈V Πv.

Let Ψ0
D,e,x = ¬[

∨
D∗⊇D(∃

−→
Y ∈ D∗ \D)Φ0

D∗,e,x].

35

2. Assume it is done up till n and we will prove for n + 1. Let again
V = {v : 〈v, x〉 ∈ We} and v ∈ V . For every u ∈ Dv define a formula
Πu as follows:
a) If u = 〈0, eu, xu〉, then let Πu = Φn

D,eu,xu
.

b) If u = 〈1, eu, xu〉, then let Πu = Ψn
D,eu,xu

.
c) If u = 〈2, 〈0, 〈n+ 1, i, xu1 , ..., x

u
ri
〉〉〉 where 1 ≤ i ≤ k and all xu1 , ..., x

u
ri

are elements of D. Then let Πu = T n+1
i (Xu

1 , ..., X
u
ri

).
d) If u = 〈2, 〈2, xu〉〉, then let Πu = Pn+1(Xu)
e) Πu = W1 6= W1 in all other cases.
Now let Πv =

∧
u∈Dv

Πu and Φn+1
D,e,x =

∨
v∈V Πv.

Let Ψn+1
D,e,x = ¬[

∨
D∗⊇D(∃

−→
Y ∈ D∗ \D)Φn+1

D∗,e,x].

The proof that the statement in the lemma is acomplished is analogous to the
similiar lemma in chapter 3. We proceed by induction on n. The base case
remains the same and in the induction step we will have extra atomic formulas
from the predicates of An+1. Again we note that there is a computable way
to recover the index of the formula.

We tie the forcing definability to the formal definability in the following:

Theorem 14. Let the sequence
−→
A be forcing definable. Then

−→
A is formally

definable.

Proof. The proof of this theorem is the same as the proof of the analogous
theorem in section 3.

With a slight modification of the proof of Lemma 7, we get the following
useful

Lemma 15. Let g be an arbitrary enumeration of
−→
A . There exists a bijective

enumeration f of
−→
A , such that f−1(An) ≤e g−1(An) for every n.

A modification to Lemma 8 with the concepts of chapter 4 gives us the
following

Lemma 16. Let g be an arbitrary enumeration of
−→
A . Then there exists a

bijective enumeration f such that P f ≤ω P g.

By PDid we denote the jump sequence of the following sequence

{D(A0)⊕B0, D(A1)⊕B1, ...}

36

Lemma 17. Let Φ be a Σ+
n formula. We can effectively find, from the code of

the formula Φ an enumeration operator Wen, such that for arbitrary natural

numbers
−→
t , we have

(
−→
A ,
−→
B) |= Φ(

−→
W/
−→
t)⇔ 〈−→t 〉 ∈ Wen(PDid

n).

Proof. The proof follows the same line as the proof of the analogous lemma
in section 3. We proceed by induction on n. The base case remains the same
and in the induction step, we have the predicates of the structure An+1 which
occur in the elementary Σ+

n+1 formulas. They are treated the same way as in
the base case n = 0.

Theorem 15. Let
−→
A be formally definable on

−→
A with respect to

−→
B . Then

for every acceptable enumeration f , we have that f−1(
−→
A) ≤ω f−1(

−→
A).

Proof. Let
−→
A be formally definable on

−→
A with respect to

−→
B . Suppose

that there is an acceptable enumeration g for which g−1(
−→
A) 6≤ω g−1(

−→
A).

There exists a bijective enumeration f , such that f−1(An) ≤e g−1(An) for
every n and P f ≤ω P g.

Let
−→
B be the sequence of structures that that is build up by f i.e B0 =

(N, f−1(R0
1), ..., f

−1(R0
k)) etc. We have An

∼= Bn and f−1(
−→
A) ≡ω D(

−→
B).

As in Theorem 9, we see that f−1(
−→
A) is formally definable in

−→
B and hence

f−1(
−→
A) ≤ω P f . Reasoning as in Theorem 9 , it follows that g−1(

−→
A) ≤ω P g

with g acceptable enumeration. Contradiction.

Theorem 16. The following statements are equivalent:

i)
−→
A is relatively intrinsic on

−→
A with respect to

−→
B

ii)
−→
A is forcing definable on

−→
A with respect to

−→
B

iii)
−→
A is formally definable on

−→
A with respect to

−→
B

Proof. i) → ii) is Theorem 13
ii) → iii) is Theorem 14
iii) → i) is Theorem 15

37

References

[1] C. Ash, J. Knight. A completeness theorem for certain classes of recur-
sive infinitary formulas. (1994)

[2] Ash, Knight, Manasse, Slaman. Generic copies of countable structures.
(1989)

[3] John Chisholm. Effective model theory vs. recursive model theory. (1990)

[4] Ivan Soskov, Vesela Baleva. Ash’s theorem for abstract structures. (2006)

[5] Soskov, Kovachev. Uniform regular enumerations. (2006)

[6] C. Ash, J. Knight Computable Structures and the hyperarithmetical hi-
erarchy

[7] H. Rogers Theory of recursive functions and effective computability

38

