
So�a University St. Kliment OhridskiFaulty of Mathematis and Computer SieneDepartment of Mathematial Logi and Appliations

Diret Constrution of a Bimahine forContext-Sensitive Rewrite RuleA thesis submitted for the degree of Master of Computer SienebyIvan Petrov Peikov

� So�a, 2006 �

Contents1 Introdution 32 Contexts and Rules 43 Finite State Automata 84 Deterministi Finite Automata 125 Bimahines 156 Diret Constrution 186.1 The Left Automaton . 196.2 The Right Automaton . 196.3 The Output Funtion . 196.4 Bimahine For Context-Sensitive Rewrite Rule 247 Algorithms 277.1 Conatenation to the Left . 277.2 Translation of an Output-Driven Bimahine 287.3 Diret Constrution of a Bimahine for Context-Sensitive RewriteRule . 298 Complexity 31

2

1 IntrodutionContext-sensitive rewrite rules are a well-known formalism pratially useful inmany �elds of omputational linguistis. They were �rst introdued in Chom-sky's papers ([1℄) and proved to be expressive enough to suessfully modelmultiple linguisti phenomena.In 1972 Johnson ([2℄) noties that with the limitation to work only overtheir input the ontext-sensitive rewrite rules beome as expressive as the reg-ular relations. This purely theoretial result is later on�rmed by Kaplan andKay ([3℄) who show the pratial importane of ontext-sensitive rewrite ruleswhen implemented with �nite state transduers. Their paper gives rise to manyonseutive works and remains one of the lassis in the ontemporary ompu-tational linguistis.Bimahines as introdued by Shutzenberger ([4℄) are deterministi abstratmahines as expressive as the regular funtions. They onsume their inputsimultaneously from left to right and from right to left. On every positionthey produed output based on the left-hand pre�x and the right-hand su�x.Bimahines are omputationally very e�ient whih makes them appliable inpratie.Our purpose is to present a onstrution whih by given ontext-sensitiverewrite rule builds diretly a bimahine realizing its orresponding regular fun-tion.There exist other methods whih �rst onstrut a �nite-state transduerrealizing the ontext rule ([3℄) and then translate the transduer into a bimahine([5℄). In 2004, Skut et al. ([6℄) present a diret onstrution of a bimahine fora restrited form of rewrite rule. However, to the best of our knowledge, theonstrution presented in the urrent thesis is the �rst diret onstrution of abimahine realizing a non-restrited ontext-sensitive rewrite rule.The rest of the thesis is strutured as follows. In Setion 2 rewrite rules areintrodued and the problem is formally de�ned. In Setions 3 and 4 �nite stateautomata are introdued. In Setion 5 bimahines are introdued together withtwo of their possible operational semantis. In Setion 6 the diret onstrutionis desribed and proved orret. The remaining Setions 7 and 8 present someof the algorithms used and study their omplexity.We denote onatenation of two words α and β with α · β or αβ (when noambiguity ould possibly our). The fat that α is a subword of β is denotedas α ⊂ β or α ⊆ β in ase when equality is possible. All other notations willeither be introdued in the appropriate ontext or will be onsidered as widelyadopted.
3

2 Contexts and RulesLet's �x a �nite alphabet Σ. Context-sensitive rewrite rule is any rule of thetype
E → β/L_R (1)where L,E,R ∈ RE(Σ) are regular expressions over Σ, and β ∈ Σ∗. Appliationof suh a rule over a �xed word α ∈ Σ is the simultaneous rewriting with β of all

α's subwords whih belong to the language L(E) of E and are found between asubword of L(L) � to the left and subword of L(R) � to the right:
α1α2 . . . αi−1 αi . . . αj−1︸ ︷︷ ︸

∈L(L)

β︷ ︸︸ ︷
αj . . . αk−1︸ ︷︷ ︸

∈L(E)

αk . . . αl−1︸ ︷︷ ︸
∈L(R)

αl . . . αn−1αnDe�nition 2.1. Let t ∈ Σ∗, and L,E,R ∈ RE(Σ). A triple 〈u, v, w〉 is said tobe a rewrite ontext (or simply ontext) if u ∈ L(Σ∗L), v ∈ L(E), w ∈ L(RΣ∗)and uvw = t. The words u, v and w are said to be respetively pre�x, fous andsu�x of the ontext. Additionally we denote
C(t;L,E,R) = {〈u, v, w〉|u ∈ L(Σ∗L) & v ∈ L(E) & w ∈ L(RΣ∗) & t = uvw}to be the set of all suh triples or the ontext set for any partiular t and
E → β / L_R.It beomes lear that there are ertain ambiguities that might our whileapplying a ontext rule over some word. For example, if two ontexts share aommon pre�x but di�er in their fouses (and respetively su�xes) the resultof the rewriting will be ambiguous:

u1︷ ︸︸ ︷ v1︷ ︸︸ ︷ w1︷ ︸︸ ︷

︸ ︷︷ ︸
u2

︸ ︷︷ ︸
v2

︸ ︷︷ ︸
w2Suh an ambiguity will be resolved by hoosing for valid the ontext withthe longest fous.Example 2.1. Let's apply the rule a+ → A / b_a over the word α = baaaab.The result might ambiguously be de�ned as bAaaab, bAaab or bAab (rewritingrespetively in ontext 〈b, a, aaab〉, 〈b, aa, aab〉 or 〈b, aaa, ab〉). By agreeing toalways take the ontext with the longest fous for valid we resolve the ambiguityand obtain the single result bAab.De�nition 2.2. Two ontexts 〈ui, vi, wi〉 ∈ C for i = 1, 2 are said to overlap(written 〈u1, v1, w1〉 ≺ 〈u2, v2, w2〉), if u1 ⊂ u2 ⊂ u1v1.

u1︷ ︸︸ ︷ v1︷ ︸︸ ︷ w1︷ ︸︸ ︷

︸ ︷︷ ︸
u2

︸ ︷︷ ︸
v2

︸ ︷︷ ︸
w24

Whenever suh a situation ours while applying a ontext rule not morethan one of the two ontexts should be taken for valid. We'll resolve suh anambiguity by always taking the leftmost of all the possibilities and ignoring allthe overlapped ontexts.We all suh a strategy for resolving ambiguities leftmost longest math strat-egy.Example 2.2. Let's take the rule xy|yz → ǫ / x_z. During its appliationover word like xyzzxxyzz ambiguity arises. Possible rewriting ontexts are
〈x, yz, zxxyzz〉, 〈xyzzx, xy, zz〉 and 〈xyzzxx, yz, z〉, the last two if whih dooverlap. The leftmost longest math strategy sorts out the �rst two ontexts asvalid for rewriting whih produes the non-ambiguous result of xzxzz.There exist other strategies for resolving ambiguities. We'll onentrate onthe desribed one beause we believe it is the most natural and most useful inpratie.Let's now de�ne formally the set of all rewriting ontexts within a �xed wordwhih we'll onsider valid for rewriting.De�nition 2.3. We de�ne the following operators over sets of ontexts:

OVER(C,C′) = {〈u, v, w〉∈C |(∃〈u
′, v′, w′〉∈C′)(〈u′, v′, w′〉 ≺ 〈u, v, w〉)}

LEFT(C) = {〈u, v, w〉∈C |¬(∃〈u′, v′, w′〉∈C)(u′ ⊂ u)}
LONG(C) = {〈u, v, w〉∈C |¬(∃〈u , v′, w′〉∈C)(v ⊂ v′)}The �rst operator OVER de�nes all ontexts in a given set whih are over-lapped by a ontext in another set. The seond operator LEFT de�nes theleftmost ontexts in a given set.Considering the above de�nitions we may proeed with de�ning formally thevalid ontexts. We onstrut indutively the sequene {Ci}∞i=0, where Ci ⊆ C forall i ≥ 0:
• C0 = ∅

• Ci+1 = Ci ∪ LEFT(C − Ci − OVER(C, Ci))This is a monotonously inreasing sequene and hene it has a least upperbound. We de�ne Cv = ∪∞
i=0Ci we all Cv the valid ontexts set. We denote

Cl = LONG(Cv) and we all Cl the set of the longest valid ontexts.Proposition 2.1. Cv ⊆ CProposition 2.2. Cv doesn't ontain any overlapping ontexts.Proof. Let's assume 〈ui, vi, wi〉 ∈ Cv for i = 1, 2 and 〈u1, v1, w1〉 ≺ 〈u2, v2, w2〉.Then u1 ⊂ u2 ⊂ u1v1. Let ki are the least indies for whih 〈ui, vi, wi〉 ∈ Cki(we're sure they exist beause 〈ui, vi, wi〉 ∈ Cv = ∪∞
k=0Ck).Let's assume that k1 ≥ k2. Then

〈u2, v2, w2〉 ∈ Ck2
= Ck2−1 ∪ LEFT(C − Ck2−1 − OVER(C, Ck2−1))5

We denote R = C−Ck2−1−OVER(C, Ck2−1). As 〈u2, v2, w2〉 6∈ Ck2−1, we onludethat 〈u2, v2, w2〉 ∈ LEFT(R). On the other hand k1 ≥ k2, hene 〈u1, v1, w1〉 ∈ R.This is a ontradits with the de�nition of LEFT so �nally k1 < k2.After we saw that k1 < k2, we may further onlude that 〈u2, v2, w2〉 6∈ Ckfor k ≤ k1. For k ≥ k1, 〈u1, v1, w1〉 ∈ Ck therefore 〈u2, v2, w2〉 ∈ OVER(C, Ck),e.g. 〈u2, v2, w2〉 6∈ Ck+1. This ontradits with the fat that 〈u2, v2, w2〉 ∈ Ck2(k2 > k1) and hene Cv doesn't ontain any overlapping ontexts.Proposition 2.3. Let 〈u, v, w〉 ∈ C is a non-valid ontext (〈u, v, w〉 6∈ Cv).There exists (〈u0, v0, w0〉 ∈ Cv), suh that 〈u0, v0, w0〉 ≺ 〈u, v, w〉Proof. Let's take the sequene {Oi}
∞
i=0, where Oi = OVER(C, Ci). One ouldeasily prove that this is a monotonously inreasing sequene whose least upperbound exists and is exatly OVER(C, Cv).We'll verify that Cv ∪ OVER(C, Cv) = C. Let's assume that there exists

〈u, v, w〉 ∈ C, suh that 〈u, v, w〉 6∈ Cv and 〈u, v, w〉 6∈ OVER(C, Cv) and let's hoosethe one with shortest pre�x. C is a �nite set so there exists and index k, suh that
Ck = Cv. 〈u, v, w〉 6∈ OVER(C, Ck) whih implies that C−Ck−OVER(C, Ck) 6= ∅, andtherefore Cv ⊂ Ck+1 is not a least upper bound of {Ci}. This is a ontraditionand hene Cv ∪ OVER(C, Cv) = C.Now bak to the proposition. Let 〈u, v, w〉 6∈ Cv. Then (aording to every-thing already said) 〈u, v, w〉 ∈ OVER(C, Cv) whih means that there is an index p(OVER(C, Cv) is the least upper bound of {Oi}) for whih 〈u, v, w〉 ∈ Op. Thenby the de�nition of {Oi} it follows that there exists 〈u0, v0, w0〉 ∈ Cp, for whih
〈u0, v0, w0〉 ≺ 〈u, v, w〉.Proposition 2.4. Let 〈u, vi, wi〉 ∈ C are ontexts (i = 1, 2). Then 〈u, v1, w1〉 isa valid ontext i� 〈u, v2, w2〉 is also valid.Proof. Let 〈u, v1, w1〉 is a valid ontext and let's assume 〈u, v2, w2〉 is non-valid.Then there exists k ≥ 0, suh that 〈u, v2, w2〉 ∈ OVER(C, Ck). But this wouldmean that there exists 〈u0, v0, w0〉 ∈ Ck, suh that u0 ⊂ u ⊂ u0v0. There-fore 〈u0, v0, w0〉 ≺ 〈u, v1, w1〉. But aording to Proposition 2.2 there are nooverlapping ontexts in Cv whih ontradits with our assumption.Follows a de�nition of result from the appliation of a ontext-sensitive ruleover some given input text.De�nition 2.4. Let α ∈ Σ∗ and E → β / L_R is a ontext-sensitive rewriterule. Result from the appliation of E → β / L_R over α is the word

u1 · β · (u1v1)
−1u2 · β · (u2v2)

−1u3 · β · . . . (uk−1vk−1)
−1uk · β · wkwhere Cl(α;L,E,R) = {〈ui, vi, wi〉|i = 1, . . . , k} and i < j → ui ⊂ uj.The diret usage of De�nition 2.4 would greatly ompliate our treatmentof the problem, we introdue the following equivalent de�nition.6

De�nition 2.5. Let α = a1a2 . . . an ∈ Σ∗ and E → β / L_R is a ontext-sensitive rewrite rule/ Result from the appliation of E → β / L_R over α isthe word ω1 · ω2 . . . · ωn · ωn+1, where for i = 1, 2, . . . , n

ωi =

ǫ if there exists 〈u, v, w〉 ∈ Cv(α;L,E,R), |u| < i− 1 < |uv|
β if there exists 〈u, v, w〉 ∈ Cv(α;L,E,R), |u| = i− 1 < |uv|
βai if there exists 〈u, v, w〉 ∈ Cv(α;L,E,R), |u| = i− 1 = |uv|and there is no 〈u, v′, w′〉 ∈ Cv(α;L,E,R), suh that v′ 6= ǫ
ai otherwiseand ωn+1 ∈ Σ∗ is de�ned as follows:

ωn+1 =

{
β if 〈α, ǫ, ǫ〉 ∈ Cv(α;L,E,R)
ǫ otherwiseIn order to simplify some of the proofs we further modify De�nition 2.5 and�nally reah the equivalentDe�nition 2.6. Let α = a1a2 . . . an ∈ Σ∗ and E → β / L_R is a ontext-sensitive rewrite rule. Result from the appliation of E → β / L_R over α isthe word (ω1π1) · (ω2π2) . . . · (ωnπn), where ωi are de�ned as in De�nition 2.5,and

πi =

{
β if i = n and 〈α, ǫ, ǫ〉 ∈ Cv(α;L,E,R)
ǫ otherwiseThe proof that De�nitions 2.4, 2.5 and 2.6 are equivalent is trivial and tootehnial to be interesting for our treatment. Therefore we'll use only De�nition2.6.

7

3 Finite State AutomataDe�nition 3.1. Finite state automaton (FSA) is a 5-tuple
A = 〈Σ, Q, S, F,∆〉where Σ is a �nite alphabet, Q is a �nite set of states, S ⊆ Q is a set of initial(starting) states, F ⊆ Q is a set of aepting states, and ∆ ⊆ Q × Σ × Q istransition relation. We extend indutively ∆ to ∆∗

• 〈q, ǫ, q〉 ∈ ∆∗ for eah q ∈ Q

• 〈q1, αa, q2〉 ∈ ∆∗ if there exists q ∈ Q, suh that 〈q1, α, q〉 ∈ ∆∗ and
〈q, a, q2〉 ∈ ∆De�nition 3.2. Let ∆ ⊆ Q × Σ × Q, T ⊆ Q and a ∈ Σ. We introdue thefollowing notation

T
∆,a
−→ {q|(∃q′∈T)(〈q′, a, q〉 ∈ ∆)}De�nition 3.3. Let A is a FSA and α ∈ Σ∗ is a word. We say that the sequene

q0, q1, . . . q|α| is an exeution A over α, if qi ∈ Q for eah i = 0 . . . |α|, q0 ∈ Sand 〈qi−1, αi, qi〉 ∈ ∆ for eah i = 1 . . . |α|. One suh exeution will be assumedsuessful i� q|α| ∈ F is aepting. Whenever the notation allows we'll also usean alternative de�nition of automaton exeution, namely σ : [0, |α|] → Q. It issaid that A aepts (or reognizes) α, if there exists suessful exeution of Aover α.De�nition 3.4 (Language of FSA). Let A is a FSA. We de�ne the languageof A to be the set L(A) = {α|A recognizes α}.De�nition 3.5 (Equivalent Automata). Let A1,2 are two �nite state automata.We say that A1 is equivalent toA2 (and write A1 ≡ A2), i� L(A1) = L(A2).De�nition 3.6 (Normal form). Let A = 〈Σ, Q, S, F,∆〉 is a FSA. We say that
A is in normal form if for every transition 〈q1, a, q2〉 ∈ ∆ it is the ase that
q1 6∈ F and q2 6∈ S. Informally speaking, the normality of A onsists of the fatthat no transition leaves aepting or enters initial state.Proposition 3.1. For every FSA A, there exists an equivalent AN , whih isin normal form.Proof. Let A = 〈Σ, Q, S, F,∆〉 is a FSA. We'll onstrut AN from A, by remov-ing possible transitions whih spoil its normality: AN = 〈Σ, QN , SN , FN ,∆N 〉,where

QN = Q× {1} ∪ S × {2} ∪ F × {3}The other omponents of AN are SN = S × {2}, FN = F × {3}

∆N = {〈〈q1, 1〉, a, 〈q2, 1〉〉|〈q1, a, q2〉 ∈ ∆} ∪

{〈〈q1, 2〉, a, 〈q2, 1〉〉|〈q1, a, q2〉 ∈ ∆ & q1 ∈ S} ∪

{〈〈q1, 1〉, a, 〈q2, 3〉〉|〈q1, a, q2〉 ∈ ∆ & q2 ∈ F}8

AN is obviously in normal form. Let's show that it is equivalent to A.Let α ∈ L(A) and q0, q1, . . . q|α|−1, q|α| is a suessful exeution of A over
α. We'll verify that 〈q0, 2〉, 〈q1, 1〉, 〈q2, 1〉, . . . , 〈q|α|−1, 1〉, 〈q|α|, 3〉 is a suessfulexeution of AN over α. First, let's notie that 〈q0, 2〉 ∈ SN , beause q0 ∈ Sand 〈q|α|, 3〉 ∈ FN , beause q|α| ∈ F . It is lear by the onstrution of ∆Nthat 〈〈qi−1, 1〉, αi, 〈qi, 1〉〉 ∈ ∆N for i = 2 . . . |α| − 1, beause 〈qi−1, αi, qi〉 ∈ ∆for i = 2 . . . |α| − 1. It is lear that 〈q0, α0, q1〉 ∈ ∆ and q0 ∈ S, and thereforeby the de�nition of ∆N it is true that 〈〈q0, 2〉, α0, 〈q1, 1〉〉 ∈ ∆N . By analogy,
〈〈q|α|−1, 1〉, α|α|, 〈q|α|, 3〉〉 ∈ ∆N . Thus we showed that there exists a suessfulexeution of AN over α, i.e. α ∈ L(AN).The proof of in the other diretion is analogial. Therefore, we showed that
A ≡ AN .Theorem 3.1 (Kleene). For every regular expression E, there exists a FSA A,suh that L(A) = L(E).The automaton from Kleene's Theorem is not unique and there are manyonstrutions that build it diretly from E (for example [7℄). The partiularonstrution is not signi�ant to our purposes so whenever we need to onstruta FSA by a regular expression E , we'll write A(E) and will mean a FSA innormal form suh that L(A(E)) = L(E).De�nition 3.7 (Mirror FSA). Let A = 〈Σ, Q, S, F,∆〉 is a FSA. The FSA
Ã = 〈Σ, Q, F, S, ∆̃〉, where ∆̃ = {〈q2, a, q1〉|〈q1, a, q2〉 ∈ ∆} is said to be themirror FSA of A.Proposition 3.2. Let A = 〈Σ, Q, S, F,∆〉 is a FSA and Ã is its mirror FSA.Then for every α ∈ Σ∗, q0, q1, . . . q|α| is a suessful exeution of A i� q|α|, q|α|−1, . . . q0is a suessful exeution of Ã.Proof. Obvious by the de�nition of mirror automaton.It is a well-known fat that the lass of regular languages is losed underonatenation. In other words if the languages L1,2 are reognizable by (respe-tively) A1,2, there exists an automaton A, reognizing L1 · L2.We'll de�ne two onstrutions whih de�ne the onatenation of automataand have the speial property that every their exeution ontains as subexeu-tion an exeution of (respetively) the �rst or the seond automaton.De�nition 3.8 (Conatenation to the Left). Let Ai = 〈Σ, Qi, Si, Fi,∆i〉, for
i = 1, 2 are FSA and Q1 ∩Q2 = ∅. We say that A = 〈Σ, Q, S, F,∆〉 is the resultfrom onatenating of A1 to the left of A2 and we write A = A1 ·l A2, if:

• Q = Q1 ∪Q2

• S =

{
S1 ∪ S2 if S1 ∩ F1 6= ∅
S1 if S1 ∩ F1 = ∅

• F = F2 9

• ∆ = ∆1 ∪ ∆2 ∪ {〈q1, a, q2〉|(∃q∈F1
)(〈q1, a, q〉 ∈ ∆1) & q2 ∈ S2}In order to illustrate the onatenation to the left, let's again examine theexample from Fig. 1. It is notieable that every suessful exeution of the soonstruted automaton A1 ·l A2 ontains a suessful exeution of A2.

��
��

-

��
��

�
�3

Q
Qs

��
��
�
��

A1

a

b
��
��

��
��
�
��

-

A2

c-b

Figure 1: Conatenation to the leftProposition 3.3. Let A1,2 are FSA and A = A1 ·l A2. Then every suessfulexeution of A over a1a2 . . . an ∈ Σ∗ looks like
q0, . . . , qp−1, qp, . . . , qnwhere p ∈ [0, n], qp, . . . , qn is a suessful exeution of A2 over ap+1 . . . an andthere exists a state q ∈ F1, suh that q0, . . . , qp−1, q is a suessful exeution of

A1 over a1 . . . ap.Proof. Let q0, . . . , qn is some suessful exeution of A over a1a2 . . . an. It issuessful and therefore, qn is an aepting state, e.g. qn ∈ F = F2 (by de�nitionof the onatenation to the left). Let p ∈ [0, n] is the least index suh that
qp ∈ Q2 (it is ertain that suh a p exists, beause qn ∈ Q2). Now we notiethat for any i ∈ [p, n], qi ∈ Q2. This is true beause if it weren't we would beable to hoose i > p, suh that qi ∈ Q1 and it would follow that 〈qi−1, ai, qi〉 ∈ ∆,where qi−1 ∈ Q2, and qi ∈ Q1. By the onstrution of A, this is impossible.Therefore q0, . . . , qp−1 ∈ Q1, and qp, . . . , qn ∈ Q2. Now if p > 0, 〈qp−1, ap, qp〉 ∈
∆ and by the de�nition of ∆ it is lear that qp ∈ S2. On the other hand if p = 0,it would follow qp ∈ S2, beause q0, . . . , qn is an exeution of A. Following thesame reasoning we would dedue that 〈qi−1, ai, qi〉 ∈ ∆2 (for eah i ∈ [p+1, n]),and onsequently qp, . . . , qn is a suessful exeution of A2 over ap+1 . . . an.If p = 0, then a1 . . . ap = ǫ. By the de�nition of A and the fat that
q0 ∈ S ∩ S2 6= ∅, it follows that S1 ∩ F1 6= ∅. We hoose a state q ∈ S1 ∩ F1 andthus we show a suessful exeution of A1 over ǫ. Now let p > 0. Then q0 ∈ Q1,and from here it follows that q0 ∈ S1. Beause 〈qi−1, ai, qi〉 ∈ ∆ for i ∈ (0, p)and qi ∈ Q1 for i ∈ [0, p), it follows that 〈qi−1, ai, qi〉 ∈ ∆1 for i ∈ (0, p), andonsequently q0, . . . , qp−1 is an exeution of A1 over a1 . . . ap−1. Now by thede�nition of A it follows that there exists q ∈ F1, suh that 〈qp−1, ap, q〉 ∈ ∆1,and therefore q0, . . . , qp−1, q is a suessful exeution of A1 over a1 . . . ap.10

Proposition 3.4. Let A1,2 are FSA. Then L(A1 ·l A2) = L(A1) · L(A2).Proof. Let A1,2 = 〈Σ, Q1,2, S1,2, F1,2,∆1,2〉 and the onatenation of A1 to theleft of A2 is A = A1 ·l A2 = 〈Σ, Q, S, F,∆〉.Let α ∈ L(A). This means that there exists a suessful exeution q0, . . . , qnof A over α. Aording to Proposition 3.3 there exist suessful exeutionsof A1 over a1 . . . ap and of A2 over ap+1 . . . an. This means that (respetively)
a1 . . . ap ∈ L(A1) and ap+1 . . . an ∈ L(A2), and thereforeα = a1 . . . apap+1 . . . an ∈
L(A1) · L(A2).Conversely, α ∈ L(A1), and β ∈ L(A2). Then there exist suessful ex-eutions qi0 , . . . , qin

of A1 over α and qj0 , . . . , qjm
of A2 over β. Obviously

qi0 , . . . , qin−1
, qj0 , . . . , qjm

will be a suessful exeution of A over αβ, and there-fore αβ ∈ L(A). Thus we showed that L(A) = L(A1) · L(A2).By analogy with the operation onatenation to the left we de�ne its dual� onatenation to the right. We omit the proofs as they are no di�erent fromthe ones already shown.De�nition 3.9 (Conatenation to the Right). Let Ai = 〈Σ, Qi, Si, Fi,∆i〉, for
i = 1, 2 are FSA and Q1 ∩Q2 = ∅. We say that A = 〈Σ, Q, S, F,∆〉 is the resultfrom onatenating of A2 to the right of A1 and we write A = A1 ·r A2, if:

• Q = Q1 ∪Q2

• S = S1

• F =

{
F1 ∪ F2 if S2 ∩ F2 6= ∅
F2 if S2 ∩ F2 = ∅

• ∆ = ∆1 ∪ ∆2 ∪ {〈q1, a, q2〉|(∃q∈S2
)(〈q, a, q2〉 ∈ ∆2) & q1 ∈ F1}Proposition 3.5. Let A1,2 are FSA and A = A1 ·r A2. Then every suessfulexeution of A over a1a2 . . . an ∈ Σ∗ looks like

q0, . . . , qp, qp+1, . . . , qnwhere for some p ∈ [0, n], q0, . . . , qp is a suessful exeution of A1 over a1 . . . apand there exists a state q ∈ S2, suh that q, qp+1, . . . , qn is a suessful exeutionof A2 over ap+1 . . . an.Proposition 3.6. Let A1,2 are FSA. Then L(A1 ·r A2) = L(A1) · L(A2).
11

4 Deterministi Finite AutomataDe�nition 4.1. We all a �nite state automaton A = 〈Σ, Q, S, F,∆〉 determin-isti (DFA), if for every q1 ∈ Q and a ∈ Σ there exists at most one q2 ∈ Q, suhthat 〈q1, a, q2〉 ∈ ∆, and |S| = 1. In other words an automaton is said to be de-terministi if it has a single initial state and its transition relation is funtional.Beause of these properties we'll sometimes denote the deterministi automataas A = 〈Σ, Q, q0, F, δ〉, where q0 ∈ Q is an initial state, and δ : Q × Σ → Q istransition funtion.Constrution 4.1 (Determinization). Let A = 〈Σ, Q, S, F,∆〉 is a FSA. From
A we onstrut AD = 〈Σ, QD, SD, FD,∆D〉 by �rst onstruting in parallel thesequenes {Qi}∞i=0 and {∆i}∞i=0 (where Qi ⊆ 2Q, and ∆i ⊆ 2Q × Σ × 2Q)following this indutive sheme:

• Q0 = {S}, ∆0 = ∅

• Qi+1 = Qi ∪ {T |(∃T ′
∈Qi

)(∃a∈Σ)(T ′ ∆,a
−→ T)}

• ∆i+1 = ∆i ∪ {〈T ′, a, T 〉|T ′ ∈ Qi & T ′ ∆,a
−→ T }It is immediately seen that both sequenes are monotonously inreasing andtherefore onverge to their least upper bounds. We de�ne

• QD = ∪Qi

• SD = {S}

• FD = {T |T ∈ QD & T ∩ F 6= ∅}

• ∆D = ∪∆iWe say that AD is reeived from A by determinization.Lemma 4.1. Let A is FSA and AD is reeived from it by determinization(Constrution 4.1). Then AD is deterministi.Proof. We'll verify that the relation ∆D is funtional. Let's assume that thereexists T ′, T1, T2 ⊆ QD and a ∈ Σ, suh that 〈T ′, a, T1〉 ∈ ∆D, 〈T ′, a, T2〉 ∈ ∆Dand T1 6= T2. ∆D is the least upper bound of {∆i} and therefore there exists
n ≥ 0, suh that 〈T ′, a, T1〉 ∈ ∆n and 〈T ′, a, T2〉 ∈ ∆n, and it follows (bythe de�nition of the sequene) that T ′ ∆,a

−→ T1 and T ′ ∆,a
−→ T2. In other words

T1 = {q|(∃q′∈T ′)(〈q′, a, q〉 ∈ ∆)} = T2. Whih is a ontradition and that's howwe showed that ∆D is funtional relation.Clearly |SD| = |{S}| = 1 and �nally AD is deterministi.We denote the initial state of AD with qD
0 = QD, and the transition funtionwith δD : QD × Σ −→ QD (de�ned by its graph ∆D).Lemma 4.2. Let A is a FSA, α ∈ Σ∗ and q0, q1, . . . , q|α| is an exeution of Aover α. Let AD is reeived from A by determinization. Then there exists anexeution of AD: T0, T1, . . . , T|α|, suh that qi ∈ Ti for eah i = 0, 1, . . . , |α|.12

Proof. The proof goes by indution on the length of α.
• |α| = 0. From α = ǫ it follows that the exeution of A ontains a singlestate q0 ∈ S. The searhed exeution of AD also has a single state T0 =
qD
0 = S. Obviously q0 ∈ T0.

• |α| > 0. Let α = α′a. By indution hypothesis the lemma should holdfor α′, and therefore there exists an exeution T0, T1, . . . , T|α′| of AD over
α′, for whih qi ∈ Ti for every i = 0, . . . , |α′|. As |α′| = |α| − 1 and
q0, q1, . . . , q|α|−1, q|α| is an exeution of A over α′a, it should be true that
〈q|α′|, a, qα〉 ∈ ∆. Consequently, if T|α′|

∆,a
−→ T , then q|α| ∈ T . Let's nowtake from the onstrution of AD the least i ≥ 0, suh that T|α′| ∈ Qi(we are ertain suh exeution exists beause T|α′| ∈ ∪Qi). Then onthe next step of the onstrution Qi+1 = Qi ∪ {T |(∃T ′

∈Qi
)(∃a∈Σ)(T ′ ∆,a

−→

T)}, and beause T|α′| ∈ Qi and T|α′|
∆,a
−→ T , it follows that T ∈ Qi+1.Analogially we show that 〈T|α′|, a, T 〉 ∈ ∆i+1. Therefore δD(T|α′|, a) = Tand T0, T1, . . . , T|α′|, T is an exeution of AD over α omplying with therequirements.Lemma 4.3. Let A is a FSA and AD is reeived from it by determinization.Let α ∈ Σ∗, T0, T1, . . . , T|α| is an exeution of AD and q ∈ T|α|. There exists anexeution of A � q0, q1, . . . , q|α| = q, suh that qi ∈ Ti for every i = 0, 1, . . . , |α|.Proof. The proof again follows indution on the length of α.

• |α| = 0. As α = ǫ, the exeution of AD is a sequene of a single state
T0 = qD

0 = S. The sequene of the single state q omplies with therequirements beause q ∈ T0 = S.
• |α| > 0. Let α = α′a. As T0, T1, . . . , T|α′|, T|α| is an exeution of AD,it follows that 〈T|α′|, a, T|α|〉 ∈ ∆D, and therefore 〈T|α′|, a, T|α|〉 ∈ ∆n forsome n ≥ 0 (∆D is the least upper bound of the sequene {∆i}∞i=0). Let
m < n is the largest index suh that 〈T|α′|, a, T|α|〉 6∈ ∆m. Then on step
m+1 of the onstrution, this triple was added to ∆m+1, beause T|α′|

∆,a
−→

T|α|. Now beause q ∈ T|α|, there is q′ ∈ T|α′|, suh that 〈q′, a, q〉 ∈ ∆.By the indution hypothesis the lemma holds for |α′|, whih implies thatthere exists an exeution q0, q1, . . . , q
′ of A over α′, omplying with therequirements. We append q and reeive the exeution of A over α we werelooking for.Proposition 4.1. Let A is a FSA and AD is reeived from it by determiniza-tion. Then A and AD are equivalent. 13

Proof. Let α ∈ L(A). Then there exists a suessful exeution q0, q1, . . . , q|α| ∈
F of A over α. Aording to Lemma 4.2 there exists an exeution T0, T1, . . . , T|α|of AD, suh that qi ∈ Ti for i ∈ [0, |α|]. On the other hand q|α| ∈ T|α| and
T|α| ∩ F 6= ∅, and therefore T|α| ∈ FD, e.g. AD has a suessful exeution over
α e.g. α ∈ L(AD).Conversely, let α ∈ L(AD). This means that there exists a suessful exeu-tion T0, T1, . . . , T|α| of AD over α. On the other hand T|α| ∈ FD and that's why
T|α|∩F 6= ∅, e.g. there exists q ∈ T|α| whih is a �nal state of A. Using Lemma4.3 we onlude that there is an exeution q0, q1, . . . , q of A over α, whih showsto be suessful (q ∈ F) and it follows that α ∈ L(A).Corollary 4.1. For every FSA A there exists a DFA AD, suh that L(A) =
L(AD).

14

5 BimahinesDe�nition 5.1. We de�ne a bimahine as
B = 〈AL,AR, ψ〉where AL,R = 〈Σ, QL,R, qL,R, δL,R〉 are deterministi �nite state automata with-out any aepting states (respetively left and right), and ψ : QL×Σ×QR → Σ∗is an output funtion.The bimahines are abstrat mahines whih work over input word (bidire-tionally) and produe an output word based on exeutions of their automataand the input word. Their operational semantis is de�ned by the transitivelosure of ψ, ψ∗ : QL × Σ∗ ×QR → Σ∗, de�ned as follows

• ψ∗(q1, ǫ, q2) = ǫ

• ψ∗(q1, aα, q2) = ψ(q1, a, δ
∗
R(q2, α̃)) · ψ∗(δL(q1, a), α, q2)Based on the funtional nature of the bimahines we'll often use the B : Σ∗ →

Σ∗ notation, in whih for any α ∈ Σ∗ we de�ne as B(α) = ψ∗(qL, α, qR). We'llsay that for any partiular word α ∈ Σ∗ over the bimahine's input alphabet,
B(α) is the result from B's exeution over α.Behind this long de�nition of bimahine's exeution result lies an intuitivelysimple strategy. We might assume that the bimahine reads its input wordand for any harater outputs a word over its alphabet. The result from thebimahine's exeution is the onatenation of all output words. On every stepthe output funtion deides on its output aording to the urrent haraterand the two states whih would have been reahed respetively by the left andright automata exatly before they onsume this same harater.
j j j j j j- - - - -L L L L L L j j j j j j j j j j� � � � � � � � �R R R R R R R R R R

B

Figure 2: Exeution of a bimahineIt beomes lear that the so de�ned bimahines work only over their inputword. Let's examine a modi�ed version of this strategy whih only di�ers in theoperational semantis used.De�nition 5.2. (Left) Output-driven bimahine is
B = 〈AL,AR, ψ〉where AL,R are again DFA, ψ is an output funtion and the operational seman-tis B of the bimahine is de�ned as B(α) = ψ∗∗(qL, α, qR), where15

• ψ∗∗(q1, ǫ, q2) = ǫ

• ψ∗∗(q1, aα, q2) = ψ(q1, a, δ
∗
R(q2, α̃)) · ψ∗∗(δ∗L(q1, ψ(q1, a, δ

∗
R(q2, α̃))), α, q2)An important property of the output-driven bimahines is the fat that theirleft automaton doesn't read the input word diretly but the output produedby the output funtion instead. Absolutely symmetrially one might de�ne aright output-driven bimahine.Now we proeed to demonstrate that every output-driven bimahine an besimulated by an equivalent lassial one (working purely over its input).Constrution 5.1. Let B is an output-driven bimahine. We de�ne a FSA

AN
L = 〈Σ, QL ×QR, {qL} ×QR,∆L〉where the transition relation is de�ned as follows:

〈〈p1, q1〉, a, 〈p2, q2〉〉 ∈ ∆L ⇐⇒ δR(q2, a) = q1 & δ∗L(p1, ψ(p1, a, q2)) = p2Now we onstrut the left DFA A′
L by determinizing AN

L (Constrution 4.1). Wetake A′
R = AR for right DFA of the bimahine and de�ne the output funtion

ψ′ : Q′
L × Σ ×Q′

R as follows:
ψ′(L, a, r) = β ⇐⇒ (∃〈p, q〉 ∈ L)(δR(r, a) = q & ψ(p, a, r) = β)Thus we ompleted the onstrution of B′ = 〈A′

L,A
′
R, ψ

′〉.In order to be sure that B′ is a lassial bimahine, equivalent to B, we should�rst hek that it is orretly de�ned and that for any α ∈ Σ∗, B′(α) = B(α).The orretness proof requires only to show that ψ′ is atually a funtion.Proposition 5.1. Let L ∈ Q′
L is a state of A′

L and 〈pk, qk〉 ∈ L(k = 1, 2).Then q1 = q2 → p1 = p2Proof. Let Q′
L = ∪Qi is the least upper bound of the sequene {Qi}∞i=0 fromConstrution 4.1. We demonstrate a proof based on omplete indution on theleast index i, suh that L ∈ Qi (i exists beause Q′

L is the least upper bound ofthe sequene).
i = 0 Obviously p1 = p2 = qL, beause L = {qL} ×QR.
i+ 1 Let i + 1 is the least index suh that L ∈ Qi+1. Then (from Con-strution 4.1) there exists L′ ∈ Qi, suh that δ′L(L′, a) = L for some

a ∈ Σ. Let 〈pk, qk〉 ∈ L. Hene there exist 〈p′k, q
′
k〉 ∈ L′, suh that

〈〈p′k, q
′
k〉, a, 〈pk, qk〉〉 ∈ ∆L (for k = 1, 2). Now let's assume that q1 = q2.Therefore q′1 = δR(q1, a) = δR(q2, a) = q′2. Let i′ < i + 1 is the leastindex suh that L′ ∈ Qi′ . From the indution hypothesis for i′ we deduethat p′1 = p′2. Finally, p1 = δ∗L(p′1, ψ(p′1, a, q1)) = δ∗L(p′2, ψ(p′2, a, q2)) = p2,whih is what we wanted to show.16

Corollary 5.1. ψ′ is orretly de�ned funtionProof. Let's assume that ψ′(L, a, r) = β1,2. By the de�nition of ψ′ it wouldfollow that there exist 〈pi, qi〉 ∈ L for i = 1, 2, suh that δR(r, a) = qi, andadditionally ψ(pi, a, r) = βi. But then q1 = δR(r, a) = q2 and from Proposition5.1 it follows that p1 = p2. This leads us to the fat that β1 = ψ(p1, a, r) =
ψ(p2, a, r) = β2. Thus, we showed that ψ′ is orretly de�ned funtion.It remains to show that the onstruted lassial bimahine is equivalent tothe output-driven bimahine.Proposition 5.2. Let t = αβ ∈ Σ∗, δ′∗L (q′L, α) = L. Then

〈δ∗L(qL, ψ
∗∗(qL, α, δ

∗
R(qR, β̃))), δ∗R(qR, β̃)〉 ∈ LProof. The proof uses a simple indution on α.

α = ǫ When α = ǫ, by the de�nition of ψ∗∗ we have that ψ∗∗(qL, α, δ
∗
R(qR, β̃)) =

ǫ therefore δ∗L(qL, ψ
∗∗(qL, α, δ

∗
R(qR, β̃))) = qL. Now L = q′L = {qL} ×QRhene 〈qL, δ∗R(qR, β̃)〉 ∈ L.

α = α1a Let's assume that the proposition is true for α1 and examine the α =
α1a ase. Let δ∗L(qL, ψ

∗∗(qL, α1, δ
∗
R(qR, β̃))) = p1, δ∗R(qR, β̃) = r, and

δ∗R(r, a) = r1. By indution hypothesis we might dedue that 〈p1, r1〉 ∈ L′.On the other hand L = δ′L(L′, a), and beause δR(r, a) = r1 we showthat 〈〈p1, r1〉, a, 〈δ∗L(p1, ψ(p1, a, r)), r〉〉 ∈ ∆L. Hene (by Constrution4.1) it follows that 〈δ∗L(p1, ψ(p1, a, r)), r〉 ∈ L. Now by the de�nition of
ψ∗∗, δ∗L(p1, ψ(p1, a, r)) = δ∗L(qL, ψ

∗∗(qL, α, δ
∗
R(qR, β̃))), whih proves theproposition.Corollary 5.2. For any α ∈ Σ∗, B(α) = B′(α)Proof. Let's start with the ase when α = ǫ. By the de�nitions of ψ and ψ′ itfollows that B(α) = ψ∗∗(qL, ǫ, qR) = ǫ = ψ′∗(q′L, α, q
′
R) = B′(α).If α = a1a2 . . . an we should prove that for i = 1, 2, . . . , n and r = δ∗R(qR, anan−1 . . . ai+1)

ψ(δ∗L(qL, ψ
∗∗(qL, a1a2 . . . ai−1, δR(r, ai))), ai, r) = ψ′(δ′∗L (q′L, a1a2 . . . ai−1), ai, r)But this is exatly the ase beause aording to the already proven Proposition5.2 and the de�nition of ψ′:

〈δ∗L(qL, ψ
∗∗(qL, a1a2 . . . ai−1, δR(r, ai))), δR(r, ai)〉 ∈ δ′∗L (q′L, a1a2 . . . ai−1)This is how we showed that in every position of the input word B and B′output equal results. Hene B(α) = B′(α).17

6 Diret ConstrutionLet E → β / L_R is a ontext-sensitive rewrite rule over �nite alphabet Σ. Weonstrut the �nite automata AL, AE and AR, suh that
AL = A(Σ∗L) = 〈Σ, QL, SL, FL,∆L〉 , L(AL) = L(Σ∗L)
AE = A(E) = 〈Σ, QE , SE , FE ,∆E〉 , L(AE) = L(E)
AR = A(RΣ∗) = 〈Σ, QR, SR, FR,∆R〉 , L(AR) = L(RΣ∗)Even though we haven't �xed a partiular onstrution of FSA from regularexpression we assume the impliit requirement that AL, AE and AR are innormal form.

AL

1 2 3
x

xΣ

Σ

AR

8 9 10
z

Σz

Σ

AE

4 56 7
z

y

y

x

Figure 3: Finite automata in normal form onstruted respetively from theregular expressions Σ∗x, xy|yz and zΣ∗After we onstruted AL, AE and AR, we onatenate them to obtain
A = 〈Σ, Q, S, F,∆〉 = AL ·l AL ·r AR1 2 4 56 7 9 10

x

Σ

Σ

x
x y

y z

z

z

Σ

ΣFigure 4: Finite automaton obtained by the onatenation A = AL ·l AE ·r AR,from the rewrite rule xy|yz → ǫ / x_z from Example 2.2From the properties of the FSA's normal form and the onatenation to theleft/right we an dedue the followingProperty 6.1. Every suessful exeution of A over t ∈ Σ∗ is of the type
ql0 , ql1 , . . . , ql|u|−1

, qe0
, qe1

, . . . , qe|v|
, qr1

, qr2
, . . . , qr|w|where 〈u, v, w〉 ∈ C(t;L,E,R), qe0

∈ SE , qe|v|
∈ FE , qei

∈ QE − SE − FEfor every i ∈ (0, |v|), qli ∈ QL for every i ∈ [0, |u|), qri
∈ QR − SR − FR forevery i ∈ (|uv|, |uvw|), and qr|uvw|

∈ FR. We'll all suh an exeution of A �an exeution for the ontext 〈u, v, w〉. We denote X (t;L,E,R) = {σ|σ is anexeution for some 〈u, v, w〉 ∈ C(t;L,E,R)}18

Property 6.2. For every ontext 〈u, v, w〉 ∈ C(t;L,E,R) there exists and exe-ution σ ∈ X (t;L,E,R) for 〈u, v, w〉.We'll denote Xv(t;L,E,R) = {σ|σ is an exeution for some 〈u, v, w〉 ∈
Cv(t;L,E,R)}In order to onstrut the lassial bimahine in question, we �rst onstrutan output-driven bimahine B = 〈AL,AR, ψ〉, working only over its output. Itwill resolve any possible ontext ambiguities.6.1 The Left AutomatonWe extend the input alphabet Σ into Σc = Σ∪{ac|a ∈ Σ}. Informally speaking,
Σc extends Σ by adding a loned version of every harater in Σ. In order toonstrut the left automaton we �rst de�ne

AN
1 = 〈Σc, Q, S, F,∆N

1 〉where ∆N
1 = ∆ ∪ {〈q1, ac, q2〉|〈q1, a, q2〉 ∈ ∆ & q2 6∈ SE} −Q× Σc ×QR.

PSfrag replaements
1 2

3
4 56 7

x

x

Σc

Σc
x, xc y, yc

y, yc z, zcFigure 5: Non-deterministi version AN
1 of the left automaton A1, onstrutedfrom the rewrite rule xy|yz → ǫ / x_zIntuitively, AN

1 behaves exatly as AL ·l AE with the only di�erene thatwhenever a loned harater is onsumed no transitions into initial states of AEare allowed. Thus, no exeutions are possible for ontexts, whose fous is aboutto be proessed. On the other hand, the output funtion of the bimahine willbe responsible to output loned haraters only when fouses of valid ontextsare proessed.We then determinize AN
1 (Constrution 4.1) and reeive the left automaton

A1 of the bimahine.6.2 The Right AutomatonWe �rst reverse A to reeive its mirror AN
2 = Ã. Then we onstrut the rightautomaton A2 of the bimahine by determinizing AN

2 (Constrution 4.1).6.3 The Output FuntionThe output funtion ψ of the bimahine B is de�ned as follows:
ψ(L, a,R) =

{
ac if δ1(L, a) ∩R ∩ (QE − SE − FE) 6= ∅
a if δ1(L, a) ∩R ∩ (QE − SE − FE) = ∅19

PSfrag replaements
{1} {2} {2,4} {2,5}{2,6}

{2,4,5} {2,6,7}{2,7}x

x

x

x

x

xx

x

Σc − x

Σc − x

xc

xc

y, yc

y, yc

y, yc

z, zc

z, zc

Figure 6: Deterministi A1 onstruted from AN
1 of Figure 5. For greaterreadability in the above example we have omitted transitions from every statewith every harater in Σc to {2}This �nishes the de�nition of B = 〈AL,AR, ψ〉 - an output-driven bimahine.Before we �nish the onstrution of a bimahine for ontext-sensitive rewriterule, let's show several interesting properties of B.Lemma 6.1. Let t = αβ, δ∗2(q2, β̃) = R and δ∗1(q1, ψ

∗∗(q1, α,R)) = L. Also let
σ is an exeution of A over α, suh that σ(|α|) ∈ QL. Then σ(|α|) ∈ L.Proof. Indution on the length of α.
α = ǫ It is obvious that L = δ∗1(q1, ψ

∗∗(q1, ǫ, R)) = δ∗1(q1, ǫ) = q1 = S. Hene
σ(|α|) = σ(0) ∈ S = L.

α = α′a Sine σ(|α|) ∈ QL and beause of Property 6.1 we might assert that
σ(|α′|) ∈ QL. Let's denote R′ = δ2(R, a) and L′ = δ∗1(q1, ψ

∗∗(q1, α
′, R)).Then by the indution hypothesis it follows that σ(|α′|) ∈ L′. As σ is anexeution of A, it is true that 〈σ(|α′|), a, σ(|α|)〉 ∈ ∆. It remains to notethat L = δ∗1(L′, ψ(L′, a, R)), moreover σ(|α|) 6∈ SE ∪ QR and from thede�nition of δ1 we may onlude that σ(|α|) ∈ L.Lemma 6.2. Let t = αβ and δ∗2(q2, β̃) = R and δ∗1(q1, ψ

∗∗(q1, α,R)) = L. Thenif q ∈ L then there exists σ � an exeution of A over α, suh that σ(|α|) = q.Proof. Indution on α: 20

PSfrag replaements {10} {9} {9,7} {9,7,6}
{9,5} {9,4}{9,5,4}x

x

y

y

z

z

z

z

z
z

z

Σ − z

Σ − zFigure 7: The right automaton AR onstruted from the rewrite rule xy|yz →
ǫ / x_y. For simpliity transitions going into {9} have been omitted

L0 L1 L2 L3 L4 L5 L6 L7{1} {2} {2,4} {2,4,5} {2,5} {2,6} {2,6,7} {2,7}
R0 {10} ·/· ·/· ·/· ·/· ·/· ·/· ·/· ·/·
R1 {9} ·/· ·/· ·/· ·/· ·/· ·/· ·/· ·/·
R2 {9,7} ·/· ·/· ·/· ·/· ·/· ·/· ·/· ·/·
R3 {9,5} ·/· ·/· x/xc x/xc ·/· ·/· ·/· ·/·
R4 {9,7,6} ·/· ·/· y/yc y/yc ·/· ·/· ·/· ·/·
R5 {9,4} ·/· ·/· ·/· ·/· ·/· ·/· ·/· ·/·
R6 {9,5,4} ·/· ·/· ·/· ·/· ·/· ·/· ·/· ·/·Figure 8: The output funtion of B from the rewrite rule xy|yz → ǫ / x_z.Only non-trivial rewritings have been shown

α = ǫ Then L = q1 = S. Now if q ∈ L we examine an exeution σ onsisting ofa single state q. σ is obviously an exeution of A and σ(|α|) = q.
α = α′a Let δ2(R, a) = R′ and δ∗1(q1, ψ

∗∗(q1, α
′, R′)) = L′. Now L = δ∗1(L′, ψ(L′, a, R)).We notie that ψ(L′, a, R) ∈ {a, ac}, and therefore L = δ1(L

′, ψ(L′, a, R)).Let q ∈ L. There exists q′ ∈ L′, suh that 〈q′, ψ(L′, a, R), q〉 ∈ ∆N
1 , heneby the de�nition of ∆N

1 it follows that 〈q′, a, q〉 ∈ ∆. By the indutionhypothesis it follows that there exists σ′ � an exeution of A over α′, suhthat σ′(|α′|) = q′. We de�ne
σ(i) =

{
σ′(i) i ≤ |α′|
q i = |α|It is easily shown that σ′ is exatly the wanted exeution of A over α.21

Proposition 6.1. Let t = αβ ∈ Σ∗, δ∗2(q2, β̃) = R, and δ∗1(q1, ψ
∗∗(q1, α,R)) =

L. Then for every q∈QE
, q ∈ L ∩R i� (∃σ∈Xv

)(σ(|α|) = q).Proof. Before we proeed with the atual proof, let's verify that the propositionmight be redued to those q ∈ QE for whih there exists an exeution σ ∈ X ,suh that σ(|α|) = q. Indeed, if q ∈ L ∩ R, then q ∈ L and by Lemma 6.2 anexeution σL of A over α would exist, suh that σL(|α|) = q. On the other hand
q ∈ R hene by Lemma 4.3 there exists an exeution σR of Ã over β̃, suh that
σR(|β|) = q. Then σ, de�ned as follows:

σ(i) =

{
σL(i) i ≤ |α|
σR(|t| − i) i > |α|is a suessful exeution of A and therefore σ ∈ X .The proof in the opposite diretion is obvious beause Xv ⊆ X .Let us now de�ne the set

A = {〈α, q〉|α ⊆ t & q ∈ QE & (∃σ∈X)(σ(|α|) = q)}and a relation "≺" in A, suh that
〈α1, q1〉 ≺ 〈α2, q2〉 ⇐⇒ α1 ⊂ α2 ∨ α1 = α2 & q1 ∈ (QE − SE) & q2 ∈ SEThis is a partial ordering of A whih turns A into a well-founded set.We proof the proposition by indution on the struture of A. Let's �x anelement 〈α, q〉 ∈ A and assume that for any preeding element 〈α′, q′〉 ∈ A(〈α′, q′〉 ≺ 〈α, q〉) the proposition is valid. We show that it remains valid for

〈α, q〉.
α = ǫ ⇒ Let q ∈ L∩R. But α = ǫ, therefore q = σ(|α|) = σ(0) ∈ S ∩QE , andhene q ∈ SE . This means that there exists a ontext 〈ǫ, v, w〉 ∈ Cand σ is an exeution for it. But 〈ǫ, v, w〉 ∈ C1 (by the onstrutionof Cv), and therefore 〈ǫ, v, w〉 ∈ Cv, and σ ∈ Xv.

⇐ Let σ ∈ Xv. Then q = σ(|α|) = σ(0) ∈ S = q1 = L. On theother hand σ̃ is an exeution of Ã and aording to Lemma 4.2 q ∈
δ∗2(q2, β̃) = R, whih leads us to q ∈ L ∩R.

α = α′a Let's denote R′ = δ2(R, a), L′ = δ∗1(q1, ψ
∗∗(q1, α

′, R′)).
⇒ Let q ∈ L ∩R. We have two options for q:

q ∈ QE − SE Then (by Constrution 4.1) there exists q′ ∈ L′, suh that 〈q′, a, q〉 ∈
∆ and hene q′ ∈ δ2(R, a) = R′. By property 6.1 we may assertthat q′ ∈ QE hene q′ ∈ L′ ∩R′ ∩QE. The indution hypothesisfor 〈α′, q′〉 states that σ′ ∈ Xv and σ′(|α′|) = q′. As q ∈ R thereexists an exeution σR of Ã over β̃, suh that σR(0) ∈ F and22

σ(|β̃|) = q (Lemma 4.3). Now we may de�ne σ � a suessfulexeution of A as follows:
σ(i) =

{
σ′(i) if i < |α|
σR(|t| − i) if i ≥ |α|It is easily seen that if σ′ was an exeution for 〈u0, v0, w0〉 ∈ Cvthen σ is an exeution for 〈u0, v, w〉 ∈ C. Now from Proposition2.4 it follows that 〈u0, v, w〉 ∈ Cv is also a valid ontext, e.g.

σ ∈ Xv.
q ∈ SE The �rst fat, we immediately notie is that ψ(L′, a, R) 6∈ (Σc −

Σ) (this is true beause if it weren't one ould possibly havestated that L ∩ SE = ∅). As a diret onsequene from thede�nition of ψ it follows that L∩R∩ (QE −SE −FE) = ∅. Nowlet σ ∈ X is suh that σ(|α|) = q, and this is an exeution for theontext 〈u, v, w〉 ∈ C. We show that this ontext is a valid one(〈u, v, w〉 ∈ Cv). Indeed, let's assume that 〈u, v, w〉 6∈ Cv. Thenthere ertainly exists 〈u′, v′, w′〉 ∈ Cv, suh that u′ ⊂ u ⊂ u′v′(Proposition 2.3), and therefore there is an exeution σ′ ∈ Xvfor 〈u′, v′, w′〉, suh that σ′(|α|) ∈ QE − SE − FE (Property6.1). Then 〈α, σ′(|α|)〉 ≺ 〈α, q〉 and by the indution hypothesis
σ′(|α|) ∈ L ∩R, whih leads us to L∩R ∩ (QE − SE − FE) 6= ∅,whih is a ontradition with our assumption that 〈u, v, w〉 6∈ Cv.Therefore σ ∈ Xv.

⇐ Let σ ∈ Xv and σ(|α|) = q. As σ is a suessful exeution of Aover αβ, there should exist another exeution σR of Ã over β̃ and
σR(|β|) = q. This means that q ∈ R (Lemma 4.2). It only remainsto show that q ∈ L.We again examine two ases:

q ∈ QE − SE From Property 6.1 it follows that σ(|α′|) ∈ QE and then byindution hypothesis one might dedue that σ(|α′|) ∈ L′ ∩ R′.Sine q 6∈ SE ∪QR whatever the value of ψ(L′, a, R) is we'll have
q ∈ δ1(L

′, ψ(L′, a, R)) = L.
q ∈ SE Having in mind how the exeutions of A look like (Property6.1) we have that σ(|α′|) ∈ QL. Then by Lemma 6.1, σ(|α′|) ∈

L′. Let's assume that q 6∈ L. This ould only be possible if
ψ(L′, a, R) = ac whih on the other hand an happen only if
δ1(L

′, a)∩R∩(QE −SE −FE) 6= ∅. Let q0 is an evidene for that(q0 ∈ δ1(L
′, a)∩R∩ (QE −SE −FE)). Therefore q0 ∈ L∩R and

q0 ∈ (QE − SE − FE). Sine 〈α, q0〉 ≺ 〈α, q〉 we an apply theindution hypothesis for 〈α, q0〉 and onlude that there exists
σ0 ∈ Xv, suh that σ0(|α|) = q0. From Property 6.1 and the fatthat q0 ∈ (QE − SE − FE), we dedue that〈u0, v0, w0〉 ∈ Cv and
u0 ⊂ α ⊂ u0v0. But if σ is an exeution for 〈u, v, w〉 ∈ Cv iteasily seen that α = u hene 〈u, v, w〉 6∈ Cv (there exists a valid23

ontext overlapping it and Proposition 2.2). This ontradits ourassumption that q 6∈ L. Thus we proved that q ∈ L ∩R.6.4 Bimahine For Context-Sensitive Rewrite RuleFinally, we onstrut BI � a lassial bimahine, working over its input, equiv-alent to B. Based on BI = 〈AI
1,A

I
2, ψ

I〉 we onstrut the �nal bimahine for
E → β / L_R:

B′ = 〈A′
1,A

′
2, ψ

′〉where A′
1 = AI

1, A′
2 = AI

2, and the only di�erene with BI is the output funtion
ψ′, de�ned as follows

ψ′(L, a,R) = ψ′
1(L, a,R) · ψ′

2(L, a,R)where
ψ′

1(L, a,R) =

ǫ if 〈L′, δ′2(R, a)〉 ∈ L & L′ ∩ δ′2(R, a) ∩ (QE − SE − FE) 6= ∅
β if 〈L′, δ′2(R, a)〉 ∈ L & L′ ∩ δ′2(R, a) ∩ (SE − FE) 6= ∅
βa if 〈L′, δ′2(R, a)〉 ∈ L & L′ ∩ δ′2(R, a) ∩ (SE ∩ FE) 6= ∅
a otherwise

ψ′
2(L, a,R) =

{
β if 〈L′, R〉 ∈ δ′1(L, a) & L′ ∩R ∩ SE 6= ∅ & R = q′2
ǫ otherwiseLemma 6.3. Let t = αβ ∈ Σ∗, δ′∗1 (q′1, α) = L, δ′∗2 (q′2, β̃) = R′. Then 〈L′, R′〉 ∈

L and q ∈ L′ ∩ R′ ∩QE i� there exists a ontext 〈u, v, w〉 ∈ Cv(t;L,E,R) andexeution for it σ ∈ Xv(t;L,E,R), suh that σ(|α|) = q.Proof. Let 〈L′, R′〉 ∈ L and q ∈ L′ ∩R′ ∩QE . Then from Propositions 5.1 and5.2 it immediately follows that R′ = δ∗2(q2, β̃) and L′ = δ∗1(q1, ψ
∗∗(q1, α,R

′)).Now sine q ∈ L′ ∩ R′ ∩ QE, from Proposition 6.1 we may dedue that thereexists a valid ontext 〈u, v, w〉 ∈ Cv and exeution for it σ ∈ Xv, suh that
σ(|α|) = q.The proof is analogial in the opposite diretion.Now we are ready to show that the so onstruted bimahine atually worksas expeted, namely realizes substitution aording to the ontext-sensitiverewrite rule E → β / L_R.Proposition 6.2. Let E → β / L_R is a rewrite rule and B′ is the bimahineonstruted from it. Let also α ∈ Σ∗ is a word over the rule's alphabet Σ. Then
B′(α) is exatly the result from the appliation of the ontext rule over α.

24

PSfrag replaements
L′

0

L′
1

L′
2

L′
3

L′
4

L′
5

L′
6

L′
7

x

x

x

x

x

x

x

x

x

y

y

y

z

z

z

z

y, z

y, z

y, z

y, z

Figure 9: The left automaton of B′ for the rule xy|yz → β / x_z. Inomingtransitions of L′
0 have been omitted for brevityProof. In the ase when α = ǫ, by De�nition 2.6 the result from the appliationof E → β / L_R is exatly ǫ = B′(α).Let α = a1a2 . . . an where ai ∈ Σ for 1 ≤ i ≤ n. Let (ω1π1)·(ω2π2) . . .·(ωnπn)is the result from applying the rule de�ned by De�nition 2.6. We'll show thatfor any i ∈ [1, n] if δ′∗1 (q′1, a1a2 . . . ai−1) = L and δ′∗2 (q′2, anan−1 . . . ai+1) = Rthen ψ′

1(L, ai, R) = ωi and ψ′
2(L, ai, R) = πi.Aording to ψ′

1's de�nition four ases have to be examined:
I ase Assume that 〈L′, δ′2(R, a)〉 ∈ L & L′∩δ′2(R, a)∩(QE−SE−FE) 6= ∅. Thenby Lemma 6.3 there exists a valid ontext 〈u, v, w〉 ∈ Cv and exeution forit σ ∈ Xv, suh that σ(i− 1) ∈ (QE −SE −FE). Based on the type of theexeutions of A (Property 6.1) we dedue that |u| < i − 1 < |uv|. This(aording to De�nition 2.6) means that ωi = ǫ.
II ase Assume that 〈L′, δ′2(R, a)〉 ∈ L & L′ ∩ δ′2(R, a) ∩ (SE − FE) 6= ∅. Thenby Lemma 6.3 there exists a valid ontext 〈u, v, w〉 ∈ Cv and exeutionfor it σ ∈ Xv, suh that σ(i − 1) ∈ (SE − FE). Based on the type of theexeutions of A (Property 6.1) we dedue that |u| = i − 1 < |uv|. This(aording to De�nition 2.6) means that ωi = β.
III ase Assume that 〈L′, δ′2(R, a)〉 ∈ L & L′ ∩ δ′2(R, a) ∩ (SE ∩ FE) 6= ∅. Then by25

L′
0 L′

1 L′
2 L′

3 L′
4 L′

5 L′
6 L′

7

R′
0 ·/· ·/· ·/· ·/· ·/· ·/· ·/· ·/·

R′
1 ·/· ·/· ·/· ·/· ·/· ·/· ·/· ·/·

R′
2 ·/· ·/· ·/· z/ǫ y/ǫ ·/· ·/· ·/·

R′
3 ·/· ·/· x/β ·/· x/β ·/· ·/· ·/·

R′
4 ·/· ·/· y/β z/ǫ y/ǫ ·/· ·/· ·/·

R′
5 ·/· ·/· ·/· ·/· ·/· ·/· ·/· ·/·

R′
6 ·/· ·/· x/β ·/· x/β ·/· ·/· ·/·Figure 10: Output funtion of B′ for the rewrite rule xy|yz → β / x_zLemma 6.3 there exists a valid ontext 〈u, v, w〉 ∈ Cv and exeution for it

σ ∈ Xv, suh that σ(i− 1) ∈ (SE ∩ FE). Based on the type of exeutionsof A (Property 6.1) we dedue that |u| = i − 1. Sine haven't fallen intoase II it follows that there doesn't exists 〈u, v, w〉 ∈ Cv, suh that |v| 6= ǫand therefore (by De�nition 2.6) ωi = βai.
IV ase Being here means we didn't fall into any of the above ases. Now let'sassume there exists 〈u, v, w〉 ∈ Cv, suh that |u| ≤ i − 1 < |uv| or |u| =

i − 1 = |uv|. Then there exists an exeution for it σ ∈ Xv, suh that
σ(i − 1) ∈ QE − FE or σ(|i − 1|) ∈ SE ∩ FE . Then (by Lemma 6.3)
〈L′, δ′2(R, a)〉 ∈ L and σ(i − 1) ∈ L′ ∩ δ′2(R, a) ∩ QE − FE or σ(i − 1) ∈
L′ ∩ δ′2(R, a) ∩ SE ∩ FE , whih ontradits to the fat that we didn't fallinto any of the above ases. Thus we onlude that ωi = ai.We showed that ψ′

1(L, ai, R) = ωi for i = 1, 2, . . . , n. It remains to showthat ψ′
2(L, ai, R) = πi for any i = 1, 2, . . . , n.Let ψ′

2(L, ai, R) = β. Then 〈L′, R〉 ∈ δ′1(L, a) and L′∩R∩SE 6= ∅. Aordingto Lemma 6.3 there will exist 〈u, v, w〉 ∈ Cv and exeution for it σ ∈ Xv, suhthat σ(i) ∈ SE . On the other hand R = q′2 and beause of A's normal form itfollows that α = t and hene 〈u, v, w〉 = 〈α, ǫ, ǫ〉 ∈ Cv. Now we an immediatelyonlude that πi = β.By analogy we show that if πi = β then ψ′
2(L, ai, R) = β.Thus we �nished our proof that ψ′(L, ai, R) = ωiπi and therefore B′(α) isexatly the result from the appliation of E → β / L_R over α.Example 6.1. Let's run the bimahine onstruted for xy|yz → B / x_zover the input word xyzzxxyzz from Example 2.2. The exeution of A′

1 willbe L′
0, L

′
2, L

′
3, L

′
7, L

′
1, L

′
2, L

′
4, L

′
5, L

′
6, L

′
1. The right automaton A′

2 will produe
R′

0, R
′
2, R

′
4, R

′
6, R

′
5, R

′
1, R

′
2, R

′
4, R

′
6, R

′
5, reading the input in the reverse diretion.Aording to Fig. 10 the output of B′ is exatly xBzxBzz.

26

7 AlgorithmsIn this setion we present some the most interesting algorithms we need for thebimahine onstrution.The algorithms are all presented without proof of orretness as they followwithout any modi�ations the respetive onstrutions shown earlier.7.1 Conatenation to the LeftThe algorithm lonat for onatenation to the left orresponds to De�nition3.8.subroutine lonat(Automaton A, Automaton B)let C = new Automatonforeah state in A.stateslet loned_state = C.add_state(state)if state.is_start thenloned_state.set_start(true)end ifend foreahforeah state in B.stateslet loned_state = C.add_state(state)if state.is_start and A.aepts("") thenloned_state.set_start(true)end ifif state.is_final thenloned_state.set_final(true)end ifend foreahforeah trans in A.transitionsC.add_transition(trans.soure, trans.har, trans.target)if trans.target.is_final thenforeah state in B.start_statesC.add_transition(trans.soure, trans.har, state)end foreahend ifend foreahforeah trans in B.transitionsC.add_transition(trans.soure, trans.har, trans.target)end foreahreturn Cend subroutine 27

7.2 Translation of an Output-Driven BimahineThe following algorithm output_to_input orresponds to Constrution 5.1whih onstruts a lassial input-driven bimahine from an equivalent output-driven one.subroutine output_to_input(Bimahine B)let psi = B.output_funtionlet AL = B.left_automatonlet AR = B.right_automatonlet AN = new Automatonlet states = new Tableforeah state1 in AL.statesforeah state2 in AR.statesstates[state1℄[state2℄ = AN.add_state()end foreahend foreahforeah p1 in AL.statesforeah q1 in AR.statesforeah p2 in AL.statesforeah q2 in AR.statesforeah a in alphabetif AR.trans_funtion(q2, a) = q1 andAL.trans_funtion(p1, psi(p1, a, q2)) = p2 thenAN.add_transition(states[p1℄[q1℄, a, states[p2℄[q2℄)end ifend foreahend foreahend foreahend foreahend foreahlet A1 = AN.build_deterministi()let new_psi = new Funtionforeah L in A1.statesforeah a in alphabetforeah r in AR.statesforeah p in AL.statesforeah q in AR.statesif states[p℄[q℄ in L andAR.trans_funtion(r, a) = q thennew_psi.define(L, a, r, psi(p, a, r))end ifend foreahend foreah 28

end foreahend foreahend foreahreturn new Bimahine(A1, AR, new_psi)end subroutine7.3 Diret Constrution of a Bimahine for Context-SensitiveRewrite RuleThe algorithm onstrut_bimahine diretly re�ets the onstrution fromsetion 6 and onstruts a bimahine realizing some given rewrite rule.subroutine onstrut_bimahine(L, E, R, word)let AL = new Automaton(".*"+L)let AE = new Automaton(E)let AR = new Automaton(R+".*")let A = ronat(lonat(AL, AE), AR)let A2 = A.reverse().build_deterministi()let AN = A.lone()foreah tr in AN.transif tr.target in AR.states thenAN.remove_transition(tr)elseif tr.target not in AE.start_states thenAN.add_transition(tr.soure, tr.har + alphabet.size, tr.target)end ifend ifend foreahlet A1 = AN.build_deterministi()let psi = new Funtionlet inter = AE.states - AE.start_states - AE.final_statesforeah L in A1.statesforeah R in A2.statesforeah a in alphabetif A1.trans_funtion(L, a).interset(R).interset(inter) thenpsi.define(L, a, R, a + alphabet.size)elsepsi.define(L, a, R, a)end ifend foreah 29

end foreahend foreahlet B = output_to_input(new Bimahine(A1, A2, psi))let final_psi = new Funtionlet intermediate = AE.states - AE.start_states - AE.final_stateslet startnonfinal = AE.start_states - AE.final_stateslet startandfinal = AE.start_states.interset(AE.final_states)foreah L in B.left_automaton.statesforeah R in B.right_automaton.statesforeah a in alphabetlet result = aforeah (p,q) in Lontinue unless q = B.right_automaton.trans_funtion(R, a)let ommon = p.interset(q)if ommon.interset(intermediate).length > 0 thenresult = ""breakelse if ommon.interset(startnonfinal).length > 0 thenresult = wordbreakelse if ommon.interset(startandfinal).length > 0 thenresult = word + abreakend ifend foreahif R = B.right_automaton.start_state thenforeah (p,q) in B.left_automaton.trans_funtion(L, a)ontinue unless q = Rif p.interset(q).interset(AE.start_states).length > 0 thenresult = result + wordend ifend foreahend iffinal_psi.define(L, a, R, result)end foreahend foreahend foreahB.output_funtion = final_psireturn Bend subroutine 30

8 ComplexityIn this setion we explore the upper bound of the onstruted bimahine's size.Proposition 8.1. Let B = 〈AL,AR, ψ〉 is an output-driven bimahine and
B′ = 〈A′

L,A
′
R, ψ

′〉 is an equivalent input-driven bimahine, onstruted by Con-strution 5.1. Thena) |Q′
R| = |QR|b) |Q′
L| ≤ (|QL| + 1)|QR|Proof. a) By Constrution 5.1 we immediately dedue that AR = A′

R, andhene |Q′
R| = |QR| is trivially valid.b) Beause of Proposition 5.1 we may look at the states in Q′

L as if they werepartial funtions from QR to QL. This means that |Q′
L| is no larger thanthe number of di�erent partial funtions de�ned from QR to QL therefore

|Q′
L| ≤ (|QL| + 1)|QR|.Let's now alulate the upper bound of the onstruted bimahine's spaeomplexity. In other words we shall estimate the number of states in the bima-hine's automata in terms of the ontext rule.Let's �x a ontext rule E → β / L_R and denote l = |L|, e = |E| and

r = |R|. Then the number of states in AL, AE and AR will be respetively
O(l), O(e) and O(r). Hene it is easily seen that the number of states in A isbounded by O(l + e+ r).This gives us an upper bound for the states of A2, namely O(2l+e+r).As AN

1 is obtained fromA through transition relation modi�ations, its num-ber of states remains as muh as O(l+ e+ r). This number grows exponentiallyto O(2l+e+r) after the determinization of A1. Finally, aording to Proposition8.1, Constrution 5.1 onstruts A′
1 with O(2(l+e+r)2l+e+r

) states.Thus we obtained the �nal estimate of the bimahine's spae omplexity �respetively O(2n2n

) and O(2n) for the left and right automata, where n =
l + e + r is the total length of the regular expressions in the ontext-sensitiverewrite rule.

31

Referenes[1℄ Chomsky, Noam, and Morris Halle. 1968. The sound pattern of English.New York: Harper and Row.[2℄ C. Douglas Johnson. 1972. Formal Aspets of Phonologial Desription.Mouton, The Hague.[3℄ Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phonologialrule systems. Computational Linguistis, 20(3):331�378.[4℄ Shutzenberger, Marel Paul. 1961. A remark on �nite transduers. Infor-mation and Control, 4:185�187.[5℄ E. Rohe and Y. Shabes. 1996. Introdution to �nite-state devies in nat-ural language proessing. Tehnial report, Mitsubishi Eletri ResearhLaboratories, TR-96-13.[6℄ Wojieh Skut, Stefan Ulrih, Kathrine Hammervold. 2004. A BimahineCompiler for Ranked Tagging Rules. CoRR s.CL/0407046.[7℄ K. Thompson. 1968. Regular expression searh algorithm. Communiationsof the ACM, 11(6):419� 422

32

