Sofia University St. Kliment Ohridski

Faculty of Mathematics and Computer Science
Department of Mathematical Logic and Applications

Direct Construction of a Bimachine for
Context-Sensitive Rewrite Rule

A thesis submitted for the degree of Master of Computer Science
by
Ivan Petrov Peikov

— Sofia, 2006 —

Contents

1 Introduction

2 Contexts and Rules

3 Finite State Automata

4 Deterministic Finite Automata
5 Bimachines

6 Direct Construction
6.1 The Left Automaton
6.2 The Right Automaton
6.3 The Output Function
6.4 Bimachine For Context-Sensitive Rewrite Rule

7 Algorithms
7.1 Concatenation to the Left
7.2 Translation of an Output-Driven Bimachine

7.3 Direct Construction of a Bimachine for Context-Sensitive Rewrite
Rule

8 Complexity

12

15

18
19
19
19
24

27
27
28

29

31

1 Introduction

Context-sensitive rewrite rules are a well-known formalism practically useful in
many fields of computational linguistics. They were first introduced in Chom-
sky’s papers ([1]) and proved to be expressive enough to successfully model
multiple linguistic phenomena.

In 1972 Johnson ([2]) notices that with the limitation to work only over
their input the context-sensitive rewrite rules become as expressive as the reg-
ular relations. This purely theoretical result is later confirmed by Kaplan and
Kay ([3]) who show the practical importance of context-sensitive rewrite rules
when implemented with finite state transducers. Their paper gives rise to many
consecutive works and remains one of the classics in the contemporary compu-
tational linguistics.

Bimachines as introduced by Schutzenberger ([4]) are deterministic abstract
machines as expressive as the regular functions. They consume their input
simultaneously from left to right and from right to left. On every position
they produced output based on the left-hand prefix and the right-hand suffix.
Bimachines are computationally very efficient which makes them applicable in
practice.

Our purpose is to present a construction which by given context-sensitive
rewrite rule builds directly a bimachine realizing its corresponding regular func-
tion.

There exist other methods which first construct a finite-state transducer
realizing the context rule ([3]) and then translate the transducer into a bimachine
([5])- In 2004, Skut et al. ([6]) present a direct construction of a bimachine for
a restricted form of rewrite rule. However, to the best of our knowledge, the
construction presented in the current thesis is the first direct construction of a
bimachine realizing a non-restricted context-sensitive rewrite rule.

The rest of the thesis is structured as follows. In Section 2 rewrite rules are
introduced and the problem is formally defined. In Sections 3 and 4 finite state
automata are introduced. In Section 5 bimachines are introduced together with
two of their possible operational semantics. In Section 6 the direct construction
is described and proved correct. The remaining Sections 7 and 8 present some
of the algorithms used and study their complexity.

We denote concatenation of two words o and § with « - 8 or a8 (when no
ambiguity could possibly occur). The fact that « is a subword of 3 is denoted
as a C for a C [in case when equality is possible. All other notations will
either be introduced in the appropriate context or will be considered as widely
adopted.

2 Contexts and Rules

Let’s fix a finite alphabet ¥. Context-sensitive rewrite rule is any rule of the
type

E—pB/L R (1)
where L, E, R € RE(Y) are regular expressions over X, and 8 € ¥*. Application
of such a rule over a fixed word o € ¥ is the simultaneous rewriting with 3 of all

«’s subwords which belong to the language £L(E) of F and are found between a
subword of £(L) — to the left and subword of L(R) — to the right:

B
—
Q1o ... G104 ... Q105 ... Q10 ... Q—1Q...0p_10p

eL(L) €L(E) €L(R)

Definition 2.1. Let t € ¥*, and L, E, R € RE(X). A triple (u,v,w) is said to
be a rewrite context (or simply context) if u € L(X*L), v € L(E), w € L(RX*)
and uvvw = t. The words u, v and w are said to be respectively prefix, focus and
suffix of the context. Additionally we denote

C(t;L,E,R) = {{u,v,w)|lu € LIE*L) & v € L(E) & w € L(RY") & t = uwvw}

to be the set of all such triples or the context set for any particular t and
E—-pg/L R

It becomes clear that there are certain ambiguities that might occur while
applying a context rule over some word. For example, if two contexts share a
common prefix but differ in their focuses (and respectively suffixes) the result
of the rewriting will be ambiguous:

U2 V2 w2

Such an ambiguity will be resolved by choosing for valid the context with
the longest focus.

Example 2.1. Let’s apply the rule at — A / b_a over the word o = baaaab.
The result might ambiguously be defined as bAaaab, bAaab or bAab (rewriting
respectively in context (b, a,aaab), (b,aa,aad) or (b,aaa,ab)). By agreeing to
always take the context with the longest focus for valid we resolve the ambiguity
and obtain the single result bAab.

Definition 2.2. Two contexts (u;,v;,w;) € C for i = 1,2 are said to overlap
(written (uy,v1,w1) < (ug, va, wa)), if ug C ug C ugvy.

U1 v1 wi

Whenever such a situation occurs while applying a context rule not more
than one of the two contexts should be taken for valid. We’ll resolve such an
ambiguity by always taking the leftmost of all the possibilities and ignoring all
the overlapped contexts.

We call such a strategy for resolving ambiguities leftmost longest match strat-

egy.

Example 2.2. Let’s take the rule xylyz — € / ©_z. During its application
over word like ryzzxxyzz ambiguity arises. Possible rewriting contexts are
(x,yz, zxayzz), (zyzza,xy, zz) and (zyzzaw,yz, z), the last two if which do
overlap. The leftmost longest match strategy sorts out the first two contexts as
valid for rewriting which produces the non-ambiguous result of rzxzz.

There exist other strategies for resolving ambiguities. We’ll concentrate on
the described one because we believe it is the most natural and most useful in
practice.

Let’s now define formally the set of all rewriting contexts within a fixed word
which we’ll consider valid for rewriting.

Definition 2.3. We define the following operators over sets of contexts:

OVER(C,C") = {(u,v,w)ec|(F, v, w')ee) (v, v, w") < (u,v,w))}
LEFT(C) = {(u,v,w)ec|=(3, v, w)ee) (v Cu)}
LONG(C) = {{u,v,w)ec|(F(u, v, whec)(v CV')}

The first operator OVER defines all contexts in a given set which are over-
lapped by a context in another set. The second operator LEFT defines the
leftmost contexts in a given set.

Considering the above definitions we may proceed with defining formally the
valid contexts. We construct inductively the sequence {C;}$2,,, where C; C C for
all 7 > 0:

L] Co = @
e C;y1 = C; ULEFT(C — C; — OVER(C,C;))

This is a monotonously increasing sequence and hence it has a least upper
bound. We define C, = U2,C; we call C, the valid contexts set. We denote
C; = LONG(C,) and we call C; the set of the longest valid contexts.

Proposition 2.1. C, CC
Proposition 2.2. C, doesn’t contain any overlapping contexts.

Proof. Let’s assume (u;,v;,w;) € C, for i = 1,2 and (u1,v1,w1) < (ug, va, wa).
Then w1 C us C ujvy. Let k; are the least indices for which (u;,v;, w;) € Cg,
(we're sure they exist because (u;, v, w;) € C, = U2 (Cr)-

Let’s assume that k; > ko. Then

<u2,vg,w2> €Cr, =Cpy—1 U LEFT(C — Cry—1 — DVER(C,Cszl))

We denote R = C —Cj,—1 —0VER(C, Ciy—1). As (uz,v2,ws) & C,—1, we conclude
that (ug,v2,ws2) € LEFT(R). On the other hand k; > ks, hence (u1,v1,w;) € R.
This is a contradicts with the definition of LEFT so finally ky < k».

After we saw that k1 < ko, we may further conclude that (uq,ve,ws) & Ci
for k < ky. For k > k1, (u1,v1,w1) € Cy therefore (us,v2,ws) € OVER(C,Cy),
e.g. (ug,va,ws) &€ Ciy1. This contradicts with the fact that (us,ve,ws) € Cg,
(k2 > k1) and hence C, doesn’t contain any overlapping contexts. O

Proposition 2.3. Let (u,v,w) € C is a non-valid context ((u,v,w) & Cy).
There exists ({ug,vo,wo) € Cy), such that {ug,vo, wo) < (u,v, w)

Proof. Let’s take the sequence {O;}5°,, where O; = OVER(C,C;). One could
easily prove that this is a monotonously increasing sequence whose least upper
bound exists and is exactly OVER(C,C,).

We'll verify that C, U OVER(C,C,) = C. Let’s assume that there exists
(u,v,w) € C, such that (u,v, w) ¢ C, and (u,v,w) & OVER(C,C,) and let’s choose
the one with shortest prefix. C is a finite set so there exists and index k, such that
Cr = Cy. (u,v,w) & OVER(C, Cx) which implies that C —Cj —0OVER(C,Cy) # 0, and
therefore C,, C Ci1 is not a least upper bound of {C;}. This is a contradiction
and hence C, UOVER(C,C,) =C.

Now back to the proposition. Let (u,v,w) & C,. Then (according to every-
thing already said) (u,v,w) € OVER(C,C,) which means that there is an index p
(OVER(C, Cy) is the least upper bound of {O;}) for which (u,v,w) € Op. Then
by the definition of {O;} it follows that there exists (ug,vo,wo) € Cp, for which
(w0, vo, wo) < (u, v, w). O

Proposition 2.4. Let (u,v;,w;) € C are contexts (i = 1,2). Then (u,vy,w1) is
a valid context iff (u,ve,ws) is also valid.

Proof. Let (u,v1,w) is a valid context and let’s assume (u, ve, w2) is non-valid.
Then there exists k > 0, such that (u,ve,ws) € OVER(C,Cg). But this would
mean that there exists (ug,vo,wp) € C, such that ug C u C ugvg. There-
fore (ug,vo,wp) < (u,v1,wr). But according to Proposition 2.2 there are no
overlapping contexts in C, which contradicts with our assumption. O

Follows a definition of result from the application of a context-sensitive rule
over some giwen input text.

Definition 2.4. Let « € ¥* and E — 8 / L_R is a context-sensitive rewrite
rule. Result from the application of E — 3 / L R over « is the word

uy - B (urvr) Mg - B+ (ugva) Ttug - B (up—1vk—1) Mg - 8wy
where Ci(a; L, E, R) = {{us,vi,w)|i =1,...,k} and i < j — u; C u;.

The direct usage of Definition 2.4 would greatly complicate our treatment
of the problem, we introduce the following equivalent definition.

Definition 2.5. Let & = ajaz...a, € ¥* and E — 3 / L_R is a context-
sensitive rewrite rule/ Result from the application of E — § / L _R over « is

the word wy - wsy ... Wy - wpy1, where fort=1,2,....n
€ if there exists (u,v,w) € Cy(a; L, E, R), |u| <i—1< |uv|
Ié] if there exists (u,v,w) € Cp(a; L, E,R), lu| =i —1 < |uv|
w; =< Pa; if there exists (u,v,w) € Cy(co; L, E, R), |u] =i — 1 = |uv]
and there is no (u,v’,w')y € Cy(a; L, E, R), such that v’ # ¢

a; otherwise

and w1 € X* is defined as follows:

e — 8 if (a,¢e,¢) € Cy(a; L, E, R)
"L e otherwise

In order to simplify some of the proofs we further modify Definition 2.5 and
finally reach the equivalent

Definition 2.6. Let « = ajas...a, € X* and E — 3 / L_R is a context-
sensitive rewrite rule. Result from the application of E — 3 / L_R over « is
the word (wymy) - (wWama) ... (WnTy), where w; are defined as in Definition 2.5,
and
o B ifi=n and (o, €¢) € Cp(a; L, E, R)
"7 € otherwise

The proof that Definitions 2.4, 2.5 and 2.6 are equivalent is trivial and too
technical to be interesting for our treatment. Therefore we’ll use only Definition
2.6.

3 Finite State Automata

Definition 3.1. Finite state automaton (FSA) is a 5-tuple
A=(%,Q,5 FA)

where X is a finite alphabet, Q is a finite set of states, S C @ is a set of initial
(starting) states, F C Q is a set of accepting states, and A C Q X X X Q is
transition relation. We extend inductively A to A*

e {(q,¢,q) € A* for each q € Q

o (q1,aa,q2) € A* if there exists ¢ € Q, such that {(q1,c,q) € A* and
<q7 a, (J2> € A

Definition 3.2. Let A C Q x X xQ, T C Q and a € X. We introduce the
following notation

T 29 {4|(34lr)((dsa,q) € A)}

Definition 3.3. Let A is a FSA and a € ¥* is a word. We say that the sequence
0, q1; - - - Q|| 5 an evecution A over o, if ¢ € Q for each i =0...]al, o € S
and {gi—1,a;,q;) € A for each i =1...|a|. One such execution will be assumed
successful iff q|o| € F' is accepting. Whenever the notation allows we’ll also use
an alternative definition of automaton execution, namely o : [0, |a]] — Q. It is
said that A accepts (or recognizes) «, if there exists successful execution of A
over «.

Definition 3.4 (Language of FSA). Let A is a FSA. We define the language
of A to be the set L(A) = {a|A recognizes a}.

Definition 3.5 (Equivalent Automata). Let A; 2 are two finite state automata.
We say that Ay is equivalent toAs (and write Ay = As), iff L(A1) = L(A2).

Definition 3.6 (Normal form). Let A= (X,Q, S, F,A) is a FSA. We say that
A is in normal form if for every transition (q1,a,q2) € A it is the case that
q € F and g2 € S. Informally speaking, the normality of A consists of the fact
that no transition leaves accepting or enters initial state.

Proposition 3.1. For every FSA A, there exists an equivalent AN, which is
in normal form.

Proof. Let A= (2,Q, S, F,A) is a FSA. We’ll construct A" from A, by remov-
ing possible transitions which spoil its normality: AN = (%, QN, SN, FN AN),
where

QN =Q x{1}US x {2} UF x {3}
The other components of AV are SN =S x {2}, FN = F x {3}
AN = {{a1,1),a,(g2.1)) (g1, a0, q2) € A} U

{{q1,2),a,{(q2,1)){q1,0a,q2) € A& 1 € S} U
{{q1,1),a,{(q2,3)){q1,0a,q2) € A& q2 € F}

AN is obviously in normal form. Let’s show that it is equivalent to A.

Let a € L(A) and qo,q1,-..qja|-1,4|a| is a successful execution of A over
a. We'll verify that (qo,2), (q1,1),(q2,1),- -, (qaj=1, 1), (@], 3) is a successful
execution of AN over a. First, let’s notice that (go,2) € SV, because ¢y € S
and (gjq,3) € FV . because qa| € F. It is clear by the construction of AN
that ((qi—1,1), o, (gi, 1)) € AY for i = 2...|a| — 1, because (g;—1, i, q;) € A
fori=2...|a| — 1. It is clear that (go, v, q1) € A and go € S, and therefore
by the definition of AV it is true that ({qo,2), ao, (q1,1)) € AYN. By analogy,
({q1a)-1,1), @jal; (q1a),3)) € AN . Thus we showed that there exists a successful
execution of AV over a, i.e. a € L(AN).

The proof of in the other direction is analogical. Therefore, we showed that

A=AV, O

Theorem 3.1 (Kleene). For every reqular expression £, there ezists a FSA A,
such that L(A) = L(E).

The automaton from Kleene’s Theorem is not unique and there are many
constructions that build it directly from £ (for example [7]). The particular
construction is not significant to our purposes so whenever we need to construct
a FSA by a regular expression &£, we'll write A(€) and will mean a FSA in
normal form such that L(A(E)) = L(E).

Definition 3.7 (Mirror FSA). Let A = (£,Q,S,F,A) is a FSA. The FSA
A= (3,Q,F,S A), where A = {{g2,a,q1)|{q1,a,q2) € A} is said to be the
mirror FSA of A.

Proposition 3.2. Let A= (3,Q,S,F,A) is a FSA and A is its mirror FSA.

Then for every a € ¥*, qo, q1, - - - || 18 a successful evecution of A iff qja|, Gjaj—-1, - - -

is a successful execution of A.
Proof. Obvious by the definition of mirror automaton. O

It is a well-known fact that the class of regular languages is closed under
concatenation. In other words if the languages L 2 are recognizable by (respec-
tively) A1 2, there exists an automaton A, recognizing L1 - Lo.

We'll define two constructions which define the concatenation of automata
and have the special property that every their execution contains as subexecu-
tion an execution of (respectively) the first or the second automaton.

Definition 3.8 (Concatenation to the Left). Let A; = (X, Qy, Si, Fi, A;), for
i=1,2 are FSA and Q1N Q2 = 0. We say that A = (%,Q, S, F,A) is the result
from concatenating of Ay to the left of Ay and we write A = Ay) As, if:

e Q=0Q1UQ>

o« S — S1 U Sy ifSlﬂF17é®
o S1 ifSlﬂFlz(Z)

.F:FQ

qo

o A=A UAU{{q1,a,92)|Bger,)({q1,a,q) € A1) & q2 € Sa}

In order to illustrate the concatenation to the left, let’s again examine the
example from Fig. 1. It is noticeable that every successful execution of the so
constructed automaton A; -; As contains a successful execution of As.

Q

Figure 1: Concatenation to the left

Proposition 3.3. Let A; 2 are FSA and A = A; -1 As. Then every successful
execution of A over ataz...a, € 3* looks like

qo,---59p—1,9ps---,qn

where p € [0,n], gp,...,qn s a successful execution of Az over Gpri...an and
there exists a state ¢ € Fi, such that qo,...,qp—1,q 15 a successful ezecution of
Ay over ar . ap.

Proof. Let qo,...,q, is some successful execution of A over ajas...a,. It is
successful and therefore, g, is an accepting state, e.g. ¢, € F' = F (by definition
of the concatenation to the left). Let p € [0,n] is the least index such that
gp € Q2 (it is certain that such a p exists, because ¢, € Q2). Now we notice
that for any i € [p,n], ¢i € Q2. This is true because if it weren’t we would be
able to choose i > p, such that ¢; € @1 and it would follow that (q;—1, a;, ¢;) € A,
where g;—1 € @2, and ¢; € Q1. By the construction of A, this is impossible.

Therefore qo, ..., ¢p—1 € Q1,and gy, ..., qn € Q2. Nowifp > 0, (gp—1, ap, @) €
A and by the definition of A it is clear that ¢, € S2. On the other hand if p = 0,
it would follow ¢, € S2, because qo, . . ., ¢, is an execution of A. Following the
same reasoning we would deduce that {¢;—1, a;,q;) € Az (for each i € [p+ 1,n]),
and consequently gy, ..., gy is a successful execution of Ay over apy71 ... an.

If p =0, then @a1..-a, = €. By the definition of A and the fact that
qgo € SN Sy # (), it follows that S; N Fy # (). We choose a state ¢ € S; N F; and
thus we show a successful execution of A; over e. Now let p > 0. Then ¢y € Q1,
and from here it follows that gy € S1. Because (q;_1,a;,q;) € A for i € (0,p)
and ¢; € Q1 for i € [0,p), it follows that {g;—1,ai,¢;) € A; for i € (0,p), and

consequently qo,...,gp—1 is an execution of A; over aj...a,—1. Now by the
definition of A it follows that there exists ¢ € Fy, such that (g,—1,a,,q) € Ay,
and therefore qo, ..., gp—1,q is a successful execution of A; over @i ... a,. O

10

Proposition 3.4. Let A; 2 are FSA. Then L(A; -1 A2) = L(A1) - L(A2).

Proof. Let A; 2 = (X,Q1,2,51,2, F1.2, A1 2) and the concatenation of A; to the
left of Ay is A=Ay 1 Ay = (3,0, 5, F,A).

Let o € L£(A). This means that there exists a successful execution qo, .. ., ¢n
of A over a. According to Proposition 3.3 there exist successful executions
of Ay over @i ...a, and of Ay over @,11...a,. This means that (respectively)
a1---ap € L(A1) and Gy -~ - ap, € L(Az), and thereforea = a1 .- apap11 .- ap €
L(A) - £(A),

Conversely, a € L(A;), and 8 € L(Az). Then there exist successful ex-

ecutions gj,,...,qi, of A; over a and gj,,...,q;,, of Az over 5. Obviously
Qios- -+ in_15%jo» - - - »djm, Will be a successful execution of A over o3, and there-
fore a8 € L(A). Thus we showed that £(A) = L(A1) - L(A2). O

By analogy with the operation concatenation to the left we define its dual
— concatenation to the right. We omit the proofs as they are no different from
the ones already shown.

Definition 3.9 (Concatenation to the Right). Let A; = (X, Q;, Si, Fi, A;), for
i=1,2 are FSA and Q1N Q2 = 0. We say that A = (%,Q, S, F,A) is the result
from concatenating of As to the right of A; and we write A = Ay - Ao, if:

e Q=0Q1UQ:

L4 S:S1

o« F— Fi U Fy ifSQﬂFQ#@
| B if SeoNFy =1

e A= Al UA? U {<q17a7q2>|(HQE52)(<Qaaaq2> € A?) & q1 € Fl}

Proposition 3.5. Let A, 2 are FSA and A= A -, Ay. Then every successful
ezecution of A over a1as...a, € X* looks like

qos---59p;9p+1,5---,4n

where for some p € [0,n], qo, ..., qp is a successful execution of A overar...a,
and there exists a state g € Sa, such that q, qp+1, ..., qn 15 a successful execution
of Az over @pi1 ... an.

Proposition 3.6. Let A; 2 are FSA. Then L(A; -+ A2) = L(A1) - L(Asg).

11

4 Deterministic Finite Automata

Definition 4.1. We call a finite state automaton A = (%, Q, S, F, A) determin-
istic (DFA), if for every q1 € Q and a € X there exists at most one g2 € @, such
that {q1,a,q2) € A, and |S| = 1. In other words an autormnaton is said to be de-
terministic if it has a single initial state and its transition relation is functional.
Because of these properties we’ll sometimes denote the deterministic automata
as A= (3,Q,qo, F,), where qo € Q is an initial state, and 6 : Q X ¥ — Q 1is
transition function.

Construction 4.1 (Determinization). Let A= (3,Q,S, F,A) is a FSA. From
A we construct AP = (%,QP,SP FP AP) by first constructing in parallel the
sequences {Q;}22, and {A;}2, (where Q; C 29, and A; C 29 x ¥ x 29)
following this inductive scheme:

b QO:{S}a AOZQ
o Qit1=QiU{T|(3T,y,)Bacs) (T’ 24)
o Aj1 =AM U{{T,a,T)T € Q; &T' Aa T}

It is immediately seen that both sequences are monotonously increasing and
therefore converge to their least upper bounds. We define

o QP =UQ;
o SP ={5}
o FP = {T|T € QP & TN F # 0}
o AD =UA,;

We say that AP is received from A by determinization.

Lemma 4.1. Let A is FSA and AP is received from it by determinization
(Construction 4.1). Then AP is deterministic.

Proof. We'll verify that the relation AP is functional. Let’s assume that there
exists T, T1,T> C QP and a € %, such that (T7,a,Ty) € AP, (T',a,Ty) € AP
and Ty # Te. AP is the least upper bound of {A;} and therefore there exists
n > 0, such that (I",a,Th1) € A, and (T",a,T2) € A,, and it follows (by

the definition of the sequence) that T’ L Ty and T" L Ty. In other words
Ty = {q|(3qz7)({d',a,q) € A)} = Tp. Which is a contradiction and that’s how
we showed that AP is functional relation.

Clearly |SP| = |{S}| = 1 and finally AP is deterministic.

We denote the initial state of A with ¢/’ = QP and the transition function
with 67 : QP x ¥ — QP (defined by its graph AP). O

Lemma 4.2. Let A is a FSA, a € ¥* and qo, q1,- .., q|a| 15 an evecution of A
over o. Let AP is received from A by determinization. Then there exists an
execution of AP : Ty, Ty, ..., T\a, such that q; € T; for each i =0,1,...,|al.

12

Proof. The proof goes by induction on the length of a.

e |a| = 0. From a = € it follows that the execution of A contains a single
state go € S. The searched execution of AP also has a single state Ty =
qP = S. Obviously g € Tp.

e |a| > 0. Let @ = o/a. By induction hypothesis the lemma should hold

for o/, and therefore there exists an execution Ty, T1, . .., 7|4 of AP over
o/, for which ¢; € T; for every i = 0,...,|a/|. As |&/| = |a] — 1 and
q05q15 - - - > qja]—1,4|a| is an execution of A over o’a, it should be true that

. A,
(@a']> @, qa) € A. Consequently, if 7o =2 T, then Qo] € T. Let’s now
take from the construction of AP the least s > 0, such that T € Qi

(we are certain such execution exists because T}, € UQ;). Then on
the next step of the construction Q;+1 = Q; U{T|(3T¢q,)(Faes)(T" 24
T)}, and because T|o/| € Q; and Tj| il T, it follows that T € Q1.
Analogically we show that (T|,/|,a,T) € Ay 1. Therefore 6D(T|a/‘,a) =T
and To,T1,..., o), T is an execution of AP over a complying with the
requirements.

O

Lemma 4.3. Let A is a FSA and AP is received from it by determinization.
Let a € X%, To, Th, . .., T|o 18 an execution of AP and q € T\|- There exists an
execution of A — qo,q1,- -, qa| = q, such that ¢; € T; for everyi=0,1,...,|al.

Proof. The proof again follows induction on the length of «.

e |a] = 0. As a = ¢, the execution of AP is a sequence of a single state
To = ¢ = S. The sequence of the single state ¢ complies with the
requirements because g € Ty = S.

e |a] > 0. Let a = o’a. As Ty, Ty,...,Tja|,T|a is an execution of AP,
it follows that (7o, a,Tja|) € AP and therefore (Tiar), 0, Tia)) € Ay for
some n > 0 (AP is the least upper bound of the sequence {A;}22,). Let
m < n is the largest index such that (T}, a,Tja|) € Am- Then on step

. s A,
m~+1 of the construction, this triple was added to A, 11, because T,/ =4

T)a|- Now because q € T|y|, there is ¢’ € Ty, such that (¢',a,q) € A.
By the induction hypothesis the lemma holds for |@/|, which implies that
there exists an execution qq,q1,...,q of A over o, complying with the
requirements. We append g and receive the execution of A over a we were
looking for.

O

Proposition 4.1. Let A is a FSA and AP is received from it by determiniza-
tion. Then A and AP are equivalent.

13

Proof. Let a € L(A). Then there exists a successful execution o, q1,...,qja| €
F of Aover a. According to Lemma 4.2 there exists an execution T, T4, . . ., T|q|
of AP, such that ¢; € T; for i € [0,|a|]. On the other hand g, € T}o and
Tio N F # (), and therefore Tia € FP eg. AP has a successful execution over
aeg ac L(AD).

Conversely, let a € £(AP). This means that there exists a successful execu-
tion To, T, . .., T|q| of AP over a. On the other hand Tia € FP and that’s why
Tio)NF #0, e.g. there exists ¢ € T|,| which is a final state of A. Using Lemma
4.3 we conclude that there is an execution qg, q1, ..., q of A over a, which shows
to be successful (¢ € F) and it follows that o € L(A). O

Corollary 4.1. For every FSA A there exists a DFA AP, such that L(A) =
L(AP).

14

5 Bimachines

Definition 5.1. We define a bimachine as
B = <AL7 AR7 ¢>

where Ap, r = (X,QL.Rr,qL.R, 0L, R) are deterministic finite state automata with-
out any accepting states (respectively left and right), and ¢ : QXX x Qr — X*
is an output function.

The bimachines are abstract machines which work over input word (bidirec-
tionally) and produce an output word based on executions of their automata
and the input word. Their operational semantics is defined by the transitive
closure of ¥, ¥* : Qp x ¥* X Qr — ¥*, defined as follows

L4 1/)*(111,5#]2) =€
L w*((haaa?%) = w(q17a75§(q27&)) . 1/1*(5L(QI7G)7047612)

Based on the functional nature of the bimachines we’ll often use the B : ¥* —
¥* notation, in which for any « € * we define as B(a) = ¥*(qr, o, qr). We'll
say that for any particular word a € ¥* over the bimachine’s input alphabet,
B(«) is the result from B’s execution over a.

Behind this long definition of bimachine’s execution result lies an intuitively
simple strategy. We might assume that the bimachine reads its input word
and for any character outputs a word over its alphabet. The result from the
bimachine’s execution is the concatenation of all output words. On every step
the output function decides on its output according to the current character
and the two states which would have been reached respectively by the left and
right automata exactly before they consume this same character.

5, - - -1
| |
| |
| |
| |
T

O-O-O-D-DoD BB B+ B+ BB B BB~ B

Figure 2: Execution of a bimachine

It becomes clear that the so defined bimachines work only over their input
word. Let’s examine a modified version of this strategy which only differs in the
operational semantics used.

Definition 5.2. (Left) Output-driven bimachine is
B = (AL, Ar,¥)

where A r are again DFA, 1 is an output function and the operational seman-
tics B of the bimachine is defined as B(«) = v**(qr, «, qr), where

15

L4 w**(q17€7q2) =€
L4 1/)**(111, ac, q2) = 1/}((115 a, 57{@2, a)) : 1/}**(52 (Q17 1Z)(qla a, 57{(q25 a)))a «, Q2)

An important property of the output-driven bimachines is the fact that their
left automaton doesn’t read the input word directly but the output produced
by the output function instead. Absolutely symmetrically one might define a
right output-driven bimachine.

Now we proceed to demonstrate that every output-driven bimachine can be
simulated by an equivalent classical one (working purely over its input).

Construction 5.1. Let B is an output-driven bimachine. We define a FSA

AY =(2,QL x Qr,{qr} x Qr,AL)

where the transition relation is defined as follows:

<<p17q1>7a/7 <p27(J2>> € AL <~ 6R(q27a) =q & 52(]9171/1(]917%612)) = P2

Now we construct the left DFA A’ by determinizing AY (Construction 4.1). We
take Ay = Ag for right DFA of the bimachine and define the output function

Y QL x X x Q% as follows:
V' (L,a,r) =B <= (3p,q) € L)(dr(r,a) = ¢ & p(p,a,r) = B)

Thus we completed the construction of B’ = (A}, AR, ¢').

In order to be sure that B’ is a classical bimachine, equivalent to B, we should
first check that it is correctly defined and that for any o € ¥*, B'(a) = B(«).
The correctness proof requires only to show that 9’ is actually a function.

Proposition 5.1. Let L € Q} is a state of A} and {(py,qx) € L(k = 1,2).
Then ¢ = q2 — p1 = p2

Proof. Let Q7 = UQ); is the least upper bound of the sequence {Q;}5°, from
Construction 4.1. We demonstrate a proof based on complete induction on the
least index 4, such that L € Q; (i exists because @’ is the least upper bound of
the sequence).

1 =0 Obviously p1 = p2 = qr,, because L = {q1.} X Qg-

i+ 1 Let ¢ + 1 is the least index such that L € @Q;y;. Then (from Con-
struction 4.1) there exists L' € Q;, such that 07 (L’,a) = L for some
a € ¥. Let (px,qr) € L. Hence there exist (p},q}) € L', such that
({(Dhes 41)» @ (P, qi)) € Ap (for k = 1,2). Now let’s assume that ¢1 = go.
Therefore ¢; = dr(q1,a) = 0r(ge,a) = ¢4. Let i’ < i+ 1 is the least
index such that L' € Q;/. From the induction hypothesis for i we deduce
that g, = py. Finally, pr = 63 (ph, (. as01)) = 03 (9, (P, 0,42)) = p2,
which is what we wanted to show.

O

16

Corollary 5.1. v’ is correctly defined function

Proof. Let’s assume that ¢/(L,a,7) = (1,2. By the definition of ¢’ it would
follow that there exist (p;,¢;) € L for ¢ = 1,2, such that dg(r,a) = ¢;, and
additionally ¥ (p;, a,r) = B;. But then g1 = dr(r,a) = ¢2 and from Proposition
5.1 it follows that p; = po. This leads us to the fact that 51 = ¢¥(p1,a,7) =
¥(p2,a,r) = B2. Thus, we showed that ¢’ is correctly defined function. O

It remains to show that the constructed classical bimachine is equivalent to
the output-driven bimachine.

Proposition 5.2. Lett = o € ¥*, 67 (¢},) = L. Then

(07 (qr, ¥ (qr, @, 0% (qr, B))), 0 (qr, B)) € L

Proof. The proof uses a simple induction on «.

a =€ When « = ¢, by the definition of ¢** we have that ¥v**(qr., o, 05 (¢r, 8)) =

€ therefore (52(qL,ib**(qL,a,éf%(qR,ﬁ))) =gqr. Now L =¢q} ={qr} x Qr
hence (qr.,0%(qr, 3)) € L.

a = aja Let’s assume that the proposition is true for a; and examine the o =

ara case. Let 67 (qr,¥*"(qr, 01,0%(qr, 8))) = p1, 0x(qr,B) = 7, and
05 (r,a) = r1. By induction hypothesis we might deduce that (p;,r1) € L'
On the other hand L = ¢} (L/,a), and because dg(r,a) = r1 we show
that ((p1,71),a, (07 (p1,¥(p1,a,7)),7)) € Ap. Hence (by Construction
4.1) it follows that (6} (p1,%(p1,a,7)),r) € L. Now by the definition of

w**a 52 (plu Q/J(Pla a, T)) = 62(‘][17 Qﬂ**(QLa «, 57{((]1%7 g)))) which proves the
proposition.
O
Corollary 5.2. For any o € ¥*, B(a) = B'(«)

Proof. Let’s start with the case when o = e. By the definitions of ¥ and 1)’ it
follows that B(a) = ¢**(qr,€,qr) = € = V" (¢}, o, ¢) = B' ().
If o« = @1az .-~ @, we should prove that fori = 1,2,...,nand r = 65(qr, GnlGn_1--- Git1)

V(67 (qr, Y™ (qr, @Gz -~ ai—1,0r(r, a:))), ai,) = V' (07 (¢, @Gz -~ @i—1), @i, 1)

But this is exactly the case because according to the already proven Proposition
5.2 and the definition of '

(67 (qr, ¥ (qr, @Gz -~ @i—1,0r(r, i), 0r(r,a;)) € 67 (¢y,@1G2 -~ Gi—1)

This is how we showed that in every position of the input word B and B’
output equal results. Hence B(a) = B'(«). O

17

6 Direct Construction

Let E — B/ L_Ris a context-sensitive rewrite rule over finite alphabet . We
construct the finite automata Ay, Ag and Ag, such that

AL = A(E*L) = <25QL78L5FL;AL> 9 E(AL) — L(Z*L)
AR = A(RE*) = <27QR7SR7FR7AR> 9 E(AR) = E(RE*)

Even though we haven’t fixed a particular construction of FSA from regular
expression we assume the implicit requirement that Ay, Ag and Agr are in
normal form.

Figure 3: Finite automata in normal form constructed respectively from the
regular expressions Y *z, zy|yz and zX*

After we constructed Ay, Ag and Ag, we concatenate them to obtain

A: <27Q757F7A>:AL 'lAL 'TAR

Figure 4: Finite automaton obtained by the concatenation A = Ay, - Ag - Ag,
from the rewrite rule zy|yz — € / _z from Example 2.2

From the properties of the FSA’s normal form and the concatenation to the
left /right we can deduce the following

Property 6.1. Every successful execution of A over t € ¥* is of the type

qlo>4iq s - "7ql‘u‘,17q607q617'"7qe‘v‘7Q7‘17qT27' "7q7“w‘

where (u,v,w) € C(t; L, E,R), qey € SE , Ge;,) € FE , ¢e; € Qr — Sp — Ik
for every i € (0, |v]), @i, € Qr for every i € [0,[u]), ¢, € Qr — Sr — Fr for
every i € (|uv|, [uvwl), and gy, € Fr. We'll call such an ezecution of A —
an ezecution for the context (u,v,w). We denote X(t;L,E,R) = {olo is an
execution for some (u,v,w) € C(t; L, E, R)}

18

Property 6.2. For every context (u,v,w) € C(t; L, E, R) there exists and exe-
cution o € X(t; L, E, R) for (u,v,w).

We'll denote X,(t;L,E,R) = {o|o is an execution for some (u,v,w) €
Cu(t; L, E,R)}

In order to construct the classical bimachine in question, we first construct
an output-driven bimachine B = (A, Ag, 1), working only over its output. It
will resolve any possible context ambiguities.

6.1 The Left Automaton

We extend the input alphabet ¥ into 3¢ = Y U{a|a € ¥}. Informally speaking,
3¢ extends X by adding a cloned version of every character in . In order to
construct the left automaton we first define

AY = (5°,Q, S, F,AY)
where AY = AU {{q1,a% ¢)|{q1,a,q2) € A& g2 & Sp} — Q X X¢ x Q.

Figure 5: Non-deterministic version A} of the left automaton A;, constructed
from the rewrite rule zylyz — e / z_z

Intuitively, A{V behaves exactly as A -y Ag with the only difference that
whenever a cloned character is consumed no transitions into initial states of Ag
are allowed. Thus, no executions are possible for contexts, whose focus is about
to be processed. On the other hand, the output function of the bimachine will
be responsible to output cloned characters only when focuses of valid contexts
are processed.

We then determinize A} (Construction 4.1) and receive the left automaton
Aj of the bimachine.

6.2 The Right Automaton

We first reverse A to receive its mirror AY = A. Then we construct the right
automaton Az of the bimachine by determinizing AY (Construction 4.1).

6.3 The Output Function
The output function ¢ of the bimachine B is defined as follows:

. a® if(S(L,CL)ﬂRﬂ(QE—SE—FE)#@
¢(L’G’R)_{a i 6y (L.a) RO (Qp — Sy — Fr) = 0

19

Figure 6: Deterministic .4; constructed from A} of Figure 5. For greater
readability in the above example we have omitted transitions from every state
with every character in X° to {2}

This finishes the definition of B = (A, Ar,¥) - an output-driven bimachine.
Before we finish the construction of a bimachine for context-sensitive rewrite
rule, let’s show several interesting properties of 5.

Lemma 6.1. Let t = af3, §5(q2, 5) = R and 67 (q1,¥**(q1,, R)) = L. Also let
o is an execution of A over «, such that o(la]) € Q. Then o(|a]) € L.

Proof. Induction on the length of .

a = e It is obvious that L = 07 (q1,v**(q1,€6, R)) = d7(q1,€) = 1 = S. Hence
o(la]) =0(0) e S=L.

a=a'a Since o(|a|) € Qr and because of Property 6.1 we might assert that
o(]e/]) € QL. Let’s denote R’ = d2(R,a) and L' = 67 (q1, ¥v**(¢1, ¢/, R)).
Then by the induction hypothesis it follows that o(|a’|) € L'. As o is an
execution of A, it is true that (o(|d/|),a,0(]a|)) € A. It remains to note
that L = 67(L,¥(L',a, R)), moreover o(|a|) € Sg U Qg and from the
definition of §; we may conclude that o(|a|) € L.

O

Lemma 6.2. Lett = of and 65(q2,3) = R and 65 (q1,v**(q1,, R)) = L. Then
if ¢ € L then there exists o — an execution of A over «, such that o(|a|) = q.

Proof. Induction on «:

20

Figure 7: The right automaton Ag constructed from the rewrite rule zylyz —
€ / x_y. For simplicity transitions going into {9} have been omitted

Lo | L1 | Lo L3 Ly Ls Lg L~

{1y | {2} | {24} | {2,455} | {2,5} | {2,6} | {2,6,7} | {2,7}
Ro] oy | /- 1/ | -/ 7 YA 7 7
Rol o1 | /|| T T i T
Ry| {95} | /- |/ |&/=t | &/ | /- | -/ / /-
Ry| qore} | /| /- | w/ye | y/ye | /| -/ / /-
Ro| 1954} | /- | /| T T i T

Figure 8: The output function of B from the rewrite rule zylyz — € / z_z.
Only non-trivial rewritings have been shown

a=¢€ Then L = ¢ = S. Now if ¢ € L we examine an execution o consisting of
a single state ¢. o is obviously an execution of A and o(|a|) = q.

a =d'a Let §3(R,a) = R and 07 (q1,¥v**(q1, ¢/, R')) = L'. Now L = 67(L',¢(L, a, R)).

We notice that ¥(L', a, R) € {a, a‘}, and therefore L = §; (L', ¥ (L', a, R)).

Let ¢ € L. There exists ¢’ € L', such that (¢/,¥(L’,a, R),q) € AY, hence
by the definition of AY it follows that (¢’,a,q) € A. By the induction
hypothesis it follows that there exists o’ — an execution of A over ', such
that o’ (|a/]) = ¢’. We define

ot = { 70 151

q i=|af

It is easily shown that o’ is exactly the wanted execution of A over a.

21

O

Proposition 6.1. Let t = af € ¥*, 05(q2,3) = R, and 6 (q1,¥** (1, ¢, R)) =
L. Then for every qegp, ¢ € LN R iff (Joex,)(o(la]) = q).

Proof. Before we proceed with the actual proof, let’s verify that the proposition
might be reduced to those ¢ € Qg for which there exists an execution ¢ € X,
such that o(]a|) = ¢. Indeed, if ¢ € LN R, then ¢ € L and by Lemma 6.2 an
execution oy, of A over a would exist, such that o (|a|) = ¢g. On the other hand
q € R hence by Lemma 4.3 there exists an execution opr of A over B, such that
or(|f]) = q. Then o, defined as follows:

ot = { 0 isl

or(|t —i) i>|al

is a successful execution of A and therefore o € X.
The proof in the opposite direction is obvious because X, C X.
Let us now define the set

A={{a.q)laCt& qe Qp & Bocx)(o(la]) =)}
and a relation "<" in A, such that
<a1,q1> =< <Oéz,(]2> > a1 CasVap =y &ql S (QE —SE) &QQ S SE

This is a partial ordering of A which turns A into a well-founded set.

We proof the proposition by induction on the structure of A. Let’s fix an
element (o, q) € A and assume that for any preceding element (a/,q¢’) € A
((e¢/,q") < (a,q)) the proposition is valid. We show that it remains valid for

(a,).

a=¢ = Let g€ LNR. But a = ¢, therefore ¢ = o(|a|) = 0(0) € SNQE, and
hence ¢ € Sg. This means that there exists a context (¢,v,w) € C
and o is an execution for it. But (¢, v,w) € C; (by the construction
of C,), and therefore (¢,v,w) € C,, and o € X,,.

< Let 0 € X,. Then ¢ = o(la]) = 0(0) € S = ¢1 = L. On the

other hand ¢ is an execution of A and according to Lemma 4.2 q €
03(g2, 8) = R, which leads us to ¢ € LN R.

a =d'a Let’s denote R' = 62(R,a), L' = 67 (q1, v (q1, ¢/, R')).

= Let ¢ € LN R. We have two options for g¢:

q € Qg — Sg Then (by Construction 4.1) there exists ¢’ € L', such that (¢’,a, q) €
A and hence ¢’ € §3(R,a) = R'. By property 6.1 we may assert
that ¢ € Qg hence ¢ € L’ "R’ NQg. The induction hypothesis
for (o, ¢’) states that o’ € X, and o’(|c/|) = ¢’. As ¢ € R there
exists an execution o of A over 3, such that or(0) € F and

22

q €S

o(|8]) = ¢ (Lemma 4.3). Now we may define o — a successful
execution of A as follows:

U(i){ o’ (1) if i < |af

=\ or(t|—i) ifi>|al

It is easily seen that if o’ was an execution for (ug, v, wo) € Cy,
then o is an execution for (ug, v, w) € C. Now from Proposition
2.4 it follows that (ug,v,w) € C, is also a valid context, e.g.
oeX,.

The first fact, we immediately notice is that ¥(L’, a, R) & (%€ —
%) (this is true because if it weren’t one could possibly have
stated that L N Sg = 0). As a direct consequence from the
definition of v it follows that LN RN (Qg — Sg — Fr) = (. Now
let o € X is such that o(Ja|) = ¢, and this is an execution for the
context (u,v,w) € C. We show that this context is a valid one
((u,v,w) € Cp). Indeed, let’s assume that (u,v,w) & C,. Then
there certainly exists (u',v',w') € C,, such that v’ C v C w0’
(Proposition 2.3), and therefore there is an execution ¢’ € X,
for (u/,v',w"), such that o'(|a|) € Qr — Sg — Fg (Property
6.1). Then (o, 0'(Ja])) < (@, ¢) and by the induction hypothesis
o'(|a]) € LN R, which leads us to LN RN (Qr — Sg — Fg) # 0,
which is a contradiction with our assumption that (u,v,w) & C,.
Therefore o € X,,.

< Let 0 € X, and o(|a]) = ¢. As o is a successful execution of A

over af, there should exist another execution ogr of A over 5 and
or(|8]) = ¢. This means that ¢ € R (Lemma 4.2). It only remains
to show that g € L.

We again examine two cases:

q€ Qe —Sg

q €S

From Property 6.1 it follows that o(|¢/|) € Qg and then by
induction hypothesis one might deduce that o(|a/|) € L' N R'.
Since ¢ € SgUQ g whatever the value of ¢)(L', a, R) is we’ll have
qge (L ,¢¥(L' a,R)) =L.

Having in mind how the executions of A look like (Property
6.1) we have that o(|a’|) € Q. Then by Lemma 6.1, o(|¢/|) €
L'. Let’s assume that ¢ ¢ L. This could only be possible if
Y(L',a, R) = a° which on the other hand can happen only if
(L, a)NRN(Qrg—SEg—Fr) # 0. Let qo is an evidence for that
(g0 € 51(L',a)NRN(QEr — Sg — Fg)). Therefore g € LN R and
qo € (Qg — Sg — Fg). Since {«,qo) < (@, q) we can apply the
induction hypothesis for («, qp) and conclude that there exists
oo € X, such that oo (Jar]) = go. From Property 6.1 and the fact
that qo € (Qr — Sg — Fg), we deduce that(ug, vy, wg) € C, and
ug C a C ugvg. But if o is an execution for (u,v,w) € C, it
easily seen that o = u hence (u,v,w) & C, (there exists a valid

23

context overlapping it and Proposition 2.2). This contradicts our
assumption that ¢ € L. Thus we proved that ¢ € L N R.

O

6.4 Bimachine For Context-Sensitive Rewrite Rule

Finally, we construct B! — a classical bimachine, working over its input, equiv-
alent to B. Based on B! = (Al A% ¢!) we construct the final bimachine for
E—-p3/L _R:

B' = (A}, A3, ¢)
where A} = Al A, = AL, and the only difference with B is the output function
1)’, defined as follows

U'(L,a,R) = ¢ (L,a, R) - (L, a, R)

where
€ if (L',05(R,a)) € L& L'N64(R,a) N (Qp — Sg — Fg) £ 0
Wi(L,a, R) = B i {(L,8(R,a)) e L& L'N(R,a)N(Sg — Fg) # 0
WY Ba o if (L, 05(R,a)) € L& L'N64(R,a) N (SENFg) #0
a otherwise
Wy(L,a, R) = B if(L/,Ryed(L,a) & L'NRNSg#0 & R=
2V € otherwise

Lemma 6.3. Let t = af € £*, §1(¢},a) = L, 84 (¢}, 3) = R'. Then (L',R’) €
L and g € L' N R' N Qg iff there exists a context (u,v,w) € C,(t; L, E, R) and
execution for it o € X,(t; L, E, R), such that o(|a|) = q.

Proof. Let (L’,R') € L and ¢ € L’ N R' N Qg. Then from Propositions 5.1 and
5.2 it immediately follows that R’ = 05(qg2,3) and L' = 6} (g1, ¥**(¢1, o, R)).
Now since ¢ € L' N R’ N Qg, from Proposition 6.1 we may deduce that there
exists a valid context (u,v,w) € C, and execution for it ¢ € X, such that
o(lal) =q.

The proof is analogical in the opposite direction. O

Now we are ready to show that the so constructed bimachine actually works
as expected, namely realizes substitution according to the context-sensitive
rewrite rule £ — 8 / L _R.

Proposition 6.2. Let E — § / L R is a rewrite rule and B’ is the bimachine
constructed from it. Let also o € ¥* is a word over the rule’s alphabet X.. Then
B'(«) is exactly the result from the application of the context rule over «.

24

Figure 9: The left automaton of B’ for the rule zylyz — 8 / x_z. Incoming
transitions of Ly have been omitted for brevity

Proof. In the case when « = €, by Definition 2.6 the result from the application
of E— 5/ L_Risexactly e = B'(a).

Let « = @jaz .- a, where a; € X for 1 <i < n. Let (w1m1) - (wams) ... (wnmy)
is the result from applying the rule defined by Definition 2.6. We’ll show that
for any i € [1,n] if 67" (¢}, @aa -~ @i—1) = L and 85 (g5, Gnlp—1---Git1) = R
then ¢} (L, a;, R) = w; and ¥4(L,a;, R) = 7;.

According to 9)’s definition four cases have to be examined:

I case Assume that (L', 05(R,a)) € L & L'N§4(R,a)N(Qr—Sg—Fg) # 0. Then
by Lemma 6.3 there exists a valid context (u,v,w) € C, and execution for
it o € X, such that o(: — 1) € (Qg — Sg — Fg). Based on the type of the
executions of A (Property 6.1) we deduce that |u] < i —1 < |uv|. This
(according to Definition 2.6) means that w; = e.

IT case Assume that (L',05(R,a)) € L & L' Nd5(R,a) N (Sg — Fg) # 0. Then
by Lemma 6.3 there exists a valid context (u,v,w) € C, and execution
for it o € X, such that (i — 1) € (Sg — Fg). Based on the type of the
executions of A (Property 6.1) we deduce that |u| = ¢ —1 < |uv|. This
(according to Definition 2.6) means that w; = (.

IIT case Assume that (L', 05(R,a)) € L & L' N84 (R,a) N (Sg N Fg) # 0. Then by

25

Lo [T Lh [L5 [By | 05| g | I
R 17 7 171717
RSV /T 17 171717
Ry | /[] |z/c]lylel |7/
Ry | /- | /- |x/B| [|=/B|) |-/ |/
Ry | /- |-/ |y/B|z/e|yle |/ |/ |-/
RV 171717
Re | /- |-/ =B) [=/B]-/ |/ |-/

Figure 10: Output function of B’ for the rewrite rule zylyz — 5 / z_ =

Lemma 6.3 there exists a valid context (u,v,w) € C, and execution for it
o € Xy, such that o(i — 1) € (Sg N Fg). Based on the type of executions
of A (Property 6.1) we deduce that |u| =i — 1. Since haven’t fallen into
case IT it follows that there doesn’t exists (u,v,w) € Cy, such that |v| # €
and therefore (by Definition 2.6) w; = fa;.

1V case Being here means we didn’t fall into any of the above cases. Now let’s
assume there exists (u,v,w) € Cy, such that |u] <i—1 < |uv| or |u] =
i —1 = |uv|. Then there exists an execution for it ¢ € X, such that
o(i—1) € Qg — Fg or o(Ji — 1]) € Sg N Fg. Then (by Lemma 6.3)
(L',64(R,a)) € Land o(i —1) € L'Nd4(R,a) N Qg — Fgor o(i — 1) €
L' N §4(R,a) N Sg N Fg, which contradicts to the fact that we didn’t fall
into any of the above cases. Thus we conclude that w; = a;.

We showed that ¢](L,a;, R) = w; for ¢ = 1,2,...,n. It remains to show
that ¢4 (L, a;, R) = m; for any i = 1,2,...,n.

Let ¥4 (L, a;, R) = 3. Then (L', R) € §(L,a) and L'NRNSE # 0. According
to Lemma 6.3 there will exist (u,v,w) € C, and execution for it o € X, such
that o(i) € Sg. On the other hand R = ¢} and because of A’s normal form it
follows that o = ¢ and hence (u, v, w) = («a, €, €) € C,. Now we can immediately
conclude that m; = (.

By analogy we show that if m; = 8 then ¥4(L,a;, R) = .

Thus we finished our proof that ¢'(L,a;, R) = w;m; and therefore B'(a) is
exactly the result from the application of E — 3 / L _R over a. O

Example 6.1. Let’s run the bimachine constructed for xylyz — B |/ x_z
over the input word xyzzraxyzz from Ezample 2.2. The execution of A} will
be Ly, Ly, Ly, L, Ly, LY, LYy, L, Lg, LY. The right automaton A}, will produce
R), Ry, R}, R, RE, Ry, R}, R}y, Rg, RE, reading the input in the reverse direction.
According to Fig. 10 the output of B is exactly xtBzxBzz.

26

7 Algorithms

In this section we present some the most interesting algorithms we need for the
bimachine construction.

The algorithms are all presented without proof of correctness as they follow
without any modifications the respective constructions shown earlier.

7.1 Concatenation to the Left

The algorithm lconcat for concatenation to the left corresponds to Definition
3.8.

subroutine lconcat(Automaton A, Automaton B)
let C = new Automaton

foreach state in A.states
let cloned_state = C.add_state(state)
if state.is_start then
cloned_state.set_start(true)
end if
end foreach

foreach state in B.states
let cloned_state = C.add_state(state)
if state.is_start and A.accepts("") then
cloned_state.set_start(true)
end if
if state.is_final then
cloned_state.set_final(true)
end if
end foreach

foreach trans in A.transitions
C.add_transition(trans.source, trans.char, trans.target)
if trans.target.is_final then
foreach state in B.start_states
C.add_transition(trans.source, trans.char, state)
end foreach
end if
end foreach
foreach trans in B.transitions
C.add_transition(trans.source, trans.char, trans.target)
end foreach

return C
end subroutine

27

7.2 Translation of an Output-Driven Bimachine

The following algorithm output_to_input corresponds to Construction 5.1
which constructs a classical input-driven bimachine from an equivalent output-
driven one.

subroutine output_to_input(Bimachine B)
let psi = B.output_function
let AL B.left_automaton
let AR B.right_automaton

let AN = new Automaton
let states = new Table
foreach statel in AL.states
foreach state2 in AR.states
states[statel] [state2] = AN.add_state()
end foreach
end foreach
foreach pl in AL.states
foreach ql in AR.states
foreach p2 in AL.states
foreach g2 in AR.states
foreach a in alphabet
if AR.trans_function(q2, a) = ql and
AL.trans_function(pl, psi(pl, a, g2)) = p2 then
AN.add_transition(states[pl] [ql], a, states[p2][q2])
end if
end foreach
end foreach
end foreach
end foreach
end foreach

let Al = AN.build_deterministic()

let new_psi = new Function
foreach L in Al.states
foreach a in alphabet
foreach r in AR.states
foreach p in AL.states
foreach q in AR.states
if states[p]l[q] in L and
AR.trans_function(r, a) = q then
new_psi.define(L, a, r, psi(p, a, r))
end if
end foreach
end foreach

28

end foreach
end foreach
end foreach

return new Bimachine(Al, AR, new_psi)
end subroutine

7.3 Direct Construction of a Bimachine for Context-Sensitive
Rewrite Rule

The algorithm construct_bimachine directly reflects the construction from
section 6 and constructs a bimachine realizing some given rewrite rule.

subroutine construct_bimachine(L, E, R, word)
let AL = new Automaton(".*"+L)
let AE = new Automaton(E)
let AR = new Automaton(R+".x*")

let A = rconcat(lconcat (AL, AE), AR)

let A2
let AN

A.reverse() .build_deterministic()
A.clone()

foreach tr in AN.trans
if tr.target in AR.states then
AN.remove_transition(tr)
else
if tr.target not in AE.start_states then
AN.add_transition(tr.source, tr.char + alphabet.size, tr.target)
end if
end if
end foreach

let Al = AN.build_deterministic()

let psi = new Function
let inter = AE.states - AE.start_states - AE.final_states
foreach L in Al.states
foreach R in A2.states
foreach a in alphabet
if Al.trans_function(L, a).intersect(R).intersect(inter) then
psi.define(L, a, R, a + alphabet.size)
else
psi.define(L, a, R, a)
end if
end foreach

29

end foreach
end foreach

let B = output_to_input(new Bimachine(Al, A2, psi))

let final_psi = new Function
let intermediate = AE.states - AE.start_states - AE.final_states
let startnonfinal = AE.start_states - AE.final_states
let startandfinal = AE.start_states.intersect(AE.final_states)
foreach L in B.left_automaton.states
foreach R in B.right_automaton.states
foreach a in alphabet
let result = a
foreach (p,q) in L
continue unless q = B.right_automaton.trans_function(R, a)
let common = p.intersect(q)
if common.intersect(intermediate).length > O then
result = ""
break
else if common.intersect(startnonfinal).length > O then

result = word
break
else if common.intersect(startandfinal).length > O then
result = word + a
break
end if
end foreach
if R = B.right_automaton.start_state then
foreach (p,q) in B.left_automaton.trans_function(L, a)
continue unless q = R
if p.intersect(q).intersect(AE.start_states).length > O then
result = result + word
end if
end foreach
end if
final_psi.define(L, a, R, result)
end foreach
end foreach
end foreach

B.output_function = final_psi

return B
end subroutine

30

8 Complexity

In this section we explore the upper bound of the constructed bimachine’s size.

Proposition 8.1. Let B = (Ar, Ag,¢) is an output-driven bimachine and
B = (A}, A%, ¥') is an equivalent input-driven bimachine, constructed by Con-
struction 5.1. Then

a) |Qxl = |Qr|

b) 1Q7] < (IQc| + 1)1

Proof. a) By Construction 5.1 we immediately deduce that Ar = A, and
hence |Qz| = |Qr| is trivially valid.

b) Because of Proposition 5.1 we may look at the states in @, as if they were
partial functions from Qg to Q. This means that |Q’ | is no larger than
the number of different partial functions defined from Qg to @1 therefore

QL| < (IQcl +1)9xl.
O

Let’s now calculate the upper bound of the constructed bimachine’s space
complexity. In other words we shall estimate the number of states in the bima-
chine’s automata in terms of the context rule.

Let’s fix a context rule £ — 3 / L _R and denote | = |L|, e = |E| and
r = |R|. Then the number of states in Ar, Ag and Ag will be respectively
O(1), O(e) and O(r). Hence it is easily seen that the number of states in A is
bounded by O(l +e+r).

This gives us an upper bound for the states of Ay, namely O(2!7¢+7).

As AY is obtained from A through transition relation modifications, its num-
ber of states remains as much as O(l4+e+r). This number grows exponentially
to O(2!+¢+7) after the determinization of A;. Finally, according to Proposition
8.1, Construction 5.1 constructs A} with O(2(+¢+m2 ™) states.

Thus we obtained the final estimate of the bimachine’s space complexity —
respectively O(2"?") and O(2") for the left and right automata, where n =
l 4 e + r is the total length of the regular expressions in the context-sensitive
rewrite rule.

31

References

[1] Chomsky, Noam, and Morris Halle. 1968. The sound pattern of English.
New York: Harper and Row.

[2] C. Douglas Johnson. 1972. Formal Aspects of Phonological Description.
Mouton, The Hague.

[3] Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phonological
rule systems. Computational Linguistics, 20(3):331-378.

[4] Schutzenberger, Marcel Paul. 1961. A remark on finite transducers. Infor-
mation and Control, 4:185-187.

[5] E. Roche and Y. Schabes. 1996. Introduction to finite-state devices in nat-
ural language processing. Technical report, Mitsubishi Electric Research
Laboratories, TR-96-13.

[6] Wojciech Skut, Stefan Ulrich, Kathrine Hammervold. 2004. A Bimachine
Compiler for Ranked Tagging Rules. CoRR ¢s.CL/0407046.

[7] K. Thompson. 1968. Regular expression search algorithm. Communications
of the ACM, 11(6):419- 422

32

